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Abstract

Stochastic optimal principle leads to the resolution of a partial differential equation
(PDE), namely the Hamilton—-Jacobi—Bellman (HJB) equation. In general, this
equation cannot be solved analytically, thus numerical algorithms are the only tools
to provide accurate approximations. The aims of this paper is to introduce a novel
fitted finite volume method to solve high dimensional degenerated HIB equation
from stochastic optimal control problems in high dimension (n > 3). The challenge
here is due to the nature of our HIB equation which is a degenerated second-order
partial differential equation coupled with an optimization problem. For such
problems, standard scheme such as finite difference method losses its monotonicity
and therefore the convergence toward the viscosity solution may not be guarantee.
We discretize the HIB equation using the fitted finite volume method, well known to
tackle degenerated PDEs, while the time discretisation is performed using the
Implicit Euler scheme.. We show that matrices resulting from spatial discretization
and temporal discretization are M-matrices. Numerical results in finance demon-
strating the accuracy of the proposed numerical method comparing to the standard
finite difference method are provided.
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1 Introduction

The theory of optimal control for stochastic differential equations is mathematically
challenging and it has been considered in many fields such as economics,
engineering, biology and finance (Fleming and Soner 2006; Pham 2000). Stochastic
optimal control problems have been studied by many researches (Krylov 2000;
Jakobsen 2003; Peyrl et al. 2005). In some cases, the well posedness of such
problems have been studied using methods such as viscosity and minimax
techniques (see Crandall and Lions 1983; Crandall et al. 1984, 1992). In general,
most of them do not have an explicit solution, therefore there have been many
attempts to develop novel methods for their approximations. Numerical approxi-
mation of stochastic optimal control problem is therefore an active research area and
has attracted a lot of attentions (Huang et al. 2004; Krylov 1999, 2005, 2000;
Jakobsen 2003; Peyrl et al. 2005). The keys challenge for solving HIB equation are
the low regularity of the solution and the lack of appropriate numerical methods to
tackle the degeneracy of the differential operator in HIB equation. Indeed adding to
the standard issue that we usually have when solving degenerated PDE, we need to
couple with an optimization problem at each point of the grid and for each time step.
A standard approach is based on Markov chain approximation, which suffers from
time step limitations due to stability issues (Forsyth and Labahn 2007) as the
method is indeed based on finite difference approach. Many stochastic optimal
control problems such as Merton optimal problems have degenerated linear operator
when the spatial variables approach the region near to zero. This degeneracy has an
adverse impact on the accuracy when the finite difference method is used to solve
such optimal problems (Dleuna Nyoumbi and Tambue 2021; Wilmott 2005) as the
monotonicity of the scheme is usually lost. However, when solving HIB equation,
the monotonicity also plays a key role to ensure the convergence of the numerical
scheme toward the viscosity solution. Indeed in high dimensional Merton’s control
problem, the matrix in the diffusion part is lower rank near the origin and it has been
found in Bénézet et al. (2019) and Henderson et al. (2020) that the standard finite
difference schemes become non monotone and may not converge to the viscosity
solution of the HJB. To solve the degeneracy issue, a fitted finite volume have been
proposed in Dleuna Nyoumbi and Tambue (2021) for one and two dimensional
optimal control problems. This method uses special technique called fitted
technique to tackle the degeneracy. The scheme have been initially developed to
solve Black—Scholes PDEs for options pricing (see Wang 2004 and references
therein). In Dleuna Nyoumbi and Tambue (2021), numerical experiments have been
used to demonstrate that the fitted finite volume scheme is more accurate than the
standard finite difference approach to approximate one and two dimensional
stochastic optimal problems. To the best of our knowledge, even for Black—Scholes
PDE:s for options pricing, fitted technique for high dimensional domain (n > 3) has
be lacked in the literature.

The aim of this research is to introduce the first fitted finite volume method for
stochastic optimal control problems in high dimensional domain (n > 3). This
method is suitable to handle the degeneracy of the linear operator while solving
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numerically the HIB equation. The method is coupled with implicit time-stepping
method and the iterative method presented in Peyrl et al. (2005) for optimization
problem at every time step. The merit of the method is that it is absolutely stable in
time because of the implicit nature of the time discretisation and yields a linear
system with a positive-definite M-matrix, this is in contrast of the standard finite
difference scheme.

The novel contribution of our paper over the existing literature can be
summarized as

e We have upgraded the fitted finite volume technique to discretize a more
generalized HIB equation coupled with the implicit time-stepping method for
temporal discretization method and the iterative method for the optimization
problem at every time step. To best of our knowledge such combination has not
yet proposed so far to solve stochastic optimal control problems in high
dimensional domain (n > 3).

e We have proved that the corresponding matrices after spatial and temporal
discretization are positive-definite M-matrices. We have demonstrated by
numerical experiments that the proposed scheme can be more accurate than
the standard finite difference scheme.

The rest of the paper is organized as follows. The stochastic optimal control
problems is introduced in Sect. 2. In Sect. 3, we introduce the fitted finite volume in
high dimensional domain and show that the system matrix of the resulting discrete
equations is an M-matrix. Section 5 provides temporal discretization and optimiza-
tion algorithm for spatial diiscretized HIB equation. In Sect. 6, we present some
numerical examples illustrating the accuracy of the proposed method comparing to
the standard finite difference. Finally, in Sect. 7, we summarise our finding.

2 Preliminaries and Formulation

Let (Q,F,F =(F;),~(,P) be a filtrated probability space. We consider the

numerical approximation of the following controlled stochastic differential equation
(SDE) defined in R" by

dxs = b(s, x5, 05)dt + o (s, x5, 05)dews, s € (4, T] x =x (1)
where
b:[0,T| xR"x A— R" (t,x,0,) — b(t,x, %) (2)
is the drift term and
c:[0,T] x R" x A — R™  (t,x;,0) — a(t,x;,0) (3)

the d-dimensional diffusion coefficients. Note that w, are d-dimensional indepen-
dent Brownian motion on (Q,F,(F;),s,P), the control o = (), is an F-
adapted process, valued in A compact convex subset of R™ (m > 1) and satisfying
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some integrability conditions and/or state constraints. Precise assumptions on b and
o to ensure the existence of the unique solution x, of (1) can be found in Pham
(2000).

Given a function f from [0,7] x R" x A into R and g from R" into R, the
performance functional is defined as

T
J(t,x,0) = E [/ (s, x5,0) ds +g()cT)}7 Vx € R". 4)
t
We assume that
T
e{| [ soonnds+ gtan)] <. 5
1
The model problem consists to solve the following optimization
v(t,x) = supJ(t,x, ), Vx € R". (6)
acA

By dynamic programming, the resulting Hamilton—Jacobi—Bellamn (HJB) equation
(Krylov 2000) is given by

0
vgt’ *) + EEE[L“v(t,x) +f(t,x,0)] =0 on[0,T) x R" (7)

V(Tvx) :g(X), x R

where

: v(t,x o 2v(t,x
L) = > 00n), TG+ Y @), e ®

i=1 ij=1

1
and a*(t,x) = 3 <a(t,x, a)(a(t, x, oc))T) The resulting Hamilton—Jacobi-Bellman

equation is typically a second order nonlinear partial differential equation, which
can degenerate and therefore should to solve accurately.

3 Fitted Finite Volume Method in Three Dimension HJB

As we have already mentioned, even for Black—Scholes PDEs for options pricing,
fitted technique for three dimensional space has be lacked in the literature to the best
of our knowledge. The goal here is to update the technique in Dleuna Nyoumbi and
Tambue (2021) and Wang (2004) to three dimensional HIB equation.

Consider the more generalized HIB Eq. (7) in dimension 3 which can be written
in the form by setting 1 =7 — ¢
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0
SVEIND L gl (k05,53 2)) + ek ) (w5 ) =0, (9)
Ot oA
where k(v(t,x,y,2)) = A(t,x,y,z,0) - Vv(t,x,9,2) + b(t, x,y,z, &) v(,x,¥,2)
with

apy ap aps
T
b= (xb1,yby,zb3)", A= |an axn ax]|. (10)
as; dasy ass

Indeed this divergence form is not a restriction as the differentiation is respect to
x, y and z and not respect to the control o, which may be discontinuous in some
applications. We will assume that ay; = ajp, a3 = a;3 and azy = ax;. We also
define the following coefficients, which will help us to build our
scheme ay (t,x,y,0) = ay(t,x,y,0) x>, an(t,x,y, o) = @ (t,x,y, 0)y*, az(t,x,
v, o) = as(t,x,y,0)2%, app =ay =d\(t,x,y,0)xyz, a;3 = az; = da(t,x,y,0) xyz
and ay3 = as, = ds(t,x,y, o) xy z. Although this initial value problem (9) is defined
on the unbounded region R>, for computational reasons we often restrict to a
bounded region. As usual the three dimensional domain is truncated to
I = [0, Xmax), Iy = [0, Ymax) and I, = [0, Zmax]. The truncated domain will be divided
into Ny, N, and N3 sub-intervals

L, = (xi,xi01), Iy o= (0, y01), Ly = (2, 21),

i=0...N — 1, ]ZONQ— 1, k:0N3—l with O =xp<x1<<------ <Xn,
:xmax’ 0:y0<y1< ...... <yN2 :ymax and O:Z0<Z1< ...... <ZN3 = Zmax-
This defines on I, x I, X I, a rectangular mesh.
By setting
Xt X XX Yty
Xit1/2 Ty Xi-1/2 T Yit1/2 = Ty
(11)
Yt Yyia kT kg Tkt
Yi-1/2 ;T, Tk+1/2 -:?, k—1/2 ':i’

for each i=1..Ny—1 j=1...N,—1 and each k=1...N; — 1. These mid-
points form a second partition of I, x I, x I, if we define x_;, = xo,

AN +1/2 = Xmax>  Y—1/2 = Y05 YN;+1/2 = Ymax and Z.1/2 =20, ZN;+1/2 = Zmax- FOI
each i=0,1,...,Ny, j=0,1,...N; and k=0,1,...,N3, we set
hy, = Xiy172 — Xicij2, By, = Yir12 — Yi—172> Mz = Zir12 — %—1,2 and define the
grids points as

G={(xyz) : 1<i<Ny = 1; 1<j<N, = 1; 1<k<N;—1}.

Integrating both size of (9) over Rijx = [xi_1/2,%is1/2] X [jm1/2,Vj21/2] ¥
[2k—12, 2k+12] we have
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/Xi+1/2 /)’/+1/2 /Zk+1/2 6v
— — dxdydz
Xi-1/2 Yi-1/2 Zk—1/2 67:

=

Xit1/2 Yj+1/2 Zht+1/2
+/ / / sup[V - (k(v)) + cv]dxdydz =0
Xio1)2 12 Juop €A

fori=1,2,.. ,Ni—1, j=1,2,...N,—1, k=1,2,... N3 — 1.
Applying the mid-points quadrature rule to the first and the last point terms, we
obtain the above

av,-jk(r)
—_— A/ li'
or IR

/ V- (k(v))dxdydz+ cijx(t,0) viji(t) liji| =0

(13)
for i=12,..Ny—1, j=12,..Nob—-1,k=1,2,..N3—1 where [j;=

(xi1/2 = Xie1/2) X (Vw12 — ¥j1/2) X (212 — 2—1/2) is the volume of Rjjy.
Note that v;«(t) denotes the nodal approximation to v(t,x;,¥;,z) at each point of
the grid.

We now consider the approximation of the middle term in (13). Let n denote the
unit vector outward-normal to OR;;. By Ostrogradski Theorem, integrating by
parts and using the definition of flux k, we have

/R.. V'(k(V))dxdydz:/ k-nds

aR;J_/(

(X/+1/2~)’j+1/2azk+1/2) 6v d\/ av
:/ <011—+6112 a—+a13 a—+xb1v>dydz
x1+1/z Yje1/25%k— 1/2) dx y Z

i-1/2, y7+l/’?:zk+l/2 v ov ov
/ (alla_+a12 a—+a13 a—erblv)dydz
('Xl 1/2:Yj-1/2:%k— 1/2 X y Z

/ X:+1/2 Yit+1/25 Zk+l/2
(Xz 1/25Yj+1/25%k— 1/2

(021
X,+1/z Yj-1/25 Zk+l/‘7 a
/( (6121 + azz + a3 — o +y b, v) dxdz

+

ov
+a22 +(123 a—+yb2v)dxdz (14)

i—1/2:Yj—1/2%k— 1/2
/ Xz+|/2 Yi+1/25 Zk+|/z
( Xi—1/2:Yj—1/25 Zk+1/7

/ X,+1/27yj+1/2 Lhe— 1/2
Xz 1/2:Yj—1/2 %k~ 1/2

+

+a32 +a33 —|—Zb3v dx dy

asy ——‘rclgz -‘1-6133 +Zb3 v)dxdy.

Note that
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(x1,y2,22) V2
/ f(X,y,Z)dde = / / f(xl,y,z)dzdy. (15)
( Y1 21

X1,Y1,21)

We shall look at (14) term by term. For the first term we want to approximate the
integral by a constant, i.e,

(Xx+|/2~,}’j+|/2~,2k+|/z) 0 0 R
/( (all—v+alz—v+a13—v+xb1 v)dydz

Xit1/25Yj—1/2:%%k—1/2 ox ay aZ (16)
ov ov ov
R a116—+d126—+a13 a—+xb1v “hy, - he,.
* Yy < (xi+]/2¢)’j~,2k)

To achieve this, it is clear that we now need to derive approximations of the k(v) - n
defined above at the mid-point (x,-H /25 Yjs zk), of the interval [, for
i=0,1,...N; — 1. This discussion is divided into two cases for i > 1, and i = 0 on
the interval I,, = [0,x]. This is really an extension of the two dimensional fitted
finite volume presented (Huang et al. 2010).

Case I: For i > 1.

Let set aj(t,x,y,2,0) =a(t,x,y,z,2)x>. We approximate the term

0
(a 11 5‘2 +xby v> by solving the following two points boundary value problem

ov

!
(al(f7xi+1/27yj7 Zks O‘i,j,k)xa + b1 (T, X1 /2, Yjs Ty %ijik) V) =0,

V(xi>}’j>Zk) = Vijks V(xi+1>)’j>Zk) = Vitljks

(17)

integrating (17) yields the first-order linear equations

_ ov
aj (T,xi+1/2,)’j, Zks OCiJ.,k) xa + b (T7xi+1/27)’j> Zks “idzk) v=Cy, (18)

where C; denotes an additive constant. As in Huang et al. (2010), we get

/}i.f. ﬁiJu T
c briv1/2,4(T, %ijik) (xi+1k(r) Virljk — X : )Vi,j,k> (19)
| = .
xﬂi,/.k(f) _ xﬁi,/.k(‘f)

i+1 i

Therefore,
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6v+ 6v+ 6v+ b
aj] —+ap —+ap —+xbv
s 12 o 13 %2 1

(Xi+l/2sy.ivzk)
Biji(2) Biju(7)
briv1/2k(T, %ijk) (m’l Viglik =X Vijk
~ X;
i+1/2 e Biix(®)
i+1 i

ov
) + dzi,j,k(fa %ijk) Vj 2k Ao

)
aZ (x]i+l/2 ,){,‘,Zk)

(20)

ov
i j (T, %) Vi 2 W

(x]i+l/2 Vi Tk

big1)2,u(T; %ijk)
where Biji(t) = _l/J—’”, ap = ay =di(t,%,,2,0) xyz and
ai1/2,k(T, %ijk)
aiz =as; = da(1,X,9,2,0) Xy Z.
Note that in this deduction, we have assumed that by, /5 (7, %jx) 7 O. Finally,

we use the forward difference,
ov
Oy

- Vijik = Vijk OV

U Vijk+1 ~ Vijk
, o WE
hy, 0z

th

(Xi+1/2 2YjrZk ) (xi+l /2:Yj %k )

We finally have

ov oy ov
ail —+anp —+aiz —

o o o +xb v] hy, - by

(Xi+1/27}’/-,2k)

ﬁi.‘,k(f) Bijx(T)
brit1/2jk(T, %ijk) (xi+jl Vil — X% 7 Vijk

~ X;
i+1/2 ﬁi.j,k(f) o /ﬂj.k(f)
i+1 Xj

Vij+1,k = Vijk Vijk+1 — Vijk
(T, %) ik o +da; (T, %) ¥ %k T “hy, - h.
Vi Tk

Similarly, the second term in (14) can be approximated by

y ov ov
ayy —+ap —+am %
Z

mT g +xby v] hy, - by

(Xi—l/Zﬁijzk)
Bic1jx(7) Bic1jx(7)
bri—1/2,4(T, %ijik) (x," ik — X5 itk

xiﬁifu.k(f) . xfgfll“(ﬂ

~ Xi-1/2

Vij+1k — Vijk Vijk+1 = Vijk
+d1jx (T, %ijx) Vj 2k -t do;j (T, %ijik) Vi 2 =)y by
Vi Zk

(22)
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Case IT Approximation of the flux at i = 0 on the interval I, = [0,x;]. Note that the
analysis in the case I does not apply to the approximation of the flux on I, because
it is the degenerated zone. Therefore, we reconsider the following form

_ v ' .
(alx]/z.jvk(fvo‘l,j,k)xeerblx,/z‘jk(faa) V> =C; in [0,x] (23)
V(anyjaZk) = V0, k; V(Xuypzk) = Vljks

where C, is an unknown constant to be determined. Integrating (23), we find

(X] 12 yy;wlk)

[(51x1/2.]',k(‘5, o1jk) + Di, k(T 1)) V1jik

_ ov
(al(r, “l,i,k)xa + by v>

| =

- (51):,/2.1;1«(1'7 oA jk) — blxl/zJ,k(Ta O‘lmk))"o,i,k]

and deduce that

ov ov ov
[6111 —+4ap —+a3 —+xbv -hyj - hy,

o ay 0z :| (XI/ZLV./"Z")
Ir_
R X1)2 <2 |:(a1x1/2,]'.,k(1', OCl,/}k) + b]xl/z-j,k(‘c? O!1J,k)) Vijk

_(Elxl/z,j,k(fa % k) — blxl/”',k(f, %1k)) Vo.j,k}
Vij+1k = Vijk
h

Vi

(T, k) Vi 2k

Vijhk+1 — V1jk
oy (T, 0 k) ) 2 B “hy, - hy,.
%

Remark 1 Notice that if I, = [{, xmax] With { # 0, we do not need to truncate the
interval I, we just apply the fitted finite volume method directly as for i > 1.

Case I1I For j > 1. For the third term in (14) we want to approximate the integral
by a constant, i.e,

(Xf+1/2 ij+1/2«,zk+1/z) v ov v
‘/< <a21—+a22—+a23 —Z+yb2v>dxdz

Xi—1/2:Yj+1/2 ,Zkfl/z) Ox ay 0 (26)

N ov ov ov b hoh
M@ g tan g tan g tyby |Gy P P

Following the same procedure for the case I of this section, we find that
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ov ov \
a1 —x+azz ~—+axn —+ybv

'hxi : h
2 ay 0z ] (xf,}y+1/271k) !

Briju(T) Brijx()
b2;ji1 /24 (T, %ijk) (yjfrl” ! Vijrik =Y ! Vij,k)

~jr1/2 i@ Briga(d
J+1 J
Vitljk — Vijk Vijk+1 — Vijk
Fdij i (T, %) Xi 2k — + d3; i (T, % k) Xi 2 — hy, - hy,
Xi ke

(27)
b ij T, 0,
whete fyi,j, k() = 221260 %)
@2jji1/24(T, %ijk)
ax; = axp = di(1,x,y,z,0) xyz. Similary, the fourth term in (14) can be approxi-
mated by

an(t,x,y,2,%) = az(t,x,y,2,%) y*, and

ov ov ov
ar) ——+an a*y+az3 =

0z

(Xi Yj-1/2 AZk)

Brijo1x() Biij-14(7)
baij1/24(T; %ijik) ()’j Wk — yjli’ " Vi.jfl.k)

= Vj-172 il P

Vitljk — Vijk Vijk+1 — Vijk
ik (T, %) Xi 2k — +d3; (T, %) Xi 2k B “hy, -y,
Xi Tk

(28)

Case IV Approximation of the flux at /,; i.e for j = 0. Using the same procedure
for the approximation of the flux at I,,,, we deduce that
[ ov ov

v
@1 +an s-+an —+ybyv hy, - he,

ox dy 0z ] (w122 )

Ir_
~ Y12 <2 |:(a2i,y1/z7k(fa fxi,l‘k) + bzi,yl/z,k(f, O‘i‘l,k))vi,l,k

=@y, k(T %1 6) = b2iy, 4 (T, 0014)) Vi,(),k} (29)

Vitl,1k — Vijlk
i (T, %1 k) Xi 2k —
Xi

Vilk+1 — Vilk
30 4 (T, %1 k) Xi 2k — > “hy, - by,
Zk

For the fifth term in (14) we want to approximate the integral with a constant.
Following the same procedure as in the case I and case III, we have
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v ov v
as o+ as 5o+ ass a—+zb3 v} hy, - hy,
x y 2 (xivpszas1/2)
PaijulD) Baiju(z)
b3ijjs1/2(T, %) <Z1<2+1k Vijirt — V"J’k)
~ Zk+1/2 /fz,'__;_k(f) ﬁZi._/,k(T)
N

Vitljk = Vijk Vij+1,k = Vijk
+do;ji (T, i) Xi Vj o = ds (T k) Xi Vg — hy; - hy,,
Xi Yj

.. b3ijjs1/2(T, %) _
Where ﬁ217]7 k(T) = w—,u’ ass (T7x7y7 <, a) = a3 (Tv-x?ya Z, OC) Zz'
@3 1/2(T, %)

Similarly, the sixth term in (14) can be approximated by

v ov ov
asy a*Jrasz §+a33 a+Zb3V} hy, - hy,
x y < (Xn}’/,zkfl/z)
Baijr-1(7) Baija-1(1)
baisacra(® i) (20 v = 22 i)
~ U172 Baiju—1 (%) Baiju—1(7)
% %1

Vitljk = Vijk Vij+1,k = Vijk
+da; i (T, k) Xi Yj — + d3; i (T, %ijk) Xi V) ) hy, - hy,.
Xi Vi
(31)

Case V Approximation of the flux at I,. Using the same procedure for the
Approximation of the flux at I,;, we deduce that
ov ov

ov
as) —+azp —+ass %

hy, - hy,
ox dy e V} iy

(xiszle/Z)
|
N1/ (5 [(6131-,;,11 n(Taiin) + b3, (T, 000)) viga
—((@3iz,, (T 001) = b3iji, , (T5 i1 ))Vim]

Vit1,j1 — Viji Vij+1,1 = Vij1
+daiji (T, %ij1) Xi Y B — +d3i;0 (T, %ij1) Xi yj T “hy, - hy,.
X

Vi

Equation (13) becomes by replacing the flux by his value for i =1,...,N; — 1,
jil,...,szl, kil,...,N_g*landN:(N] 71)X(N271)><(N371)
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_dviij‘k(r)

ko ko ko
it +osup (e Vieljk €5 Vijk T €l Vitljk

oc,'_j‘kE.AN
3)
ko ko ko ko _ (
Fet k Vig—1k e Vit €y Vig—1k + €55 Vi1 | =0,

with  v(0) given,

This can be rewritten as the Ordinary Differential Equation (ODE) coupled with
optimization

dv(z) _
g = SV + 0 =

with v(0) given,

or

d;(;) + aielf” [E(t,2)v(t) + F(1,%)] = 0, a0

with v(0) given,
where A(t,0) = —E(t,2) is an N xN matrix, AY = AxAx---xA
—
(N1=1)x (N2—1)x(N3—1)
G(r,a) = —F(t, ) depends of the boundary condition and the term c, v = (v;jx).
By setting n; =Ny —1,n=N,—1; n3=N3—1, IZZI(i,j,k):i—i-(i—
Dny + (k— Dnyny and J:=J(@,j, k) =i+ ( — U)m; + (K — 1)nny, we have

E(t,0)(1,J) = (e",kk> fi=1,...N—1, jj=1,...No—1 and K, k=
1,...,N3 — 1 where the coefficients are defined by

Jik dyij i (T, o) Xi Y dyija(T, oijk) Xi 2k
ik — -
o hxi hxi

Bijx(7)

. bliﬂ/z,;,k(fa % jk) Xit1
i+1/2 Biix® _ Bix@Y
xi \ Xt Xi

Bii Jik (1)
ko bri1/2ju (T, iju) X4

ei*l'j’k =~ Ji-12 h (‘xﬂi—l._/’,k(r) . xﬁ;fu.k(f)) ’
Xi ] i—1

l

ik Digr(T i) iz daija(T i) iy
ij+1.k hy/ hyj
Briju()
bajji1 )2k (T %jk) Viii"
y']+l/2 ﬂlij,k(r) ﬁliJ_k(T) ’
i \YVi+1 =Y

e
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Bi iji—1.k (v)

ei’i’k . b2iJ71/27k(T7aiJ,k)yj—l ei,j,k
ij-1k Yi-1/2 h Brij1k(r) Biij1x(0)\ 7k
vi \Yj —Yi-1
(s yizk daiga(T ) Xi 2k
e 8 flzf
2ijk (T
b3ijr1/2(T; %ijk) 5 ik

o Zk+1/2 [”2;’__,’,/((7) /321'__/',]((’[) ’ ei'j’k71
2\ b1 T %

Baiju1(7)
. bSi:/}k—l/Z(Tv Oci,jﬁk)ZkZ—Jlk N
k—1/2 h, (ZfziJ,k—l<f) _ Zfi‘ilk—l(r)) ’

(35)

and

1k ﬁi'—,(r)
Sk bri—1/2,k(T, ai,j‘k)xiﬁ 147 ey bjj 1ok (T, %ijk) y;
ijk —ri=1/2 hx,- (x(gi—lj,k(r) _ xﬁx—u.k(f)) Yi=1/2 hy,- (y_ﬁw—l.k(f) _ y/?li.j—l.k(ﬂ)

i i—1 j j—1

N 34 (T, %ij k) Xi Yj L a3 (T, 0ij) Xizk doiji (T, i) Xi Vy
hy hy, hy,

dyijx (T, %ijx) )2k n da; (T, %) V) 2k n dyjp(T, %) Xi 2k
h)’j th hxi
/32,‘, ik-1(7) /’)zlz_ ',k(T>
b3ij—1/2(T; %) 7 b3jjjs12(T, %) 7 7

T 2172 ; y T Zt1/2 ; y
th (ZfZI./.k—l<T> _ Zfi‘i.k—l(r)) N (Z]/ji,_jl‘k(ﬂ _ Zl/jz:./.k(f))

J

— ciju(T, %ijx) +

B Brija(®)
iy biiv12,x(T Ofi,j,k)x,/' () . baij12a (T i) v
i+1/2 B B j+1/2 Biija®  Prijx(z)
XI_( [+.,_1k<r> _x M<r)) h, (ij 9 y g )

(36)
fori=2,.. ,Ny—1,j=2,...,Np—land k=2,...,N3 — 1 and

; 1
1k _
ek =~ 5 (12,00 (Ts %1j) = Di, ik (T 01k)) Vo,iks
ik

ek =5, (@13, (Ts 01j) + By, ik (T, 005k)) — 5 €T, 001

3
doyja(t o) X1y diya(T, onx) X1 2
hxl hxl

Bijx(7)
bi1ry2u (T, o ia) X) '

+ Xi41/2 . —N
hxl (xgl./,k( > _ xfl.j.k( ))
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Sk o) xyy  diga(T o) © z
2.k hy, hy,
B],f.k(‘f)
by j2jr (T, o jk) Xy i1k

S he, (xgl._,;k<r> _xfu.km) 2 €i0k

= —s— (@i, yiy2,k(t, 0,1 ) = b2iy, , (T, %i11)) Vioks e;j}ji

2y, 1
= Tyz y1(aii,yl/z,k(fa i1 k) + b2i,y1/2,k(fa %i1k)) — 3 cit k(T 0 1k)
dii k(T 01 ,) vi 2 dsig (T, 00k) Xi v
hy, hy,
Bl,,l.k(f)

bai 141 /24(T % 1k) ¥y
+ V10— - — ,
hy[ (ygly,l,k(f) . y/fl,.u('f))

Cdi(tag) iz daing(T o) X

Sk
i2k =
; hy, hy,
ﬁu,l,k(‘f)
_ bzi,1+1/2,k(f,°‘i.,l,k)y2
y1+1/2 h ﬁlu,k(T) ﬁli,l,k(f) ’
yi\ Y2 -N
gl 1 _ b
€ij0 = T, ¢ (@320, (T, %ij.1) = iz, (T, %.1)) Vio,
., 1
ij,1 —
Wl T2 21 (@i, (T %igir) + D3ijzy (T, %ijir))
1 daiji (T, 0j1) Y2
Js ) My, J
__C.,l T a..l +
3 L], ( ) ML, ) hZI
ﬂZi.’,](T)
+d3i,i71(fvaiii¢l)xi11 . baijia(: %ij1) 2
h, 1+1/2 i Briji(©  Paija(@Y 7
1 a\%2 |
i) doija (v, %) iz dsija (T, 1) Xi 2
. .’2 —_—— -
& he, h,
/le-__;,l(f)

oy b3iJ,1+1/2(T’°‘iJ,1)Z2
— 2141)2 - ~
hzl (Zgzu.l('f) _ legz,,,.l(f))

(39)

G collects the given homogeneous boundary therm vox, Viox, Vij0, VN jk» ViNok

and vy, fori=1,.. Ny -1, j=1,...,N,—1 and k=1,... N3 — 1.
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Theorem 1 Assume that the coefficients of A given by (10) are positive and ¢ <0.
Let

h= max {hy, hy, hy},

el (40)
k=1,..N3—1

if h is relatively small then the matrix E(t, ) in the system (34) is an M-matrix for
any aj; € AV,

Proof Let us show that E(t, ) has positive diagonals, non-positive off-diagonals,
and is diagonally dominant. We first note that

brivpju(T, dije) — diijr(T diju) Bija(7)

= >0,

le'}j;jik(f) _xlﬁi._;,k(f) xfiij,lk(f) o x[ﬂi,j.k(":)
baijir 2k (T, %) _ a2ija (T, %ijx) Brija() =0

ﬂli.j.k(f) ﬁw.k(‘f) o ,Blf.j,k(f) ﬁll,/lk(f) ’ (41)
e T i T

b3ija12(T %ijk)  A3ij4(T, %ijk) By (T) -0

ﬁzi.j.k(f) ﬁzi_j,k(f) o ﬁzx',/.k(f) 521J.k(‘5) ’

R N

for 1= 1, .. -7N1 — 1,] = 1, .. .,Nz — 1, k= 1, .. .,N3 — 1 and all bli+1/21j,k(’5aai,/',k) /
=0, byijr1/0k(T,%ijk) # 0, bajjgrrpa(T, %iji) #0  with  ayju(t, o%) >0,
;i (T, %ijx) > 0 and az; (T, 24) > 0.

This also holds when biiy/0;k(7,%ijk) — 0, bajju1/ok(T, %ijx) — 0 and
b3[‘/7k+1/2(‘f, OC,‘},',]() — 0. Indeed

im biivipji(t, ) biv1/24k(7, %)
b‘"“/ZJ*(T’“)ﬁoxl-ﬁrik(T) o x?ij.k(f) - eﬁi._;_k(f) In(xis1) _ e/}i,,'.k(T) In(x;)
_ biiv12j(T, )
ﬁi.j,k(f) In(xiy1) — ﬁi.j,k(f) In(x;)
-1
_ Xi
:a1i+1/2‘}-7k(‘c,a) ln(x_+l) > 07
lim biiijpju(t) bi—12jx(t, )

b]iil/zw‘(-;_“)ﬂ()xlﬁif],/,k(f) _ xl{}i—ll.j(f) B eﬁi—l,f,k(’c) In(x;) _ eﬁi—l.j,k(’[) In(x;—1)

briz1/2jx(T, )

- ﬁi—u,k(f) In(x;) — ﬁi—l.j(f) In(x;_1)
-1
:aii—l/ZJ,k(Tvo‘) ln( i ) >0,

Xi—1

! Indeed ¢ can be positive but should be less than a certain threshold ¢y > 0.
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Indeed
by; ;i T
b> ]lzikfg «)—0 /fl,,zkl(i;rl/z kﬁ(ujk(f) >0,
ij+1/ y it yj
by, ;i T
lim 2ij— 1/2,k( ) >0,
baij1/24(1, x)—»Oyjﬁlzj 14(7) _ yfiliij—l‘k(f)
. b3ijis1/2(7)
bk lllzt(n 2)-0 Baiju(7) Baiju(7) >0,
3ij.k+1/ +1 — Zk

> 0.

b iik— T
lim - 3(,].)/( 1/2/3( ) 5
. o) —s 1ijk—1T 2ijk—1\T
b3jjk—1/2(T,2) OZk k-1 _Zk—lk !
Using the definition of E(t,x) = (ej’,j) i=1,..,Ni—1, j=1,...,Ns—1
and k=1,...,N; — 1 given above, we see that

tj, ij.k ij.k

z]k O ez+l]k 0 € 1.k <0 el,}+1k<0
ij.k ij.k ijk
€ 1x S <0, ew w1 <0, and €1 <0,

For i:2,...,N1—1, j=2,...,Ny—1 and k=2,...,N3—1, since
ﬁi.j, (1) ﬁi.j, (t ) ﬁz,
1 ~ X ! ‘ ﬁl,}k( )

~

i+1 i Xi
xl/?flu.k(f) ~ xfi—l,}.k( U ﬁl*l,}.k() ,3, lj,k( )hx,-

Briju(r) Biiju(t) Bii
s o sy Prsa(er= mm

Biij14(t) Brij14(7) B
jli/]k %yll,;u _leu ﬁlz,;lk()

ﬁ21]k( 7) /32:‘/[(( 7) ﬁZ,,/k
k+] ~ + ﬁZI]k() Tk and
ﬁZ:J,k—l( 7) [;Zx_j,k—l( 7) .32,‘,1( 1
% g - % ﬁzz,/k 1(0) hy,  when  h=max{hy, hy, h,}
—0,
ik ik ik ik ik ik ijk+1
le’ g che l,j‘k’ T \Cij—1k| T |(Cijh—1] T |Cirljk| T |Cijr1k| T |k
— —Cijk(T, %ijk),
we have
ij.k ij, ij.k ij.k ij.k ij.k
’eij,k‘> e;” l_]k‘+ e lk“'_ ei.j+1,k‘+ e jk| T |Cijkat| T |€ik—1

Ni—1N—1N3—-1

22,0 > |

m=1 n=1 =

ij.k
mnl,nz

7m7{i, ni #]7 I’lz;ék,

We also have similar inequalities when one of the indices i, j, k is equal to 1.
Therefore E(t,a) is an M -matrix. O
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4 Fitted Finite Volume Scheme in n Dimensional Spatial Domain

The goal here is to update our three dimension fitted schemes in high dimensional
space (n > 3). Recall that the HIB equation in n > 1 dimensional space is given by

vi(t,x) 4+ sup[L*v(t,x) + f(t,x,a)] =0 on [0,T] x R",
aeA (42)
v(T,x) =g(x), x eR"
” 1 T v, x) & dv(t, x)
where L v(t,x) =5 ;(O’O’ )i (8%, 00) o 0% + ;bi(t,x, o) o
The divergence form of equation (42) by setting T = T — ¢ is given by
ov(t,x)
- + sup[V - (k(v(t,x))) + c(7, x, @) v(7,x)] = 0, (43)
T acA
where k(v(t,x)) = A(t,x, ) Vv(t,x) + b(t, x, ) v(t,x) with
[an an az -+ an]
dz; dppp 4z -t Aoy
b= (xib,xaby,x3bs,...,x,b,)", A= |1 ax axn - | (44)
Ldnl  dn2  dn3 Tt Aan |

Indeed this divergence form is not a restriction as the differentiation is respect to x
and not respect to the control o, which may be discontinuous in some applications.
We will assume that for i # r, a;, = a,;, r,i =1,...,n. We also define the fol-
lowing coefficients, which will help us to build our scheme smoothly

n n

a;i(t,x,0) = a@;(t,x, o) xi2 and a;, = a,; = d;p(t,x, 00) Hxi =d,i(t,x,a) l_Ixi7 r#i,
i=1 i=1

i,r =1,...,n. As usual the n dimensional domain is truncated to I, = [0, Ximax),
i=1,...,n be divided into N; sub-intervals

IX|j = (xlj7x1j+l)7 IXQk = (-x2k7x2k+1)7 IX}, = (-x3lvx3l+1)7 .. -aIx,,,,, - (xnmaxilrn+l)
j=0..N—-1,k=0..N,—1, [=0..N3—1,....m=0...N, — 1, with
0=lxip<xjp<-+---- <Xip = Ximax; -
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This defines on I, = [[?_, I, a rectangular mesh. By setting

XX Xyt X
X1j+1/2 = 2 X1j-1/2 = 3
_ Xop T Xop4 _ Xop T Xop—g
X2k4+1/2 = 5 X2k—1/2 *= 5
X31 + X3141 X3; + X371
Xiri2 = X3i-1/2 = (45)
Xy T Xnmpd Xy T X1
Xnm+1/2 = - 5 Xnm—1/2 *= - 5

for each j=1..Ny—-1, k=1..N,—1, [=1..N3—1,...m=1...N,— 1.
These mid-points form a second partition of I, = Hl": 1 L, if we define x;_y /2 = X;o,
XiNy+1/2 = Ximax» = 1,2,...,n. For each j=0,1,...,N;, k=0,1,...,N,,
1=0,1,...,N3,....m=0,1,... N, we  put hy, = X1j4172 — X112,
My, = Xokr1)2 — Xak-12, My, = X314172 — X312, - - 5 M,y = Xumr1/2 — Xnm—1/2 @nd
h = max{hy,, hy,, hey,s - - o By, }. Integrating both size of (42) over Ry .m =

[xlj71/27x1j+1/2] X [x2k71/27x2k+1/2] X [x31_1/2,x3,+1/2} X X [xnm71/2axnm+l/2]
we have

0
— / v dxy dx, dxs. . .dx,
Rjkd,..oan ot

(46)
+ / sup[V - (k(v)) + ¢ V] dx; dx, dx3. . .dx, = 0,
Rjk,...m *EA
for j=1,2,..N, -1, k=1,2,..N,— 1,

1=1,2,..N3—-1,...m=1,2,...N,— L.
Applying the mid-points quadrature rule to the first and the last point terms, we
obtain the above

AVip,..m(7) ]
*T jokol,....m
+ sup / V- (k(v)) dxy dxa. . .dxy + ¢jpe,m(T5 %) Vit (T) Gigeom | =0
€A | I Ri,.m

(47)

where  Ligs..m = (Xij412 — X1j-1/2) X (X2kg12 — X2uc1/2) X (¥31012 — X31-1/2) ¥
- X (Xami1/2 = Xnm—1/2) is the volume of R;x;.. . Note that vjy; . (t) denotes
the nodal approximation to v(, X1, X2x, X3, - - ., Xup) at each point of the grid.
We now consider the approximation of the middle term in (47). Let n denote the
unit vector outward-normal to 0K, .. By General Stokes Theorem, integrating
by parts and using the definition of flux k, we have
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/ V- (k(v))dx, dx; dxs. . .dx,
R

el

:/R k(v) -nds

/(X]/+1/27X2A+]/2 X311 /250005 xnm+l/2) n

0
ay; i +x1b1v |dxy dxs. . .dx,

X1,+1/7 X2k—1/2:X31-1/25-- xnm—l/z) i=1
/ X1j—1/25X2k+1/2: %3141 /25> Xrlm+l/2)
(X1, 1/2:%2k=1/2:X31—-1/25--+ Xnm—l/Z)
/ x1/+l/27X2k+1/2-,x31+l/27“--,Xnm+l/2)
(xu 1/25%X2k+1/2:%31-1/25+++Xnm— 1/7)

X1j41/2582k—1/2X3141/2 50+ Xrlm+l/2) n
/ (Z ar — o —|— X by v) dx dxs. . .dx,

—|— x1 by v |dxydxs. . .dx,

+

1, 1/2:%2k=1/2:X31—-1/25-++ xnm—l/Z) i=

_|_

X1j41/2582k41/2X3 141 /2505 Xrlm+l/2)
/ —|— Xp by v |dxy dxy dxs. . .dx,—;

X1j—1/2:X2k—1/2X31—1/25-+ Xnm+1/z)

n

X1/+l/2ax2k+1/2-x31+1/2a“--Xn/n—l/Z)
/ g ama + x, b, v | dxy dx dxs. . .dx,_;
x

n (xlj+l/27x2k+l/2:x3[+1/27'“:xiq+1/27~“:xnm+l/2
— : E a,, —|—x,bv de,

i=1 X1j—1/2X2k=1/2X31=1/25+ - Xig+1/2 5+ Xnm— 1/2) i#r
X1j+1/2~,X2k+1/2,X31+1/2~,~~~1Xi471/z~,-~~yxnm+1/z
— E / E a,, —|—x,bv Ildx,
(X1, 1/2:X2k=1/2:X31=1/25++Xig—1/25++Xnm— 1/2) i#r

We will approximate the first term using the the mid-points quadrature rule as

n (xlj+1/2-,X2k+l/27x3[+l/21xiq+l/Zs---vxnlr1+1/2
E / E a,r —|—x,bv de,

i=1 xlj—l/ZaXZk—l/27X3l—]/2¢xiq+l/27~--,xnm—l/2) i#r 48
. (48)
ov
~ E Ay a—l—xibiv Hl’lxn
ir=1 r (X1/7X2k 3050 Xigr1/2:Xigsees Xnm i#r

where the value of the subscript v € {j, k,1,...,q,s,...,m} depends respectively of
the value taking by r € {1,2,3,...,i,...,n}. To achieve this, it is clear that we now
need to derive approximations of the k(v)-n defined above at the mid-point
(1 X245 X305 -+ o3 Xigi1 /25 Xit1gs - - -» Xam)» Of the interval I for ¢ =0,1,...N; — 1,

i=1,2,...,n. This discussion is divided into two cases for ¢ > 1, and ¢ = 0 on the
interval I,,, = [0,x;1], i =1,2,...,n. This is really the generalization of the fitted
finite scheme.
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Case I For g > 1.

We follow the same procedure as in three dimension and have the following

generalization
n a n
v
E (air o + x; b; V) H hy,,
ir=1 Xr (xljvx2ksx3lu~~~~,xiq+l/2sxi+ls~,~~~;xnm) i#r
~ E xzq+1/2bl] kl,...qg+1/2;s... m(T c(j,k‘l,...A,q,s,“.ﬁm)
i=1
Biki.q.s..m(T) Biki..qs.m(®)
(xiqﬁrl ” Vikl.g+1,s,..om — Xig ! Vikiyoqys,em |
h
'ﬁj.k.l,..,.q,s....m(T) _ ':Bj.kl g (T) H Fry
ig+1 Xig i#r

n

+ E Xig+1/2 dir‘/‘.k,l,“.,q,sw.,m(TvO‘j,k,l,”
i,r=1
i#r

n
Vikl..qsyv+1,om — Vikl,...qsv,...m h
h Xpy®

Xry

where the value of the subscript v € {j,k,[,...,q,s,...,m} depends respectively of

the value taking by re{1,2,3, . ieon} Biga g

Bijt,.gt1/2,50m (T 4 kol

aij,k,l‘...,qu1/2.,x.,\/....,m (Ta aj,kAL...,q,sm,...Vm)

1 ov
Z (ai, a—xr + Xi b,‘ V>

# 0. Similarly

ﬁ dx,

i,r=1 (X1j¢X2k~,X317 < Xig—1/2Xit1g500 Xnm) i#r
n
~ § Xig— l/2bljkl ..... q—1/2,s... m(‘c O‘]kl‘...,q,s,‘..,m) X Hhx,.‘,
i i#r
ﬁk/ - Ls,..,m(f) ﬁ/kt g—1s... ()
(xzq’ Vikidyosysyenan — Xig1 Vikidyoog—1,8,mem
X
ﬁj,k.l,....q—1,.y....zn(T) ﬁj,k,l.v..,qfl.sv..,m(T)
Xig — Xig-1
+ § Xig—1/2 tr/kl .......... (T ij,k.,l,...,q.,x,...,m) erv
i,r=1 i#r
i#r
Vikl 1 Vikl .
ik l,....qsv+1,...om — Vjkl..qsv,..m
% JsKsbseeq - JiKsbseeq ) Hhx”'
ry i#r

bijki,...q—1/2.5,.m(Ts Gk gusiveeeoim)
where B, o1y (1) = 2 [t # 0.
aij,k‘l‘..qqf1/2‘s,v,..4,m(77 0k l,....q,s,V,...;m )

Case II Approximation of the flux at ¢ :O on the

.,m(T) =

(50)

interval

I, = [0,x;], i=1,...,n. Note that the analysis in case I does not apply to the
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approximation of the flux on I, because it is the degenerated zone. Follow the same
lines as for the three dimensional case, we get

- 0
Z (a,»,. a—:r + x; b,‘ V)

i,r=1

n
| I dx,
(Xl/u,xzk7x31a»~«,xi1/2~,Xis~,<---,xmn) i#r

n
1
’“E Xi125 ikt /2,50 (T Bk )
p

n
+bijki,.1/2,5..m(T, O‘j,k,l,...,l,s,...,m)) Vikidyoo s, m H hx,.‘.)

1 1
- Z Xi1/2 5 ( (aij,k,l,..,,l/Z,s...,m(T7 Otj,k,l,wl,s,.“,m) (51)

i=1

n
—bijt1/2,5..m (T aj,k,z,...,l,s,...,m)> Voo 0.8, H hx>

i#r

n
+§ Xi1/2 dirjA,k,l,..‘,l,s,..qm(raaj,k,l,...,l,.v,...,tn) erv

i,r=1 i#r
i#r
% Vikd,...1,sy+1,...m — Vj,k,l,...,l.,x.,v,..4,m> ﬁhx,‘,-
Xry i#r
Equation (47) becomes by replacing the flux by its value for j=1,...,N; — 1,
k=1,...,Ny—1, I=1,..,N3—1,...m=1,..,N,— 1, and
N=T1]_,(N; = 1).
dv; SV, 1
_ DVikdegsrem(D(D)
dt lj,k,l,...,q,s,...,m

n
X sup { E Xig1/2Pij kg1 /2,5 m (T Okl s

%t m AN L =T
Biki..qs..m(T) Biki..qs..m(®)

( iqﬁﬁl ! Vikd,...q+1,s,....m _xiqj ! Vikl,....q.s,...m ﬁh
'/)’/.k.l,. () '/jj.k,l,....q‘s....m(f) . Fry
ig+1 — Xiq itr

n
+ g Xig+1/2 (dirj,k,z,...vq,s,...vm(T7 Oj k1,
i,r=1

ir

> Vidkd,...qgsv+1,...m — Vikl..qsv,..m
hy,,
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n n
- E Xig—1/2bij ki, .q=1 /250 (T G kel igism) X (H hx,\,>

i=1 i#r
Bikiq—1.5..m(T) Bikt.q—1.5..m(T)
(xiqj S Vikd,....q,s,...m — -xlq/l A Vikl,...q—1,s,....m
X
ﬂju g—Ls... () ﬁjkl - lm..,m(l—)
Xig — qu 1
52
+ E :x,q 1/2( ikl (T 0,5, ) erv (52)
i,r=1 i#r
Titr
Vikl 1 Vjk,l L
~ s 24,8,V Z 7.k, q,8,V m)Hhxn
Xry i#r

+ Cik,...qsVyees Vikeol,....q.5,v,....;m lj,k,l‘..4,q,s‘v,.4.,m:| =0.

This can be rewritten as the ordinary differential equation (ODE) coupled with
optimization

d;—(;) + C{ier}‘fN [E(t,0) v(1) + F(7,2)] =0, (53)

with  v(0) given,

where E(t,0) is an N x N matrix, AV =Ax---x A G(t,0) = —F(t,%)
N

depends of the boundary condition and the term c. V= (Vjy..qsy..m)»  and
G(‘C,O!) = —F(‘E,O(). By setting n =N, — 1, n, =N, — 1, ny = N3 — 1;,...,?1,, =
N, —1;, I:=I(,k]1, ....q5v,...m)= Jrk—=Dn+({I—-Dnmny+---+
(m— 1)Hf'71 n, and J:=J@ K048V, ...om) =7+ K —1)n + (I'—
Dgny + -+ (' — )]/ ni, we  have  E(t,a)(1,J) = (a,kk,’ e ,,,)
Pl Ni—1. Kk=1... . No—1 and Fd=1,.. Ns—1....m.m=
1,...,N, — 1 and

n

kl,nq,S,V,em 1

ejkl B e E xqur1/Zbij,k,l,...,q+1/2,s‘..,m(TaO‘j,k,l“..,q,xw.,m)

Likgqs,m | =
s i=1

ﬁ,kz oS m(f)

Xi
X 4 | | hx,
Bisdoosgs.. m(T) ju S n( Y

xlq+1 z#r
1 n
+ § < irj, k,l,.“‘,q,s,.‘.?m(ra o‘j,k‘l....,q,s,...,m) ]:[xrv h ) H hx;q
ir=1 i#r Xrv /=1
i#r
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n
+ E Xig—1/2bijki,....q—1/2,5..m (T, %k

i=1
pj.k‘l,..,‘q—],s..,‘m(r)
X Yig —¢j
Biatgtem®  Biargtsm(®) R R
Xig )c,(r1

Ni—1 Np—1 N3—1

kol,....q,s,r,...om
§: z: E: E: e]’k’l’qu’v’ ..... '

7 #i Kk £l ! #m
’—j 1 k'=k— 11/—1 1 m'=m—1

1 n
= E Xig—1/2bijk,.q=1/2,5..m(T> % kfooo s
ikl .m

i=1
e e
Bistog—1,5...n(T) H Try ’ (54)
Xig — A i#r
Ni—1 Nr—1 N;—1 N,—1
kol....q,8,V,....m
z : z : z : § : el’k’l’ qq v/\"....,m’
4k ml #m
’—]-Hk/ k+ll’—]+l m'=m+1
1 n
:l |: E xiq+I/Zbij,k.l,...,qu1/2,3“..,m(T7O(j,k,l,.“,q,.,...,m)
okl moL0]

—x: B/kl..“,q 5 m(f)
lq+]
X hx
Biktqs.n(® ﬁ/ki s "

ig+1

n 1 n
= dirjiigsiim (77“jﬁk,l,..wq,s.,v,....,m)(xiqxrv)h— I1%.

ir=1 Xig —1

itr

for j=2,..,N; — 1, k=2,...Np,—1,...m=2,....N, — 1. If one of the
indices j, k,[,...,m is equal to 1,

1
= tup; Aijig, /2,5 (T Ot s v,m)

el 1,

A Bij g1 /205 (T Gkl s, ) Hhx,‘>

i#r
1
+ TR Xit41/2Dijk, 1 /2,50 m (T Bkt o)
jikol,...1,8,....m
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Xil i#r

n
1
+ E <dirj,k,l,...,l.,v.,v...,m(faaj,kﬁl““,l.s,v,“qm)(xil-xr‘ h xl] Hhx,‘
r=1
itr

1
— = Cjkl,....1,5v,....m>
n

Ni—1 No—1 Ni—1 Na—1

kol s v,...m
DD D DR D T

=1 K=k=11=1=1  m'=m—1

= - {E Xi1)2 5 (<aij,k.l,...,1/2,s,v,..4,m(TyOCj,k,l,...,l.,s,\n,...,m)

Ll

n
- bij,k,l,...,I/Z,X,v‘.“.m(Ta Ocj,k,l.m,lg.\p..,m)) H hx,v):l )
i#r
Ni—1 N,—1 N;3—1

N,—1
e] LS, », .m
e i’k l’ g sV m!

J=H K =k+1U=I+1  m'=m+1

1
= ! § xll+l/2blj k., 141/25,v,...om (‘L’, “j.k,l,”.,l,s,v,...,m)
ikl s sem L 5T
ﬁjk.l,....l.x,v..,.,m(T) n
X iy H h
Bisdoo sy (T) Bikttsen(®) ) Frv
Xig — Xiy i£r
~ 1
- § ( irjkl,....1sv,.. (T ajkl 1.s,v,.. m)(xi]xrv h ) Xi Hhx,‘:|-
i,r=1 Xi1 i£r
ir

(55)
The monotonicity of system matrix E(z, o) is given in the following theorem.

Theorem 2 Assume that the coefficients of A given by (44) are positive and ¢ <0.?
If h is relatively small then the matrix E(t, o) in the system (53) is an M-matrix for

N
any %p.....m e A"

Proof The proof follows the same lines as in Theorem 1. O

5 Temporal Discretization and Optimization Problem

This section is devoted to the numerical time discretization method for the spatially
discretized optimization problem after the fitted finite volume method. Let us re-

consider the differential equation coupled with optimization problem given in (33)
by

2 Indeed ¢ can be positive but should be less than a certain threshold ¢y > 0.
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dv(r)

o = Sup [A(t,2)v(t) + G(t,2)] v(0) given, (56)
ac AV

For temporal discretization, we use a constant time step At > 0, of course variable
time steps can be used. The temporal grid points given by At =1, — 1, for
n=1,2,...m— 1. We denote v(1,) = v" , A"(a) = A(1,, %) and G"(a) = G(t,, ).
For 0 € [4,1], following (Peyrl et al. 2005), the 6-Method approximation in
time is given by
v — vt =4t sup (0[A" (o) v 4 G (01)]
ac AV (57)
+(1 = 0)[A"(0)v" + G"(2))),
this also can be written as

inf ([ + AtQE™ V" + F* (o) + [I + AtOE"V" + F"(2)) = 0. (58)

ac AV

We can see that to find the unknown v"!, we need also to solve an optimization.
Let

ac AV

ot e (arg sup{0 At[A" (o) V' + G (a)] + (1 — 0) At[A" (o) V' + G"(oc)]})
(59)
Then, the unknown v"*! is solution of the following equation

[I o BAtAn+1(an+l)] Vn+1 — [1+ (1 _ 0) Al‘An(O(nJrl)]Vn
+ [HAthJrl(anJrl) + (1 _ Q)Ath(fX’Hl)],

1
Note that, for 0 = > we have the Crank Nickolson scheme and for 6 = 1 we have

the Implicit scheme. Unfortunately (57)—(59) are nonlinear and coupled and we need
to iterate at every time step. The following iterative scheme close to the one in Peyrl
et al. (2005) is used.

1. Let (vi*+1)’= ",

2. Let v = (v,
Gk+1

3. For k =0,1,2... until convergence (|[vk"! — v¥|| <, given tolerance) solve
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ok € (arg sup{0 At[A" (o) V* 4 G"! (@)],+(1 = 0) 4t [A" (o) V' + Gn(“)b})

ac AV
o = (Ofk)i
[T — 0 At A (oF)] V! = [T+ (1 — 0) At A" (o) ]v"
+ [0 4t G (o) + (1 — 0) 41 G"(oX)),

ki

=V

+1 . gk +1 .
n oo =

4. Let k; being the last iteration in step 3, set v

The monotonicity of system matrix of (58), more precisely [/ + 4t OE""!] is given in
the following theorem.

Theorem 3 Under the same assumptions as in Theorem 1, for any given
n=1,2,...,m— 1, the system matrix [I + At OE"*'] in (58) is an M-matrix for
each o € AN,

Proof The proof is obvious. Indeed as in Theorem 1, [I + At OE™™] is (strictly)
diagonally dominant since A¢ > 0. Then, it is an M-matrix. O

The merit of the proposed method is that it is unconditionally stable in time
because of the implicit nature of the time discretization. More precisely, following
(Angermann and Wang 2007, Theorem 6 and Lemma 3), we can easily prove that
the scheme (57) is stable and consistent, so the convergence of the scheme is
ensured (see Barles and Souganidis 1991)

6 Application

To validate our method presented in the previous section, we present here some
numerical experiments. All computations were performed in Matlab 2013.

Consider the following three dimensional Merton’s stochastic control problem
such that o = o (¢, x) is a feedback control in [0, 1] given by

1 1 1
WExy,2) = sup [E{—x”<r>x—yp<r>x—zp(r>}7 0<p<l  (61)
aefo,1] P p P

S.t.

dx, =(ri + o (i — r1)) xidt + o xie doo,
dy; =, y: dt + oy, dowy, (62)
dz; =z e dt + oz, dw,.

1, 1y, to, Wy, O are positive constants, x;, y;, z; € R. We assume that y; > ry. For
the problem (61)—(62), the corresponding HIB equation is given by
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dv(t
M—&— sup [L*v(t,x,y,2)] =0 on[0,T) x RxR xR
dt %€[0,1] (63)
X P
V(T,x,y,z) =—X K Xy_7 X, Y, 2 € RJr
p P P
where
o 15, 2 dv(1,x,y,2) 1, > dv(t,x,y,2) 1, > dv(t,x,y,2)
L v(t,x,y,z)—za o x e +26y 02 +20' Z =
d*v(t,x,y,7) d*v(t,x,y,7) d*v(t,x,y,7)
2 sy )y 2 y )y 2 y )y
toaxy dx0y oo dxdz toz dzdy
av(t,x,y,z av(t,x,y,z av(t,x,y,z
+ (1 + (i —Vl)“)x%+ﬂzy%+ﬂ3l%~
dv(t,x,y,z
PELEIZ) | up (V- (5,32, 20005, 3,2) + el 53,2, v(05,9,2)] =0,
oe(0,1]
(64)
and the different variable in (63) is given by
k(v(t,x,y,2)) = A(t,x,y,2,0)Vv(t,x,y,2) + b(t, x,y,2,0) v(t,x,y,2)
is the flux, b= (xby,yby,zb3)",
air app ap
A= |ay an ax
a1 axn as;
with
ay = l0'2 O(Z)C2 ayy = lO'zy2 azy = 10'212
2 ’ 2 ’ 2 ’
1 1
app = ax 25020”6)’,6113 = asy ZEGZ%XZ, (65)
1,
axy = daz = 50 yz.
bi(t,x,y,z,0) =11 + (p; — ) — 6% o0 — 0 o2
1 3
b2(taxayvza OC) = Hy — EJZOC - 562
(66)
1, 3,
b3(taxayvza OC) = M3 — EO_ & _EO—

C(t7-x7y7za(x) = _[71 + (lul —}"1)0(—20'205—0'2062+Hz +/“t3 _30-2]'

@ Springer



C. D. Nyoumbi, A. Tambue

The domain where we compare the solution is Q = [0, Xuax] X [0, Yiax] X [0, Zuax]-
For each simulation, the exact or reference solution is the analytical solution using
Ansatz method as we are going to develop in the next section.

6.1 Analytical Solution Using Ansatz Method

Here we propose the analytical solution using the Ansatz decomposition. Let set the
Ansatz decomposition of v

v(t,x,y, Z) = lﬁ(f) X u(x) X u(y) X M<Z)’ (67)

xP
where u(x) =—, 0<p<l1,Vx € R, is the power utility function. The different
p
derivative of v(¢, x, y, z) gives us
du(x)

dv(t,x,y,2) dv(t,x,y,2)

22—y 5 e T2 = w0 2 ) u(a)
POX2Z) g ) Py ugyy; PE22D )t ) )
2 2 2 2
Py T uutey D =y T uute
2 2 2
DUIE) i T ey uty, DUy D D
d®v(t,x,y,z) du(x) du(z) Cdv(t,x,y,7) du(y) du(z)
dxdz =v() dx dz O); dydz =v() dy dz u(x),
(68)
plugging into (63), we get
L0 4wy uty) uto)
RPACCIC L B PR RRE U CE L)
Py SO ) A1) )
oty EUDONE 1 2 ) E)6)
2 ux)u u 2
4300y PO o2y xy L) i)
() 2 o () () () + o Y1)y 7 () ()| =0
WT) =1, (sincev(T, %,v,2) = $(T)u(x)u(r) u(z) = ux) uly) u(2))

(69)
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We then obtained

ay(t
%—&—pptp(t):Owhere
1
p=sup |r+(u—r)otpm+uy +5000 (p—1) (70)
o€ [0,1] 2

+0*(p—1)+20c*ap+a’p|l, Y(T)=1.

So by setting T = T — ¢, the analytical value function for Ansatz method is then
equal to

P P P
) — PX(nxdi=T)xp o (x;) % ) % (z) . with 0<p<1. (71)
p p

V(Tna-xiayﬁzk
We use the following L*([0, T] x ) norm of the absolute error

V" — VHLZ([O,T]XQ)

m—1Ni—1 Na—1 N3—1 X 1/2 (72)
= (Tn+l - Tn) X li.j,k X (V?J}k — v(‘c",xi,yj,zk)) ,
=0 i=1 j=1 k=1

where V" is the numerical approximation of v computed from our numerical
scheme. For our computation, we us we have Q = [0,1/2] x [0,1/4] x [0,1/2] for
computational domain with Ny = 10, N, = 10, N3 = 10, r; = 0.0449, u; = 0.0657,
W =0.067, u; =0.066, 0 =0.2537, p=0.13 and T = 1. Figure | shows the
structure of the matrix A after space discretisation with the fitted volume method. As
you can observe the structure of the matrix is similar to the one from finite dif-
ference method. Figure 2 shows the optimal investment policy as function of x
while using the fitted scheme. The optimal investment policy for finite difference
method is quite similar. Indeed the optimal parameter « is independent of y and z.
The controller is the solution of (61). It is computed with the numerical procedure as
outlined in Sect. 5. We have also found that in overall the value the maximum
number of iterations in our optimisation algorithm is 3 in both fitted scheme and
finite difference scheme.

We compare the fitted finite volume and the finite difference method in Table 1.

Figure 3 shows the structure of the matrix A and Fig. 4 shows the optimal
investment policy as function of x. The controller is the solution of (61). It is
computed with the numerical procedure as outlined in Sect. 5.

In Table 2, we have used Q =[0,1/2] x [0,1/4] x [0,1/2] for computational
domain with the following parameters Ny =8, N, =9, Ny =10, r; = 0.0449,
r, =0.0448/3, r3 = 0.0447, u, = 0.0657, u, = 0.0656, yy = 0.0655, ¢ = 0.2537,
p=0.17and T =1.5.

Tables 1 and 2 display the numerical errors of finite volume method and finite
difference method. By fitting the data from Tables 1 and 2, we found that the
convergence order in time 1 for the fitted finite volume method and the finite
difference method. From the two tables, we can observe a slight accuracy of the
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Fig. 1 Structure of the matrix A 0rg
at time 7 =1
100
200}
300}
400t
500
600}
700}
800}
900}
1000 A A L . \
0 200 400 600 800 1000
nz = 6400
Optimal investment policy as function of x(t)
1 T T T T T T T T T
09+ .
081 .
07+ b
=
2
'S 0B} .
©
£ o5} .
o
(@]
0.4F .
03F .
0.2f 4
01 1 1 1 1

0 005 01 015 02 025 03 035 04 045 05
Space

Fig. 2 Optimal investment policy at time 7 = 1
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Fig. 3 Structure of the matrix A 0
attime T = 1.5
100
200
300
400

500 +

600 |

700 L 1 1 1 1 1 1
0 100 200 300 400 500 600 700
nz = 4556

Table 1 Comparison of the implicit fitted finite volume method and implicit finite difference method

Time subdivision 200 150 100 50
Error of fitted finite volume method 4.65E—-01 6.31E—01 8.63E—01 1.30E—-00
Error of finite difference method 5.15E-01 6.98E—01 9.21E-01 1.36E—00

For the parameters, we have used Ny = 10, N, = 10, N3 = 10, r; = 0.0449, u; = 0.0657, p, = 0.067,
Uz = 0.066, 0 =0.2537, p=0.13 and T = 1

implicit fitted finite volume comparing to the implicit finite difference method,
thanks to the fitted technique.

7 Conclusion

We have introduced a novel scheme based on finite volume method with fitted
technique to solve high dimensional stochastic optimal control problems (n > 3).
The optimization problem is solved at every time step using iterative method. We
have shown that the system matrix of the resulting non linear system is an M-matrix
and therefore the maximum principle is preserved for the discrete system obtained
after the fitted finite volume spatial discretization. Numerical experiments are used
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Optimal investment policy as function of x(t)

1 T T T T T T T

08} .

0.7 4

06} .

05} .

Optimal policy

04} .

03} 1

02} .

01 1 1 1 1 1 1 1
0.05 0.1 0.15 0.2 025 03 0.35 0.4 0.45

Space

Fig. 4 Optimal investment policy at time 7' = 1.5

Table 2 Comparison of the implicit fitted finite volume method and implicit finite difference method

Time subdivision 200 150 100 50

Error of the fitted finite volume method 2.24E—01 2.30E—01 3.99E-01 5.97E-01
Error of the finite difference method 2.40E—01 3.18E-01 4.12E-01 5.99E-01

For the parameters, we have used Ny = 8, N, =9, N; = 10, r; = 0.0449, r, = 0.0448/3, r; = 0.0447,
uy = 0.0657, pu, =0.0656, u3 = 0.0655, 6 =0.2537, p=0.17and T = 1.5

to demonstrate the accuracy of the novel scheme comparing to the standard finite
difference method.
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