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Abstract
For holomorphic pairs of symbols (u, ψ), we study various structures of the weighted
composition operator W(u,ψ) f = u · f (ψ) defined on the Fock spaces Fp. We have
identified operators W(u,ψ) that have power-bounded and uniformly mean ergodic
properties on the spaces. These properties are described in terms of easy to apply con-
ditions relying on the values |u(0)| and |u( b

1−a )|, where a and b are coefficients from
linear expansion of the symbol ψ . The spectrum of the operators is also determined
and applied further to prove results about uniform mean ergodicity.

Keywords Fock spaces · Power bounded · Mean ergodic · Compact · Composition ·
Weighted composition operators · Spectrum

Mathematics Subject Classification Primary: 47B32 · 30H20; Secondary: 46E22 ·
46E20 · 47B33

1 Introduction

We denote byH(C) the space of analytic functions on the complex plane C. For pairs
of functions (u, ψ) inH(C), the weighted composition operator W(u,ψ) is defined by
W(u,ψ) f = u · f (ψ), f ∈ H(C). The operator generalizes both the composition Cψ
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456 W. Seyoum, T. Mengestie

andmultiplicationMu operators since it can be factored asW(u,ψ) = MuCψ .Weighted
composition operators have been a subject of intense studies in the last several years
partly because they found applications in the description of isometries on spaces of
analytic functions; see the monographs [10,11] for detailed accounts. For studies on
the various properties of the operators, for example, on the classical Fock spaces Fp,
one may consult the works in [15,24,25,27] and the references therein. Recall that Fp

are spaces consisting of all entire functions f for which

‖ f ‖p =

⎧
⎪⎨

⎪⎩

(
p
2π

∫

C
| f (z)|pe− p|z|2

2 d A(z)
) 1

p
< ∞, 1 ≤ p < ∞

supz∈C | f (z)|e− |z|2
2 < ∞, p = ∞,

where d A is the Lebesgue area measure on C. For each function f ∈ H(C), the
subharmonicity of | f |p implies that the local point estimate

| f (z)|pe− p|z|2
2 ≤

∫

D(z,1)
| f (w)|pe− p|w|2

2 d A(w) (1.1)

holds where D(z, 1) is a disc of radius 1 and center z. This implies further

| f (z)| ≤
(
2π

p

) 1
p

e
|z|2
2 ‖ f ‖p. (1.2)

By definition of the norm, the estimate in (1.2) is valid for p = ∞ as well.
The spaceF2 is a reproducing kernel Hilbert space with kernel function Kw(z) := ewz

and normalized kernel kw := ‖Kw‖−1
2 Kw. A straightforward calculation shows that

kw belongs to all the Fock spaces Fp with a unit norm ‖kw‖p = 1 for all w ∈ C.
The rest of the manuscript is organized as follows. In Sect. 2, we study the power-

bounded property of the operators. As stated in Theorems 2.1 and 2.3, these properties
are described in terms of simple to apply conditions which are merely based on the
values of the numbers |u(0)| or |u( b

1−a )|, where the constants a and b are from the
linear expansion of the symbol ψ(z) = az+b. The proofs of the results are presented
in Sects. 2.1 and 2.2. In Sect. 3, we identify the spectra of the operators on Fp for all
1 ≤ p ≤ ∞; see Theorem 3.1 whose proof is given in Sect. 3.1. Section 4 contains
several results on the uniform mean ergodic properties of the operators.

We conclude this section with a word on notation. The notion U (z) � V (z) (or
equivalently V (z) � U (z)) means that there is a constant C such that U (z) ≤ CV (z)
holds for all z in the set of a question. We write U (z) � V (z) if both U (z) � V (z)
and V (z) � U (z).

2 Power-BoundedW(u,Ã)

We start this section by recalling certain definitions related to dynamics of an operator.
Let T be a bounded operator on a Banach space X . Then, we set the operator T n as
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the nth iterate of T ; T n = T ◦ T ◦ ... ◦ T n-times and T 0 = I , where I is the identity
map on X . The operator T is said to be power bounded on X if supn∈N ‖T n‖ < ∞.
Obviously, any operator with norm at most 1 is power bounded. The notion of power
boundedness or estimating ‖T n‖ plays an important role in the study of numerical
stability of initial value problems. If

Tn := 1

n

n∑

m=1

Tm, n ∈ N

denotes its the nth Cesàro means, then T is called mean ergodic if there exists a
bounded operator P on X such that for each f in X

lim
n→∞ ‖Tn f − P f ‖ = 0,

and uniformly mean ergodic if the pointwise convergence above is uniform;

lim
n→∞ ‖Tn − P‖ = 0.

A straightforward simplification gives that for each n ∈ N, the relation

1

n
T n = Tn − n − 1

n
Tn−1

holdswherewe set T0 = I as the identity operator onX . This immediately implies that
if T ismean ergodic, then 1

n T
nx → 0 as n → ∞ for all x ∈ X .Similarly, 1n ‖T n‖ → 0

whenever T is uniformly mean ergodic. A number of authors have studied ergodicity
of operators on various functional spaces; see, for example, [1,3,5,6]. Themonographs
[14,28] provide basic information on ergodic theory. Inspired by all these works, the
authors and J. Bonet [26] studied the mean ergodicity of composition operators acting
on generalized Fock spaces and concluded that all bounded composition operators
on Fock spaces Fp are power bounded whenever 1 ≤ p ≤ ∞. In this section, we
show that this conclusion is no longer true in general for the weighted composition
operators W(u,ψ). It is found that W(u,ψ) is power bounded only when the weight
function u satisfies an interesting point value condition as precisely stated in the next
two main theorems and proposition.

The study of the dynamics of an operator is related to the study of its iterates. For
f ∈ H(C), a simple argument shows that the image of f under the iterates of W(u,ψ)

has the form

Wn
(u,ψ) f = f (ψn)un, un(z) :=

n−1∏

j=0

u(ψ j (z)) (2.1)

for each n ∈ N and ψ0 = I the identity map on C. The equations in (2.1) will be
repeatedly used in the sequel.
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458 W. Seyoum, T. Mengestie

We now state the main results on power boundedness. Depending on whether |a| =
1 or |a| < 1, we give two main results in Theorems 2.1 and 2.3.

Theorem 2.1 Let 1 ≤ p ≤ ∞, u, ψ ∈ H(C) and W(u,ψ) be bounded on Fp, and
hence, ψ(z) = az + b, |a| ≤ 1. If |a| = 1, then the following statements are
equivalent.

(i) W(u,ψ) is power bounded on Fp;
(ii) (‖un‖p)n is a bounded sequence;

(iii) |u(0)| ≤ e− |b|2
2 . In this case for each n ∈ N

‖Wn
(u,ψ)‖ =

(
|u(0)|e |b|2

2

)n
. (2.2)

It is interesting that we have an easy to apply equivalent conditions for the power
boundedness of the weighted composition operators. Part (iii) of the condition is also
independent of underlying space or the exponents p. In addition, by setting n = 1, the
theorem provides a simple expression for the norm of the operators, namely that

‖W(u,ψ)‖ = |u(0)|e |b|2
2 .

We recall that a bounded linear operator is a contraction when its norm is bounded by
1. In view of this, we may add one more equivalent condition to the above list in the
theorem, namely thatW(u,ψ) is power bounded onFp if and only if it is a contraction.
It should be also noted that for the case a 	= 1 and |a| = 1, the above conditions are
also equivalent to

∣
∣u

( b
1−a

)∣
∣ ≤ 1 since an application of Lemma 2.4 implies

∣
∣
∣u

( b

1 − a

)∣
∣
∣ = |u(0)|

∣
∣
∣K−ab

( b

1 − a

)∣
∣
∣ = |u(0)|

∣
∣
∣e− a|b|2

1−a

∣
∣
∣

= |u(0)|e−|b|2
( a
1−a ) = |u(0)|e |b|2

2 ,

where 
 denotes the real part of the given complex number. This inspires us to ask
whether a similar conditionworks for the remaining case, namely that when |a| < 1. In
this case, as will be explained later, the powers of weighted composition operators are
again weighted composition operators. This together with the relations in (2.6) and
(2.7) ensures that the following necessary and sufficient conditions hold whenever
|a| < 1.

Proposition 2.2 Let 1 ≤ p ≤ ∞, u, ψ ∈ H(C) and W(u,ψ) be bounded on Fp. Let
ψ(z) = az + b and |a| < 1.

(i) If W(u,ψ) is power bounded on Fp, then

∣
∣
∣u

( b

1 − a

)∣
∣
∣ ≤ 1. (2.3)
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(ii) W(u,ψ) is power bounded on Fp, p < ∞ if

∣
∣
∣u

( b

1 − a

)∣
∣
∣ ≤ |a| 2p . (2.4)

When p → ∞, the right-hand side in (2.4) tends to 1. Thus, the condition in (2.3)
is both necessary and sufficient for W(u,ψ) to be power bounded on the space F∞. In
particular, when W(u,ψ) is compact, we record our next main result which holds true
on all the spaces Fp.

Theorem 2.3 Let 1 ≤ p ≤ ∞, u, ψ ∈ H(C) and W(u,ψ) be bounded on Fp, and
ψ(z) = az + b, with |a| < 1. Let u be non-vanishing and W(u,ψ) be compact. Then,
the following statements are equivalent.

(i) W(u,ψ) is power bounded on Fp;
(ii) (‖un‖p)n is a bounded sequence;
(iii) |u( b

1−a

)| ≤ 1.

As in Theorem 2.1, part (iii) of the condition is simple to apply and independent of
the exponents p. Observe that from the two theorems above, it is easy to see that a
bounded composition operator Cψ is always power bounded, while the multiplication
operator Mu is not in general; see Corollary 4.7.

To prove the results, we need tomake some preparations. The bounded and compact
weighted composition operators on Fock spaces were characterized first in terms of
Berezin-type integral transforms in [24,25,27]. Later, Le [15] considered the Hilbert
space F2 setting and obtained a simpler condition, namely that W(u,ψ) is bounded on
F2 if and only if

M(u, ψ) := sup
z∈C

|u(z)|e 1
2 (|ψ(z)|2−|z|2) < ∞. (2.5)

He further proved that (2.5) impliesψ(z) = az+bwith |a| ≤ 1. In [22], T. Mengestie
and M. Worku proved that the Berezin-type integral condition used to describe the
boundedness of generalized Volterra-type integral operators V(g,ψ) on the Fock spaces
Fp is equivalent to a simple condition as in (2.5). Because of the Littlewood–Paley-
type description of the Fock spaces, by simply replacing |g′(z)|/(1+ |z|) by |u(z)| in
the results there, it has been known that (2.5) in fact describes the bounded weighted
composition operators on all the spaces Fp, 1 ≤ p < ∞, with norm bounds

M(u, ψ) ≤ ‖W(u,ψ)‖ ≤ |a|− 2
p M(u, ψ). (2.6)

For p = ∞, the corresponding relation holds with equality,

‖W(u,ψ)‖ = M(u, ψ). (2.7)

As indicated in [15], an interesting consequence of (2.5) is that if |a| = 1, then
a simple argument with Liouville’s theorem gives that the weight function u has the
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460 W. Seyoum, T. Mengestie

form u(z) = u(0)K−ab(z). This representation of u will play an important role in the
rest of the paper. Thus, we may formulate it as a lemma for the purpose of easy further
referencing.

Lemma 2.4 Let 1 ≤ p ≤ ∞, u, ψ ∈ H(C) and W(u,ψ) be bounded on Fp, and
hence ψ(z) = az + b, |a| ≤ 1. If |a| = 1, then

u(z) = u(0)K−ab(z).

It should be noted that by condition (2.5) it is possible for W(u,ψ) = MuCψ to be
bounded even if both the factors Cψ and Mu are unbounded. The functions u(z) = z
and ψ(z) = z + 1 provide such an example.

Similarly, compactness of W(u,ψ) has been described by the fact that ψ(z) = az +
b, |a| ≤ 1 and |u(z)|e 1

2 (|ψ(z)|2−|z|2) → 0 as |z| → ∞. The latter condition implies
that |a| < 1 but not conversely. Very recently, Carroll and Gilmore [7] used the idea
of order of analytic function and proved the following analogues result.

Lemma 2.5 Let 1 ≤ p ≤ ∞, u, ψ ∈ H(C) andψ(z) = az+b, |a| < 1, and assume
that u is non-vanishing. Then, W(u,ψ) is compact on Fp if and only if u has the form

u(z) = ea0+a1z+a2z2 (2.8)

for some constants a0, a1, a2 such that |a2| <
1−|a|2

2 .

Next, we consider the following key necessary conditions for power bounded
W(u,ψ). The lemma gives a good restriction on the growth of the sequence (‖un‖p)n
and the value |u(z0)|, where z0 is a fixed point of ψ .

Lemma 2.6 Let 1 ≤ p ≤ ∞ and u, ψ ∈ H(C). If W(u,ψ) is power bounded on Fp,
then

(i) |u(z0)| ≤ 1 where z0 is a fixed point of ψ:
(ii) (‖un‖p)n is a bounded sequence.

Proof (i). Since the constant function 1 belongs to the spacesFp with ‖1‖p = 1, using
the pointwise estimate in (1.2)

‖Wn
(u,ψ)‖ ≥ ‖Wn

(u,ψ)1‖p � |Wn
(u,ψ) 1(z0)|e− |z0 |2

2 = |un(z0)|e− |z0 |2
2 = |u(z0)|ne− |z0 |2

2

from which the inequalities

∞ > sup
n∈N

‖Wn
(u,ψ)‖ ≥ e− |z0 |2

2 sup
n∈N

|u(z0)|n

hold only if |u(z0)| ≤ 1.
To prove (ii), for p = ∞ arguing as above we have

‖Wn
(u,ψ)‖ ≥ ‖Wn

(u,ψ)1‖∞ ≥ |Wn
(u,ψ) 1(z)|e− |z|2

2 = |un(z)|e− |z|2
2 .
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Taking the supremum with respect to first with z and then with n gives the required
assertion. On the other hand, if p < ∞, then

‖Wn
(u,ψ)‖p ≥ ‖Wn

(u,ψ)1‖p
p = p

2π

∫

C

|un(z)|pe− p|z|2
2 d A(z) = ‖un‖p

p

from which the conclusion follows again. �
The next simple lemma will be crucial in the proof of Theorem 2.3.

Lemma 2.7 Let a ∈ C and |a| < 1. Then, for all n ∈ N

|1 − a2|
1 − |a|2 ≥ |1 − a2n|

1 − |a|2n . (2.9)

Proof Applying triangular inequality,

|1 − a2n|
|1 − a2| =

∣
∣
∣1 + a2 + (a2)2 + ... + (a2)n−1

∣
∣
∣ ≤ 1 + |a2| + |(a2)2| + ... + |(a2)(n−1)|

=1 + |a|2 + (|a|2)2 + ... + (|a|2)n−1 = 1 − |a|2n
1 − |a|2

from which (2.9) follows. �
We are now ready to give the proofs of the previous two main results.

2.1 Proof of Theorem 2.1

The statement (i) implies (ii), which is proved in Lemma 2.6. On the other hand, if (ii)
holds, then using (1.2)

∞ > sup
n∈N0

‖un‖p � sup
n∈N0

|un(z)|e− |z|2
2 (2.10)

for each z ∈ C. If a = 1, then ψ j (z) = z + jb and using Lemma 2.4,

un(z) = u(0)n
n−1∏

j=0

K−b(z + jb) = u(0)neln(z)

where

ln(z) := −b
n−1∑

j=0

(z + jb) = −bnz − |b|2
2

n(n − 1).
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462 W. Seyoum, T. Mengestie

It follows that

un(z) = u(0)ne− |b|2
2 n(n−1)K−nb(z) (2.11)

for all z ∈ C. Considering (2.11) and applying the estimate in (2.10) at z = −nb

sup
n∈N0

‖un‖p � sup
n∈N0

|un(−nb)|e− |nb|2
2

= sup
n∈N0

∣
∣
∣
∣u(0)e

|b|2
2

∣
∣
∣
∣

n

e−|b|2n2K−nb(−nb) = sup
n∈N0

∣
∣
∣
∣u(0)e

|b|2
2

∣
∣
∣
∣

n

and hence the statement in (iii) follows. On the other hand, if a 	= 1 and |a| = 1, then
set z0 be the fixed point of ψ and eventually applying Lemma 2.4

|un(z0)| =
∣
∣
∣
∣u(0)K−ab

(
b

1 − a

)∣
∣
∣
∣

n

=
∣
∣
∣
∣u(0)e

−ab
(

b
1−a

)∣
∣
∣
∣

n

= |u(0)|n e−n

(

a|b|2
1−a

)

= |u(0)|ne n|b|2
2

and the conclusion follows after taking this in (2.10) again.
It remains to prove (iii) implies (i). First, observe that for each n ∈ N, the operator

Wn
(u,ψ) itself is a weighted composition operator and Wn

(u,ψ) = MunCψn = W(un ,ψn).
Then, W(u,ψ) is power bounded if and only if

sup
n∈N

sup
z∈C

|un(z)|e
1
2

(∣
∣
∣anz+ b(1−an )

1−a

∣
∣
∣
2−|z|2

)

< ∞.

Thus, for |a| = 1, we apply (2.6) and obtain the norm

‖Wn
(u,ψ)‖ = sup

z∈C
|un(z)|e 1

2 (|ψn(z)|2−|z|2). (2.12)

Our next task is to simplify (2.12). If a = 1, then the representation in (2.11) implies

‖Wn
(u,ψ)‖ = sup

z∈C
e
1
2 (|z+nb|2−|z|2)|u(0)|ne− |b|2

2 n(n−1)|K−nb(z)|

=
(
|u(0)|e |b|2

2

)n
sup
z∈C

e
(nbz)|K−nb(z)| =
(
|u(0)|e |b|2

2

)n
(2.13)

from which the statement follows.
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Next, assume a 	= 1 and |a| = 1. Then, ψ j (z) = a j z + b 1−a j

1−a . By using Lemma 2.4

again un(z) = u(0)nehn(z) where

hn(z) := −ab
n−1∑

j=0

(
a j z + b

1 − a j

1 − a

)
= −abz

1 − an

1 − a
− a|b|2n

1 − a
+ a|b|2(1 − an)

(1 − a)2
.

Thus, we have

un(z) = u(0)ne
− a|b|2n

1−a + a|b|2(1−an )

(1−a)2 K−ab 1−an
1−a

(z)

from which and (2.12)

‖Wn
(u,ψ)‖ = sup

z∈C
e
1
2

∣
∣anz+b 1−an

1−a

∣
∣2− 1

2 |z|2 |u(0)|n
∣
∣
∣
∣e

−abz 1−an
1−a − a|b|2n

1−a + a|b|2(1−an )

(1−a)2

∣
∣
∣
∣

where

∣
∣
∣anz + b

1 − an

1 − a

∣
∣
∣
2 − |z|2 = |b|2

∣
∣
∣
∣
1 − an

1 − a

∣
∣
∣
∣

2

+ 2

(
anzb

1 − an

1 − a

)

and

∣
∣
∣
∣e

−abz 1−an
1−a − a|b|2n

1−a + a|b|2(1−an )

(1−a)2

∣
∣
∣
∣ = e



(
−abz 1−an

1−a − a|b|2n
1−a + a|b|2(1−an )

(1−a)2

)

.

On the other hand,

anzb
1 − an

1 − a
− abz

1 − an

1 − a
= zb(an − 1)

( 1

1 − a
+ a

1 − a

)
= 0

and combining all the above

‖Wn
(u,ψ)‖ =|u(0)|ne

|b|2
2

∣
∣ 1−an

1−a

∣
∣2+ 


(
a|b|2(1−an )

(1−a)2
− a|b|2n

1−a

)

≤|u(0)|ne
|b|2
2

∣
∣ 2
1−a

∣
∣2+


(
a|b|2(1−an )

(1−a)2

)

−

(

a|b|2n
1−a

)

≤|u(0)|ne
|b|2
2

∣
∣ 2
1−a

∣
∣2+

∣
∣
∣
∣
a|b|2(1−an )

(1−a)2

∣
∣
∣
∣
e
−n|b|2


(
a

1−a

)

≤e
|b|2
2

∣
∣ 2
1−a

∣
∣2+ 2|b|2

|1−a|2
(
|u(0)|e−|b|2


(
a

1−a

))n

=e
|b|2
2

∣
∣ 2
1−a

∣
∣2+ 2|b|2

|1−a|2
(
|u(0)|e |b|2

2

)n
. (2.14)

Thus, power boundedness follows whenever |u(0)| ≤ e− |b|2
2 .
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2.2 Proof of Theorem 2.3

The statement (i) implies (ii), which follows from Lemma 2.6 again. Assuming (ii),
we proceed to show that (iii) holds. Using (1.2), we estimate

∞ > sup
n∈N0

‖un‖p � sup
n∈N0

|un(z0)|e− |z0 |2
2 , (2.15)

where z0 = b/(1 − a) is the fixed point of ψ . Moreover, observe that

|un(z0)| =
n−1∏

j=0

u
(
ψ j (z0)

) = |u(z0)|n

which together with Lemma 2.4 and (2.15) gives statement (iii).
Next, we prove (iii) implies (i). If p = ∞, applying the relation in (2.7) for the
weighted composition operator W(un ,ψn) we get

‖W(un ,ψn)‖ = ‖Wn
(u,ψ)‖ = sup

z∈C
|un(z)|e 1

2

(
|anz+z0b(1−an)|2−|z|2

)

.

Thus, W(un ,ψn) is power bounded on F∞ if and only if

sup
n∈N

sup
z∈C

|un(z)|e 1
2

(
|anz+z0b(1−an)|2−|z|2

)

< ∞. (2.16)

Therefore, by using the assumption
∣
∣u

(
b

1−a

) ∣
∣
∣ ≤ 1, we plan to show that (2.16) holds.

First, we consider Lemma 2.5 and compute

un(z) =
n−1∏

j=0

u(ψ j (z)) = eSn(z)

where

Sn(z) =
n−1∑

j=0

(

a0 + a1
(
a j z + (1 − a j )b

1 − a

)
+ a2

(
a j z + (1 − a j )b

1 − a

)2
)

=na0 + a1bn

1 − a
− a1b(1 − an)

(1 − a)2
+ a1(1 − an)

1 − a
z + a2(1 − a2n)

1 − a2
z2

+ a2b2

(1 − a)2

(

n − 2(1 − an)

1 − a
+ 1 − a2n

1 − a2

)

+ 2a2zb

1 − a

(
1 − an

1 − a
− 1 − a2n

1 − a2

)
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=na0 + a1bn

1 − a
− a1b(1 − an)

(1 − a)2
+ a2b2

(1 − a)2

(

n − 2(1 − an)

1 − a
+ 1 − a2n

1 − a2

)

+
(
a1(1 − an)

1 − a
+ 2a2b

1 − a

(
1 − an

1 − a
− 1 − a2n

1 − a2

))

z + a2(1 − a2n)

1 − a2
z2.

(2.17)

Now taking this into account and the fact that Wn
(u,ψ) = W(un ,ψn), the corresponding

notation in (2.5) becomes

M(un, ψ
n) = sup

z∈C
|un(z)|e

1
2

(∣
∣
∣anz+ b(1−an )

1−a

∣
∣
∣
2−|z|2

)

= ecn sup
z∈C

e
(tn z)+
(pnz2)−qn |z|2

≤ ecn sup
z∈C

e
(tn z)+(|pn |−qn)|z|2 (2.18)

where cn is the real part of the expression

na0 + a1bn

1 − a
− a1b(1 − an)

1 − a

2

+ a2b2

(1 − a)2

(

n − 2(1 − an)

1 − a
+ 1 − a2n

1 − a2

)

+
∣
∣
∣
b(1 − an)

1 − a

∣
∣
∣
2
,

tn = a1(1 − an)

1 − a
+ 2a2b

1 − a

(
1 − an

1 − a
− 1 − a2n

1 − a2

)

+ (1 − an)b

1 − a
an,

pn = a2(1 − a2n)

1 − a2
, and qn = 1 − |a|2n

2
.

Now to estimate the supremum in (2.18), we claim that

|pn| − qn = |a2|
∣
∣
∣
1 − a2n

1 − a2

∣
∣
∣ − 1 − |a|2n

2
< 0.

Observe that the inequality holds if and only if

|a2| <
(1 − |a|2n)
∣
∣1 − a2n

∣
∣

∣
∣1 − a2

∣
∣

2
. (2.19)

This follows immediately from Lemma 2.7 as |a2| <
1−|a|2

2 .
It follows from this and (2.18) that

M(un, ψ
n) � ecn .

On the other hand, since |a| < 1

cn ≤ n

(

a0 + a1b

1 − a
+ a2b2

(1 − a)2

)

+ C
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for some positive constant C and hence

ecn � e
n


(
a0+ a1b

1−a + a2b
2

(1−a)2

)

�
∣
∣
∣u

( b

1 − a

)∣
∣
∣
n

from which and the assumption that
∣
∣
∣u

( b
1−a

)∣∣
∣ ≤ 1, the condition in (2.16) follows.

Next, we consider the case when p < ∞ and consider first the case a = 0. Then,
ψn(z) = b, un(z) = u(z)(u(b))n−1 and applying (1.2),

‖Wn
(u,ψ) f ‖p

p = p

2π

∫

C

∣
∣ f (b)

∣
∣p|un(z)|pe− p

2 |z|2d A(z)

= p

2π

∫

C

∣
∣ f (b)

∣
∣p|u(z)|p|u(b)|(n−1)pe− p

2 |z|2d A(z)

=| f (b)|p|(u(b))|(n−1)p‖u‖p
p ≤ |(u(b))|(n−1)p‖u‖p

pe
|b|2‖ f ‖p

p,

from which we arrive at the claim. Here, note that since W(u,ψ) is bounded, the mul-
tiplier u belongs to Fp for all p.

If a 	= 0, then applying the local point estimate in (1.1),

‖Wn
(u,ψ) f ‖p

p = p

2π

∫

C

∣
∣
∣
∣ f

(

anz + b(1 − an)

1 − a

)∣
∣
∣
∣

p

|un(z)|pe− p
2 |z|2d A(z)

≤ p

2π

∫

C

e
p
2

(∣
∣
∣anz+ b(1−an )

1−a

∣
∣
∣
2−|z|2

)

|un(z)|p

×
∫

D
(
anz+ b(1−an )

1−a ,1
) | f (w)|pe− p

2 |w|2d A(w)d A(z)

= p

2π

∫

C

∫

C

e
p
2

(∣
∣
∣anz+ b(1−an )

1−a

∣
∣
∣
2−|z|2

)

|un(z)|p

χ
D
(
anz+ b(1−an )

1−a ,1
)(w)| f (w)|pe− p

2 |w|2d A(w)d A(z). (2.20)

Observe that if w ∈ D
(
anz + b(1−an)

1−a , 1
)
, then

1 ≥
∣
∣
∣
∣w − anz − b(1 − an)

1 − a

∣
∣
∣
∣ = |a|n

∣
∣
∣
∣
w

an
− z − b(1 − an)

an(1 − a)

∣
∣
∣
∣

= |a|n
∣
∣
∣
∣z −

( w

an
− b(1 − an)

an(1 − a)

)∣
∣
∣
∣,

which holds true if and only if

1

|a|n ≥
∣
∣
∣
∣z −

( w

an
− b(1 − an)

an(1 − a)

)∣
∣
∣
∣.
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Thus, w belongs to the disc

D

(

anz + b(1 − an)

1 − a
, 1

)

if and only if z belongs to

D

(
w

an
− b(1 − an)

1 − a
,

1

|a|n
)

.

Making use of this and Fubini’s theorem in (2.20)

‖Wn
(u,ψ) f ‖p

p ≤ p

2π

∫

C

| f (w)|pe− p
2 |w|2

×
( ∫

C

e
p
2

(∣∣
∣an z+ b(1−an )

1−a

∣
∣
∣
2

−|z|2
)

|un(z)|pχD
(

w
an − b(1−an )

1−a , 1
|a|n

)(z)d A(z)

)

d A(w).

Using Lemma 2.5 and simplifying like the case for p = ∞, we get

e
p
2

(∣∣
∣anz+ b(1−an )

1−a

∣
∣
∣
2

−|z|2
)

|un(z)|p ≤ epcn e
p|tn ||z|−p

(
1−|a|2n

2 −
∣
∣ a2(1−a2n )

1−a2

∣
∣
)
|z|2

for all z ∈ C. Since W(u,ψ) is compact and |a2| <
1−|a|2

2 , it follows that

qn − |pn| = 1 − |a|2n
2

−
∣
∣
∣
a2(1 − a2n)

1 − a2

∣
∣
∣ > 0

and

∫

C

e
p
2

(∣∣
∣anz+ b(1−an )

1−a

∣
∣
∣
2

−|z|2
)

|un(z)|pχD
(

w
an − b(1−an )

1−a , 1
|a|n

)(z)d A(z)

≤
∫

C

epcn e
p|tn ||z|−p

(
1−|a|2n

2 −
∣
∣ a2(1−a2n )

1−a2

∣
∣
)
|z|2

d A(z) � epcn

where we used the fact that supn∈N tn < ∞ and infn{qn − |pn|} > 0. Hence,

‖Wn
(u,ψ) f ‖p � ecn‖ f ‖p

and the conclusion follows as in the last part of p = ∞ and completes the proof of
the theorem.

3 The Spectrum ofW(u,Ã)

In this section, we study the spectral of weighted compositions operators on all the
Fock spaces Fp, 1 ≤ p ≤ ∞. Let T be a bounded linear operator on a Banach space
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X . Then, the spectrum σ(T ) of T is the set {λ ∈ C : T − λI is not invertible}, where
I is the identity operator on X . The spectrum σ(T ) is always a non-empty compact
and closed subset of the disc centered at the origin and of radius ‖T ‖. It has been well
known that the spectrum of an operator plays a vital role in the study of its dynamical
properties; see [12]. Our next result will be used to prove mean ergodic results in the
next section apart from being interest of its own.

Theorem 3.1 Let 1 ≤ p ≤ ∞, u, ψ ∈ H(C) and W(u,ψ) be bounded on Fp and
hence ψ(z) = az + b with |a| ≤ 1. Then, if

(i) W(u,ψ) is compact and hence |a| < 1, then

σ(W(u,ψ)) =
{
0, u

( b

1 − a

)
am, m ∈ N0

}
. (3.1)

(ii) |a| = 1, then

σ(W(u,ψ)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
u(0)e

a|b|2
a−1 am : m ∈ N0

}
, a 	= 1

{

z : |z| = |u(0)|e |b|2
2

}

, a = 1, b 	= 0

{u(0)}, a = 1, b = 0.

We now remark a few points. First, observe that the number b/(1 − a) in (3.1) is
the fixed point of the symbol ψ . We also note that when a 	= 1 and |a| = 1, the
expression in the spectrum can be expressed in terms of this fixed point. That is from

Lemma 2.4, it follows that u(0)e
a|b|2
a−1 am = u(b/(1−a))am . In this case, the spectrum

contains finite number of points only when a is a root of unity. Next, for a 	= 1, the
necessity of the condition that |u(b/(1 − a))| ≤ 1 in Theorem 2.1 and Theorem 2.3
can be easily deduced using Theorem 3.1 since the spectrum of a power-bounded
operator is always a subset of the closed unit disc. Here, for |a| = 1 and a 	= 1, note

that
∣
∣u(0)e

a|b|2
a−1

∣
∣ = ∣

∣u
( b
1−a

)∣
∣. Another application of Theorem 3.1 will be given in

Sect. 4. It is known that the spectrum plays an essential role in the study of theory of
semigroups of linear operators [9] as well.

3.1 Proof of Theorem 3.1

(i). LetW(u,ψ) be compact and hence |a| < 1. Here, our proof is based on an argument
that goes back to [13]. We set z0 = b/(1 − a) and plan to show that the range of
W(u,ψ) − anu(z0)I fails to contain the complex polynomial zn . Setting n = 1 and
arguing in the direction of contradiction, assume that there exists an f ∈ Fp such that

u(z) f (ψ(z)) − au(z0) f (z) = z. (3.2)

If u(z0) = 0 or a= 0, then au(z0) = 0 and belongs to the spectrum. Thus, we may
assume that z0 is not in the zero set of u and a 	= 0. First, assume that z0 = 0. Then,
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taking z = 0 in (3.2), we obtain that f (0) = 0. On the other hand, differentiating both
sides of Eq. (3.2) and setting again z = 0, we obtain

u′(0) f (ψ(0)) + u(0)ψ ′(0) f ′(ψ(0)) − au(0) f ′(0) = 1

which results in the contradiction 0 = 1.
Similarly for n > 1, differentiating both sides of the equation

u(z) f (ψ(z)) − anu(z0) f (z) = zn

repeatedly and eventually setting z = 0, we obtain f (m)(0) = 0 for all m < n, while
for m = n we get again the contradiction 0 = n!.
If z0 	= 0, then we may set ψ1(z) = az,

u1(z) = u(z + z0)

‖K−z0‖22
e−z0z+z0(az+az0+b)

and observe that ψ1(0) = 0 and u1(0) = u(z0). A straightforward calculation shows
that

W(u2,ψ2)W(u,ψ)W
−1
(u2,ψ2)

= W(u1,ψ1)

and W−1
(u2,ψ2)

= W(u3,ψ3) where u2(z) = k−z0(z), ψ2(z) = z + z0, u3 = kz0 , and
ψ3(z) = z − z0. It follows that the weighted composition operators W(u1,ψ1) and
W(u,ψ) are similar and have the same spectrum, and our conclusion follows from the
first case discussed above. Therefore, the set in the right-hand side of (3.1) in this case
is contained in the spectrum.

Conversely, if |a| < 1, then W(u,ψ) is compact and its spectrum contains only zero
and eigenvalues. Thus, we consider a nonzero eigenvalue λ ∈ σ(W(u,ψ) and show that
it is of the form u(z0)an for some positive integer n. If f is a corresponding nonzero
eigenvector, then

W(u,ψ) f (z) = u(z) f (az + b) = λ f (z) (3.3)

for all z in C. If f has no zero at z0, then (3.3) implies u(z0) = λ and hence λ =
a0u(z0). On the other hand, if f has zero at z0 of order m, we may write

f (z) = (z − z0)
mg(z)

where g(z0) 	= 0. Then, substituting f by this in (3.3) and differentiating both sides
of the equation m times and eventually setting z = z0, we only get

amu(z0)m!g(z0) = λm!g(z0) (3.4)

as all the other terms have factor z − z0 and vanish. Now, g(z0) is nonzero and (3.4)
holds only if λ = amu(z0) as asserted.
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The argument in the proof of part (ii) is divided into three cases depending on the
values of a and b.
Case 1. Let |a| = 1 and a 	= 1. For simplicity, we first set ψz0(z) = z − z0 and claim
that the weighted composition operator induced by (kz0 , ψz0) is an isometric bijective
map on Fp with inverse W(k−z0 ,ψ−1

z0 )
. To this claim, for every f ∈ Fp

‖W(kz0 ,ψz0 ) f ‖p
p = p

2π

∫

C

|kz0(z)|p| f (z − z0)|pe− p
2 |z|2d A(z)

= p

2π

∫

C

| f (z − z0)|pe− p
2 |z−z0|2

(

|kz0(z)|pe
p
2 |z−z0|2− p

2 |z|2
)

d A(z)

= p

2π

∫

C

| f (z − z0)|pe− p
2 |z−z0|2d A(z) = ‖ f ‖p

p

for all 1 ≤ p < ∞ which also holds true for p = ∞. This shows that the operator is a
linear isometry and hence satisfies the injectivity condition W−1

(kz0 ,ψz0 )W(kz0 ,ψz0 ) = I .

On the other hand, for each f ∈ Fp

W(kz0 ,ψz0 )W(k−z0 ,ψ−1
z0 )

f (z) = kz0(z)k−z0(z − z0) f (z) = f (z)

which also shows that W(kz0 ,ψz0 )W
−1
(kz0 ,ψz0 ) = I , and hence the claim.

Next, using z0 = b/(1 − a) and Lemma 2.4 for every f ∈ Fp we compute

W
(k−z0 ,ψ−1

z0 )
W(u,ψ)W(kz0 ,ψz0 ) f (z)

= k−z0(z)u(ψ−1
z0 (z)))kz0(ψ(ψ−1

z0 (z)) f (ψz0(ψ(ψ−1
z0 (z))))

= k−z0(z)u(0)K−ab(z + z0)kz0(az + b + az0) f (az) = u(0)e
|b|2
1−a C�0 f (z)

where Cψ0 is the composition operator induced by the symbol �0(z) = az. This
shows that W(u,ψ) is similar to the composition operator, up to a multiple, C�0 . Thus,

σ(W(u,ψ)) = u(0)e
|b|2
1−a σ(C�0). Using the spectrum of C�0 from Theorem 2.6 of [23]

and observing that (1 − a)−1 = a/(1 − a) when |a| = 1 and a 	= 1, we arrive at the
desired conclusion.
Case 2. Let a = 1 and b 	= 0. Applying Lemma 2.4,

Wu,ψ = u · Cψ = u(0)K−bCψ = u(0)e
|b|2
2 k−bCψ = u(0)e

|b|2
2 W(k−b,ψ). (3.5)

The weighted composition operator W(k−b,ψ) is unitary. Recall that the spectrum of a
unitary operator lies on the unit circle T. We claim that the spectrum ofW(k−b,ψ) is T.
To prove the claim, for any nonzero w ∈ C and f ∈ Fp we have
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W
(k−w,ψ−1

w )
W(k−b,ψ)W(kw,ψw) f (z)

= k−w(z)k−b(z + w)kw(z + b + w) f (z + b)

= k−b(z)e
2i�(wb) f (z + b) = e2i�(wb)W(k−b,ψ) f (z)

which shows thatW(k−b,ψ) is similar to e2i�(wb)W(k−b,ψ) for any w ∈ C. Since b 	= 0,
and e2i�(wb) is unimodular, and the spectrum of a unitary operator lies on the unit
circle T, it follows that the whole unit circle constitutes the spectrum.

Therefore, combining this with (3.5)

σ(W(u,ψ)) = u(0)e
|b|2
2 σ

(
W(k−b,ψ)

) = u(0)e
|b|2
2 T =

{

z : |z| = |u(0)|e |b|2
2

}

.

and completes the proof.
Case 3. Let a = 1 and b = 0. In this case, the operator W(u,ψ) reduces to the multi-
plication operator Mu where its spectrum has been already identified in Lemma 2.3
of [21].

4 Uniformly Mean ErgodicW(u,Ã)

Having identified conditions under which W(u,ψ) is power bounded, we next turn our
attention to the mean and uniformly mean ergodic properties of W(u,ψ) on Fp. We
may first state the following result about compact weighted composition operators on
the spaces.

Proposition 4.1 Let 1 ≤ p ≤ ∞ and W(u,ψ) be a compact power bounded operator
on Fp, and hence ψ(z) = az + b such that |a| < 1. Let u be non-vanishing on C .
Then, W(u,ψ) is uniformly mean ergodic.

Proof A result of Yosida and Kakutani ( [29] Theorem 4 and Corollary on page 204–
205 and Theorem 2.8 in [14]) implies that every compact power-bounded operator on
a Banach space is uniformly mean ergodic. Thus, W(u,ψ) is uniformly mean ergodic.

�
Theorem 4.2 Let 1 ≤ p < ∞ and W(u,ψ) be a compact power bounded operator on
Fp, and hence, ψ(z) = az + b such that |a| < 1. Let u be non-vanishing on C such
that u(z0) = 1 where z0 = b/(1 − a). Then,

lim
n→∞

∥
∥
∥
∥
∥

1

n

n∑

k=1

Wk
(u,ψ) − W(u∞,z0)

∥
∥
∥
∥
∥

= 0, u∞(z) =
∞∏

j=0

u(ψ j (z)). (4.1)

Proof To prove (4.1), we argue as follows. First, observe that u∞ is a well-defined
product as W(u,ψ) is power bounded; Lemma 2.6 and (1.2) imply

|u∞(z)| = lim
n→∞ |un(z)| � lim

n→∞ e
1
2 |z|2‖un‖p � e

1
2 |z|2 .
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For each f ∈ Fp, we claim that

lim
n→∞ ‖Wn

(u,ψ) f − W(u∞,z0) f ‖p = 0. (4.2)

Observe that (4.2) implies (4.1). Thus, we proceed to prove the claim by considering
two different cases. Let p < ∞. Since W(u,ψ) is power bounded, by Lemma 2.6, un
belongs toFp for all n ∈ N. On the other hand, using the representation of un in (2.17)
and applying Theorem 2.3 and Lemma 2.7

|un(z)| � e
|tn z|+

∣
∣
∣
∣
a2(1−a2n )

1−a2

∣
∣
∣
∣|z|2 ≤ e

|tn z|+|a2| 1−|a|2n
1−|a|2 |z|2

where

tn = a1(1 − an)

1 − a
+ 2a2b

1 − a

(
1 − an

1 − a
− 1 − a2n

1 − a2

)

+ (1 − an)b

1 − a
an,

and letting n → ∞

|u∞(z)| � e

(
2|a1|
|1−a| + 2|a2b||1−a|

(
2

|1−a| + 2
|1−a2 |

))
|z|+ |a2 |

|1−a2 | |z|
2

.

The compactness condition |a2| <
1−|a|2

2 implies |a2|
|1−a2| < 1

2 , which shows that
u∞ ∈ Fp.

Moreover, by continuity,

lim
n→∞

∣
∣
∣Wn

(u,ψ) f (z) − W(u∞,z0) f (z)
∣
∣
∣ = 0,

and since W(u,ψ) is power bounded, there is a constant α > 0 such that for every
n ∈ N

∫

C

∣
∣
∣Wn

(u,ψ) f (z)
∣
∣
∣
p
e− p

2 |z|2d A(z) ≤
∫

C

α p| f (z)|pe− p
2 |z|2d A(z).

Consequently, we have

∫

C

∣
∣
∣Wn

(u,ψ) f (z) − W(u∞,z0) f (z)
∣
∣
∣
p
e− p

2 |z|2d A(z)

≤
∫

C

2p
(

α p | f (z)|p + ∣
∣W(u∞,z0) f (z)

∣
∣p

)

e− p
2 |z|2d A(z) < ∞.

Applying Lebesgue dominated convergent theorem on the sequence

gn(z) :=
∣
∣
∣Wn

(u,ψ) f (z) − W(u∞,z0) f (z)
∣
∣
∣
p
e− p

2 |z|2 ,
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we get that

lim
n→∞ ‖Wn

(u,ψ) f − W(u∞,z0 f ‖p
p = p

2π
lim
n→∞

∫

C

gn(z)d A(z) = p

2π

∫

C

lim
n→∞ gn(z)d A(z) = 0

as claimed. �
Theorem 4.3 Let W(u,ψ) be a compact power bounded operator on F∞, and hence,
ψ(z) = az + b such that |a| < 1. Let u be non-vanishing on C such that u(z0) = 1,
where z0 = b/(1 − a). Then,

lim
n→∞

∥
∥
∥
∥
∥

1

n

n∑

k=1

Wk
(u,ψ) − W(u∞,z0)

∥
∥
∥
∥
∥

= 0, u∞(z) =
∞∏

j=0

u(ψ j (z)). (4.3)

Proof For this, we consider the subspace F0 of F∞ defined by

F0 = { f ∈ F∞ : lim|z|→∞ | f (z)|e− 1
2 |z|2 = 0}.

This subspace is closed inF∞, and it contains polynomials.Moreover, the polynomials
are dense in F0, and F∞ is canonically isomorphic to the bidual of F0; see for details
in [4]. We proceed to show first that (4.2) holds for each f ∈ F0. It is easy to see that
as n → ∞

ψn(z) = anz + z0(1 − an) → z0

uniformly on compact subsets of C.
Next, we show that un → u∞ uniformly on compact subset of C also. Since

u∞ ∈ F1,

∫

C

|un(z) − u∞(z)| e− 1
2 |z|2d A(z) ≤

∫

C

2 (α + |u∞(z)|) e− 1
2 |z|2d A(z) < ∞.

(4.4)

Applying Lebesgue dominated convergence theorem, for z ∈ K , where K is compact
subset of C,

lim
n→∞ |un(z) − u∞(z)| ≤ lim

n→∞ e
1
2 |z|2‖un − u∞‖1 ≤

(

max
z∈K e

1
2 |z|2

)

lim
n→∞ ‖un − u∞‖1

=
(

max
z∈K e

1
2 |z|2

)

lim
n→∞

∫

C

|un(w) − u∞(w)|e− 1
2 |w|2d A(w) = 0.

From this, we have

un(z) f (ψ
n(z)) → u∞(z) f (z0)
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uniformly on the compact subsets of C. That is, for each compact set K in C,

sup
z∈K

∣
∣un(z) f (ψ

n(z)) − u∞(z) f (z0)
∣
∣ → 0 (4.5)

as n → ∞.
Next, with f ∈ F0 and each n,

lim|z|→∞ |Wn
(u,ψ) f (z)|e− 1

2 |z|2 = lim|z|→∞ |un(z)|
∣
∣
∣
∣ f

(
anz + z0(1 − an)

)∣
∣
∣
∣

2

e− 1
2 |z|2

≤ sup
z∈C

(

|un(z)|e 1
2

(
|anz+z0(1−an)|2−|z|2

))

× lim|z|→∞

∣
∣
∣
∣ f

(
anz + v

)∣
∣
∣
∣

2

e− 1
2 |anz+z0(1−an)|2

� lim|z|→∞

∣
∣
∣
∣ f

(
anz + z0(1 − an)

)∣
∣
∣
∣

2

e− 1
2 |anz+v|2 = 0.

Note that the last inequality above holds since W(u,ψ) is power bounded and the
supremum above is uniformly bounded. That is,

sup
n

sup
z∈C

(
|un(z)|e 1

2

(
|anz+z0(1−an)|2−|z|2

))
� |u(z0)|n ≤ 1.

Furthermore, u∞ ∈ F0 since it belongs to Fp for all p ≤ ∞.

Now given ε > 0, f ∈ F0 and since u∞ ∈ F0, we can find r0 > 0 such that

|Wn
(u,ψ) f (z)|e− 1

2 |z|2 < ε/2 and |u∞(z)|| f (z0)|e− 1
2 |z|2 < ε/2 whenever |z| > r0.

Then, for each |z| > r0 and n ∈ N, we have

∣
∣
∣Wn

(u,ψ) f (z) − u∞(z) f (z0)
∣
∣
∣ e− 1

2 |z|2 ≤ ∣
∣Wn

(u,ψ) f (z)
∣
∣e− 1

2 |z|2

+
∣
∣
∣
∣u∞(z) f (z0)

∣
∣
∣
∣e

− 1
2 |z|2 < ε.

We apply (4.5) to the compact set K0 = {z ∈ C : |z| ≤ r0} to find n0 such that if
z ∈ K0 and n ≥ n0, we have

∣
∣un(z) f (ψ

n(z)) − u∞(z) f (z0)
∣
∣ <

ε

2S
,

with S := maxz∈K0 e
− 1

2 |z|2 . If n ≥ n0 and z ∈ C, we have

∣
∣
∣Wn

(u,ψ) f (z) − u∞(z) f (z0)
∣
∣
∣ e− 1

2 |z|2 < ε.
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Thus,

lim
n→∞ ‖Wn

(u,ψ) f − u∞ f (z0)‖∞ = 0.

Next, we show (4.3) for p = ∞. Since F∞ is canonically isomorphic to the bidual
of F0, and the bitranspose operator W

′′
(u.ψ) of W(u,ψ) : F0 → F0 coincides with

weighted composition operatorW(u,ψ) : F∞ → F∞, the conclusion follows from the
well-known fact that ‖T ‖ = ‖T ′ ‖ = ‖T ′′ ‖ for any bounded operator T on a Banach
space. �

The preceding results assure that W(u,ψ) with ψ(z) = az + b, |a| < 1 is always
uniformlymean ergodicwhenever it is compact and power bounded. Now,we consider
the case when ψ(z) = az + b and |a| = 1. Note that power boundedness in this case

implies that either |u(0)| = e− |b|2
2 or |u(0)| < e− |b|2

2 . In 1939, Lorch [19] proved that
every power-bounded operator on a reflexive Banach space is mean ergodic. The same
result was later obtained in reflexive Frechet spaces [1]. Accordingly, as the spaces
Fp are reflexive for all 1 < p < ∞, every power-bounded W(u,ψ) is mean ergodic.
Thus, for such spaces we will consider conditions under which the ergodicity becomes
uniform.

Theorem 4.4 (i) Let 1 ≤ p ≤ ∞ ,ψ(z) = az+b with |a| = 1 and |u(0)| < e− |b|2
2 .

Then, W(u,ψ) is uniformly mean ergodic on Fp, and

lim
n→∞

∥
∥
∥
∥
1

n

n∑

k=0

Wk
(u,ψ)

∥
∥
∥
∥ = 0.

(ii) Let 1 ≤ p ≤ ∞, and ψ(z) = az with |a| = 1. If both u(0) and a are roots of
unity, then W(u,ψ) is uniformly mean ergodic on Fp.

By a result in [26], the composition operatorCψ is not uniformly mean ergodic onF∞
whenever |a| = 1. Now the weight function u makes it possible to enrich uniformity
by taking the value |u(0)| smaller.

Proof (i) Applying the assumption along with (2.13)

lim
n→∞

∥
∥
∥
∥
1

n

n∑

k=0

Wk
(u,ψ)

∥
∥
∥
∥ ≤ lim

n→∞
1

n

n∑

k=0

∥
∥
∥
∥W

k
(u,ψ)

∥
∥
∥
∥ � lim

n→∞
1

n

n∑

k=0

(

|u(0)|e |b|2
2

)k

≤ lim
n→∞

2n−1

1 − |u(0)|e |b|2
2

= 0

as claimed.
(ii) By assumption, there exist numbers m, N ∈ N such that aN = 1 = u(0)m .
Consider the smallest positive integer N0 ≤ mN such that aN0 = u(0)N0 = 1. In
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this case, the sequenceWn
u,ψ is periodic with period N0. Any n ∈ N can be written

in the form of n = N0l + j for some l ∈ N and j = 0, 1, 2, ..., N0 − 1. Thus,

lim
n→∞

∥
∥
∥
∥
∥

1

n

n∑

k=1

Wk
(u,ψ) − 1

N0

N0∑

k=1

Wk
(u,ψ)

∥
∥
∥
∥
∥

= lim
l→∞

1

(N0l + j)

∥
∥
∥
∥
∥
∥

j∑

k=1

Wk
(u,ψ) − j

N0

N0∑

k=1

Wk
(u,ψ)

∥
∥
∥
∥
∥
∥

≤ lim
l→∞

1

(N0l + j)

⎛

⎝
j∑

k=1

∥
∥
∥Wk

(u,ψ)

∥
∥
∥ + j

N0

N0∑

k=1

∥
∥
∥Wk

(u,ψ)

∥
∥
∥

⎞

⎠ = 0

and completes the proof.
�

Next, we consider the cases when the uniform ergodicity fails. We may first recall
that a Banach space X is a Grothendieck space if every sequence (xn) in X ′ which
is convergent to 0 for the weak topology σ(X

′
, X) is also convergent to 0 for the

weak topology σ(X
′
, X

′′
). The space X has the Dunford–Pettis property if for any

sequence (xn) in X which is convergent to 0 for the weak topology σ(X , X
′
) and any

sequence (x
′
n) in X

′
which is convergent to 0 for the weak topology σ(X

′
, X

′′
) one

gets limn→∞ x
′
n(xn) = 0. The spaces 
∞ or H∞(D) are examples of Grothendieck

spaces with Dunford–Pettis property [17].

Theorem 4.5 Let 1 ≤ p ≤ ∞ and W(u,ψ) is power bounded on Fp with ψ(z) = az,
|a| = 1. Then, W(u,ψ) is

(i) mean ergodic on Fp for all 1 ≤ p < ∞ if 1 	= u(0)am for all m ∈ N0, and for
each f ∈ Fp

lim
n→∞

∥
∥
∥
∥
1

n

n∑

k=1

Wk
(u,ψ) f

∥
∥
∥
∥
p

= 0,

(ii) mean ergodic on Fp for all 1 ≤ p < ∞ if u(0) = 1 and a is not root of unity,
and for each f ∈ Fp

lim
n→∞

∥
∥
∥
∥
1

n

n∑

k=1

Wk
(u,ψ) f − f (0)

∥
∥
∥
∥
p

= 0,

(iii) not uniformly mean ergodic on Fp for all 1 ≤ p ≤ ∞, and not mean ergodic
on F∞ whenever 1 	= u(0)am for all m ∈ N0.

Proof (i) and (ii). We first check when f belongs to the set of monomials. If f = 1,
then the result holds trivially. Thus, for zm,m ≥ 1. Assume that 1 	= u(0)am for all
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m ∈ N.

∥
∥
∥
∥
1

n

n∑

k=1

Wk
(u,ψ)z

m
∥
∥
∥
∥
p

=
∥
∥
∥
∥
1

n

n∑

k=1

amkukz
m
∥
∥
∥
∥
p
.

Since aku(0) 	= 1 for each k ∈ N and uk(z) = u(0)k , or u(0) = 1 and a is not root of
unity

∥
∥
∥
∥
1

n

n∑

k=1

amkukz
m
∥
∥
∥
∥
p

=
∥
∥
∥
∥
1

n

n∑

k=1

u(0)kamkzm
∥
∥
∥
∥
p

=
∥
∥
∥
zm

n

am(1 − u(0)namn)

1 − amu(0)

∥
∥
∥
p

≤
2
∥
∥zm

∥
∥
p

n|1 − amu(0)| → 0

as n → ∞. Since the set of polynomials is dense in Fp and W(u,ψ) is power bounded
on Fp by Theorem 2.1, we have the result (see, e.g., Lemma 2.1 in [3]).

(iii) Assume now on the contrary that Wu,ψ is uniformly mean ergodic. Then, by
the classical result of Lin [16]), Im(I − W(u,ψ)) is closed, where Im(I − W(u,ψ))

denotes the range of I − W(u,ψ). Moreover, by a result of Yosida [28] it follows that
KerT0 = Im(I − W(u,ψ)) , where T0 = limn Tn and Tn = 1

n

∑n
k=1 W

k
(u,ψ). Hence,

Im(I − W(u,ψ)) =Im(I − W(u,ψ)) = KerT0 =
{

f ∈ Fp : lim
n→∞

1

n

n∑

k=1

Wk
(u,ψ)) f = 0

}

=
{

f ∈ Fp : lim
n→∞

1

n

n∑

k=1

u(0)k f (ψk) = 0

}

, (4.6)

where the last equality follows after an application of Lemma 2.4. Furthermore,

Fp = Im(I − W(u,ψ))
⊕

Ker(I − W(u,ψ)). (4.7)

We claim that Ker(I − W(u,ψ)) contains only the constant functions. Indeed, if f
belongs to it, then since u(0) f (az) = f (z) for each z ∈ C, we have u(0)an f (n)(az) =
f (n)(z), and hence u(0)an f (n)(0) = f (n)(0).This yields f (n)(0) = 0 for every n ∈ N

since u(0)an 	= 1. If we define g(z) = f (z) − f (0), it follows that g(n)(0) = 0 for
every n = 0, 1, 2, .... Hence g(z) = 0 for every z ∈ C. Therefore, f (z) = f (0) for
every z ∈ C.

Next, we show that the constant functions belong to the set in (4.6) and con-
tradicts (4.7). Thus, if h = α is a nonzero constant function, then Wk

(u,ψ))h(z) =
u(0)kh(ψk(z)) = u(0)kα for every z ∈ C. Thus,

∥
∥
∥
∥
1

n

n∑

k=1

h(ψk)

∥
∥
∥
∥
p

≤‖α‖p

n

∣
∣
∣
∣

n∑

k=1

u(0)k
∣
∣
∣
∣ = ‖α‖p

n

∣
∣
∣
∣
u(0) − u(0)n+1

1 − u(0)

∣
∣
∣
∣

≤ 2‖α‖p

n|1 − u(0)| → 0 as n → ∞.
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The case when 1 = u(0) and a is not a root of unity follows as a special case from
Corollary 4.6.

It remains to show that W(u,ψ) is not mean ergodic on F∞. Theorem 1.1 in [20]
implies that F∞ is isomorphic to 
∞ or H∞(D). Hence, F∞ is Grothendieck spaces
with Dunford–Pettis property. On the other hand, by a result of Lotz [18] every power-
bounded mean ergodic operator on a Grothendieck Banach space with the Dunford–
Pettis property is uniformly mean ergodic. Therefore, W(u,ψ) is not mean ergodic on
F∞ . �
We remark that when |a| = 1, the operators are isometric bijective with W−1

(u,ψ) =
W(v,ψ−1) where v(z) := u(0)Kb(z). This can be seen as for every f ∈ Fp

‖W(u,ψ) f ‖p
p = p

2π
|u(0)|p

∫

C

|K−ab(z)|p| f (az + b)|pe− p
2 |z|2d A(z)

= p

2π
|u(0)|p

∫

C

| f (az + b)|pe− p
2 |az+b|2

(

|K−ab(z)|pe
p
2 |az+b|2− p

2 |z|2
)

d A(z)

= 1

|a|2 |u(0)|pe p|b|2
2 ‖ f ‖p

p = ‖ f ‖p
p

for all 1 ≤ p < ∞ which also holds true for p = ∞. This shows that the operator is
a linear isometry and hence satisfies the injectivity condition W−1

(u,ψ)W(u,ψ) = I . On
the other hand, for each f ∈ Fp

W(u,ψ)W(v,ψ−1) f (z) = u(z)u(0)Kb(ψ(z)). f (ψ−1(ψ(z)))

= u(z)u(0)Kb(az + b) f (z) = |u(0)|2K−ab(z)Kb(az + b) f (z) = f (z)

which also shows that W(u,ψ)W
−1
(u,ψ) = I . As shown below and Theorem 3.1, the

spectrum of some of these class of operators is contained in the unit circle.
The uniformly mean ergodic results in part (ii) of Theorems 4.4 and 4.5 deal with

when ψ(z) = az + b form with |a| = 1 and b = 0. The case for b 	= 0 is our next
point of interest.

Corollary 4.6 Let 1 ≤ p ≤ ∞, ψ(z) = az + b, |a| = 1 and a is not a root of unity,

u
(

b
1−a

)
= 1 and hence |u(0)| = e− |b|2

2 . Then, W(u,ψ) cannot be uniformly mean

ergodic on Fp.

Proof First, observe that in this case Theorem 3.1 and since for |a| = 1 and a 	= 1,

∣
∣u(0)e

a|b2 |
a−1 am

∣
∣ = |u(0)|e|b|2


(
a

a−1

)

= |u(0)|e|b|2

(

a(a−1)
(a−1)(a−1)

)

= |u(0)|e |b2 |
2 = 1,

the spectrum σ(W(u,ψ)) is contained in the unit circle T. Furthermore, as a is not a
root of unity , it follows that 1 is an accumulation point of the spectrum of W(u,ψ).

Moreover, 1 is in the spectrum ofW(u,ψ) since u(0)e
a|b2 |
a−1 a0 = u

(
b

1−a

)
a0 = 1. Then,

an application of Theorem 3.16 of [8] gives the conclusion. �
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4.1 TheMultiplication Operator

Wenowconclude the section by specializing themain resultsmade in the above section
to the multiplication operator Mu acting on Fock spaces. Note that from Lemma 2.3
in [21], it is known that the operator Mu is bounded onFp if and only if u is a constant
function. The same conclusion can be also easily drawn by applying the condition in
(2.5) along with Liouville’s theorem.

Corollary 4.7 Let 1 ≤ p ≤ ∞ and u ∈ H(C) such that Mu is bounded on Fp. Then,
the following statements are equivalent.

(i) Mu is power bounded on Fp;
(ii) |u(0)| ≤ 1;
(iii) Mu is mean ergodic on Fp;
(iv) Mu is uniformly mean ergodic on Fp.

Proof The equivalency of (i) and (ii) is an immediate deduction from Theorem 2.1.
Thus, we shall show (ii) ⇒ (iii), (iii)⇒ (iv), and (iv) ⇒ (i). For the first, simplifying
the proof of Theorem 4.4 part (i) for the case b = 0 and a = 1, we get Wk

(u,ψ) = Mk
u

and

∥
∥
∥
∥
1

n

n∑

k=1

Mk
u f

∥
∥
∥
∥
p

=
∥
∥
∥
∥
f

n

n∑

k=1

uk(0)

∥
∥
∥
∥
p

=
∥
∥
∥
∥
f

n

n∑

k=1

u(0)k
∥
∥
∥
∥
p

= ∥
∥ f

∥
∥
p

∣
∣
∣
∣
1

n

n∑

k=1

u(0)k
∣
∣
∣
∣.

(4.8)

Consider first the case when u(0) 	= 1 and |u(0)| ≤ 1. Then,

∥
∥ f

∥
∥
p

n

∣
∣
∣

n∑

k=1

u(0)k
∣
∣
∣ =

∥
∥ f

∥
∥
p

n

|u(0)||1 − u(0)n|
|1 − u(0)| ≤

2
∥
∥ f

∥
∥
p

n|1 − u(0)| → 0

as n → ∞. Thus, 1
n

∑n
k=1 M

k
u converges pointwise to zero. If u(0) = 1, then Mu

reduces to the identity map and the assertion follows trivially.
Next, we show that (iii) implies (iv). That is, the above convergence is uniform on the

operator norm. Now the assumption implies that Mn
u f
n → 0 as n → ∞ for all f ∈ Fp.

In particular for f = 1, the statement Mn
u 1
n = u(0)n

n → 0 holds only if |u(0)| ≤ 1.
Now, for u(0) = 1, the operator reduces again to the identity map. Thus, we consider
the case when u(0) 	= 1 and argue

∥
∥
∥
1

n

n∑

k=1

Mk
u

∥
∥
∥ = sup

‖ f ‖p=1

∥
∥
∥
1

n

n∑

k=1

Mk
u f

∥
∥
∥
p

= sup
‖ f ‖p=1

∥
∥
∥
1

n

n∑

k=1

u(0)k f
∥
∥
∥
p

≤1

n

n∑

k=1

|u(0)|k = |u(0)||1 − |u(0)|n|
n(1 − |u(0)|) ≤ 2

n|1 − u(0)| → 0, n → ∞.
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Now assume that (iv) holds. Then, ‖Mn
u ‖/n → 0 as n → ∞. On the other hand,

from (2.13) we get ‖Mn
u ‖ = |u(0)|n , which implies that ‖Mn

u ‖/n → 0 only when
|u(0)| ≤ 1. Therefore, by Theorem 2.1, the operator is power bounded. �
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