
 Faculty of Engineering and Science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

BACHELOR’S THESIS

A scalable order tracking system built on serverless

cloud technology.

Et skalerbart ordresystem bygget på serverless

skyteknologi.

Toril Sunde Apelthun, Ingrid Elisabeth Hjelle and

Synnøve Sørensen

Computing and Information Technology

Department of Computer Science, Electrical Engineering and Mathematical
Sciences

Faculty of Engineering and Science

Supervisor: Sven-Olai Høyland

Submission Date: 4 June 2021

I confirm that the work is self-prepared and that references/source references to all sources used in the work are provided, cf.
Regulation relating to academic studies and examinations at the Western Norway University of Applied Sciences (HVL), § 12-1.

 Faculty of Engineering and Science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

 TITTELSIDE FOR HOVEDPROSJEKT

Rapportens tittel: Dato:

4. juni 2021 A scalable order tracking system built on serverless cloud technology

Forfattere: Antall sider u/vedlegg: 38

Synnøve Sørensen, Ingrid Elisabeth Hjelle, Toril Sunde Apelthun Antall sider vedlegg: 3

Studieretning:

Dataingeniør/informasjonsteknologi

Antall disketter/CD-er:

Ingen

Kontaktperson ved studieretning:

Sven-Olai Høyland

Gradering:

Ingen

Merknader:

Lenke til kodereservoar: https://github.com/HVL-12-2021/bachelor

Oppdragsgiver:

 Lunsj på Hjul

Oppdragsgivers referanse:

Ingen

Oppdragsgivers kontaktperson:

Anne Lill Stene

Telefon:

+47 971 19 400

Sammendrag:
Anne Lill Stene tilbyr gjennom Lunsj på Hjul en abonnementsløsning hvor man kan få levert bærekraftig mat ved hjelp av en elektrisk
sykkel. Som abonnent av Lunsj på Hjul har man blant annet mulighet til å kansellere leveringer, bytte leveringsdag og pause
abonnement. Dette er oppgaver Stene administrerer manuelt.

I dette prosjektet presenteres planleggingen og utviklingen av en webapplikasjon som vil kunne automatisere noen av Stenes manuelle
oppgaver. Webapplikasjonen er laget skalerbar slik at bedrifter med samme behov også kan benytte applikasjonen. Et system med flere
leverandører vil gjøre det mulig for hver kunde å ha flere abonnementer hos forskjellige leverandører, med én konto og brukerprofil.

Abstract:
With Lunsj på Hjul, Anne Lill Stene offers a subscription system where you can have sustainable food delivered by an electrical bicycle.
As a subscriber to Lunsj på Hjul, you have the opportunity to cancel deliveries, change delivery days and pause the subscription. These
are tasks Stene are managing manually.

This project presents the planning and development of a web application which makes it possible to automate some of Stene's manual

tasks. The web application has been made scalable, which makes it possible to add more vendors to the system should the need arise. A

multi-vendor system will enable each customer to have several subscriptions with different vendors, while only needing one account

and user profile.

Stikkord:

Webapplikasjon

Fullstack utvikling

TypeScript

Serverless arkitektur

NoSQL

Fakturering

Høgskulen på Vestlandet, Fakultet for ingeniør- og naturvitskap
Postadresse: Postboks 7030, 5020 BERGEN Besøksadresse: Inndalsveien 28, Bergen
Tlf. 55 58 75 00 Fax 55 58 77 90 E-post: post@hvl.no Hjemmeside: http://www.hvl.no

http://www.hvl.no/

 Faculty of Engineering and Science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

PREFACE

This report documents the bachelor project of computer science students Toril Apelthun, Ingrid Hjelle and

Synnøve Sørensen at Western Norway University of Applied Sciences (HVL).

The project consisted of developing an order tracking system for Anne Lill Stene and her company Lunsj

på Hjul (Lunch on Wheels). We would like to thank Anne Lill Stene for a fun and exciting challenge, and for

valuable feedback throughout the project.

We would also like to thank our supervisor at HVL, Sven-Olai Høyland, for advice and guidance along the

way and for the evaluation of this report.

We are also grateful to Steinar Søreide for offering us technical assistance during the development phase

of the project.

 Faculty of Engineering and Science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

TABLE OF CONTENT

 INTRODUCTION ... 1

1.1 MOTIVATION AND GOAL ... 1

1.2 LIMITATIONS .. 1

1.3 RESOURCES ... 1

1.4 ORGANIZATION OF THE REPORT ... 2

 PROJECT DESCRIPTION .. 3

2.1 PROJECT OWNER .. 3

2.2 PREVIOUS WORK ... 3

2.3 INITIAL REQUIREMENTS SPECIFICATION .. 3

2.4 INITIAL SOLUTION IDEA ... 4

 PROJECT DESIGN ... 6

3.1 POSSIBLE APPROACHES .. 6

3.1.1 Alternative approach 1 Mobile Application .. 6

3.1.2 Alternative approach 2 Web Application ... 6

3.1.3 Discussion of alternative approaches ... 7

3.2 SELECTION OF TOOLS AND PROGRAMMING LANGUAGES .. 7

3.3 PROJECT DEVELOPMENT METHOD .. 10

3.3.1 Development method ... 10

3.3.2 Project Plan .. 10

3.3.3 Risk management ... 11

3.4 EVALUATION METHODS .. 11

 DETAILED DESIGN.. 13

4.1 SERVER ARCHITECTURE... 13

4.1.1 Serverless .. 13

4.1.2 AWS Lambda .. 13

4.1.3 Handlers ... 14

4.1.4 CORS ... 15

4.2 DATABASE DESIGN .. 16

4.2.1 NoSQL databases ... 16

4.2.2 Data modelling ... 16

4.2.3 Queries ... 18

 Faculty of Engineering and Science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

4.3 REST API ... 19

4.4 CLIENT .. 20

4.4.1 Client-side Frameworks .. 20

4.4.1.1 Making components .. 21

4.4.1.2 Lifecycle ... 21

4.4.1.3 Rendering .. 22

4.4.2 Vue in this project ... 22

4.4.2.1 Styling of components ... 22

4.5 USER MANAGEMENT AND SECURITY .. 22

 EVALUATIONS ... 24

5.1 EVALUATION METHODS .. 24

5.1.1 Unit testing ... 24

5.1.2 Integration testing .. 24

5.1.3 Usability testing .. 25

5.2 EVALUATION RESULTS .. 26

5.2.1 Unit and integration testing ... 26

5.2.2 Usability testing .. 26

 RESULTS .. 28

 DISCUSSION .. 32

 CONCLUSIONS AND FURTHER WORK .. 33

 BIBLIOGRAPHY .. 34

 APPENDICES .. 38

10.1 GANTT CHART ... 38

10.2 RISK LIST .. 39

10.3 VUE LIFECYCLE HOOKS ... 40

LIST OF FIGURES

Figure 1 An overview of the technology stack used for the backend of the web application. 9

Figure 2 API request .. 14

Figure 3 Handler for user profile ... 15

Figure 4 Database entities and relations ... 17

Figure 5 Dialog box for login, registration and resetting of password. ... 23

Figure 6 Integration tests running in the terminal of Visual Studio Code. .. 25

Figure 7 The calendar showing a customer's deliveries. ... 28

Figure 8 Profile view for logged in customer. ... 29

Figure 9 The payment view for the logged in vendor. .. 30

Figure 10 The registration of new payments. ... 31

LIST OF TABLES

Table 1 Core functionality ... 3

Table 2 Database access patterns ... 18

Table 3 REST API .. 20

1

 INTRODUCTION

1.1 Motivation and goal

Lunsj på Hjul (Lunch on Wheels) is a small company with approximately 35 customers. The company is

owned and run by Anne Lill Stene, and her aim is to make sustainable, local, and healthy food from

scratch. The food is made from organic surplus goods and local delicacies, and Stene delivers the meals by

electrical bike three days a week.

Customers have the possibility to order subscriptions where they pay for the deliveries in advance. Stene

has to keep an overview of the subscriptions and how many deliveries each customer has to their credit.

It is possible for customers to cancel or postpone deliveries by writing it into a third-party online form,

sending an SMS or an e-mail. This solution makes it difficult to get an overview of the deliveries for the

different days, and when it is time to send invoices to the customers.

The problem space for this bachelor project is to solve the challenges of the company by creating a web

application that handles all the tasks that today must be done manually.

The overall goal is to develop a web application making the client's workflow easier and more efficient.

This means that the client can relate to one system instead of several different systems and reduce the

time spent on administration and invoicing.

The main goal is to make a web application with core functionality. The core functionality includes

keeping track of how many meals each customer has received or cancelled and making it possible to

invoice the customers correctly each period. In addition, customer information such as delivery address

and email must be stored. It must be possible to register that a customer has paid for the next period, and

which weekdays they want deliveries.

There are several subsidiary goals that are not defined as a core functionality and will therefore be

implemented if they are feasible technically and there is enough time. One of these goals includes to link

the web application to the accounting program Fiken, making it possible to automatically invoice

customers. Another is SMS notifications to alert the client is if a customer requests a change of a delivery.

The core functionality and the subsidiary goals will be discussed in Chapter 2.3

1.2 Limitations

Because of the short duration of a bachelor project, time is a major limitation. A considerable amount of

time must be set aside to learn the technologies we are unfamiliar with in the initial phase of the project.

Learning new technologies and techniques may also lead to some trial and error at the beginning of the

development.

1.3 Resources

For the project to succeed, it is important to understand the client’s workflow. Her needs and

requirements must be clarified at an early stage. We will work closely with the client so that she will have

an influence on the final product.

2

As the selected technology stack is modern and popular, there are numerous online resources and

courses available to us. We will consult with our supervisor during the project, to ensure that our

progression is in accordance with the plan.

The new web application will be integrated with an existing website for the company, so that all

functionality is in one place. The plan is to develop a web application using serverless architecture for the

backend. By using a Serverless infrastructure provider, the security, maintenance, scalability, and

redundancy will be taken care of by the service provider.

Different methods will be implemented to test the code during development. This includes unit testing of

functions and classes, API testing of interfaces and integrations in the application. To ensure good user

experience, user tests will be performed by a selection of the company’s customers.

The tools and technologies will be described in detail in Chapter 3.2.

1.4 Organization of the report

The first three chapters describe the pre-project phase. This includes an introduction, a project

description, and a chapter on project design. In the introduction chapter, the context, motivation, and

goal, as well as limitation and resources are defined. Initial requirement specifications and the solution

idea is presented in the chapter on project description. Project design includes discussing different

approaches and justifying the selected approach. This chapter also describes selected tools, how the

results will be evaluated and presents a project plan and risk management.

The other part of the report is about the implementation phase of the project, starting with a detailed

description of the application design. Chapter 5 presents the chosen evaluation methods, and the

evaluation results. Chapter 6 and 7 presents the results and discusses the consequences of the selected

approach, as well as how the choices have influenced the results. A summary of the project goals and the

conclusion can be read in Chapter 8. The last two chapters contains the references and appendices.

3

 PROJECT DESCRIPTION

2.1 Project owner

The students will be the project owners, and the web application will be available for the client, Stene, for

an unlimited period.

The project is important for the client because of the need to improve the handling of subscriptions and

invoicing. By improving the current solution, the company will be able to free up time that can be spent

on other things.

2.2 Previous work

The client has a website for her company (Stene, n.d.). The website includes information about the food,

areas available for delivery, and a web form the customer can use to register a subscription. The customer

information must be manually handled by the company after submission, and invoice details must be

collected after the registration is done. The plan is to link the new web application to the existing website,

making it invisible to the customers that it consists of two different web applications.

2.3 Initial requirements specification

The initial requirements were set at the first meeting with the client. Clarifications, adjustments, and new

requirements were made consecutively as the project progressed.

In the initial phase it was decided that the web application should contain the core functionality listed in

Table 1.

Functionality for the customers Functionality for the company

Registration and login.
Overview of how many and which deliveries

that are to be prepared each day.
Delete subscription and data.

Changing the day of delivery. Overview of coming invoices.

Date for next invoice. Overview existing customers and subscriptions.

Postponing deliveries or pausing the

subscription for a period. Accepting/rejecting new subscription requests.

Table 1 Core functionality

4

Registration and login

The customers shall be able to register and log into the application as first-time users. After logging in,

they can choose a subscription and provide all necessary details such as delivery address and billing

information.

Deletion of subscriptions and data

The customers shall be able to stop an ongoing subscription and delete all data about themselves.

Cancelling deliveries and pausing the subscription

Customers shall be able to cancel coming deliveries, one by one. There will also be an option for pausing

the subscription for a selected period.

Changing the day of delivery

Customers shall be able to send a request for changing the day of delivery, e.g., having Wednesday’s

lunch delivered on Thursday. This will have to be done a certain time in advance and must be confirmed

by the company.

Invoice

The customers shall be able to view the next invoice and information about how many meals that have

been delivered and/or cancelled the current period. The web application will contain a calendar displaying

the dates for the next deliveries and deviant delivery dates, e.g., because of holidays.

It has been decided that the web application should have an administrator account for the company.

When logged into this account the client should be able to get an overview of how many deliveries that

are to be prepared each delivery day, and to whom the meals are to be delivered. It should also contain

an overview of the subscriptions and the corresponding invoices for each period. If possible, there should

be an option for automatic invoicing. This can be solved with an interaction between the web application

and Fiken accounting software.

Additional functionality

Additional functionality that will be implemented if there is enough time includes:

• SMS notifications for customers when the meal has been delivered to a pick-up point.

• Email and/or SMS notifications for vendor when new customers make subscriptions.

• Email and/or SMS notifications for vendor when customers request a change in delivery time.

• Linking the web application to the accounting program Fiken, making it possible to automatically

invoice customers.

2.4 Initial solution idea

The initial solution idea is a responsive web application which should work on computers and mobile

devices. The application will include functionality for users and admins to log in, handle their personal

5

information and subscription details. It will be possible for both admins and users to cancel or make

changes to deliveries. All relevant information about the users, the subscriptions and deliveries will be

stored in a database.

The serverless technology, together with a NoSQL database, have been chosen to make the web

application scalable, as this is a design we are eager to learn more about. It will be possible to add more

vendors to the system should the need arise. A multi-vendor system will enable each customer to have

several subscriptions with different vendors, while only needing one account and user profile.

6

 PROJECT DESIGN

3.1 Possible approaches

The client’s initial request was a web application or a mobile application. The requirements for

functionality were the same for both alternatives. One of the client’s main requirements was an

application it is easy to use and access, for both her and her customers. The alternative approaches will

be outlined in the following chapters.

3.1.1 Alternative approach 1 Mobile Application

As one of the requirements from the client was an application that she and her customers would have

easy access to, a mobile application was discussed. When developing applications for mobile phones,

native, hybrid and cross-platform development must be considered, as there are different mobile

operating systems available with their own development techniques.

In native development, separate applications are developed for the different mobile operating systems,

such as iOS and Android, which gives the developers certain advantages. Some of these advantages

consists of developers having access to native hardware functions for the mobile operating systems.

Native applications are written in the operating system’s native languages, meaning it is made for one

specific operating system. Two different applications must therefore be developed from separate

codebases (Bavosa, 2020).

A different approach is to develop one single mobile application using cross-platform development. This

makes it possible to develop for different platforms using one single codebase with some modifications

for each operating system. One of the benefits of cross-platform development compared to native is the

need of maintaining and making changes to one single application (Bavosa, 2020).

A third option is to build a hybrid application, which is a blend of native and web development and are

written using web technologies such as JavaScript, HTML and CSS. The difference between a web

application and a hybrid one is that the hybrid is not run in the user’s web browser, but as a native

application (Griffith, n.d.).

However, all these approaches require the users to download and install an application on their mobile

device and makes it not available on computers.

3.1.2 Alternative approach 2 Web Application

An alternative to a mobile application is a web application. The biggest difference is that a web

application runs on a web server, while a mobile application run locally on the mobile operating system.

This means that the user does not need to install a program to use the application, and storage on the

device is not an issue.

One major advantage is that you can create one application and it can be accessed from most devices, like

computers, tablets, and smart phones. Independent of operating system, all users can access the same

version of the application, making it easy to maintain and correct potential bugs. Another advantage is

7

the cost, when developing one application that works on most devices from one single code base, both

time and money is saved (Gibb, 2016).

One thing to consider is that there are several different devices in different sizes, with different screen

resolutions, layouts etc. To make a web application optimal for all devices, responsive web design is a

solution. Responsive web design means that the application will adapt to different devices, screen

resolutions and size of the browser window (Emorphis Techologies, 2019).

When considering a web application, it is also important to examine the disadvantages, the most

important one being security. If the web security is not handled correctly, data breach is a risk which may

lead to serious consequences (Fox, 2015).

To use a web application the user must have internet access which can be a disadvantage. With today’s

technology like 4G, 5G and high-speed Wi-Fi this is usually not a problem. However, it does happen that

the internet provider has problems leaving the customers with slow connection or no connection for

some time (Brombach, 2021). Nevertheless, internet providers do not often have problems, and if the

security is handled correctly, web applications have more advantages than disadvantages.

3.1.3 Discussion of alternative approaches

A web application was the selected approach. This was based on the several different reasons, the main

one being that we wanted to implement the new web application with the already existing web page for

the company. We also consider our current knowledge to be greater for building web application

compared to building native or hybrid mobile applications. This will make a web application quicker and

easier to build, and the result will probably be more robust.

Other reasons for choosing to build a web application includes that a web application does not need to be

downloaded or installed, it functions in a browser. It is easier to maintain a web application as it has one

codebase, in opposition to mobile applications which need updates for each different platform. Finally, a

web application does not require app store approval, and can be launched quickly.

By using responsive web design, the web application will function properly on devices with different

screen sizes and input methods.

3.2 Selection of tools and programming languages

In this chapter the tools, programming languages and technologies selected for the project is described in

detail. These technologies were chosen by the students because they represent a way of developing

modern and scalable web applications that can run in the cloud with very inexpensive infrastructure.

IDE and programming language

TypeScript is a programming language developed by Microsoft. It is a strict superset of JavaScript and

adds optional static typing, classes, and interfaces to the language (Bright, 2012). This provides better

code structure and enables object-oriented programming techniques. It also provides better development

time tooling such as auto-completion.

8

TypeScript is used for all the code in the project, including code for the frontend and for the backend of

the web application. This is made possible by using Node.js, which is a runtime system for server and

network applications. Node.js runs JavaScript code using Google's V8 engine so that JavaScript programs

can run on servers outside of web browsers (nodejs, n.d.).

Visual Studio Code is the IDE (integrated development environment) used in the project. It is made by

Microsoft for Windows, Linux and macOS. Its features include support for debugging, syntax highlighting,

code completion, and embedded Git integration. It can be used for a variety of programming languages,

like Java, JavaScript, and TypeScript. With additional add-ins, it is also possible to run and debug Node.js

applications in Visual Studio Code (Visual Studio Code, n.d.).

Vue and Vuetify

Vue is an open-source JavaScript library for building interactive web applications, created by Evan You.

The Vue.js architecture is based on declarative rendering and component composition. The core library is

focused on the view layer only. Vue.js lets you extend HTML with attributes called directives. Essentially, a

directive is a special token in the markup telling the library to do something to a DOM element (Vue.js,

n.d.).

Vuetify is a UI component library built on top of Vue.js. It is developed according to the Material Design

specification and provides a range of ready-to-use widgets such as tree-views, tables, and an easy-to-use

layout system (Vuetify, n.d.).

Combining these two libraries makes it possible to develop a user-friendly user interface with a modern

feel and look.

Serverless and AWS Lambda

Serverless computing is an execution model where a cloud provider is responsible for executing code by

dynamically allocating the resources. The code is typically run inside stateless containers that can be

triggered by a variety of events including http requests, database events and file uploads. The code is sent

to the cloud provider for execution in the form of a function, and serverless can therefore be referred to

as “Functions as a Service”, or FaaS for short (Conally, 2020).

AWS Lambda is Amazon Web Service’s FaaS system. It is a compute service making it possible to run code

without provisioning or managing servers. The code can be run in response to events such as HTTP

requests or changes to a database. The code is only run when triggered and scales automatically. AWS

Lambda runs the code on a high-availability compute infrastructure and performs all of the administration

of the compute resources, including server and operating system maintenance, capacity provisioning and

automatic scaling, code monitoring and logging (AWS, n.d.).

The entire web application’s backend is developed with serverless architecture. All the functions for

communication with the database are implemented using AWS Lambda functions.

9

DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service that supports key-value and document

data structures. DynamoDB allows developers to purchase a service based on throughput, rather than

storage. With the right settings, the database will scale automatically. DynamoDB will spread the data and

traffic over a number of servers using solid-state drives, allowing predictable performance (AWS, n.d.).

NoSQL databases makes it possible to store different entities and their attributes in the same table. For

this project, a single table is used for all the information that needs to be stored in the database.

An overview of how the different tools and technologies are used to create the backend of the web

application can be seen in Figure 1.

AWS S3

Amazon Simple Storage Service (Amazon S3) is an object storage service that offers to store and protect

any amount of data for a range of use cases, such as websites, mobile applications, backup and archives.

AWS S3 will be used to host the web application (AWS, n.d.).

Git/GitHub

Git is a free and open-source distributed source code version control system (GIT, n.d.). Git allows

multiple local branches that can be entirely independent of each other. Whenever a new feature is to be

implemented or a bug fix is needed, a new branch can be made. The new branch will contain the code

from the main branch at the time the branch was made. When the additional code is ready and tested,

the branch can be merged into the main branch. To merge the new branch into the main code base, a pull

request is made. This lets the team discuss and review the changes made before merging them into the

base branch. This feature makes it harder for unstable code to get merged into the main code base and

enables the group to work separately on different tasks without having to worry about making conflicting

code.

Figure 1 An overview of the technology stack used for the backend of the web application.

10

GitHub is a cloud-based hosting service for managing Git repositories (GitHub, n.d.). It offers the

distributed version control and source code management functionality of Git, and many other features.

One of the features used in the project is GitHub’s project board. The project board is used to organize,

delegate, and prioritize the development tasks, and is made up of tasks, pull requests, and notes that are

categorized as cards. These are sorted in columns to separate planned work, ongoing work, and finished

work from each other.

Mocha and Chai

Mocha.js is an open-source JavaScript test framework that runs on Node.js and in the browser. It is

designed for testing both synchronous and asynchronous code. Mocha.js provides functions that execute

in a specific order and logs the results in the terminal window (Mocha, n.d.). It is commonly used with

Chai, an assertion library that performs equality checks and compare actual results with expected results

(Chai Assertion Library, n.d.). Mocha and Chai will be used for the unit and integration tests throughout

the project.

3.3 Project development method

3.3.1 Development method

Kanban, which is an agile methodology, is chosen as the development method. Visualization of workflow,

limitation of work in progress, and an iterative structure are the main principles of Kanban.

A project board is used to visualize the workflow. The board is divided into three or more columns. Each

column represents a stage of the process, with the columns at the left and right sides of the board

representing the start and end of the process (Weissman, 2018). Our project board includes the columns

“To do”, “In progress”, “In review” and “Done”. Tasks are represented by cards that can be assigned to

the different team members, and each member move their card to the next column to the right as they

complete each process stage.

This helps identifying problems, if multiple cards start piling up in one column, it indicates that there is a

bottleneck in this area. After identifying the problem, the team members can collaborate on a solution.

Solving problems as they arise improves team efficiency and productivity (Weissman, 2018).

Kanban does not have fixed length sprints. Instead, a continuous workflow is used, and updates are

released whenever they are ready, without a regular schedule or predetermined due dates. There are no

specific roles, it is a collective responsibility to collaborate on and deliver the tasks on the board (Rehkopf,

u.d.).

The change philosophy of Kanban differs from other agile methods. A Kanban workflow can change at any

time, while in other approaches, like Scrum, changes should not be made during a sprint (Rehkopf, u.d.).

3.3.2 Project Plan

The project plan describes the planned progress in a project, which will have a great impact on whether or

not the project will succeed. For planning and scheduling events and milestones a Gantt chart is a useful

11

tool. This chart shows planned activities displayed against time. Each activity is represented by a bar; the

position and length of the bar reflects the start date, duration, and end date of the activity (Gantt.com,

2021). The Gantt chart for this project is enclosed in Appendix 10.1.

3.3.3 Risk management

Risk management is the practice of identifying, evaluating, and preventing risks to a project that have the

potential to impact the desired goals. To measure the identified risks, the probability and consequence of

each risk is determined. A scale from one to five is used, where one represents a probability of “not very

likely to happen” and a consequence of “insignificant”. Five represents a probability that is “very likely to

happen” and a consequence that is “disastrous” (Skjølsvik & Voldsund, 2016, pp. 342-344).

A risk factor is then calculated by multiplying the probability with the consequence, the lowest risk factor

is one and the highest risk factor is 25. The risk matrix for this project is enclosed in Appendix 10.2.

Of the identified risks, the two risks with the highest risk factor are the time limitation and potential

absence of group members due to Covid-19 or other reasons. The time limitation has a risk factor of 12

and the consequence is that there is not enough time to finish the core functionality. The risk factor of

potential absence is calculated to be nine. If members should get ill, there might be more to do for the

rest of the group members for a period. This might also lead to the project not being finished within the

set time frame.

In order to reduce the risk connected with the time limitation, a project plan is developed. The project

plan includes start dates, duration, and end dates for all activities in the project. To reduce the risk of

getting ill, the team members will take the necessary precautions and follow the national covid

restrictions.

3.4 Evaluation methods

To ensure that the application works both technically and as the customer expects, the following

evaluation methods will be performed:

• Unit testing of functions and classes.

• API testing of interfaces and integrations within the application.

• User tests to ensure that the usability of the application is satisfactory.

Unit testing

Unit tests will be used to verify that the model code in the application is working in accordance with

expectations. An example of model code that will be tested using unit tests is a class that calculates which

days that shall be marked with deliveries in the user’s calendar. These methods consider how many

deliveries the customer has paid for in a new period, which weekdays they have ordered deliveries, and

which date those weekdays corresponds to. Unit testing will be performed with the Mocha framework

together with the Chai library.

12

API testing / Integration testing

Interfaces and integrations in the application will also need to be tested. Integration testing is a level of

software testing where individual components are combined and tested as a group. The purpose of this

level of testing is to expose faults in the interaction between integrated units (Software Testing

Fundamentals, n.d.). Integration testing of the classes containing the methods for inserting, extracting,

and deleting instances in the database will be performed using the Mocha framework and Chai library.

Usability testing

Usability testing is the practice of testing how easy a design is to use for a group of representative users

(Interaction Design Foundation, 2021). When the core functionality of the web application is

implemented, three to five of the client’s customers will be asked to perform user testing. The customers

will be given tasks like signing up for an account and registering a subscription. We will observe them

performing the tasks they are given and interview them about the overall experience afterwards. This will

give valuable information about the usability of the application, and about the expectations from the end

users. The initial plan is to perform these tests in the beginning of May.

13

 DETAILED DESIGN

The web application is designed to support more than one vendor using the system. If more companies

want to use the application in the future, it will be easy to add new vendors, users, and their subscription

to the system.

The main difference when developing an application supporting several vendors instead of only one, is

found in the design of the database system. The data structure and the queries need to support a system

containing more than one vendor, and more than one subscription for each user.

The server-side functionality and the REST API also need to support this design for the client side to be

able to fetch the right vendors and all the subscriptions a user might have with different vendors.

4.1 Server architecture

4.1.1 Serverless

Serverless most often refers to serverless applications. Serverless applications are ones that do not

require the development team to provision or manage any servers. By building the application on a

serverless platform, the platform manages these responsibilities.

For a service or platform to be considered serverless, it should provide the following capabilities:

• No server management: The developer does not have to provision or maintain any servers.

• Flexible scaling: The application should be able to scale automatically or by adjusting its capacity

through toggling the units of consumption (for example, throughput or memory) rather than units

of individual servers.

• High availability: Serverless applications have built-in availability and fault tolerance.

• No idle capacity: There is no charge when the code is not running.

The AWS Cloud provides many different services that can be components of a serverless application. This

project has included capabilities for:

• Computing using AWS Lambda

• APIs using Amazon API Gateway

• Storage and web hosting using Amazon Simple Storage Service (Amazon S3)

• Database functionality using Amazon DynamoDB

• User management and authentication using AWS Cognito

(Amazon Documentation, n.d.)

4.1.2 AWS Lambda

AWS Lambda is a serverless compute offering based on functions. It provides the cloud logic layer for our

application. These functions can be triggered by a variety of events. When there are multiple,

simultaneous events to respond to, AWS Lambda will run multiple copies of the function in parallel. This

makes Lambda functions scale with the size of the workload and reduce the likelihood of an idle server.

Architectures using these serverless functions are thus designed to reduce wasted capacity.

14

Each Lambda function contains the code to be executed, the configuration that defines how the code is

executed and, optionally, one or more event sources that detect events and invoke the function as they

occur. In our web application the event source is the API Gateway, which will invoke the right Lambda

function anytime an API method created with API Gateway receives an HTTPS request (Amazon

Documentation, n.d.).

Amazon API Gateway is a service that makes it possible for developers to create, publish, maintain,

monitor, and secure APIs at any scale. APIs act as the “front door” for applications to access data,

business logic, or functionality from the backend services (Amazon, n.d.).

4.1.3 Handlers

When a Lambda function is invoked, code execution begins at what is called the handler. The handler is

an entry point function that is specified when creating a Lambda function. Once the handler is

successfully invoked inside the Lambda function, the function will execute the desired code (AWS

Documentation, n.d.).

When the Lambda function is invoked, one of the parameters provided to the handler function is an event

object. As our events are created by the API Gateway, they will contain details related to the HTTPS

request that was made by the API client, like path, query string and request body (Amazon

Documentation, n.d.).

To illustrate Lambda functions and handlers it is useful to look at an example from our project: the client

wishes to add a new user profile to the database. The API client makes a HTTPS request and includes the

user profile object in the request body. The request URL decides which Lambda function that will be

triggered. The HTTPS request can be seen in Figure 2 below.

When the request reaches the API Gateway, the Lambda function and its handler will be invoked. The

handler in this example can be seen in the Figure 3.

The handler function (at line no 8) calls a function based on the type of HTTPS request that is received. In

our example this is a PUT request, and the incoming event is passed to the function putUserprofile on line

38. This function retrieves the id for the logged in user and parses the event body from JSON format. The

method for adding a user profile or changing an existing user profile in the database is then called from

the handler. This method is also part of the Lambda function all though it is located in another file with all

the other methods for database communication. The database methods used in the handler is imported

at line 5.

Figure 2 API request

15

4.1.4 CORS

Cross-Origin Resource Sharing (CORS) is an HTTP-header based mechanism allowing a server to indicate

any other origins, like a domain, scheme, or a port than its own from which a browser should permit

loading of resources.

CORS also relies on a mechanism called “pre-flight” for HTTP request methods that can cause side-effects

on server data. In this pre-flight the browser checks that the server will permit the request by sending

headers indicating the HTTP method and headers that will be used in the actual request. Upon approval

from the server, the browser will send the actual request. Servers can also inform clients whether

credentials such as HTTP Authentication should be sent with requests. By using CORS browsers can

mitigate the risks of cross-origin HTTP requests (MDN Web Docs, n.d.).

In the code seen in Figure 3, a middy module is imported at line 2. This is a middleware library making it

easy to set the HTTP CORS headers necessary for making cross-origin requests to the response object.

Figure 3 Handler for user profile

16

4.2 Database design

4.2.1 NoSQL databases

AWS DynamoDB was chosen as the database system to be used in the project. DynamoDB is a NoSQL

database. These database systems differ from the traditional relational database management systems

(RDBMS) in several ways. In a SQL database data is represented in the form of tables which consist of a

number of rows of data. In comparison, NoSQL databases like DynamoDB, are document based, key-value

pairs, graph databases. Where SQL databases have predefined schema, NoSQL databases have dynamic

schema for unstructured data.

SQL databases are vertically scalable whereas the NoSQL databases are horizontally and vertically

scalable. This means that the SQL databases are scaled by increasing the power of the hardware, while

NoSQL databases are scaled by increasing the number of servers in the resource pool (Höck, n.d.).

NoSQL databases also differ from SQL databases when it comes to queries. In a SQL database querying

can be done with much flexibility, but the queries will often not scale well in high-traffic situations. In a

NoSQL database, data can be queried efficiently in a limited number of ways, outside of which queries can

be expensive and slow.

These differences will affect how the two different database systems are designed. In SQL databases

normalization is important while query optimization generally will not affect the design. In NoSQL

databases, the schema is designed specifically to make the most common and important queries as fast

and as inexpensive as possible.

The entities must be implemented with regards to the specific query patterns that the system will use.

This can be achieved by using key-value pairs. Other major design principles include keeping related data

together, use sort order, and to distribute queries so that traffic is evenly distributed across partitions

(AWS Documentation, n.d.).

4.2.2 Data modelling

Our web application needs to store data about the vendor and their customers and subscriptions. The

database system is designed so that all records are stored in the same table in DynamoDB. The main

reason for using a single table in DynamoDB is to retrieve multiple, heterogenous item types using a single

request, and this is one of the reasons this database is fast and efficient (Alex DeBrie, 2020).

As SQL databases store data in different tables, they require the concept of joins. Joins make it possible to

combine records from two or more tables, but they require scanning large portions of multiple tables and

comparing different values, to return a result set. This is an expensive operation, and it can result in linear

time complexity if the data set is large (Alex DeBrie, 2020).

NoSQL databases avoids this expensive operation by pre-joining the data into item collections. This is

achieved by modelling each data structure with a composite primary key combined by a partition key (pk)

and a sort key (sk). A query operation can then be used to read multiple items with the same partition

key. Items with the same partition key will be ordered by the sort key value. It is therefore important to

structure the sort keys so that it gathers related information together in one place. This makes it possible

17

to retrieve groups of related items using range queries with operators such as “begins with”, “between”,

“less than” and “larger than” (AWS Documentation, n.d.).

The partition key determines the physical storage internal to DynamoDB, in which the item will be stored.

This means that all items with the same partition key will be stored together. The primary key elements

should therefore be structured to avoid one heavily requested partition that will slow down the overall

performance. An example of a good partition key value in a system with many users, is a user id. An

example of a bad partition key is a status code in a system with only a few different status codes (AWS

Documentation, n.d.).

In all queries the partition key and value must be specified as an equality condition. Only the sort key

condition can use comparison operators like begins with, between, less than or greater than.

Some applications might need to perform many kinds of queries, using a variety of different attributes as

query criteria and sometimes the composite primary key is not enough to retrieve the right item types. To

support these requirements, it is possible to create one or more global secondary indexes and make

queries against these indexes instead of the primary key. Secondary indexes contain a selection of

attributes from the base table, but they are organized by a primary key that is different from that on the

base table. Secondary indexes will be further explained with an example in Chapter 4.1.3 (AWS

Documentation, n.d.).

The data stored for the web application have been structured into four different database entities. Figure

4 describes the different entities, or data structures, and the relation between them. Each vendor in the

system offers subscriptions to several users, and each user can have subscriptions to several vendors’

services. Each subscription will have several deliveries.

Figure 4 Database entities and relations

18

4.2.3 Queries

When designing a NoSQL database, it is necessary to start with identifying and defining the access

patterns the system needs to support. The access patterns will determine which keys that will be needed

for the different entities to make efficient queries.

The main access patterns needed for our web application are shown in Table 2. In this table, pk refers to

partition key, and sk to sort key. Each row in the table represents one or more access patterns for a

specific item type, or entity. For example, the second row describes the access patterns for retrieving,

editing, or deleting a given subscription in the database. In these queries the subscription will be

identified with the partition and sort keys. The partition key for a subscription is the vendor id for the

vendor the user subscribes to. The sort key is the user id of the user the subscription belongs to. This

design will result in all subscriptions for the same vendor to be partitioned at the same resource.

Access pattern Key condition

Get, edit, or delete a given vendor pk: "v#vendorId", sk: "v#vendorId"

Add, edit, or delete a given subscription pk: v#vendorId, sk: u#userId

Get, edit, or delete a given user profile pk: "u#userId", sk: "u#userId"

Get all vendors GSI pk: "vendor", GSI sk begins with "v#"

Get all subscriptions for a given vendor pk: "v#vendorId", sk begins with "u#"

Get alle subscriptions for a given user GSI pk: "u#userId", GSI sk begins with "v#"

Get all deliveries for a given customer in given
time frame

GSI pk: "u#userId", GSI sk between start date
and end date

Add, edit, or delete a delivery for given
customer, given vendor, and given time

pk: "v#vendorId", sk begins with
"d#time#u#userId"

Get all deliveries for a given vendor in given
time frame

pk: "v#vendorId", sk between "d#start" and
"d#end"

Add new deliveries to a user with specified
vendor

pk: "v#vendorId", sk: "d#time#u#userId", GSI
pk: "u#userId", GSI sk: "time"

Find latest delivery for a user GSI pk: "u#userId#v#vendorId", GSI sk: *

Cancel several deliveries by a vendor
pk: "v#vendorId", sk between "d#startTime"
and "d#endTime"

Table 2 Database access patterns

The prefixes used with the keys are included to make it easier to provide a second condition for the sort

key using comparison operators. A query for all of a given vendor’s subscribers will retrieve all items

where the partition key is the vendor id that corresponds to the specific vendor and where the sort keys

begin with “u#”. This is possible when using the operator “begins with” for the prefix of the sort key. The

19

prefixes are determined when designing the database. The following prefixes and keys have been used for

the different entities:

• Vendor: "v#vendorId" for partition key and sort key

• User: "u#userId" for partition key and sort key

• Subscription: "v#vendorId" for partition key and "u#userId" for sort key

• Delivery: "v#vendorId" for partition key and "d#deliverytime#u#userId" for sort key

Three of these entities also have one or more global secondary indexes (GSI) to support queries that

cannot be performed with the composite primary key alone.

• Vendor: "vendor" for GSI partition key and "v#vendorId" for GSI sort key.

• Subscription: "u#userId" for GSI partition key and "v#vendorId" for GSI sort key.

• Delivery: "u#userId#v#vendorId" for GSI1 pk and "deliverytime" for GSI1 sk,

"u#userId" for GSI2 pk and "deliverytime" for GSI2 sk.

One example of a query using the global secondary indexes is retrieving all the vendors in the database. In

this query the partition key is “vendor”, and the sort keys starts with “v#”. Another example is retrieving

all the subscriptions a user has with different vendors. In this query the partition key is the user id, and

the sort key starts with “v#”.

4.3 REST API

A REST API is an application programming interface that conforms to specific architectural constraints, like

stateless communication and cacheable data. A REST API can be accessed through a number of

communication protocols. In this project the API is called over HTTPS, which is the most common protocol

to access the REST API (John Au-Yeung, 2020).

Our REST API accepts request payload and sends responses with JSON. JSON is short for JavaScript Object

Notation. It is a syntax for storing and exchanging data as text, and it is written with JavaScript object

notation. When exchanging data between a browser and a server, the data can only be text. Any

JavaScript object can be converted into JSON and sent to the server. Likewise, any JSON received from the

server can be converted into JavaScript objects. This allows working with data as JavaScript objects with

no complicated parsing and translations (JSON introduction, n.d.).

JavaScript has built-in methods to encode and decode JSON and different server-side technologies have

libraries that can decode JSON. Since both client- and server-side of this application is written in

TypeScript, a superset of JavaScript, encoding and decoding of JSON is available with built-in methods.

The resources include user profile, vendor, subscription, and delivery. Some of these resources

corresponds to the entities in the database, and some of them combines attributes/properties from the

different entities. For example, the subscription object returned when accessing /v/subscription includes

information retrieved from both the user profile object and from the corresponding subscription object

for a specific user in the database. The REST API designed for this project is summarized in Table 3.

20

Path Parameters Method Return type

/userprofile

GET/PUT/DELETE Userprofile

/vendor

GET/PUT/DELETE Vendor

/vendors

GET Vendor[]

/v/subscriptions

GET Subscription[]

/u/subscriptions

GET Subscription[]

/v/subscription UserId GET/PUT/DELETE Subscription

/v/subscription UserId, approval PATCH

/u/subscription VendorId GET/PUT/DELETE Subscription

/u/subscription VendorId, action POST Subscription

/v/deliveries Start time, end time GET Delivery[]

/v/deliveries UserId, number of new
deliveries, start date

POST Delivery[]

/v/deliveries Delivery[] PUT Delivery[]

/u/deliveries Start time, end time GET Delivery[]

/delivery UserId, time GET/PUT/DELETE Delivery

/unpaidDeliveries UserId, afterDate?, month GET Number

/cancelDeliveries Delivery[] POST

Table 3 REST API

The methods used include GET, POST, PUT, PATCH and DELETE.

• GET retrieves resources

• POST submits new data

• PUT updates existing data

• PATCH applies partial modifications to existing data

• DELETE removes data

The “v” in the path symbolises that this is a path that someone with the vendor role will use. The “u” is for

the user role. Paths that do not have a “v” or a “u” is common for both roles, but there might be

restrictions implemented on the server, for example, a user will not be able to put or delete a delivery.

4.4 Client

4.4.1 Client-side Frameworks

Before the introduction of JavaScript in 1996, the internet was composed of static documents. With the

interactivity that JavaScript added, the web became a place to do things, not only read things.

As JavaScript’s popularity steadily increased, developers who worked with JavaScript wrote tools to solve

the problems they faced. These tools were packaged into reusable libraries, so they could be shared with

other developers. This shared ecosystem of libraries helped shape the growth of the web.

Modern JavaScript frameworks has made it easier to build dynamic and interactive applications. A

framework can be defined as a library offering opinions about how software gets built. These opinions

allow for predictability and homogeneity in an application and allows software to scale to an enormous

size and still be maintainable.

21

Every time an application’s state changes, there arises a need to update the user interface to match the

changes made. Building HTML elements and rendering them in the browser at the appropriate time takes

a considerable amount of code and working directly with the DOM requires an understanding of how the

DOM works in detail.

JavaScript frameworks were created to provide a better developer experience. The frameworks do not

add new powers or properties to JavaScript, but they allow developers to write code that describes how

the UI should look. The framework will then make the changes happen in the DOM “behind the scenes”.

In addition to making DOM manipulation easier, frameworks offer other advantages as well. Examples

include tools for testing, and a linting tool. The latter is an analytical tool used to flag programming errors

and ensure that the code is stylistically consistent. Most frameworks also support to abstract the user

interfaces into components; blocks of code that can be re-used, are maintainable, and that can

communicate with one another. These components can be stored in a single file, called Single File

Components (SFC), making it practical to change components should the need arise.

Finally, frameworks offer client-side routing; the possibility to let users navigate the different views in a

single page application (MDN Web Docs, 2021).

4.4.1.1 Making components

Most frameworks have their own component model. Vue, which is used in this project, writes

components with a templating syntax that lightly extends HTML.

Each component needs to describe the external properties they may need, the internal state the

component should manage, and the events a user can trigger on the component's markup. External data

that a component requires to render is called a property or a prop. The state of a component will persist

as long as the component is in use. Like props, state can be used to affect how a component is rendered.

To be able to respond to the users of the application, the components need a way to respond to browser

events. Each framework provides their own syntax for listening to browser events. An example is listening

for the mouse click event, in Vue this event is called “onClick”.

A component-based UI architecture allows for components to be used inside other components, and

components can utilize and depend on other components. This will sometimes lead to child components

needing data the parent component has. These props can be passed from parent to child, and the child

can emit events to the parent.

To avoid having to pass props through many layers when nesting components in a large web application,

frameworks provide a functionality known as dependency injection. Data needed can be directly passed

to the components that need it, without passing it through intervening levels (MDN Web Docs, 2021).

4.4.1.2 Lifecycle

Web frameworks typically allow developers to perform certain actions at different stages of the

component’s lifecycles. These stages include when the component mounts, meaning the time it is

appended to the DOM, when it renders, when it unmounts, and at many phases in between these. The

Vue lifecycle hooks is shown as a diagram in Appendix 10.3 (MDN Web Docs, 2021).

22

4.4.1.3 Rendering

Frameworks track the current rendered version of the browser’s DOM and makes decisions about how

the DOM should change as components in your application re-render. Vue utilizes a virtual DOM model

when rendering. A virtual DOM is a concept where the browser’s DOM is stored in JavaScript memory.

The application will update this copy of the DOM and compare it to the DOM that is actually rendered in

the browser. The application compares the differences between the updated virtual DOM and the

currently rendered DOM and uses those differences to apply updates to the real DOM (MDN Web Docs,

2021).

4.4.2 Vue in this project

Vue is a progressive framework (Vuejs, n.d.). In this context, progressive means that the developers can

use parts of the Vue framework and progressively add more parts as they wish. It is possible to use Vue to

enhance existing HTML on a single page with a script tag, and it is also possible to use Vue to write entire

Single Page Applications (SPAs).

In this project we are using single file components. Components are reusable Vue instances with a name.

They make it possible to design an application with logical components and re-use them several places

within the application. A single file component (SFC) is a component that is contained in their own file

(Horn, 2019).

The Vue components have been written using a special HTML template syntax, which also allows plain

JavaScript functions. We are also using Vue Class Component in every SFCs. This is a library that makes it

possible to make Vue components in class-style syntax. By defining the component in class-style, it is

possible to utilize ECMAScript language features such as class inheritance (Vue Class Component, n.d.).

4.4.2.1 Styling of components

The different frameworks offer different ways to define styles for the components. When developing our

web application, we used Vuetify, a complete UI framework built on top of Vue.js. It is the most complete

user interface component library for Vue applications that follows the Google Material Design

specifications (Wanyoike, 2019).

Material Design was created by Google in 2014, and it was inspired by paper-based design styles. Google’s

aim was to ensure that users would have a consistent user experience regardless of how users were

accessing their products. The Material Design specification includes guidelines for typography, grids,

space, scale, colour, and imagery (Chapman, n.d.).

4.5 User management and security

To offer the users a secure way to sign into our web application, AWS Cognito was chosen to provide

authentication, authorization, and user management. Amazon Cognito has two main components, user

pools and identity pools. User pools are user directories that provide sign-up and sign-in options for the

application users. Identity pools are used to grant the users access to other AWS services (AWS

Documentation, n.d.).

23

For our project it was sufficient to set up a single user pool to provide secure user registration and login

through Amazon Cognito. It is planned to also let users sign in through social identity providers like

Google and Facebook. Whether the users sign in directly or through a third party, all members of the user

pool have a directory profile that can be accessed through a Software Development Kit (SDK).

In addition to providing sign-up and sign-in services, the user pool includes security features such as multi-

factor authentication (MFA), checks for compromised credentials, account takeover protection, and

phone and email verification. We decided to include multi-factor authentication when registering for an

account at our web application, and when requesting a new password. Users will be asked to enter a code

sent to their email when performing these actions.

The dialog box for login, registration and resetting a forgotten password is shown in Figure 5.

After a successful authentication, Amazon Cognito issues JSON web tokens (JWT) that the web client will

include as an authorization token in each HTTPS request. All the API endpoints are protected by the AWS

API Gateway. This is done by using an authorizer function which will validate the JWT token before

triggering the underlying Lambda function. The desired code will then be run, and the expected result is

returned as a JSON document in the body of the HTTP response. This ensures that only authenticated

users can access the API endpoints as the Lambda functions can determine which user is triggering the

function. This is possible since the JWT token includes the user ID as part of its payload which is

cryptographically signed.

Figure 5 Dialog box for login, registration and resetting of password.

24

 EVALUATIONS

5.1 Evaluation methods

The three testing methods described in Chapter 3.4 on evaluation methods, have all been performed. This

includes unit, integration, and user testing. The Mocha test framework and the assertion library Chai were

used for performing unit and integration tests. The user tests have been performed in collaboration with

the client and three of her customers.

5.1.1 Unit testing

Because it is considered a best practice, datetimes was stored as UTC in the database and backend code

(Moesif, 2018). Since browsers use local time, it is necessary to convert datetimes between UTC and the

user’s local time whenever communication between the frontend and backend is required.

Functions for time conversion and other calculations involving datetimes have therefore been

implemented as part of the development. This includes calculating how many deliveries a customer shall

pay for each month, and dates for the deliveries. The dates are calculated based on the weekday the

customer has chosen for deliveries, and which month the dates are to be calculated for. To make sure

that these important calculations were correct, unit tests were made for the calculations involving time

and dates.

5.1.2 Integration testing

Because the server-side code was distributed between several handler files and a separate file for all the

database methods, integration tests were performed to ensure that the functions worked together

correctly. All the methods for database communication were tested.

Integration tests were also used to ensure that the REST API worked as expected. One test class was made

for each HTTP endpoint, and all the endpoints were tested. The tests were run in the terminal of Visual

Studio Code, and a set of tests can be seen in Figure 6. Both passing and failing tests can be observed in

the figure.

25

5.1.3 Usability testing

During the project there has been frequent meetings with the client to show her the progression in

development. These meetings have also been an opportunity for receiving feedback on implemented

features. This ensured that the web application was developed in accordance with the client’s needs and

expectations.

To ensure that the web application has good usability, it is important to get feedback from the end users.

User testing will therefore be performed with three of the client’s customers.

Figure 6 Integration tests running in the terminal of Visual Studio Code.

26

The usability testing will consist of specific tasks. The customers will be asked to:

• Create a new user profile

• Order a subscription

• Change their password

• Cancel a delivery

• Pause subscription

The client will be asked to:

• Log in to her account.

• Approve new subscriptions based on the customer’s address.

• Register customer payments that have been received for the coming period.

• Check the list of deliveries for the current day and sort the list using the drag and drop option.

5.2 Evaluation results

5.2.1 Unit and integration testing

The unit and integration tests were implemented in parallel with writing the code the tests were made

for. This made it possible to check that all the code worked as expected, both when writing the functions

for the first time, and after each change made throughout the project.

For time and date calculations the unit tests proved to be especially useful, as calculating dates was one

of the more challenging parts of the development.

Separating the different tests by which methods and HTTP endpoints they were meant for, made it easy

to see which methods passed and which failed.

5.2.2 Usability testing

Jacob Nielsen concludes “The best results come from testing no more than 5 users and running as many

small tests as you can afford” (Nielsen, 2000). In this project only one usability test was planned, as the

web application is quite small, and the client has been giving frequent feedback. However, if the time

aspect of this project were longer, a second user test would be considered testing potential feedback

given during the first round.

In the initial project plan usability testing was to be performed in the beginning of May. However, it was

decided to postpone these tests until the end of May. The reason was an aim to implement as much of

the functionality as possible before usability testing. This way, the users would not be distracted by

missing functionality. The negative aspect of postponing the tests was less time left to improve the web

application based on the feedback.

Stene chose three of her customers to perform usability tests, the tests were then done over video.

Before starting, a scenario was given to the testers as well as a list of the tasks described in Chapter 5.1.3.

The testers were asked to perform the tasks without any interaction with the interviewers before

finishing. The last part of the test was used to interview the users about the user experience, and it was

possible for them to give concrete feedback.

27

One of the observations that were made during the tests was that the customers wrote their home

address when signing up for a subscription. The meals are usually delivered to the customers workplaces,

and this should be solved by adding a field for delivery address. One of the testers also requested the

ability to change the delivery address, due to her switching between working from home and from the

office.

After getting approved and paying the invoice, the customers will see a calendar when they log in. In the

calendar deliveries are presented as events marked in different colours. The deliveries the customers are

subscribing to are green, and possible delivery days offered by the vendor are yellow. Information about

the different colours is given to the user when an event is clicked. This led to some confusion and the

feedback was to include more general information on the calendar view. There were also requests for

more information on the invoice view. A screen capture from the calendar view can be seen in Figure 7.

The tests also revealed some software bugs. If the customer pauses and un-pauses their subscription,

deliveries that was cancelled earlier will not be cancelled after the pause.

One tester commented that the web application was served over http instead https, causing the browser

warning the user about privacy and security concerns. This is a temporary problem as we did not

configure the secure connection yet.

All in all, the testers agreed that they liked the user interface and that it was easy to navigate and to solve

the given tasks. The observation of the testers confirmed this. One of the testers navigated through the

application and performed the tasks without any hesitation, while the two other users needed some time

to figure out where the different information was located.

When asking the testers if there was anything they would change, two of the testers requested an option

to un-cancel a delivery. However, due to Stene’s need for predictability, it was decided earlier in the

project that the users will have to contact Stene to un-cancel the delivery. Information about this is

shown to the user when they click on an event in the calendar. The calendar view was mentioned as the

thing the users were most satisfied with.

On an open question asking if the testers had any more feedback they wanted to add, one of the testers

commented that she did not associate the colour scheme with that of the vendor (Stene uses a yellow

bicycle for delivering meals). She also suggested to add some photos to make the web application

prettier. However, web design is not a part of this project, and due to time limitations, this is not

something that can be prioritized. One of the other testers commented that they appreciated the clean

and simplistic look of the web application.

After performing these user tests, it became very clear why Jacob Nielsen considers just one single

usability test to be insightful (Nielsen, 2000) as these three tests proved to be very informative. We are

therefore glad we set aside some time for usability testing.

There was not enough time to let Stene test the system. However, we are planning to let her test, and

teach her everything she needs to know about the system before delivering the final product.

28

 RESULTS

During this project, an order system in the form of a web application has been developed. A user can

register an account using their email address and a chosen password, and log in using this information.

Functionality for resetting the password if forgotten has been implemented as well. When the user is

signing up for the first time or resetting their password, they will be asked to enter a code sent to their

email.

When a user logs in for the first time, they are presented with a registration form where they must

provide information such as an address, telephone number and any allergies. They must also sign up for a

subscription to Lunsj på Hjul and choose which day(s) and how many meals they want delivered. After

registering, the user must be approved by Stene. User information is stored in a database.

After being approved by Stene, the customer must pay for a month of deliveries in advance. When

payment is registered, a logged-in user will be able to see their upcoming deliveries. The deliveries are

presented as events in a calendar. If the user clicks on one of the deliveries, they get the option to cancel

that delivery. The calendar also shows all the deliveries Lunsj på Hjul offers on different days. These

deliveries are in another colour than the deliveries the customer has paid for in their subscription. This

was requested by Stene because she wanted to make it visible which days she offers deliveries, also after

a customer has signed up for deliveries on specific days. It is planned to let the customer order extra

deliveries by clicking these deliveries in the calendar. A calendar showing a logged in customer’s deliveries

can be seen in Figure 7.

Figure 7 The calendar showing a customer's deliveries.

29

At the top of the page there is a menu bar where the user can navigate to different views. They will be

able to see their profile with registered information, and the date for their next invoice. In the profile view

shown in Figure 8, the user will be able to edit information about themselves and their subscription.

There is also an option to pause their subscription. If the user changes information like an address, Stene

will be notified by email. This last part is yet to be implemented.

On the invoice page the user will be able to see the date of the last delivery in the period they have paid

for, as well as the date for when the next payment is due.

Code has been implemented to identify Stene as a vendor, thus giving her access to different content

than her customers. When logging in, she is shown a calendar, which shows her delivery days and the

number of deliveries for each day. When clicking on one of the events in the calendar, she is presented

with a list of customers who have ordered deliveries that day. The list shows each customer’s address,

allergies and if they have cancelled the delivery. The list contains a search field, and it can be sorted by

each of the values in the headers (for instance names and addresses). It is also possible to make a custom

order by dragging and dropping the rows. It is possible for Stene to cancel all deliveries on a certain date

in this view.

Figure 8 Profile view for logged in customer.

30

The menu bar lets Stene navigate to different views. Her profile view shows the information stored about

her such as an address, company name and her delivery schedule. In the payment view she can choose a

customer from a list and see information about when they paid the last invoice and how many meals they

have paid for in the current period. Stene will be able to register new payments for each customer. The

web application will calculate how many delivery days there is in the next period, based on which

weekdays the customer subscribes to. This number and the start date for the next period can be changed

by Stene, in case a customer is late with their payment or for other reasons. The payment view can be

seen in Figure 9, and the registration for new payments can be seen in Figure 10. The last view will show

all Stene’s customers, separated into three different lists; those with an active subscription, those who

have paused their subscription and customers that not yet have be approved. In this list she can approve

new customers, one by one.

Figure 9 The payment view for the logged in vendor.

31

Figure 10 The registration of new payments.

32

 DISCUSSION

As planned, quite some time was dedicated to learning the chosen technologies at the beginning of the

project. Getting to know several new technologies in one project proved to be a time-consuming task.

Learning to use Vue was one of the more challenging exercises as we had no prior experience with client

frameworks. More time could have been spent on other tasks if we had some experience with

frameworks before starting the project.

The choice of making the app scalable proved to be a good exercise when designing the database system

and making the REST API. The workload was very similar to the workload for making a system supporting

a single vendor only. Thus, no extra time had to be spent to make a scalable server architecture.

Developing a client-side that lets the customers choose between different vendors would have required

some extra work. Since the web application will be used for a single company at this time, we decided to

hide the fact that the system supports multiple vendors from the end users. This saved us some work and

it also provided a better user experience, as there is only vendor to choose at this time. Should there be a

need in the future, the client-side can easily be adapted to support more vendors and customers.

There are some features that were brought to our attention at a (very) late time of the project. This

includes a need for the system to support users that buy deliveries on an ad hoc basis, without signing up

for a subscription, and the possibility for the customer to change their delivery address based on where

they are that day. This was not described by the client in the initial task, and it was not mentioned as a

need in the initial planning meetings where a list of features and specification was made. These features

will be added to the list of missing functionalities. We plan on implementing some of the missing

functionality during the next couple of weeks. A list of the work that will be prioritized will be made

together with the client. There is also a possibility for further work during the summer, but this will have

to be planned together with the client.

In the beginning of the project, the implantation of the accounting program Fiken was discussed as an

additional feature. This was originally suggested by the developers, as Stene mentioned she uses the

program for accounting. By integrating with Fiken the system would have supported automatic

generation of invoices. However, due to time limitations this possibility was not thoroughly researched,

and it was therefore decided not to implement this functionality. When discussing whether to implement

this or not, usability and the time saved for Stene was taken into consideration. It was concluded that

Stene would not save much time having the option to send invoices automatically as she sometimes must

adjust invoices manually. The developed web application will provide Stene with the information needed

to generate invoices for each customer in Fiken.

33

 CONCLUSIONS AND FURTHER WORK

This project has provided us with a steep learning curve and a lot of valuable experience as future

software programmers and web developers. The client meeting and the user tests gave us valuable

insights into software development. Topics covered throughout our studies have proven important in the

process of developing this web application.

In this bachelor project the problem space was to solve the client’s challenges of having to manually

manage her customers subscriptions by creating a web application. The goal was defined as a list of core

functionalities that the web applications should implement.

This core functionality included the following functionality for the customers:

• Registration and login.

• Deleting a subscription and the registered information.

• Changing the day of delivery.

• Date for next invoice.

• Cancelling deliveries and pausing the subscription for a period.

The core functionality included the following functionality for the client:

• Overview of how many and which deliveries that are to be prepared each day.

• Overview of coming invoices.

• Overview over customers and subscriptions.

• The possibility to accept or reject subscription requests based on delivery address.

Subsidiary goals included:

• Integration with Fiken accounting software for automatic invoicing.

• Email notifications for the vendor every time a new customer registers and need approval.

• Email notifications for customers when the vendor has approved a change of a delivery date.

• SMS notifications for customers when the lunch is delivered at the registered address.

At this time, none of the subsidiary goals have been implemented. The plan is to implement email and

SMS notification before the client starts using the web application. Integration with Fiken has not been

implemented, the reason for this was discussed in Chapter 7.

The initial solution idea was to develop a responsive web application which could be used on most

devices, not depending on the size of the device or which operating systems being used. This is a desired

feature as the client will use her phone while delivering lunches. The plan is to implement a responsive

web design before the client starts using the web application. This will make the web application more

user friendly, both for the client and for her customers.

The serverless technology has made our web application scalable, and it will be easy to add more vendors

to the system should the need arise. A multi-vendor system will enable each customer to have several

subscriptions with different vendors, while only needing one account and user profile.

34

 BIBLIOGRAPHY

Alex DeBrie. (2020, February). Retrieved May 18, 2021, from The What, Why, and When of Single-Table

Design with DynamoDB: https://www.alexdebrie.com/posts/dynamodb-single-table

Alex DeBrie. (2020, January 6). Retrieved May 18, 2021, from SQL, NoSQL, and Scale: How DynamoDB

scales where relational databases don't: https://www.alexdebrie.com/posts/dynamodb-no-bad-

queries/#sql-joins-have-bad-time-complexity

Amazon. (n.d.). Retrieved May 19, 2021, from AWS Whitepapers:

https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-lambda/aws-

lambdathe-basics.html

Amazon. (n.d.). Retrieved May 19, 2021, from API Gateway: https://aws.amazon.com/api-gateway/

Amazon. (n.d.). Retrieved May 19, 2021, from API Gateway: https://aws.amazon.com/api-gateway/

Amazon Documentation. (n.d.). Retrieved May 19, 2021, from AWS Whitepapers:

https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-

lambda/introduction.html

Amazon Documentation. (n.d.). Retrieved May 19, 2021, from AWS Whitepapers:

https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-lambda/aws-

lambdathe-basics.html

Amazon Documentation. (n.d.). Retrieved May 19, 2021, from AWS Whitepapers:

https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-lambda/aws-

lambdathe-basics.html

Amazon Documentation. (n.d.). Retrieved May 19, 2021, from AWS Whitepapers:

https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-

lambda/introduction.html

Amazon Documentation. (n.d.). Retrieved May 19, 2021, from AWS Whitepapers:

https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-lambda/the-event-

object.html

AWS. (n.d.). Retrieved April 12, 2021, from AWS: https://aws.amazon.com/lambda/faqs/

AWS. (n.d.). Retrieved April 12, 2021, from AWS: https://aws.amazon.com/dynamodb/

AWS. (n.d.). Retrieved April 12, 2021, from AWS:

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

AWS. (n.d.). Retrieved May 19, 2021, from https://docs.aws.amazon.com/whitepapers/latest/serverless-

architectures-lambda/introduction.html

AWS Documentation. (n.d.). Retrieved May 19, 2021, from AWS Whitepapers:

https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-lambda/the-

handler.html

AWS Documentation. (n.d.). Retrieved May 18, 2021, from Amazon DynamoDB:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-general-nosql-

design.html

35

AWS Documentation. (n.d.). Retrieved May 18, 2021, from Amazon DynamoDB Developer Guide:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-sort-keys.html

AWS Documentation. (n.d.). Retrieved May 18, 2021, from Amazon DynamoDB Developer Guide:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-partition-key-

design.html

AWS Documentation. (n.d.). Retrieved May 18, 2021, from Amazon DynamoDB Developer Guide:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

AWS Documentation. (n.d.). Retrieved May 18, 2021, from Amazon Cognito:

https://docs.amazonaws.cn/en_us/cognito/latest/developerguide/what-is-amazon-cognito.html

AWS Documentation. (n.d.). Retrieved May 18, 2021, from Amazon Cognito User Pools:

https://docs.amazonaws.cn/en_us/cognito/latest/developerguide/cognito-user-identity-

pools.html

Bavosa, A. (2020). Medium. Retrieved April 10, 2021, from https://medium.com/swlh/native-vs-non-

native-mobile-apps-whats-the-difference-b3a641e06f52

Bright, P. (2012, 10 03). Microsoft TypeScript: the JavaScript we need, or a solution looking for a problem?

Retrieved from ars Technica: https://arstechnica.com/information-

technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-

problem/

Brombach, H. (2021, February 5). digi.no. Retrieved April 2021, from

https://www.digi.no/artikler/telenor-rammet-av-flere-tekniske-problemer/506474

Chai Assertion Library. (n.d.). Retrieved April 12, 2021, from Chai Assertion Library:

https://www.chaijs.com/

Chapman, C. (n.d.). Designers. Retrieved May 19, 2021, from Why Use Material Design? Weighing the

Pros and Cons: https://www.toptal.com/designers/ui/why-use-material-design

Conally, D. (2020, 07 20). Liquid Web. Retrieved April 12, 2021, from Liquid Web:

https://www.liquidweb.com/kb/what-is-serverless-a-beginners-guide/

Emorphis Techologies. (2019, November 20). medium. Retrieved April 12, 2021, from

https://medium.com/emorphis-technologies/progressive-web-apps-vs-responsive-web-apps-

how-they-are-different-from-each-other-f0cd3640747d

Fox, L. (2015, August 14). objective. Retrieved April 11, 2021, from https://objectiveit.com/blog/the-

advantages-and-disadvantages-of-web-apps/

Gantt.com. (2021). Gantt.com. Retrieved April 09, 2021, from https://www.gantt.com/

Gibb, R. (2016, May 31). Stackpath. Retrieved April 11, 2021, from https://blog.stackpath.com/web-

application/

GIT. (n.d.). Retrieved April 12, 2021, from GIT: https://git-scm.com/

GitHub. (n.d.). Retrieved April 12, 2021, from GitHub: www.github.com

Griffith, C. (n.d.). Ionic. Retrieved April 11, 2021, from https://ionic.io/resources/articles/what-is-hybrid-

app-development

36

Höck, D. (n.d.). LinkedIn. Retrieved May 18, 2021, from https://www.linkedin.com/pulse/sql-vs-nosql-

whats-difference-david-h%C3%B6ck/

Horn, T. (2019, April 11). Travis Horn. Retrieved May 19, 2021, from Getting Started with Vue Single File

Components: https://travishorn.com/getting-started-with-vue-single-file-components-

f29765a771a3

Interaction Design Foundation. (2021, April 12th). Retrieved April 14, 2021, from Interaction Design

Foundation: https://www.interaction-design.org/literature/topics/usability-testing

John Au-Yeung, R. D. (2020, March 2). The Overflow. Retrieved May 23, 2021, from The Overflow:

https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/

JSON introduction. (n.d.). Retrieved May 23, 2021, from W3 Schools:

https://www.w3schools.com/js/js_json_intro.asp

MDN Web Docs. (n.d.). Retrieved May 19, 2021, from Cross-Origin Resource Sharing (CORS):

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

MDN Web Docs. (2021, April 9). Retrieved May 19, 2021, from Introduction to client-side frameworks:

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-

side_JavaScript_frameworks/Introduction

MDN Web Docs. (2021, April 27). Retrieved May 19, 2021, from Framework main features:

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-

side_JavaScript_frameworks/Main_features

Mocha. (n.d.). Retrieved April 12, 2021, from Mocha: https://mochajs.org/

Moesif. (2018, November 19). Retrieved May 20, 2021, from Based on thousands of APIs, what is the best

approaches and format for handling timezone, timestamps, and datetime in APIs and Apps:

https://www.moesif.com/blog/technical/timestamp/manage-datetime-timestamp-timezones-in-

api/

Nielsen, J. (2000). nngroup. Retrieved May 19, 2021, from https://www.nngroup.com/articles/why-you-

only-need-to-test-with-5-users/

nodejs. (n.d.). Retrieved April 12, 2021, from nodejs: https://nodejs.dev/learn/the-v8-javascript-engine

Rehkopf, M. (n.d.). atlassian.com. Retrieved April 10, 2021, from

https://www.atlassian.com/agile/kanban/kanban-vs-scrum

Roberts, M. (2018, May 22). martinFowler.com. Retrieved March 26, 2021, from

https://martinfowler.com/articles/serverless.html

Skjølsvik, T., & Voldsund, K. H. (2016). Forretningsforståelse (1st edition ed.). Oslo, Norway: Cappelen

Damm Akademisk.

Software Testing Fundamentals. (n.d.). Retrieved April 11, 2021, from Software Testing Fundamentals:

https://softwaretestingfundamentals.com/integration-testing/

Stene, A. L. (n.d.). Lunsj på Hjul. Retrieved from Stene Matglede :

https://www.stenematglede.com/lunsjpaahjul

37

Visual Studio Code. (n.d.). Retrieved April 12, 2021, from Visual Studio Code:

https://code.visualstudio.com/docs/supporting/faq

Vue Class Component. (n.d.). Retrieved May 19, 2021, from https://class-component.vuejs.org/

Vue.js. (n.d.). Retrieved April 12, 2021, from Vue.js: https://vuejs.org/v2/guide/

Vuejs. (n.d.). Retrieved May 19, 2021, from Guide: https://vuejs.org/v2/guide/

Vuetify. (n.d.). Retrieved April 12, 2021, from Vuetify: https://vuetifyjs.com/en/introduction/why-vuetify/

Wanyoike, M. (2019, June 26). Sitepoint. Retrieved May 19, 2021, from How To Get Started with Vuetify:

https://www.sitepoint.com/get-started-vuetify/

Weissman, S. (2018, December 5). codingsans.com. Retrieved April 10, 2021, from

https://codingsans.com/blog/kanban-in-software-development

38

 APPENDICES

10.1 GANTT Chart

39

10.2 Risk List

Risk Consequence P C RF Measures

Lacking knowledge about new technologies Takes time to get started on the project 1 3 3

Group menbers reads up on different

 technologies, and helps the rest of

 the group if necessary

Uneven workload

Someone has to do more than others,

may have an impact on if we have time

to finish the project in time

2 2 4

Frequent meetings to make sure

everyone gets the same amount of tasks.

Everyone needs to do the assignments

they get.

Illness/Absence/Covid-19

More work for the other group members

for a period of time. Might be problematic

if one of the members have knowledge

the others do not have

3 3 9
Follow reccomended covid measures,

knowledge transfer

Time

Do not have time to complete the assignment,

or do not have time to implement all desired

functions

4 3 12 Follow the plan and iterations

Problems with work tools Can not work with the project 1 3 3

All group menbers have newer computers,

fix the possibility to borrow/rent computers

if necessary

The customer can not use the application/

misunderstood the customers needs

The application is not satisfying the customers

needs
1 5 5

Frequent customer meetings, make sure

to finish core functionality early,

testing

The application is not user friendly Application will not be used 2 4 8
Frequent customer meetings, let users

test the application as soon as possible

The development gets prioritized

over writing the report
The report will not be finished in time 2 3 6

Work regulary with the report,

stick to deadlines

40

10.3 Vue lifecycle hooks

Source: https://vuejs.org/v2/guide/instance.html#Lifecycle-Diagram.

