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Abstract. We present a greedy approach to test-cases selection for sin-
gle decisions to achieve MC/DC-coverage of their Boolean conditions.
Our heuristics take into account “don’t care” inputs through three-
valued truth values that we obtain through a compact representation
via reduced-ordered binary decision diagrams (roBDDs). In contrast to
an exhaustive, resource-consuming search for an optimal solution, our
approach quickly gives frequently either optimal results, or otherwise
produces “good enough” results (close to the optimal size) with little
complexity. Users obtain different — possibly better — solutions by per-
muting the order of conditions when constructing the BDD, allowing
them to identify the best solutions within a given time budget. We com-
pare variations on metrics that guide the heuristics.

1 Introduction

Software testing techniques that achieve coverage effectiveness and provide test
cases are cost intensive [31]. Certification standards for safety assurance such as
DO-178C [28] in the domain of avionic software systems require software with
the highest safety level (Level A) to show modified condition decision coverage
(MC/DC) [10]. One of the advantages of MC/DC is that for a decision with
n conditions, it may be satisfied with less test cases: between a lower-bound of
n+1 and upper-bound of 2n test cases, compared to multiple condition coverage
(MCC) which requires 2n test cases. MC/DC requires that each condition in a de-
cision shows an independent effect on that decision’s outcome by (1) varying just
that condition while holding fixed all other possible conditions (UC-MC/DC),
or (2) varying just that condition while holding fixed all other possible conditions
that could affect the outcome. This criterion of showing independence effect for
conditions is unique for MC/DC compared to other structure coverage criteria.

While trying all possible combinations is exhaustive and requires tremendous
resources [18], as well as becoming impracticable for a high number of conditions
[23,19], finding a test set equal or closer to n+ 1 with MC/DC assurance is also
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a non-trivial task [24,15]. Therefore, it is important to investigate new strategies
for generating good test suites both in terms of number of test cases [10] and
coverage adequacy [34,14] with little complexity and with reasonable resources.

In this paper, we present a novel and alternative approach to test case gen-
eration satisfying MC/DC based on reduced-ordered binary decision diagrams
(roBDDs) which are a concise representation of Boolean expressions. roBDDs are
widely used in different areas such as computer aided design (CAD) tasks [26],
symbolic model checking [11,26], and verification of combinational logic [20,29].
Due to their reduced form compared to other Boolean expressions representa-
tions such as disjunctive or conjunctive normal form, truth tables and formula
equivalence [35]; roBDDs offer a unique normal form and were also already used
in test cases generation [17,22] for different coverage criteria other than MC/DC.

We present an algorithm that takes as input the roBDD representing a
Boolean expression and constructs a set of MC/DC pairs. For a decision of
n conditions, we generate n pairs that contain between n + 1 to 2n test cases
altogether. We select paths based on their length in roBDDs and reuse factor
(α()). The reuse factor refers to the number of pairs that use a given path.

We propose and compare heuristics with different preferences with respect to
three-valued truth-values (1, 0 and ?) and the length of paths in the roBDD. All
of them maximize the reuse factor (α()) together with a second criteria, namely:
the longest paths in BDD (HLPN , HLPB), the longest paths which may merge
(HLMMN ,HLMMB), and the longest paths with better size (HLPBS). Each type
of heuristic implements two different flavors which sort the BDD paths depending
on the interpretation of the reuse factor as a natural number (HLPN , HLMMN )
or as a boolean value (HLPB , HLMMB)(e.g., α(p, ψ) < α(q, ψ)). Our algorithm
is implemented in Python and the PyEDA library [13]. We test our algorithm
on the Traffic Alert and Collision Avoidance System (TCAS II) benchmarks [33]
which are widely used in the literature [19,21,37,22,17].

BDDs are sensitive to conditions ordering, such that different orders yield
different BDDs and their size in the worst case grows to 22

n

nodes [27]. As the
number of nodes increases there are many paths to select MC/DC pairs from.
We present evidence that to find an optimal or “good enough” solutions, instead
of a search with backtracking, it is sufficient to try a few different permutations.

The rest of this paper is organized as follows: in Section 2 we present our ter-
minology, notations and a background on MC/DC and BDDs. Section 3 describes
our approaches and algorithm for generating test cases satisfying MC/DC based
on BDDs. Section 4 explains the implementation of our algorithm and discuss
the results. In Section 5 we provide the state of the art of the existing related
work. Finally, we present the concluding remarks and future work in Section 6.

2 Background

In this section, we provide the background on MC/DC and BDDs. We present
several basic definitions and terminology which are used throughout this paper.
Conditionals in source code, as well as logical expressions in software specifica-
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tions can be formalized as Boolean expressions. Both BDDs and MC/DC deal
with Boolean expressions.

Definition 1 (Boolean expression). A Boolean expression is defined as an
expression that can be evaluated to either true (T) or false (F) and can contain
connectives: NOT, AND, OR, XOR (exclusive-or), denoted by ¬, ∧, ∨, and ⊕
respectively.

There has been some confusion on what is a condition and decision in the
context of source code and the Certification Authorities Software Team (CAST)
provided suitable definitions [7]: each occurrence of a condition is considered as
a distinct condition, whereas we treat multiple occurrences of a variable as one
condition, where c and ¬c are strongly coupled conditions.

Definition 2 (Condition). A condition denotes a logical indivisible (atomic)
expression containing no Boolean operators except for the unary operator (¬). It
contains a Boolean variable represented by a, b, c,. . ., defined over “0” or “1”.

Definition 3 (Decision). A decision is a Boolean expression composed of con-
ditions and zero or more Boolean operators. It is denoted by D = c1�c2�c3 · · ·�
ci � · · · � cn, where ci, (1 ≤ i ≤ n) are Boolean conditions and � stands for a
binary Boolean operator. A decision is also known as a Boolean function.

Definition 4 (Two/Three-valued test case). Given a decision D, a test
case is a truth vector tc = (I1, I2, I3, · · · , In) where Ii ∈ {0, 1} (respectively,
{0, 1, ?}) are the inputs assigned to each conditions. ? is known as “don’t care”
meaning that a condition does not need to be evaluated due to short-circuiting.
A set of test cases for a given decision is called a test suite. We denote the
projection onto the truth-value at the position corresponding to some condition
c in the test case tc as tc[c].

2.1 Modified condition decision coverage (MC/DC) criterion

We first give the well-known definitions for two-valued truth values, and will
later extend the definitions into the three-valued setting. MC/DC subsumes the
existing logical coverage criteria such as condition coverage (CC): each condition
tested once true and false, decision coverage (DC): a decision is evaluated once
true and once false, and multiple condition coverage (MCC): an exhaustive test-
ing that requires all possible combination of inputs. For MC/DC each condition
has to independently affect the decision’s outcome. According to DO-178C [28]
and CAST-10 [7] the following definition has been provided for MC/DC:

Definition 5 (MC/DC [30]).
A decision is said to be MC/DC covered iff: (i) Every point of entry and
exit in the program has been invoked at least once, (ii) every condition in
a decision in the program has taken all possible outcomes at least once, (iii)
every decision in the program has taken all possible outcomes at least once, (iv)
each condition in a decision has shown to independently affect that decision’s
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outcome by: (1) varying just that condition while holding fixed all other possible
conditions(UC-MC/DC), or (2) varying just that condition while holding
fixed all other possible conditions that could affect the outcome (Masking
MC/DC).

The coverage of program entry and exit in the Definition 5 is not directly con-
nected with the main point of MC/DC [32], as we only consider expressions, not
programs. The most interesting part of the MC/DC definition is showing the
independent effect, which demonstrates that each condition of the decision has a
defined purpose. The item (1) in the definition defines the unique cause MC/DC
which original MC/DC [9]. The item (2) has been introduced in DO-178C to
clarify that so-called Masked MC/DC is allowed [6,28]. Masked MC/DC means
that it is sufficient to show the independence effect of a condition by holding fixed
only those conditions that could actually influence the outcome. In our analysis,
we are interested in generating MC/DC test cases that show an independence
effect of each condition in the decision with acceptable size.

Definition 6 (Independence effect of a condition, independence pair,
⊕c). Given two test cases tc, tc′ for a decision D, we call tc independent from tc′

on condition c, iff i) D(tc) = ¬D(tc′) (they evaluate to opposite truth values),
and ii) tc⊕ctc

′, where ⊕c means they differ exactly only in the input position
corresponding to condition c. We then say that “tc and tc′ form an independence
pair” (for some condition c), written uc(tc, tc′).

We will later see that in our three-valued interpretation, a test case cannot form
an independence pair if it does not contain enough concrete input to evaluate to
either true or false. We now reformulate the general definition of MC/DC from
Def. 5 for our purposes:

Definition 7 (MC/DC-cover). Given a decision D and set of test cases ψ,
we say that ψ MC/DC-covers D, iff ∀c ∈ D, ∃tc, tc′ ∈ ψ : tc ⊕c tc

′ ∧ uc(tc, tc′)
(tc is independent from tc′ for every condition c).

In other words, a set is an MC/DC-cover for a decision D, if for every condition,
there exists a pair of test cases in that set which shows the independence effect
of that condition by evaluating to opposing truth values.

Example 1. Consider a decision D = (a ∧ b) ∨ c. The truth table representing
MCC and all possible MC/DC pairs is given in Table 1(a). Each pair is showing
the independence effect for a condition. The advantage of MC/DC over MCC
can be seen from Table 1(a). MCC requires eight test cases whereas all possible
MC/DC pairs contain seven test cases. Indeed, only the four test cases shown in
Table 1(b) are required to achieve MC/DC [10,9]. However, choosing a set equal
or closer to minimal number of test cases is non-trivial for testers, especially
when there is more than one MC/DC pair for a certain condition, for example,
condition c can be covered by either of three pairs (indicated in parentheses), as
shown in Table 1(a).
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Fig. 1: roBDD:
D = (a ∧ b) ∨ c

tc a b c D MC/DC pairs

1 0 0 0 0

2 0 0 1 1 c(1,2)

3 0 1 0 0

4 0 1 1 1 c(3,4)

5 1 0 0 0

6 1 0 1 1 c(5,6)

7 1 1 0 1 a(3,7),b(5,7)

8 1 1 1 1

(a) MCC & All MC/DC pairs

π a b c D MC/DC pairs

1 0 ? 0 0

2 1 1 ? 1 a(1,2)

3 1 0 0 0 b(2,3)

4 1 0 1 1 c(3,4)

(b) MC/DC set of paths

tc a b c D MC/DC pairs

1 0 1 0 0

2 1 1 0 1 a(1,2)

3 1 0 0 0 b(2,3)

4 1 0 1 1 c(3,4)

(c) MC/DC set of test cases

Table 1: MCC & MC/DC pairs for D = (a ∧ b) ∨ c .

Chilenski et al. [10,9] investigated that for a decision D with n conditions, UC-
MC/DC can be achieved with a minimal number of n + 1 tests while Masking
MC/DC be achieved with a minimal number of d2∗(

√
n)e tests. This is achieved

by choosing MC/DC pairs that overlap where every condition past the first one
(which requires two test cases), only adds a single test case to the existing set.

Lemma 1 (Minimal MC/DC-Covers [9,1]). If a coverage set exists for a
decision D with n conditions, then there also exists a smaller set (possibly with
different test cases) thereof with exactly n + 1 test cases such that it MC/DC-
covers D for UC MC/DC.

2.2 Overview on binary decision diagrams (BDDs)

BDDs are canonical representations of Boolean functions compared to other
Boolean expressions representations such as disjunctive normal form (DNF),
conjunctive normal form (CNF), truth tables and formula equivalence [35]. To
reduce BDDs, conditions in a decision need to be ordered and duplicated termi-
nals and isomorphic sub-trees have to be merged. The resulting graph is known
as reduced ordered BDD (roBDD) and is shown in Figure 1 for the Example
1. BDDs represent formulas compact in the sense that it takes little memory to
store the representation, the number of nodes in a roBDD is reduced and there
is exactly one optimal and unique graph for each Boolean expression [35].

Definition 8 (Path through an roBDD, π, π[x]). Given an roBDD for some
decision D over Boolean variables x0, . . . , x1. We denote a path from the root
of the BDD to a terminal with π, and write π[x] = 1 if the path takes the true-
branch in the node labelled with condition x (0/false respectively), and π[x] =? if
the path does not pass through a node labelled with condition x. That is, although
paths through the roBDD can be of different lengths, for uniformity we always
represent them as a vector with n elements.
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We also extend the evaluation of a decision wrt. some inputs (D(0 . . . 0)) to BDDs
and use D(π) to denote the three-valued truth-value that the path represents.
The obvious correspondence between a test case and a path through the roBDD
is that a test case may provide more truth-values as inputs than are strictly
necessary on this path. For example, an MC/DC pair of paths for condition a is
{(0?0), (11?)} as shown in row 1 & 2 of Table 1(b). The fully instantiated test
cases for this pair are {(010), (110)} (row 1 & 2, Table 1(c)).

3 Approaches and algorithm for test cases generation

Our approach and heuristics for test case generation are based on roBDDs that
guide our search for test case selection. We start with a set of roBDDs paths
from the root and construct sets satisfying MC/DC for all conditions, where
each set contains n MC/DC pairs.

BDDs are sensitive to variable ordering: to deal with the ordering effect,
we collect solutions for a number of permutations on the variable ordering. As
the number of conditions in a decision increases, the number of permutations
(n! for n conditions) increases over-exponentially. Since generating the set of
solutions for all permutation would be infeasible in those cases, we show that
for few permutations we generate some test suites of minimal size, based on the
selection methods defined in Subsection 3.2. In the following, we assume that all
BDDs that occur are roBDDs.

3.1 Theorems and definitions for MC/DC in terms of BDDs

The core of our contribution is as follows: our algorithm produces a set of three-
valued test cases, which we can instantiate to fulfill the original definition of
MC/DC. We first extend general results from the standard two-valued Boolean
logic to a three-valued logic.

Definition 9 (Three-valued independence pair, ⊕3
c ). Given two three-

valued test cases tc, tc′ for a decision D, we write uc3(tc, tc′) iff
i) D(tc) = ¬D(tc′) (they evaluate to opposite concrete truth values), and ii)
tc⊕3

ctc
′, where ⊕3

c means at least one of the inputs for some condition c is a
concrete truth value, and for every other condition the three-valued inputs coin-
cide or one of them is “?”.

Example 2. Let D(X,Y, Z) = X ∧ ((¬Y ∧ ¬Z) ∨ (Y ∨ Z)). Consider tc = (0??)
with D(tc) = 0 and tc′ = (11?) with D(tc′) = 1 respectively, hence uc3(tc, tc′).
Observe that hence also e.g. uc3(011, 11?) and uc(011, 111).

We next show that each three-valued independence pair can be instantiated to
some two-valued independence pair by suitable substitution of unknown values.
In the following, for readability, we describe functions from our implementation
through their properties instead of operationally. The first function combines
two compatible test cases into a single one. We need this later in our algorithm
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to refine existing test cases such that we keep only one test case when two cases
overlap.

Definition 10 (merge(tc, tc′)). Given test cases tc, tc′, we obtain
σ = merge(tc, tc′), where ∀c ∈ C, (σ[c] = tc[c] ∧ tc′[c] = ?) ∨ (σ[c] = tc′[c] ∧
tc[c] = ?).

In other words, merge substitutes some ? in a pair of paths, such that all
conditions have equal values. The result is undefined if they disagree in one
position where one has true and the other false. This can be understood as
unifying both test cases with each other, taking ? as free variables.

Note that we ignore the actual outcome when merging wrt. a decision, but
only ever consider the inputs. As we will also consider test cases that differ in
exactly one position, we define the following variation:

Definition 11 (mergex(tc, tc′)). Given test cases tc, tc′, we obtain
σ = mergex(tc, tc′), where ∀c ∈ C \ {x}, (σ[c] = tc[c] ∧ tc′[c] = ?) ∨ (σ[c] =
tc′[c] ∧ tc[c] = ?) ∧ σ[x] = tc[x] (emphasis added).

Note that this definition is biased to reproduce the truth-value in the desig-
nated position x from the first input, and we will consequently later see it applied
twice, once from left to right argument, and also from right to left argument.

Example 3. We have mergec2((1?0), (11?)) = (110), but mergec2((11?), (1?0)) =
(11?), with c2 the condition that is placed in the last position.

Definition 12 (Specialization 5). Given three-valued test cases p, q, we say
that p 5 q iff ∃p′ : p = merge(p′, q) (“ p specializes q”).

Due to the same format for a test case and for a roBDD path (see Def. 8), both
concepts are interchangeable and 5 can specialize any of them. The relation 5
is a partial order (straightforward).

Theorem 1 (Usefulness of three-valued MC/DC). Given a decision D
and set ϕ of three-valued test-cases that is a three-valued MC/DC cover for D,
i.e., ∀c ∈ D : ∃tc, tc′ ∈ ϕ, tc ⊕3

c tc
′ ∧ uc3(tc, tc′). Then there exists a two-valued

set of test cases ψ ⊆ 2B
|D|

, such that:

(1) ∀tc, tc′ ∈ ϕ : uc3(tc, tc′)⇒ ∃u, u′ ∈ ψ : u⊕c u
′ ∧ u 5 tc ∧ u′ 5 tc′

(each test case pair in ϕ has been specialised)
(2) ∀u, u′ ∈ ψ : D(u) = ¬D(u′) ∧ u⊕c u

′ ⇒ ∃tc, tc′ ∈ ϕ : uc3(tc, tc′)
∧u 5 tc ∧ u′ 5 tc′(ψ is the smallest set that specialises ϕ).

It follows that ψ is an MC/DC-cover for D.

Proof. (1) Because of uc3(tc, tc′), tc or tc′ have a concrete value in c and coincide
for the rest of conditions ci, except for those positions ci where one of the test
cases is ?. Hence, u = mergeci(tc, tc

′) returns a new test case where u 5 tc as
the ? are instantiated (symmetrically, u′ = mergeci(tc

′, tc)), excluding condition
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c. MC/DC imposes that u[c] = ¬u′[c], so the selection of tc and tc’ satisfies
that either a) tc[c] = ¬tc′[c], or b) tc[c] =? or tc′[c] =?. In b), u[c] = tc[c] and
u′[c] = tc′[c]: if any of these values is a ?, then they are properly instantiated so
that u⊕c u

′.
(2) As u⊕c u

′, u and u′ are equal except for condition c. Then, tc and tc′ are
constructed by replacing a finite number of positions in u (similarly, u′) with ?
such that they keep uc3(tc, tc′). Because tc and tc′ are abstractions of u and u′,
u 5 tc ∧ u′ 5 tc′.

Due to the specialization relation, multiple sets of two-valued test cases can
be constructed that satisfy the above property: ϕ may contain a test case tc with
“don’t care” for some condition c, and also “don’t care” for every other partner
tc′ in the pairs it is participating in. Then, this input c can be instantiated
to either truth value. Our algorithm 1, which uses the roBDD to populate ϕ,
guarantees that there will exist at least a pair tc, tc′ such that tc[c] = ¬tc′[c] for
every condition c, if the decision can be MC/DC-covered.

Next, we define the function that identifies suitable test cases that we might
want to add our set ψ. Based on the following criteria, for every uncovered
condition the algorithm adds a new test case together with a complementary
one such that the pair shows the independence effect of the condition.

Definition 13 (Reuse factor α(π, ψ), α=3
(π, ψ)). Given the set of MC/DC

pairs of paths (π⊥, π>) ∈ ψ with D(π⊥) = 0 and D(π>) = 1, the reuse fac-
tor α(π, ψ) represents the number of pairs in ψ that use π. It is calculated as
α(π, ψ) := |{(π, (π⊥, π>)) | π = π⊥ ∨ π = π>, (π⊥, π>) ∈ ψ}|.

Relation to BDDs. A pair (tc, tc′) of test cases showing the independence of
some condition ci has a vivid graphical interpretation on the BDD. It corre-
sponds to a pair of paths (π⊥, π>) such that:

1. the tests evaluate the opposite truth values (i.e., D(tc) = ¬D(tc′));
2. tc 5 π⊥, tc′ 5 π> (order wlog., the test cases may contain more input than

strictly necessary).
3. both reach some node vci using the same path through BDD(D)

(i.e., π⊥[j] = π>[j] for 0 ≤ j < i);
4. their paths from vci exit on either edge (i.e, π⊥[i] = ¬π>[i]);
5. after vci , both test cases take compatible choices along the paths for the

remaining conditions, so that the independence property holds
(i.e., π⊥[j] =3 π

>[j] for i < j < n).

This means especially that the two paths cannot cross (after the condition-
node vci), since this would immediately indicate an incompatible choice.

Figure 2 represents the overview on the selection of MC/DC pairs from the
roBDD. The roBDD contains the root node labeled by R, non-terminal nodes
labeled with conditions and two terminal nodes (0 and 1). The nodes are con-
nected by solid and dashed edges representing assignments of 1 and 0 to each
condition respectively. Every condition c may be represented multiple times on
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(a) Pair selection (b) Reuse effect

Fig. 2: Overview on MC/DC pairs selection path from BDD and reuse effect

the BDD (nodes vc). There may exist multiple paths to such a node. For ev-
ery path reaching a (non-terminal) node, we attempt to extend it to construct
pairs that show the independence effect of that condition. It is not guaranteed
that the two complementary paths lead to opposite terminal nodes and our al-
gorithm must explicitly check it step-by-step (modulo “don’t care”-steps). The
figure shows a representative of such pairs, (π⊥, π>): they share the same prefix
for all ordered conditions up to vc. They then proceed in lock-step through the
two branches to the terminals.

Figure 2 (b) illustrates some of the effects that we aim to achieve: as we
search for pairs in the order of the roBDD, we will obtain some pair (shown in
blue) from the heuristics (e.g. based on “longest path”) which differs directly in
the condition R for the root node. The next condition A in the order exists only
in the left subtree, and we prefer a pair for it that reuses one of the previous
path. Here, this can only be the left path for R, and hence we check if for the
path that condition A shares with condition R we can construct a compatible
path to the opposite terminal after leaving the node for A through the opposite
edge (red pair). For condition B, we attempt to construct a pair by reusing the
right branch for condition R (blue), and another one that uses the path that
we used before both for R and A. We either take the only pair that fulfils our
criteria, or again have the heuristics break a potential tie, here resulting in the
green pair for condition B.

Due to the structure of roBDD, the derived test cases correspond to MC/DC
+ short circuit [6,5] where a test case can be composed with a three-valued
assignment (0: false, 1:true, and ?:not evaluated(a condition does not appear
along the path)). Therefore, to find the test cases that satisfy Unique Cause
MC/DC [9], the “don’t care” assignments will be replaced by either 0 or 1
pairwise (by the corresponding value at the same position in the partner path).

3.2 Algorithm and heuristics for test cases generation

Our approach for MC/DC test case generation for a decision D is based on the
three-valued paths that are extracted from the equivalent roBDD. The MC/DC
coverage criteria requires a pair of test cases that shows the independence effect
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for every condition. The presence of “don’t care” values in a BDD path gives us
some flexibility when instantiating it to a test case and finding the complemen-
tary test case that leads to the opposite Boolean evaluation. As the wildcards
may specialize to any Boolean value, we propose a greedy algorithm that tries to
minimize the overall number of test case pairs for a decision D with n conditions
from 2n to a value as close as possible to n+ 1.

To this end, our method is divided in two stages: during the first phase, it
initializes the MC/DC test suite with paths that are extracted from the BDD
through any of our predefined heuristics, which intend to maximize the reuse
factor in order to reduce the differences among test cases. Secondly, the selected
BDD paths are specialized so that the wildcards take a concrete value while
preserving the independence effect. We lift this property to sets of pairs of test
cases with the definition of instantiate which computes the smallest set such
that it guarantees that all members have been merged if possible:

∀(s, s′) ∈ instantiate(S) :
∃(p, p′) ∈ S : uc3(p, p′) ∧ s 5 p ∧ s′ 5 p′ (instantiated from S)
∧ ∀(p, p′) ∀(q, q′) ∈ S : s 5 p ∧ p 5 q ∧ p 5 q′ ⇒ s = p ∧ s′ = p′(least upper bound)
∧ ∃c : mergec(s, s

′) = s ∧mergec(s
′, s) = s′ (fully merged).

This approach takes n = |C| iterations, and each iteration adds a pair con-
sisting of at most two new paths to the set. If S is empty, we can abort as this
means there does not exist any pair showing the independence effect of that con-
dition, and hence the decision D cannot be covered with the MC/DC-property.
Correspondingly, unless we abort, the final set will contain n pairs, consisting
of at most 2n individual paths. By construction, these pairs will provide three-
valued MC/DC-coverage of the decision.

This leaves us two points to address: i) can we avoid constructing the set
of all pairs for a condition, but instead only use a relevant, smaller subset as
input to the heuristics, and ii) can we present evidence that our heuristics have
a high likelihood of picking pairs that not only reuse a path from the already

Algorithm 1: MC/DC Test case generation

Input: An roBDD over conditions C with root r for a formula ϕ
Output: Set ψ of pairs of test cases that MC/DC-cover ϕ with

|C|+ 1 ≤ |
⋃
{{tc, tc′}|(tc, tc′) ∈ ψ}| ≤ 2|C|.

1 ψ = Ø;
2 forall c ∈ C do

3 Let S := {(π>
vc , π

⊥
vc) | where π>

vc , π
⊥
vc are paths from the root r via some vc

to > and ⊥ respectively, such that [π>
vc ]⊕c[π

⊥
vc ]}.

4 Abort if S = Ø: no MC/DC cover of ϕ possible.
5 Let (p, q) := H(ψ, S) be the result of applying a given heuristics H, such

that ∃(p′, q′) ∈ S : p = mergec(p
′, q′), q = mergec(q

′, p′).
6 ψ = instantiate(ψ ∪ {p, q})
7 end
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selected pairs (if possible), but also contributes a fresh path that will be reused
in the future. We address the first point through algorithmic construction, and
evaluate the second through a series of experiments using the TCAS case study.

Algorithmic description. Any approach to a potentially optimal solution must
reuse a test case that has already been selected as a partner in a pair for some
other condition when selecting a pair for some other condition. It is hence clear
that not all pairs for a condition may have to be constructed and evaluated.
Rather, we first attempt to directly derive a pair from the existing set of test
cases (by flipping only the corresponding condition), and only revert to deriving
a new pair of completely fresh paths if such a derived path does not exist.
Depending on the heuristics, identifying a completely fresh pair may entail a
complete enumeration of pairs: it may be looking for the longest path with most
reuse-potential (least number of “don’t care”), which could ultimately be the
last pair a given traversal of the BDD yields.

The representation as a BDD gives us an advantage in building fresh pairs: by
exploring the tree from the root, the ordered labels tell us when we can preempt
a search because the condition of interest does not exist in the remaining subtree,
and we can continue our search in a sibling. Compared to an exploration of the
corresponding truth-table, this effectively allows us to skip over irrelevant rows.
We next formalize the notion of path-length in the roBDD.

Definition 14 (Length of a path/test case, |σ|/|tc|). Given a path σ in the
roBDD for a decision D from the root to a terminal, we denote the length of the
path with |σ|. The length of a test case |tc| is that of the underlying path.

Note that since a test case can have more concrete inputs than are necessary for
the path we have in the BDD, the length of a test case may be lower than the
number of concrete inputs in that test case.

We propose five selection methods for test cases generation. All of them max-
imize the reuse factor (α()) together with a second criteria, namely: the longest
paths in BDD (HLPN , HLPB), the longest paths which may merge (HLMMN ,
HLMMB), and the longest paths with better size (HLPBS). Each type of heuris-
tic implements two different flavors which sort the BDD paths depending on the
interpretation of the reuse factor as a natural number (HLPN , HLMMN ) or as
a boolean value (HLPB , HLMMB)(e.g., α(p, ψ) < α(q, ψ)). We compare them
with the random reuser (HRR) method as a baseline, which takes the first new
path that forms a new pair with an existing test.

HLPN/HLMMN : This method chooses pairs of paths satisfying MC/DC based
on the longest paths in BDDs with the highest reused factor. In case multiple
pairs have equal reuse, we choose one where additionally the sum of the lengths
is longest. The longest path or higher reuse factor may be better since it can be
reused by many conditions that appear along the path.

HLPN (ψ, S) := (mergec(p, q),mergec(q, p)) where (p, q) ∈ S
such that either (in order):
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1. α(p, ψ) > 0 ∧ α(q, ψ) > 0 ∧ ∀(p′, q′) ∈ S : α(p′, ψ) > 0 ∧ α(q′, ψ) > 0
⇒ |p|+ |q| ≥ |p′|+ |q′|

(both test cases were already in the set)
2. ∀(p′, q′) ∈ S : α(p, ψ) + α(q, ψ) ≥ α(p′, ψ) + α(q′, ψ) (highest reuse)

∧ (α(p, ψ) + α(q, ψ) = α(p′, ψ) + α(q′, ψ)⇒ |p|+ |q| ≥ |p′|+ |q′|)
(longest path) .

HLPB/HLMMB: The previous heuristic HLPN looks at the reuse of the paths
in a pair: the existing path may have reuse > 0, and may occur in multiple pairs
in the existing set. Its partner path may also be derived from another existing
pair. Since it is not clear that past performance (“high reuse = used in multiple
pairs by someone before”) is an indication for future performance (“does it have
more likelihood to be useful in future pairs?”), we also evaluate a variant that
only prefers that there is some reuse, but not how much:

HLPB(ψ, S) := (mergec(p, q),mergec(q, p)) where (p, q) ∈ S :
α(p, ψ) + α(q, ψ) > 0 (has some reuse)
∧ ∀(p′, q′) ∈ S : α(p′, ψ) + α(q′, ψ) > 0⇒ |p|+ |q| ≥ |p′|+ |q′|(longest path).

The difference between this method and the previous one is that here we
consider the reuse factor as Boolean. That is, we choose a pair with the longest
paths in BDDs and we check if one of the paths is already reused as a part of an
earlier pairs or not. This may give rise to greater non-determinism since more
potential partners are considered equivalent.

Longest paths best size (HLPBS): selects MC/DC pairs where the paths
have together the highest reuse and the sum of the lengths is strictly the longest.

4 Implementation of MC/DC test cases selection

In this section we describe how we evaluate our approach for the heuristics pro-
posed in Section 3. For each heuristic, one run of Alg. 1 derives a set of test
cases for a decision with MC/DC-coverage if it exists. Our heuristics are sensi-
tive to exactly one parameter: the ordering of conditions when constructing the
BDD. Furthermore, there is some inherent non-determinism: a heuristic picks
randomly among equally best-ranked pairs. It is quite common to observe equiv-
alent pairs with identical reuse and identical path-length. Secondary sources of
non-determinism include e.g. iteration over unordered structures like sets which
are implementation-specific to a given Python platform.

To give a proper evaluation, we control these in the following way: every
heuristic is applied for a number of permutations of the order of the conditions
for each decision. For decisions with a low number of conditions, we can hence
even exhaustively evaluate the outcome of the heuristics for all permutations. In
addition, we repeat a run on a given permutation, exploring different random
choices within the equivalent best pairs.
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Fig. 3: Test cases generation framework

Our framework is based on the PyEDA library [13] and implemented in
Python. We test our algorithm on the Traffic Alert and Collision Avoidance
System (TCAS II) benchmark [33,25] which has been frequently used in litera-
ture [19,21,37,22,17]. The benchmark refers to specifications written as Boolean
expressions (decisions) which are logically evaluated to true or false depending
on the truth values assigned to the contained conditions.

Below, we present detailed results for a well-known set of TCAS II decisions
that can be reproduced with the code in our open source repository 3. We do
not report execution times for our experiment, as our implementation is not
optimized in any way beyond obvious algorithmic constructions to minimize
BDD-traversal.

4.1 Experimental setup

Fig. 3 shows our test cases generation framework. Our setup takes as input the
roBDD for a given decision, the number of permutations, and the number of runs
that we perform for each process of test cases generation. The selection method
refers to the different heuristics proposed in Section 3: HLPN , HLPB , HLMMN ,
HLMMB , HLPBS and HRR. The benchmarks refer to the specifications written
as Boolean expressions (decisions) which are logically evaluated to true or false
depending on the truth values assigned to the contained conditions. MC/DC
test specifications are the meaning of what is MC/DC in the context of roBDDs
and three values logic (cfr. Theorem 1 and Def. 9). We consider the reuse factor
in our MC/DC analysis to reuse as much as possible the existing selected TCs
and finally, we produce n MC/DC pairs as output for each decision with the size
of n+m solutions. Our results show that we produce mostly n+ 1 solutions and
the rest of solutions are less than 2n with 100% MC/DC.

3 https://github.com/selabhvl/py-mcdc/

https://github.com/selabhvl/py-mcdc/
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(a) % of n+1 solutions (b) % of n+2 solutions

Fig. 4: Comparison of % for n+1 and n+2 solutions for different heuristics

4.2 Experimental Results

Figure 4(a) and (b) present our results as the percentage of generated solutions
of sizes n + 1 and n + 2 for TCAS II based on our heuristics and the baseline
RR heuristic. We consider 5040 different orders at most for each decisions (this
exhaustively covers all orders for decisions with up to seven conditions). This
sample size already yields evidence that repeated application of the algorithm
to different orders will discover a (close to) optimal solution reasonably quickly.

For each heuristic we collect all possible sets of MC/DC covering test cases.
MC/DC coverage is calculated as the percentage of the number of covered con-
ditions to the total number of conditions in a decision. In case the MC/DC
coverage percentage is less than 100%, it means that MC/DC is not fulfilled
for that decision. We present results for solutions of size n + 1 (optimal) and
n + 2 for our heuristics as shown in Figure 4. The charts for the heuristics can
be reproduced from our open repository. From the TCAS II benchmark results
in Figure 4 and 5, we highlight the following:

1. Our heuristics find the test suite sets of n + 1 solutions for each decision,
whereas HRR failed to find any minimal solution for D15. Our heuristics
perform better compared to HRR for 18 out of 20 decisions and have equal
results for two decisions in terms of which heuristic has frequently the highest
of n + 1 solutions with 100% MC/DC. This shows that the approach of
permuting order is a viable strategy to eventually obtain an optimal results.

2. HLPB and HLMMB out-perform all others with 10 cases (50%) having the
highest % of n+1 solutions.

3. Comparing theHLPB toHLMMB ,HLPB is 2 cases (10%) higher thanHLMMB .

4. We observed that HLMMN is 2 cases (10%) higher than HLPN .

5. HLPBS has better results in some decisions than HLMMN and HLPN .

6. In three decisions (D2, D5 and D7), HRR has better results than some of
our our heuristics. We attribute this outcome to random chance.
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7. From Figure 4 (b) which represent the n+2 solutions, we can see that for the
decisions in which we did not find the highest percentage of n+1 solutions
now we have a high % of n+2 solutions, which indicates that our test suites
generated are closer to lower bound (n+1) of MC/DC minimal set.
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In summary, our results show that we produce mostly n+1 solutions and the
rest of solutions are less than 2n with 100% MC/DC adequacy. Figures 5 (a)-(f)
show the probability distribution of n+m TCs generated for 5040 permutations,
6 runs for different heuristics. The x-axis shows the number of test cases (m)
additional to the minimal solution (n+ 1). The labels show the decision number
and the contained conditions as presented in [25]. All the solutions are have
less than 2n test cases, as the maximum observed for m is 6 while the range of
number of conditions is 6 to 14. Figures 5 shows that most solutions are much
closer to the minimal size (to the left) than to the worst case.

Another challenge which is not directly related to our approach but to MC/DC
is the coupled and masked conditions where it is difficult to get a full MC/DC
coverage with masked condition. For example the decision D10 in the TCAS
II benchmark has two conditions (b and h) which are masked. Out of the nine
conditions, hence only seven are retained in the roBDD and we compute our
minimal solution accordingly.

For the complex example D15 in the 20 TCAS II decisions, our algorithm
takes on average 0.7 seconds (incl. time for constructing the BDD) for a single
run on an Intel(R) Core(TM) i7-7700 CPU @3.60GHz Linux machine with 64
GB RAM. From the proposed heuristics, we recommend the longest paths with
reuse as Boolean number(HLPB) as it shows high performance both in terms
of high percentage of n + 1 solutions and short time to compute the solutions
compared to the rest of the heuristics.

5 Related work

Automatic test data generation approaches were proposed in [16,4,36] and are
based on greedy or meta-heuristic search strategy. They use search algorithms
to extract test paths from the control flow graph of a program, then invoke an
SMT solver to generate test data [16] and afterwards reduce the test-suite with a
greedy algorithm. The drawback for this approach is that often infeasible paths
are selected, resulting in significant wasted computational effort. We did not
investigate test data generation here, only boolean inputs to a single decision.

Kitamura et al. [25] and Yang et al. [37] use a SAT solver to construct
minimal MC/DC test suites. That is, the MC/DC criterion is encoded in a
single query, and the solver produces a suitable assignment for test case inputs
if it exists, or times out. In contrast to the exhaustive nature of SAT queries
which may lead to timeouts, our approach delivers a single answer in much
less time, but may require repetition to find an optimal solution. Some of their
results do not satisfy UC-MC/DC in some cases, and generate test cases only
for Masking MC/DC. There are also some conditions which are reported as
infeasible, while the MC/DC pairs for those conditions can be found. For example
in [25], decisions 6 and 8 of the TCAS II benchmarks have test suites with 3 and
4 test cases for 8 and 9 conditions respectively which cannot satisfy MC/DC.

A study of enhanced MC/DC coverage criterion for software testing based
on n-cube graphs and gray code is presented in [8]. It is an exhaustive approach
that takes input as a Boolean expression, builds the n-cube graph, and deduces
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test cases from all vertices of the graph. Their test cases selection is based on the
weight of each test case in a similar way that we calculate the reuse factor of a
path. The main difference is that they have to construct the n-cube graph which
have the same effect as exhaustive traversal of a truth table and the resulting
size of the test suite is not minimal.

Gay et al. [14,15], developed a technique to automatically generate test cases
using model checkers for masking MC/DC. Using the JKind model checker,
they produce a list of all test inputs and then select the desired test cases while
preserving the coverage effectiveness. Their test suite reduction algorithm used
to reduced the original test-suite does not guarantee to find the smallest set.
They tested their approaches on different real-world avionics systems where they
achieved an average MC/DC coverage of 67.67%.

Comar et al. [12] discussed MC/DC coverage in terms of BDD coverage. They
examine the set of distinct paths through the BDD that have been taken based
on the control flow graph. Based on BDDs they investigated the formalization
and comparison of MC/DC to object branch coverage, but the test cases selection
is out of their scope. We extend the formalization and definitions of MC/DC in
terms of BDDs in the context of test cases selection.

The roBDDs have been used in [22,17] for test cases generation, and highlight
the properties and benefits of roBDDs, however, MC/DC was not considered
as coverage criterion. Like our approach, their greedy approach incrementally
selects a pair of paths where only one condition changes for every condition.

6 Conclusion and Future works

We presented a heuristics-based approach for generating test cases for a Boolean
decision (given as roBDD) that satisfy the MC/DC criterion. We evaluate our
approach on the TCAS II Benchmark and results shows that we frequently find
solutions which are equal or close to the minimal number of test cases without
expensive back-tracking.

Our approach is sensitive to variable ordering in the BDD as each order yields
a different roBDD. We obtained MC/DC solutions of size n + 1 by performing
few permutations of conditions in a decision for all tested decisions. We present
also the other possible solutions which show full MC/DC coverage. In general,
our solutions have a size ranging from n + 1 to 2n, with a high percentage of
size n+ 1 or n+ 2 solutions, where even the latter, although not optimal, may
be acceptable to a user. We proposed different heuristics and compared their
properties. All our heuristics perform better than HRR. HLPB and HLMMB

out-perform all other heuristics with 10 times (50%) having highest percentage
of n+ 1 solutions. We recommend HLPB since it is 10% better than HLMMB .

For the future work we plan to extend our algorithm so that we support
data input coverage where conditions are not abstracted, which requires taking
constraints into consideration. We will also attempt to integrate our test case
generation algorithm into our MC/DC measurement tool and model[2,3]. Al-
though the experimental data shows that we always find an optimal solution, it
remains open if this is a general property of our approach.
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3. Faustin Ahishakiye, José I. Requeno Jarabo, Lars Michael Kristensen, and Volker
Stolz. Coverage analysis of net inscriptions in coloured Petri net models. In Interna-
tional Conference on Verification and Evaluation of Computer and Communication
Systems (VECoS), pages 68–83. Springer, 2020.

4. Zeina Awedikian, Kamel Ayari, and Giuliano Antoniol. MC/DC automatic test
input data generation. In Annual Conference on Genetic and Evolutionary Com-
putation Conference (GECCO), pages 1657–1664. ACM, 2009.

5. Matteo Bordin, Cyrille Comar, T. Gingold, Jérôme Guitton, Olivier Hainque, and
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