

BACHELOR’S THESIS
Monitorization Dashboard

Glenn Arnold Barosen
Charlie Edward Coulter
Marius Sunde Husevåg

Faculty of engineering and science
Department of Computer Science, Information
Technology
Rogardt Heldal
02.06.2021

I confirm that the work is self-prepared and that references/source references to all sources used in the work are provided,
cf. Regulation relating to academic studies and examinations at the Western Norway University of Applied Sciences (HVL), §
10.

II

 TITLE PAGE FOR THE MAIN PROJECT
Report title: Monitorization dashboard Date: 02.06.2021

Author(s): Glenn Arnold Barosen, Charlie Edward Coulter, Marius Sunde
Husevåg

Number of pages w/o attachments: 27

 Number of pages with attachments: 28
Field of study: Information Technology / Computer Science

Number of discs/CDs:

Supervisor at field of study: Rogardt Heldal Grading: none
Notes:

Employer: Wide Assessment AS

Employer contact(s):
Andreas Hammerbeck / CTO
Kristoffer Perminow / Developer

Phone:
976 61 466
473 96 813

Summary:
The motivation behind this project comes from the complicated nature of handling security routines within a company. A
company need to keep track of server uptime, employee access, along with other things. This project will make it easier to
keep track of all these activities regarding its security routines.

The main goal of this project is to develop a monitoring dashboard that gives the company a better overview of the
company’s security routines by integrating checklists and critical tools in one place.

Motivasjonen bak dette prosjektet kommer av den vanligvis tungvinte måten å håndtere sikkerhetsrutiner i en bedrift. En
bedrift må ha oversikt over status på servere, ansattes tilganger og mye mer. Dette prosjektet skal gjøre det enklere å
holde oversikten over alle disse aktivitetene som inngår i en bedrifts sikkerhetsrutiner.

Hovedmålet med prosjektet er å utvikle et monitoreringsdashbord som gir bedriften en bedre oversikt over bedriftens
sikkerhetsrutiner ved å integrere sjekklister og andre kritiske verktøy i et og samme sted.

keywords:

React, TypeScript, HCI, Agile, Kanban

Western University of Applied Sciences, Faculty of engineering and science
Post address: Postboks 7030, 5020 BERGEN Address: Inndalsveien 28, Bergen
Phone. 55 58 75 00 Fax 55 58 77 90 Email: post@hvl.no Homepage: http://www.hvl.no

III

Preface

We are now done with three years of studies and are ready for new adventures. This project

has been challenging, mostly due to the situation regarding COVID-19, but we pulled

through. We would like to thank Rogardt for tips and tricks this semester and the people at

Wide Assessment for a fun project and cooperation this last year.

 3

Table of contents

1 Introduction ... 5
1.1 Motivation and goal ... 5
1.2 Context .. 5
1.4 Limitations .. 6
1.5 Resources .. 6
1.6 Organization of the report .. 7

2 Project description ... 7
2.1 Practical background .. 7
2.2 Project owner .. 7
2.4 Initial solution idea ... 8
2.5 Literature background .. 8

3 Project design .. 9
3.1 Possible approaches ... 9
3.2 Discussion of selected approach ... 9
3.3 Specification .. 11
3.4 Selection of tools and programming languages ... 12
3.5 Project development method ... 12

3.5.1 Development method ... 13
3.5.2 Kanban and Pivotal Tracker .. 13
3.5.3 Other planning methods ... 14
3.5.3 Risk management ... 15

4 Detailed design .. 15
4.1 Use case diagram ... 16
4.2 Activity diagram .. 16
4.3 Sequence diagram .. 17

5 Implementation ... 17
5.1 Frontend development .. 17
5.2 Backend development .. 18

6 Evaluation .. 19
6.1 Evaluation methods .. 19

6.1.1 User testing ... 19
6.1.2 Trial and error ... 20

6.2 Evaluation results ... 20
6.2.1 User testing result ... 20
6.2.2 Trial and error results ... 22

7 Discussion .. 23

 4

7.1 Trial and error vs unit testing .. 23
7.2 Usefulness of Kanban in small teams. .. 23
7.3 Limitations .. 24
7.4 Libraries vs native features ... 24

9 Conclusion ... 25
9.1 Project goals ... 25

9.1.2 Were the goals reached? .. 25
9.2 Usability for others ... 26
9.3 Further work ... 26

10 Bibliography .. 27

11 Appendix ... 28
11.1 GANTT chart ... 28
11.2 Risk list .. 28

 5

1 Introduction

The company Wide Assessment (WA.works) was established in 2016. The company has

created a recruitment platform specialising in the IT industry, which simplifies the job

searching process for both employee and employer.

1.1 Motivation and goal

The motivation behind this project comes from the complicated nature of handling security

routines within a company. A company need to keep track of server uptime, employee

access, along with other things. This project will make it easier to keep track of all these

activities regarding its security routines.

The main goal of this project is to develop a monitoring dashboard that gives the company a

better overview of the company’s security routines by integrating checklists and critical tools

in one place. The main goal is divided into two subgoals. The first subgoal is to create a

checklist where the company can add and remove tasks. The checklist must have deadlines

that are updated automatically when the task is done. The second subgoal is to integrate

Github into the application using the Github API to create an overview of which employees

have access to different parts of the company's source code.

1.2 Context

WA.works, like all other companies, have a lot of routines regarding the security and

integrity of the company’s systems. They are always looking for new opportunities to

improve them, so they want a dashboard that makes it possible to get an overview of all

security-related tasks and events all in one place. Today, these tasks are done manually and

will therefore be something WA.works can save a lot of time on automating and will lead to

the security of WA.works IT systems being improved. There was no existing code from WA to

develop; therefore, our research is based on previous work from external entities. The

reason for these routines is that the company has servers that they need to keep running

and have backups of. The information about users also needs to be kept confidential.

Because of this, there are certain routines in place to uphold the integrity of the system and

the confidentiality of its users.

 6

1.4 Limitations

The group’s most significant limitation is the group’s general understanding of human-

computer interaction (HCI) and its relation to the project. This can affect the user’s

interaction with the application regarding the human-to-human, open-ended dialogue

(Interaction Design Foundation, n.d.).

Another limitation regarding the project is COVID-19. The current situation makes

communication harder, and all work must be done from home. Not working from the

company's offices creates a more significant divide between the group and company and

makes reaching out for help more difficult. Our goal is to finish most of the initial

requirements, but this could be difficult in the space of three months. The aim is to complete

the two sub-goals within the deadline.

More minor limitations regarding the project are general inexperience in developing web

applications and testability. The lack of experience can cause development time to increase

because the group will have to do a lot of research. Since the only users who will test the

application are our contacts at WA.works, the amount of testing can be limited. The project's

timeframe can also impact the amount of time that can be set aside for testing.

1.5 Resources

To create this application, a code editor program called Visual Studio Code has been used.

Visual Studio Code is a popular editor with extensions and plugins to support a wide variety

of programming languages. To design the application, Figma has been used. Figma is a

design and prototyping tool often used for creating sketches and prototypes for applications.

The group members have used their own personal computers to develop the application,

and no other special resources were needed.

 7

1.6 Organization of the report

This report will go through the project description containing information about the initial

requirements and initial solution. After this, there will be some information about the

literature background for this project. Then, the group will go through the project design and

the specification and what tools and methods have been used. After this, a chapter about

the detailed design contains different figures that describe certain parts of the application.

Then there is a chapter about the implementation of both the client-side application and the

server.

After these parts explaining the development of the application, there is a chapter about

which evaluations methods have been used, along with the results of these evaluations.

Then there is a chapter discussing certain parts of the application and some of the group’s

choices. At the end of the report is a conclusion talking about the results and what the group

thinks about the project and what goals were reached, and further work that can be done to

the application.

2 Project description

2.1 Practical background

There has been a collaboration between the project owner and the group before. This made

understanding what the company wanted and the requirements of the project a lot easier.

Two of the group members had an internship at WA.works the previous semester, which

helped with the communication and progress of the project since the group and project

owner was familiar with each other. During the internship, the company offered the group

to create this project for our bachelor thesis.

2.2 Project owner

The CEO of the company is Stine Andreassen. The company has extensive experience in

recruitment within the IT industry through their recruitment platform. The group's

application is going to be used by the CTO of the company, Andreas Hammerbeck, who has a

master’s degree in computer science from Western University of Applied Sciences.

 8

Our primary contact at the company is Kristoffer Perminow, which has the main

responsibility for the bachelor projects this semester. The company has seven employees in

daily operations but also has several consultants who are working for other businesses.

2.4 Initial solution idea

It was recommended to use React with Typescript for the client-side application and Node.js

for the server. The initial solution idea was to use these technologies to create a web app

containing a dashboard with different "cards" to complete various tasks.

Figure 1: Initial design created in Figma.

2.5 Literature background

Human-Computer Interaction (HCI) is a multidisciplinary field of study focusing on the design

of computer technology and the interaction between humans (the users) and computers

(Interaction Design Foundation, n.d.). The reason why HCI is essential to our project is to be

able to resemble a human-to-human relationship regarding the dashboard. Our focus is that

the product user understands how the dashboard works to make their work more efficient.

Research in the field of HCI is to improve human-computer interaction by enhancing the

usability of computer interfaces. The research that is our focus is all the methods for

designing, implementing, and evaluating computer interfaces.

 9

There are several HCI guidelines that the application should follow to have correct HCI

aspects (Katsabas, et al., 2005). The guidelines the group are using to evaluate the

application are the following:

1 Visible system state and security functions: Applications should not expect users to

search to find the security tools or have hidden features inside the application.

Furthermore, the use of status mechanisms can keep users aware and informed about

the state of the system. Status information should be periodically updated automatically

and should be easily accessible.

2 Suitable for advanced as well as first-time users. Show enough information for a first-

time user while not too much information for an experienced user. Provide shortcuts or

other ways to enable advanced users to control the software more easily and quickly.

3 Handle errors appropriately: Plan the application carefully so that errors caused by the

use of security features could be prevented and minimised as much as possible.

However, when errors occur, the messages must be meaningful and responsive to the

problem.

3 Project design

3.1 Possible approaches

In the first meeting between the project owner and the group, there was a discussion about

possible approaches regarding the application's design. The project owner laid some ground

rules regarding functionality and then asked the group to present a design at the next

meeting. The group used Figma, which is a tool used to design prototypes, to create

different designs.

3.2 Discussion of selected approach

At the second meeting between the group and project owner, the group presented the

design created in Figma. After some discussions, the parts agreed on making some minor

changes to the design. Figure 2 displays the final design of the dashboard. It contains a

dynamic list of task categories such as accessibility, integrity and so on (Figure 2, a). This list

gets bigger or smaller automatically based on the number of categories currently applied to

the tasks.

 10

It also contains a list of five tasks that are close to or past their deadline (Figure 2, b). Lastly,

the dashboard has an overview of the company’s Github repositories and a status bar that

tells the user any inconsistencies between the employee list and the list of accounts with

access to the repositories. (Figure 2, c). The dashboard also has priority indicators on both

the categories and tasks; these indicators are either green, yellow, or red and change

depending on the time remaining.

Figure 2: Final dashboard design used in the web application.

In addition to the main dashboard page, the web application consists of a “Tasks” page, a

“History” page, and a “Employees” page. The “Tasks” page (Figure 3) consists of a table view

of all existing tasks with the ability to sort the tasks depending on the time remaining and

the ability to add new tasks (Figure 2, a). The task table also contains a column named

“actions” that provide actions such as "complete", "edit", or "delete" (Figure 3, b). The

“History” page is a list of already completed tasks with information about when the task was

completed and whether the task was completed on time. The “Employees” page contains an

employee list where the user can add or remove employees. This list is used to compare

employees and user with access to the GitHub repositories.

 11

Figure 3: “Tasks” page containing a list of all tasks.

3.3 Specification

This chapter describes the functional and operational specifications which are meant to be

implemented in our solution. These specifications are partly given to the group by the

project owner and partially interpreted by the group through the project description

provided by the project owner. Here are the specifications:

• The dashboard should be designed so that the tasks can be completed on the main

page of the dashboard.

• It should be easy to see which tasks need to be done and each task's impact on the

company's security.

• Must be able to see when the task is due.

• When a task is completed, or the deadline for the task expires, this must be logged in

a task history.

• When a task is marked as done, the same task should automatically get created with

a new deadline matching the interval given when the task was created.

• If the task is not completed within the time frame, this must be clearly displayed on

the dashboard, and the task must have a colour code corresponding to the severity

of this.

• A requirement to integrate the Github API with the dashboard to get an overview of

people who have access to Wide Assessment’s repositories on Github.

 12

3.4 Selection of tools and programming languages

Due to the open nature of the project description, the group was not constrained to any

specific technologies. The group decided to go with React and Typescript as recommended

on the client-side of the project and Node.js on the server-side. The main reasoning behind

these choices was that the members had previous experience using these technologies.

React is a JavaScript library for building user interfaces (React, n.d.). It uses JSX, a way to use

HTML in JS and uses a virtual DOM that simplifies traditional DOM manipulation in

JavaScript. Typescript could be seen as a superset of JavaScript. It introduces typing in

JavaScript, which is traditionally a loosely typed programming language. Types provide a way

to describe an object's shape, provide better documentation, and allow TypeScript to

validate that your code is working correctly (TypeScript, n.d.).

Node.js is a backend JavaScript framework. It is an asynchronous event-driven JavaScript

runtime, and it is designed to build scalable network applications (Node.js, n.d.).The group's

prior experience with JavaScript makes this combination of technologies a great choice since

the programming language remains relatively similar throughout the application.

As a database, the group decided to go for SQLite, which is a lightweight SQL database. The

reason for using SQLite is because the data being stored is not complex, and advanced SQL

database queries are not necessary. Knex.js was used to integrate the database in the

backend, and it makes creating queries easy.

3.5 Project development method

The project has been developed using aspects from one of the most used development

methodologies in software development, Agile development. Due to the nature of the

project being worked on part-time, not all the aspects of Agile development are relevant for

this project.

 13

Figure 4: Agile lifecycle (Feoktistov, n.d.).

3.5.1 Development method

As mentioned, the development method used in this project is agile development. The agile

development method is an iteration-based method. This means that every new feature in,

for example, a web application goes through a development cycle ranging from getting

feature requirements to reviewing the finished feature. The agile development method

often has daily standups, which are meetings where the team talks about what they are

working on each day.

In this project, the group will not use a lot of the methodology in agile development, such as

daily standups and sprints that are common in scrum. The group will be using the Kanban

method described in chapter 3.5.2. The group will work from a backlog of tasks on the

Kanban board, implement each task, and test it before moving on to another task (Radigan,

n.d.).

3.5.2 Kanban and Pivotal Tracker

The work of all Kanban teams revolves around a Kanban board, a tool used to visualise the

outcome and optimi (Radigan, n.d.). The program that the group is operating as a Kanban

board is called Pivotal Tracker. Pivotal Tracker has many features, including a point system

for each task to give an idea of the importance of a task. This project will mainly use Pivotal

Tracker in the traditional Kanban way by using it as a backlog of tasks. (Figure 4).

 14

Pivotal Tracker visualises our project in the form of virtual cards on the board. This then

encourages the group to break down the project into manageable parts. Pivotal Tracker

gives a better overview of everything that needs to be done and indicates an approximate

work timeframe. Due to the nature of continuously grabbing tasks from the backlog, any

unexpected issues won't impact the work the group members are currently doing, but

instead, the issue will be put in the backlog along with rearranging of the priority in the

backlog.

Figure 5: Backlog of tasks in Pivotal Tracker.

3.5.3 Other planning methods

In addition to using a Kanban board through Pivotal Tracker, the group has also created a

Gantt chart that displays a greater overview of the project timeline. In the Gantt chart, there

are different deadlines for all the tasks to be completed. This gives the group an indication of

how much work needs to be put in to complete the tasks. It is important that the group set

deadlines to have a better overview of time. The group come up with three main milestones

for the project, these three milestones are:

• Finish the first iteration.

• Finish the second iteration.

• Finish the report.

The three milestones created are the most important tasks to be completed. In order to

create a finished product for WA.works and to write a thorough report, the project needs to

be appropriately planned.

 15

3.5.3 Risk management

The project has several different risks throughout the development. The different risks could

mainly occur due to time-consuming tasks like research of frameworks and APIs, lack of

knowledge regarding integrating the Github API into the application, errors while developing

and miscommunication with the project owner or within the group. To prevent these risks

from happening, the group needs to locate our most common risks and find a solution to the

problem for each risk.

The group have located most of our risks and made a risk list (Appendix 11.2). The risks are:

• Lack of time to get a working product.

• Lack of knowledge about APIs to finish Github iteration.

• Errors while developing.

• Unable to satisfy the project owner.

• Miscommunication with the project owner or within the group.

To prevent these risks from happening, the group have discussed mitigations to implement

before these risks occur. The mitigations are as followed:

• Set aside more time for coding.

• Set aside enough time for learning about API implementation.

• Use TypeScript to set types for as much as possible. This will make the app less error-

prone in the long run.

• Keep close communication with the project owner to make sure all the functions

they want is included.

• Have frequent meetings to ensure everyone knows what they are doing.

4 Detailed design

This chapter describes how certain parts of the application work behind the scenes

and is illustrated by various diagrams.

 16

4.1 Use case diagram

Use case diagrams are drawn to capture the functional requirements of a system (Mule &

Waykar, 2015). In this project's case, the use case diagram is not complex but does clearly

state the main functionalities of the application.

Figure 6: Use case diagram.

4.2 Activity diagram

The group use Activity Diagrams to illustrate the flow of control in a system and refer to the

steps involved in the execution of a use case (GeeksforGeeks, 2018). In this activity diagram,

the starting point for every activity is the dashboard page; from there, the user can choose

which activity to pursue and then every following step and decision is described through

nodes in the diagram.

Figure 7: Activity diagram.

 17

4.3 Sequence diagram

Sequence diagrams describe how and in what order the objects in a system function

(GeeksforGeeks, 2018). In this case, the sequence diagram illustrates the order of requests

and responses between the client and server when a user submits a new task in the

application. Sequence diagrams are helpful to get a deeper understanding of the underlying

systems in an application and how these systems communicate with each other.

Figure 8: Sequence diagram.

5 Implementation

This chapter is about the actual implementation of the design and contains

information about key aspects and technologies used throughout the development of

the application.

5.1 Frontend development

As previously mentioned, the client-side application is built using React with Typescript. All

the group members had experience in using these technologies from earlier projects, and

because of this, the frontend development turned out to go relatively smoothly. For styling

the application, Emotion was used, a CSS framework that fits well with React and uses CSS-

in-JS.

 18

During the application development, the group decided to change the appearance of some

of the significant components, such as the tables and list styles. Due to this decision, Ant

Design was added to the dependency list of the project. Ant Design is a component library

that contains a lot of pre-built components. As the projects continued, more and more

components were switched over to Ant Design components.

Redux was also, as mentioned previously, used to manage the applications state. To handle

state in React, the different components can all have their own props, which can be passed

from their parent component. This can make state management complex, especially when

working with components that are nested several layers deep. Redux makes this a lot easier

by creating a global state that can be accessed by all components, no matter how nested

they are.

5.2 Backend development

The technology used on the backend is, as mentioned previously, Node.js combined with

Express. The backend consists of three main parts, the routing, the database, and the Github

API connection. The routing is done using Express to create the different endpoints such as

/tasks or /history.

All routes are an extension of https://localhost:5000/api/v1/<YOUR_API_ROUTE_HERE>.

The use of versioning in API can be advantageous if the server would be implemented on

different platforms. If this was the case, then one platform could have more recent changes

and version "v2" without affecting the app on another platform still using version "v1".

The database is an SQLite database. SQLite works great as the database engine for most low

to medium traffic websites (SQLite, n.d.); this combined with the group's previous

experience in using SQLite as a database solution, made choosing SQLite for the database a

great choice. To avoid writing many SQL queries in the form of strings in the backend, Knex.js

was used. Knex.js is a library for querying databases, and it has many out of the box setups

for different database providers. The use of Knex.js lets the developer create functions

without a lot of boilerplate SQL queries. These functions can then get called throughout the

application to modify the database contents easily (see Figure 9).

 19

One of the project goals was to implement the Github API in the application to get an

overview of employee access and potentially more down the line. The group struggled a bit

with setting up the API in the backend. This was mainly due to insufficient knowledge about

authentication in request headers. To get information about the company's private

information on Github, the requests to the API had to have a token with read and write

access to the organisation's repositories. After receiving the correct token from the company

contacts, the implementation went well. As with the database, routes or endpoints were

created on the server, which fetched the data needed from the Github API, then a request

can be made from the frontend to fetch employees from the server.

Figure 9: Knex.js database queries.

6 Evaluation

This chapter describes some of the evaluation methods used to evaluate the group's work

and the application being developed, and the results of these evaluations.

6.1 Evaluation methods

6.1.1 User testing

User testing is the process through which the interface and functions of our dashboard

service are tested by the actual users (Omniconvert, 2019), who in our case are our contacts

WA.works. The users perform specific tasks on the dashboard that is created for them in

realistic conditions (Omniconvert, 2019).

 20

This method is helpful for the group because the user evaluates the usability of the

dashboard. After testing, the users provide feedback regarding any changes, or if there are

no issues, the application is ready to use. In a more extended time frame project, the group

would use the feedback from the user testing to further improve the application, but in this

case, any feedback would have to be taken care of by the company later.

User testing helps the group understand where improvements are needed and if the

specification given by the project owner is met. The user testing is done manually by going

through the application and testing the different functionalities in different scenarios.

6.1.2 Trial and error

The trial and error method has been used to determine if the application works during the

programming phase of the project. This method helps to check if the code is running

correctly continuously. One feature in React and other modern frameworks that can help

detect errors during programming sessions is "hot reloading". Hot reloading keeps the app

running and injects new versions of the files you edited at runtime (Bigio, 2016). This, along

with the correct use of TypeScript, makes it so that the changes appear instantly on localhost

every time the document gets saved. If TypeScript detects any type of error, the app crashes

and displays information about where the error occurred. When developing without any unit

testing libraries, it is essential not to make significant changes between saves so that the

error is relatively easy to detect.

6.2 Evaluation results

6.2.1 User testing result

After our contacts at WA.works tested the application, feedback was given about the aspects

that could be improved in the application. The group and testers had a meeting to discuss all

the elements. Here is the feedback from WA.works about their findings in different parts of

the application:

 21

• Adding employees does not require a Github username, but a Github username is

suddenly required when editing an employee.

• The repository status message says that everything is good when refreshing the page,

even though the employee list does not correspond to the Github users.

• Needs clearer confirmation messages throughout the application, such as "Task

added", "Task deleted", and so on.

• It should only be possible to add employees to the employee list who are a part of

the company's organisation on Github. Currently, it is possible to add any Github user

to the employee list.

• If a task is past the deadline, the priority colours do not match the severity. Currently

has medium priority, should have high priority.

• Users should get clearer messages from the application when stuff goes wrong, i.e.,

wrong inputs.

• Medium priority colour should be darker, hard to see properly.

• Many components do not have cursors matching their action/use case. Button/links

should have pointers; text fields should have text cursor.

The feedback received is helpful for the group if the group were to carry on developing the

application. A lot of the feedback is highly relevant to HCI guidelines described in chapter

2.5. This makes sense as one of the group's main limitations is knowledge about HCI. This is

relevant to UX design, which is a part of HCI. If the group had more knowledge about HCI, a

lot of these issues would probably be negated.

Point 1 in 2.5 talks about the importance of a visible state in an application. The group got

feedback about the application displaying the wrong status of the repositories when the

page refreshes; this could have been prevented if the group was more aware of these

guidelines during development.

Point 2 in 2.5 is about the application is suitable for advanced as well as first-time users. The

feedback about the application states that more precise messages are needed throughout

the application, such as “Task added” and “Task deleted”.

 22

It is important to think that first-time users need clearer instructions to function the

application. This could have been prevented if the group had put themselves in the shoes of

a first-time user.

The group also received feedback about the user not getting error messages where the user

should get error messages. This is very relevant to point 3 in the HCI guidelines in chapter

2.5, which talks about the importance of correctly displaying error messages when working

with security.

Many of these issues can be easily fixed, but without user testing, many of them would

probably never have been found. All in all, the results from the user testing have clarified

how actual users use the application.

User testing has been a successful method because it allows the group to improve the

application to the standards our users expect. It helps the group improve on the HCI

principles being kept on the application to enhance the experience for the users.

6.2.2 Trial and error results

Due to the fact the application is relatively small, trial and error have worked out. If the

application had gotten any bigger, automated tests would be useful, but using TypeScript to

its fullest is often enough for smaller projects like this one. The group believes that the

amount of time spent setting up tests would outweigh the benefits in this case. Using the

trial and error method when developing has given the results the group hoped for, reaching

our main project goal.

As mentioned, relying on TypeScript to give type errors when something is wrong has

worked perfectly. However, the group could have used TypeScript even more by defining

more types to make the development more reliable in the long run. This, along with hot

reloading, has worked perfectly. Instead of scrolling through code to find a small error,

TypeScript logs out the error detailed. Small mistakes happen all the time when coding, and

just placing a curly bracket wrong can cause a lot of hassle, so to avoid these minor

formatting mistakes, Prettier was installed.

 23

Prettier automatically formats code to a given format on every save. This negates nearly all

misplacements of parentheses or brackets. All in all, the trial and error method has worked

well in this project.

7 Discussion

7.1 Trial and error vs unit testing

In this project, trial and error have been used for testing and evaluating the application

throughout the development process. Some people would maybe look down on this method

of evaluation, but with the tools available today, the use for unit testing in an application like

this minimal. The use of TypeScript along with reloading on each save makes detecting bugs

and errors easier. Throughout our studies, Java and unit testing with Junit has been used

extensively, but this is older technology, which is time-consuming.

Although test-driven development is a thing, the usefulness depends on the project. If this

project were to be deployed, it would probably be deployed through Netlify, or AWS and

these platforms have built-in testing when an application gets built. If the project were to

get any bigger, the group might consider setting up automated tests, but because of the

scale of the project, the group decided that time would be better spent on other things.

7.2 Usefulness of Kanban in small teams.

As mentioned, the group has used a Kanban board to keep track of a backlog of tasks

needed to finish the project. While the group see the usefulness in using the Kanban

method, the tasks in this project were straightforward, and the group members knew what

their tasks were without checking the Kanban board. The use of the board decreased further

into the project. It was used quite frequently during the planning phase but could probably

have been used more.

Some of the group members use a Kanban board in their part-time job, and the usefulness is

clear once the team and application get bigger, but in a team of three, the usefulness isn't as

great.

 24

7.3 Limitations

The limitation with the most significant impact on the project was COVID-19. The

communication between the group and project owner took a hit because everyone had to

work from home, and this made it so that some of the requirements were misinterpreted

and had to be changed along the way. It also affected the communication internally in the

group. The development process worked fine but discussing certain parts of the report

would have been better in person to avoid misunderstandings.

The lack of knowledge about HCI didn't affect the development process, but the group

noticed its lack of knowledge about HCI when receiving feedback from user testing. Having

had the knowledge would most likely result in a better product that is more user friendly.

7.4 Libraries vs native features

During the development process, different libraries are used to help the group develop the

application better and faster. Some libraries help with the client-side styling, while some

libraries help with the logic on the server. One library worth mentioning is Ant Design. Using

this library has saved quite some time while developing the UI in our application. As

mentioned previously, Ant Design provides pre-built components that the developer can

import into the project. The components come with logic and design options, so it's easy to

implement. It's almost a "drag and drop" solution for developing. If this project were to be

styled with CSS and all logic made from scratch, it would have taken a lot longer. There are

many cases where one would want to style components from scratch and create logic from

scratch, but in this case, choosing to use Ant Design has drastically reduced the development

time.

Another library that has saved the group some time developing is date-fns. date-fns

simplifies one of the most challenging parts of programming, handling date and time. This

library comes with many functions used for manipulating date and time in JavaScript. The

group used this library to handle everything regarding date and time in both the frontend

and backend.

 25

Using date-fns speeds up date manipulations by a lot compared to using the built-in features

in JavaScript. Without this library, the group would have spent a lot of time creating

functions for all the date manipulation and formatting.

The use of these libraries has massively decreased development time. At the end of the day,

the use of libraries depends on the task at hand, but libraries will often make the

development process smoother and with less boilerplate code and more reusable

components.

9 Conclusion

9.1 Project goals

In the process of the project, there were a lot of goals to accomplish along the way. Briefly

summarised these goals included making an application where all security tasks are

collected.

The different tasks are going to indicate how important and how close the deadline of a task

is. Another goal for the application was to integrate with the Github API to get an overview

of different accesses for the project owner organisation. Finally, there should be an option to

upload files to the application for the users to read.

9.1.2 Were the goals reached?

All the goals mentioned above were reached in time, except the option for users to upload

files. There were some difficulties when starting this integration as it needed a lot more

research than first expected. It also required another database than first were picked, which

would leave the group with a lot more work to change our solution entirely just for this

implementation to work. All this would delay the project deadline and was not worth the

risk of having an incomplete application.

 26

9.2 Usability for others

The work done in this project could, in fact, be used by others if some simple things were

done. There are two main cases where this project could benefit others; the first case is if

some other needs an application for doing repetitive tasks, then this project could benefit

them. To make this a reality, some changes would have been made. First, the project owner

would have to approve to sell or give away the application. After that, a simplified version of

the application could have been made where you only got the task tracking and task history

modules. More people would benefit from the application with a simplified version as the

project is now customized to fit the project owner's wishes.

In the second use case of the project, there would be those who want to make their

application track repetitive tasks. Here they could have used a lot of the same logic and code

as in the application made in this project. The applications source code would have to be

published as public source code for anybody to see to make this happen. In this way,

everyone thinking of making a similar application could get help from the source code given

here.

One last helpful case this project can bring others is implementing the Github API into their

application. As there was a lot of time researching implementing the Github API in this

project, it could save some time for other developers later if they get their hands on the

source code for the application. The same procedure as the last case with sharing the source

code would have been done to accomplish this.

9.3 Further work

If the work was to be continued, there could have been done several improvements and new

implementations to the program that were made. For instance, the group would first

complete the incomplete remaining goals for the project. These goals include adding the

opportunity to upload files to the program for the users to read. The file upload would give

the end-user an option to share documents with the organisation's users for them to read.

 27

Besides the remaining goals, the group would also suggest adding more functionality to the

GitHub integration by adding and removing permissions for users to the company’s GitHub

repositories. The program would be more powerful and time-efficient for the end-user with

these added functionalities than it already is.

Another helpful improvement to the program would be to add a login for each user and

make restrictions for different user groups. In that way, "normal" users could only read

documents provided to them and see tasks connected to them. In contrast, admin users

could do everything such as look at permissions, adding and removing tasks, upload files and

managing users.

Some other integration worth mentioning would be an integration to the Azure API. With

this integration, the end-user could quickly overview the different servers, databases, and

storage they got connected to the Azure platform.

10 Bibliography

Bigio, M., 2016. Introducing Hot Reloading. [Online]
Available at: https://reactnative.dev/blog/2016/03/24/introducing-hot-reloading
[Accessed 2 May 2021].
Feoktistov, I., n.d. Agile Software Development Lifecycle Phases Explained. [Online]
Available at: https://relevant.software/blog/agile-software-development-lifecycle-phases-
explained/
[Accessed 20 April 2021].
GeeksforGeeks, 2018. GeeksforGeeks. [Online]
Available at: https://www.geeksforgeeks.org/unified-modeling-language-uml-sequence-
diagrams/
[Accessed May 2021].
GeeksforGeeks, 2018. GeeksforGeeks. [Online]
Available at: https://www.geeksforgeeks.org/unified-modeling-language-uml-activity-
diagrams/
[Accessed May 2021].
Interaction Design Foundation, n.d. Human-Computer Interaction (HCI). [Online]
Available at: https://www.interaction-design.org/literature/topics/human-computer-
interaction
[Accessed 15 May 2021].
Katsabas, D., Furnell, S. M. & Dowland, P. S. H., 2005. Using Human Computer Interaction
principles to promote usable security. s.l.:s.n.

 28

Mule, S. S. & Waykar, Y., 2015. ROLE OF USE CASE DIAGRAM IN S/W DEVELOPMENT.
s.l.:International Journal of Management and Economics.
Node.js, n.d. About | Node.js. [Online]
Available at: https://nodejs.org/en/about/
[Accessed 17 April 2021].
Omniconvert, 2019. What is User Testing?. [Online]
Available at: https://www.omniconvert.com/what-is/user-testing/
[Accessed 18 May 2021].
Radigan, D., n.d. Kanban - A breif introduction. [Online]
Available at: https://www.atlassian.com/agile/kanban
[Accessed 2 April 2021].
React, n.d. React- A JavaScript library for building user interfaces. [Online]
Available at: https://reactjs.org
[Accessed 15 April 2021].
SQLite, n.d. Appropriate Uses For SQLite. [Online]
Available at: https://www.sqlite.org/whentouse.html
[Accessed 18 May 2021].
TypeScript, n.d. TypeScript: Typed JavaScript at Any Scale. [Online]
Available at: https://www.typescriptlang.org
[Accessed 15 April 2021].

11 Appendix

11.1 GANTT chart

11.2 Risk list

 29

