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A B S T R A C T

Large amounts of methane are trapped as natural gas hydrate (NGH) in the sediments of the Arctic. Unlike
NGH provinces offshore west of Svalbard (Vestnesa Ridge), NGH potential in Svalbard’s fjords and near-shore
environment is poorly constrained. In this study we modelled the NGH stability zone (GHSZ) to determine
the NGH formation potential within the fjords of Svalbard. We applied a nearest neighbour interpolation
method to dynamically derive statistical bottom-water temperature (BWT) trends from available CTD data. The
BWT trends along with available geothermal gradient data constrained Svalbard-wide sub-bottom thermobaric
models suitable for GHSZ modelling in the near subsurface. Analyses of source rock and fluid seepage data
in Isfjorden, including 15 newly identified acoustic gas flares, indicate an active petroleum system with fluid
migration reaching the seafloor with significant contributions of higher-order hydrocarbons to the gas feed. A
GHSZ is predicted for most fjords at mean BWT conditions and 95:5 methane:ethane gas compositions. Suitable
conditions for pure methane NGH formation are only met in the deepest parts of Isfjorden, Hinlopenstretet,
Kross- and Kongsfjorden, and Rijpfjorden. Temporal constraints implemented along the well-defined Isfjorden
transect indicated a notable negative response to water column warming. The predicted GHSZ across Svalbard’s
fjords is likely to disappear over the next few decades.
1. Introduction

Natural gas hydrates (NGHs) form where natural gas is present
within the natural gas hydrate stability zone (GHSZ). The GHSZ is a
dynamic zone governed by composition-specific thermobaric conditions
(Sloan and Koh, 2007). NGHs are important as they represent a large
sink of methane gas in sedimentary basins globally (Kvenvolden, 1998;
Boswell and Collett, 2011; Milkov, 2004). Global GHSZ estimates are
necessary to constrain uncertainties in NGH stability and occurrence
(Minshull et al., 2020; Kvenvolden and Lorenson, 2001; Johnson, 2011)
that are vital to accurately estimate hydrate-related resource (e.g., Max
et al., 2005; House et al., 2006; Tohidi et al., 2010) and geohazard
potential. Dissociating NGH have the potential to trigger submarine
landslides (e.g., Ruppel and Kessler, 2017; Sultan et al., 2003), are seen
as drilling hazards (e.g., McConnell et al., 2012), and may facilitate the
release of methane into the atmosphere (e.g., James et al., 2016; Ruppel
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and Kessler, 2017). Atmospheric methane contributes to the global
greenhouse effect, and further release is likely to affect the climate
adversely (IPCC, 2014).

Polar NGHs may be particularly sensitive to climate change as en-
hanced global warming occurs through polar amplification. Warming-
related polar NGH dissociation possibly results in a positive-feedback
system (Fetterer et al., 2016; Marín-Moreno et al., 2013; James et al.,
2016). Pan-Arctic NGH occurrence has mainly been predicted through
coarse-scale, regional assessments relying on theoretical GHSZ condi-
tions (e.g., Giustiniani et al., 2014; Tinivella and Giustiniani, 2016;
Minshull et al., 2020, and references therein). Large-scale assessments
favour the implementation of data with lower spatial resolution, gener-
alised data trends, and simplified chemical compositions: local
bathymetry (and hydrostatic pressure) are interpolated from low-
resolution bathymetry charts; local thermal conditions are based on
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global and regional bottom-water temperature (BWT) trends; and the
presence of higher-order hydrocarbons is often omitted. Such simpli-
fications rarely account for the complex conditions found throughout
the Arctic (e.g., Marín-Moreno et al., 2013; Vadakkepuliyambatta et al.,
2017; Ferré et al., 2020; Plaza-Faverola et al., 2017; Knies et al.,
2015; Minshull et al., 2020). The effect of seasonal and short-term
temperature fluctuations on submarine natural gas emissions remains
largely unaddressed (e.g., Ferré et al., 2020; Marín-Moreno et al., 2013;
Berndt et al., 2014).

The Svalbard archipelago, comprising all islands between 74 and
81◦ N and 10–35◦ E (Fig. 1), provides an opportunity to study the com-
plexity and vulnerability of potential shallow-water, near-shore NGH
provinces in a climate-sensitive area. Svalbard features higher-than-
expected air temperatures given its latitude and offers laterally varying
thermobaric and geological conditions (Ohm et al., 2019; Senger et al.,
2019, and references therein). Svalbard’s shallow waters feature large
seasonal variability in water column temperatures (von Appen et al.,
2016; Skogseth et al., 2020), possibly affecting hydrate stability.

Thermobaric modelling predicts NGH occurrence onshore Spitsber-
gen (Betlem et al., 2019; Minshull et al., 2020), and in Isfjorden,
Spitsbergen’s largest fjord system (Roy et al., 2012; Betlem, 2018),
though to date no discoveries of NGH have been reported in Sval-
bard. Recent studies have identified temporal and spatial variations in
the permanently methane-supersaturated water column (Damm et al.,
2021), numerous (active) seeps and more than 1300 pockmarks (e.g.,
Roy et al., 2015, 2016, 2019; Ferré et al., 2020; Ćwiąkała et al.,
2018) in Isfjorden. Given the shallow fjord depths and (local) methane-
supersaturation in the water column, natural gases and dissociated
methane hydrate may migrate directly into the atmosphere (Ruppel and
Kessler, 2017; Berndt et al., 2014; Damm et al., 2021).

We here model the gas hydrate stability zone (GHSZ) for the fjords
around Svalbard and investigate Svalbard’s near-shore NGH poten-
tial. We implement high-resolution bathymetry, regional conductivity–
temperature–depth (CTD) data of the water column, and chemical
compositions constrained by published offshore and onshore hydro-
carbon composition analyses. We further evaluate the potential of
NGH occurrence by looking at potential reservoir rocks and migration
pathways in proximity of the modelled GHSZ. We then use insights
from onshore Svalbard to pinpoint areas of high potential suitable
for future investigations and surveying. Finally, we assess the impact
of water column warming through a well-calibrated cross-section in
Isfjorden based on water column temperature changes over the last few
decades.

1.1. Geological and physiographic setting: exploring for NGH ingredients

Svalbard’s geological record comprises an almost complete succes-
sion from the Pre-Ordovician basement and Devonian Red sandstones
to the Palaeogene basin-infill of the Central Spitsbergen Basin (CSB).
The succession offers multiple organic-rich source rocks and porous
reservoir rocks (Henriksen et al., 2011b; Worsley, 2008; Dallmann
et al., 2015). The Svalbard archipelago is routinely used as an analogue
for petroleum plays targeted in the south-western Barents Sea (Hen-
riksen et al., 2011b). The presence of a functional petroleum system
has been indicated by hydrocarbon shows and technical discoveries
in several wildcat exploration wells onshore (Senger et al., 2019), an
unconventional discovery of shale gas in research wells in Adventdalen
(Ohm et al., 2019), by hydrocarbons in numerous outcropping sedi-
mentary rocks (e.g., Abay et al., 2017), by active oil and gas seeps,
and pockmarks (e.g., Roy et al., 2019, and references therein; Senger
et al., 2019; Liira et al., 2019; Knies et al., 2004). Notably, at least
one petroleum exploration well in inner Billefjorden is classified as a
technical oil and gas discovery (Senger et al., 2019; Verba, 2007, 2013),
and natural gas is present beneath the permafrost across large parts of
2

Svalbard.
Mature organic source rocks are widespread, with examples includ-
ing Palaeozoic, Mesozoic, and Cenozoic coals in addition to Palaeozoic
and Mesozoic organic-rich shales (e.g., Nøttvedt et al., 1993; Paech
and Koch, 2001; Nicolaisen et al., 2019; Steel et al., 1981; Harland
et al., 1976; Blumenberg et al., 2018). The shale-dominated Middle
Triassic Botneheia Formation and Middle Jurassic to Lower Cretaceous
Agardhfjellet Formation are well known as onshore counterparts to
prolific source rocks in the Barents Sea (Nøttvedt et al., 1993; Abay
et al., 2014, 2017; Bjorøy et al., 2010; Koevoets et al., 2016; Ohm et al.,
2019; Mørk and Bjorøy, 1984; Abay et al., 2014).

Evidence of faulting (e.g., Billefjorden Fault Zone; BFZ) is
widespread throughout the archipelago (e.g., Harland et al., 1974;
Lowell, 1972). Western and central Spitsbergen has been affected by
structural shortening during the formation of the West Spitsbergen
Fold-and-thrust Belt in the Palaeogene. Elsewhere, Spitsbergen has
been affected by earlier major rifting and orogenies (Henriksen et al.,
2011b). These events have resulted in deep burial and subsequent
uplift, extensive fracturing and other structural heterogeneities that
may compromise the top seal integrity and facilitate fluid migration
and leakage (Ogata et al., 2014). Major uplift occurred in several events
across the Barents Shelf throughout the Cenozoic (e.g., Lasabuda et al.,
2018), with up to 3 km of uplift occurring on Svalbard (Henriksen et al.,
2011a). Uplift related to the glacial cycles of the past few million years
is perhaps responsible for the most significant and on-going hydrocar-
bon remigration (Ohm et al., 2008), erosion, and out-of-equilibrium
pressure conditions (e.g., Birchall et al., 2020; Wallmann et al., 2018;
Westbrook et al., 2009; Serov et al., 2017; Himmler et al., 2019; Roy
et al., 2016).

Thousands of pockmarks have been documented in Svalbard’s fjords
and straits. The latter include Kongsfjorden (Streuff, 2013), Van Keulen-
fjorden (Kempf et al., 2013; Forwick et al., 2009), Hornsund (Ćwiąkała
et al., 2018), Isfjorden (including inner fjords) (Roy et al., 2015, 2016;
Baeten et al., 2010; Forwick et al., 2009), Forlandsundet (Portnov et al.,
2016; Butschek et al., 2019), possibly Lomfjorden (Streuff et al., 2017),
and Magdalenefjorden (Streuff et al., 2018). Geochemical analyses of
hydrocarbon anomalies in the water column and near-surface marine
sediments indicate a mixture of biogenic and thermogenic signatures
(Knies et al., 2004; Liira et al., 2019) and complex lateral and vertical
methane transport in the entire water column (Damm et al., 2005).
Parts of Isfjorden remain permanently supersaturated with pronounced
temporal and spatial variations in methane excess levels (Damm et al.,
2021).

The formation and distribution of pockmarks has been related to
the possible dissociation of NGHs, seepage of shallow gas, permeable
fluid migration pathways, tectonic fault and igneous conduits, external
trigger mechanisms such as seismic activity, and dewatering of soft
sediment due to deposition of debris lobes (Roy et al., 2015, 2019,
and references therein). Gas flares have been documented in Kross-
and Kongsfjorden (Bohrmann, 2015), Isfjorden (Bohrmann, 2015; Roy
et al., 2019), at Vestnesa ridge (e.g., Ferré et al., 2020, and references
therein), at the shelf off Prins Karls Forland (Sahling et al., 2014;
Westbrook et al., 2009) and along the entire continental margin west
of Svalbard to Bjørnøya in the south (Mau et al., 2017). The Hornsund
Fracture Zone has been suggested as a potential migration pathway for
thermogenic (possibly through hydrate intermediary) methane (Damm
et al., 2005).

Major ocean currents affect offshore (Onarheim et al., 2014; Tver-
berg et al., 2019) and onshore thermal conditions across Svalbard (e.g.,
Przybylak et al., 2014). Several fjords, including Isfjorden, penetrate
deep into the interior of Svalbard’s largest island, Spitsbergen. They
expose inner Spitsbergen to the effects of the warm and saline Atlantic
water, advected northward by the West Spitsbergen Current (WSC)
(Cottier et al., 2007; Nilsen et al., 2008, 2016; Luckman et al., 2015). In
the east, colder Arctic type water is carried by the East Spitsbergen Cur-
rent (ESC), part of which also continues northward up the west coast of

Spitsbergen as the Spitsbergen Polar Current (SPC) (Maciejowski and
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Fig. 1. The bedrock geology map of Svalbard. The stratigraphic log is based on an unpublished figure by Arild Andresen (University of Oslo), further updated with source rocks
and hydrocarbon potential (HC Potent.) summarised in the main text. Geoscientific data courtesy Norwegian Polar Institute (Dallmann et al., 2015). Adv, Adventdalen; Be, Bellsund;
Bf: Billefjorden; BFZ, Billefjorden Fault Zone; CSB, Central Spitsbergen Basin; ESC, East Spitsbergen Current; Fs, Forlandsundet; Hin, Hinlopenstretet; HFZ, Hornsund Fault Zone;
Hrn, Hornsund; Is, Isfjorden; Kon, Kongsfjorden; Kro, Krossfjorden; Mag, Magdalenefjorden; Nf, Nordfjorden; Rau, Raudfjorden; Rp, Rijpfjorden; Sf: Sassenfjorden; SPC, Spitsbergen
Polar Current; Sme, Smeerenburgfjorden; StJ, St Jonsfjorden; Sto, Storfjorden; vKeu, Van Keulenfjorden; vMij, Van Mijenfjorden; Wij, Wijdefjorden; Woo, Woodfjorden; WSC, West
Spitsbergen Current. EPSG:32633 used as CRS.
Michniewski, 2007; Fraser et al., 2018; Nilsen et al., 2016; Tverberg
et al., 2019; Skogseth et al., 2020). The inner fjords and eastern waters
(e.g., Hinlopenstretet, Rijpfjorden, Storfjorden) regularly freeze over
with sea ice in winter that sometimes lasts into summer and beyond
(e.g., Skogseth et al., 2004; Onarheim et al., 2014; Isaksen et al.,
2016; Muckenhuber et al., 2016). Here, like in other Arctic coastal
environments, temporal variability in BWTs is further complicated
by factors that include the effects of water-terminating glaciers, sea
ice formation, and potentially (relic) subsea permafrost (Ruppel and
Kessler, 2017; Vadakkepuliyambatta et al., 2017; Ferré et al., 2020;
Marín-Moreno et al., 2013). Water column temperatures range from
freezing point (−1.9 ◦C) to upper single-digit centigrade (Cottier et al.,
3

2010; Promińska et al., 2018; Tverberg et al., 2019; Skogseth et al.,
2019, 2020), though variability is highest close to the water surface.

Long term mean annual surface air temperatures vary between
−3 ◦C and −10 ◦C over just a few tens of kilometres, with glacial cover
and permafrost featuring their greatest extent towards the north east.
Onshore, annual temperatures have risen by 0.9 ◦C and 1.6 ◦C per
decade in summer and winter, respectively, for the 1971–2017 period.
Ongoing warming affects slope stability and contributes to thawing
permafrost (Nordli et al., 2014; Hanssen-Bauer et al., 2019). Decadal
water column thermal trends already indicate advective heat transfer
into the fjord waters around Svalbard (Skogseth et al., 2020; Pavlov
et al., 2013; Promińska et al., 2018), and further heat-propagation into
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Table 1
Overview of all available datasets integrated in this study. Herein: CTD, conductivity–temperature–depth; MBES, multibeam echosounder.

Data type Location/extent Comments Source

Regional databases
Bathymetry and MBES All fjords 200 m resolution, locally 5 m Jakobsson et al. (2020), Norwegian Mapping

Authority: permission no. 13/G706, the University
Centre in Svalbard (UNIS)

Geological maps Onshore Svalbard and Isfjorden Mapped at 1:100000 scale in
most areas, at 1:250000 in east
Svalbard

Norwegian Polar Institute, NPI (2016)

CTD data All fjords Skogseth et al. (2019), this study (Table 4,
included in Appendix A)

Boreholes and dataloggers
Petroleum exploration
boreholes

18 sites onshore Svalbard Temperature and lithology control UNIS, Betlem et al. (2018), Midttømme et al.
(2015), Senger et al. (2019)

Research boreholes 8 wells in Adventdalen Full coring, wireline logs,
chemical and gas analysis

Braathen et al. (2012), Elvebakk (2010), Huq et al.
(2017), Ohm et al. (2019), Olaussen et al. (2019)

Geochemical sampling
(onshore)

Adventdalen pingos Chemical composition Hodson et al. (2019), Yoshikawa and Harada
(1995), Yoshikawa (1998)

Geochemical sampling
(offshore)

Isfjorden, Krossfjorden, Kongsfjorden,
Van Mijenfjorden, Bellsund, Hornsund,
Storfjorden

Chemical composition Knies et al. (2004), Liira et al. (2019), Weniger
et al. (2019)

Geophysical datasets
Seismic (2D) Most fjords and onshore Norsk Hydro, Equinor, Svalex, University in

Bergen, UNIS, Bælum and Braathen (2012), Bælum
et al. (2012), Blinova et al. (2012), Eiken (1985),
Mjelde (2005), Roy et al. (2014), Roy et al.
(2019), Senger et al. (2013)
(
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the sediments is likely (Ferré et al., 2012; Vadakkepuliyambatta et al.,
2017). An increased inflow of Atlantic Water in Isfjorden is linked to
an increase in mean fjord temperatures of 0.7 ◦C per decade in winter
and 0.6 ◦C per decade in summer. This coincides with a slight increase
in salinity levels over the 1987–2017 period (Skogseth et al., 2020).

Exploration borehole data (Fig. 3B) (Midttømme et al., 2015; Betlem
et al., 2018), xenoliths from Quaternary volcanism at Bockfjorden
(Banks et al., 1998), and hot springs around Svalbard (e.g., Salvigsen
and Elgersma, 1985; Reigstad et al., 2011) suggest above-average heat
flow values (Amundsen et al., 1988). Pan-archipelago geothermal gra-
dient measurements generally fall within the 25 to 40 ◦ C/km range
33 ◦C/km on average) (Betlem et al., 2018, 2019). Local geothermal
radients may be as high as 79 ◦C/km (e.g., Bockfjorden and Trollk-
eldene hot springs; Amundsen et al., 1988; Banks et al., 1998; Hoel
nd Holtedahl, 1911).

. Methods and data

We integrated all relevant data (Table 1) to calculate the GHSZ
xtent and thickness for the fjords around Svalbard building upon the
orkflow presented by Betlem et al. (2019). The workflow implements

tructure-I gas hydrate phase boundary curves generated through the
eriot Watt University thermodynamic hydrate (HWHydrate) model as
escribed by Tohidi et al. (1995) and Masoudi et al. (2004). HWHy-
rate implements the Valderrama modification of the Patel and Teja
quation of state (VPT EoS) (Valderrama, 1990), non-density dependent
ixing rules for polar–nonpolar and polar–polar interactions (Avlonitis

t al., 1994), and the Parrish (1972) implementation of the solid solu-
ion theory of Van Der Waals (1959). The Kihara model for spherical
olecules accounts for the effect of guest compounds in the hydrate
hase (Kihara, 1953). Salts, the only inhibitors used in this study, are
mplemented as pseudo-components with defined critical properties
nd acentric factors in a modified VPT EoS (Masoudi et al., 2004).

Chemo-thermo-baric condition input was as complex as the data
llowed, although bathymetric and computational efficiency limited
odelling cell sizes to 200 × 200 × 25 m for each of the fjords (i.e., the

ubsurface grid). The subsurface grid followed a 200 × 200 × 0.1
surface layer that functioned as an input layer for bottom-water

onditions and followed fjord bathymetry derived from IBCAOv4 data
Jakobsson et al., 2020), itself featuring a 200 × 200 m grid resolution
4

Fig. 3A). The centre points of each cell in the surface layer were
efined as grid point surface nodes.

Seafloor thermal regimes were dynamically calculated (Fig. 2) us-
ng all CTD data from the UNIS Hydrographic Database (UNIS HD,
kogseth et al., 2019) and combined with additional unpublished data
ets available for Isfjorden, Kongsfjorden, and Rijpfjorden (Table 4,
ncluded in Appendix A). CTD data originating from the UNIS HD were
etadata filtered by their quality key (‘‘Good’’). Points beyond the fjord

utlines and specific date–time intervals were removed. CTD data with
reatest depths differing by more than 25 m compared to the respective
athymetry depths were rejected, as depicted by the blue ‘‘1’’ entry in
ig. 2.

We applied dynamic lateral and vertical binning for the calculation
f synthetic temperature profiles to overcome the loss of depth-related
WT variations. At each grid point surface node, all CTD data within
iven a range were selected through use of the SciPy (Virtanen et al.,
020) spatial cKDTree nearest neighbour (NN) search algorithm. Data
hat fit both the NN zone and quality criteria were used as input for
he calculation of 10th, 50th and 90th percentile synthetic CTD profiles
or each grid point (Fig. 2). First, all accepted CTD data within a
adius were selected (schematically shown in Fig. 2A, red entries ‘‘2–
’’) and binned at 5 m intervals from sea level to greatest CTD depth.
he Kongsfjorden and Hinlopenstretet study areas implemented an NN
ange of 10 km, with the remaining study areas implementing a range
f 5 km. Equal weights were applied to all CTD data within range. 10th,
0th and 90th percentile temperature values were then calculated for
ach binned depth and stored in node-specific 10th, 50th and 90th
ercentile synthetic temperature profile. Percentiles were calculated
hrough use of the pandas Python-package quantile function, with the
‘linear’’ interpolation mode enabled (McKinney, 2011). Finally, the
ode-specific synthetic temperature profiles were queried with node-
pecific bathymetries to obtain the corresponding seafloor temperature
odels (p10-T, p50-T, p90-T) at each grid point surface node (Fig. 2B).
he median p50-T seafloor temperature model functioned as the base
ase scenario and the p10-T and p90-T models as end-member scenarios
or BWT variability.

Where sufficient data were available, temporal change was imple-
ented for 2D transects by constraining the CTD data with specific
ate–time intervals to assess seasonal, annual and decadal dynamics.
TD data collected beyond these intervals were rejected for those
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Table 2
Overview of the six scenarios employed in this study along with the associated input
parameters. Herein B and E resemble the thermal base case for respectively a pure
methane and 95:5 Me:Et hydrocarbon composition. BWT profile indicates which of the
statistical BWT temperature trends is applied to obtain the BWT at the grid point
surface node.

Scenario BWT
profile

Methane
fraction

Ethane
fraction

Salinity
(ppt)

Pressure Geothermal
gradient
(◦C/km)

A p10-T 0.95 0.05 35 Hydrostatic 33
B p50-T 0.95 0.05 35 Hydrostatic 33
C p90-T 0.95 0.05 35 Hydrostatic 33
D p10-T 1 0 35 Hydrostatic 33
E p50-T 1 0 35 Hydrostatic 33
F p90-T 1 0 35 Hydrostatic 33

specific calculations. Accurate implementation of BWT trends along the
well-defined Isfjorden transect through 20 multi-year CTD data clusters
followed the definition of seasons as per Skogseth et al. (2020). Winter
was defined around the seasonal sea ice low of March, i.e., January
through May, summer as July through the end of September. Seasonal
water column temperatures (50th percentile) for the decades spanning
2000–2009, 2010–2019 and 2020–2029 were calculated through use of
the NN approach (radius = 500 m) at 50 m intervals along the cross-
section connecting each of the CTD cluster locations. The 2020–2029
prediction implemented an additional warming of 0.7 and 0.6 ◦C per
ecade warming for winter and summer, respectively (Skogseth et al.,
020).

Subsurface geothermal conditions were extrapolated from the grid
oint surface node using averaged archipelago-wide steady-state
eothermal gradients (33 ◦C/km; Fig. 3B) (e.g., Betlem et al., 2019,
018; Midttømme et al., 2015).

Chemical compositions were mainly derived from hydrocarbon sam-
ling surveys (e.g. Liira et al., 2019, and references therein; Knies
t al., 2004; Weniger et al., 2019) within the fjords (Fig. 3C) and
rom petroleum exploration boreholes (e.g., Huq et al., 2017; Ohm
t al., 2019; Verba, 2007, 2013; Senger et al., 2019; Shkola, 1977),
nd constrained the hydrocarbon composition used for modelling. Two
ydrocarbon compositions were taken to investigate the GHSZ extent,
eing 100:0 pure methane and 95:5 methane-to-ethane (Me:Et). Given
nly minor variations in bottom-water salinities were observed in CTD
ata, water column and pore-water salinities were kept constant at 35
pt for chemo-baric calculations (i.e., NGH phase boundary and sub-
urface pressure regime). This gave rise to the six modelling scenarios
mployed in this study (Table 2).

Additional water column and marine geology information was ac-
uired as part of cruise HE-449 on research vessel R/V Heincke in
ugust 2015 (Römer and Mau, 2015). The findings supplement existing
nowledge on pockmarks, shallow gas trapped in glacial sediments, and
coustic flares in Isfjorden (Roy et al., 2019, 2014, 2016, 2015). R/V
eincke is equipped with a Kongsberg EM710 multibeam echosounder
perating at frequencies of 70–100 kHz that allowed for the detection
f such high backscatter anomalies as those caused by gas bubbles,
.e., flares. Water column records were analysed using QPS Fledermaus
ools and the FMMidwater module, using the FMGeopickingTool to
xtract the flare source point data as point data (Table 5, included in
ppendix A).

The integrated analysis of key geotransect seismic data implements
he transect described by Blinova et al. (2012). Inclusion of the mod-
lled GHSZ data implemented the time-depth conversion using v =

1470 m/s and v = 4000 m/s for the water column and compacted
sediments (e.g., Bælum and Braathen, 2012; Elverhoi and Gronlie,
5

1981; Blinova et al., 2012), respectively.
Table 3
Key GHSZ modelling results for Svalbard’s modelled fjords (overall) and Isfjorden.
Table 2 provides the input parameters for the six distinct scenarios A–F.

Location Scenario Max upper
boundary depth
(mbsl)

Max lower
boundary
depth (mbsl)

Lateral
extent
(%)

Figure

Overall A 125 350 10.4 Fig. 5A
Overall B 125 350 4.6 Fig. 5B
Overall C 0 250 1.4 Fig. 5C
Overall D 125 350 6.8 Fig. 5D
Overall E 50 250 2.6 Fig. 5E
Overall F 0 250 0.5 Fig. 5F

Isfjorden A 125 350 28.8 Fig. 6A
Isfjorden B 125 350 14.9 Fig. 6B
Isfjorden C 100 350 7.4 Fig. 6C
Isfjorden D 25 250 3.6 Fig. 6D
Isfjorden E 0 225 2.6 Fig. 6E
Isfjorden F 0 225 0.8 Fig. 6F

3. Results

Table 3 provides the cumulative results of all study areas for the six
scenarios (A–F) listed in Table 2. These also cover the Isfjorden study,
which forms a data-rich case study that may help address findings
in the other study areas. An extended version of Table 3 covers the
remaining fjords and is included as an electronic supplement (Table
6, included in Appendix A). The electronic supplement also includes
zoom-ins covering the fjords that feature a predicted GHSZ, along with
the locations of tributary fjords mentioned in the main text.

CTD data density and bottom-water temperature trends
The grid point-dependent water column temperature (10th, 50th,

90th percentile) profiles resulted in the BWT (p10-T, p50-T and p90-
T) models shown in Fig. 4. Each BWT model featured empty patches
where data scarcity was indicated by low (and even zero) CTD-point
density areas in Fig. 3B. Parts of the inner fjords and shallows were
mainly affected by an insufficient spatial cover, as indicated by low
CTD data density. CTD data coverage was greatest for the fjords where
a 5 km NN radius was employed. Coverage ranges from 100% for
Magdalenefjorden and Hornsund to 85% for Rijpfjorden. Lower values
were observed for Hinlopenstretet (81%) and Storfjorden (91%) even
while implementing a wider 10 km NN range. Low data coverage was
most notable for the southern part of Hinlopenstretet, and the most
northern part of Storfjorden. Minor gaps were furthermore observed
near 19.5 ◦ E and 78.2 ◦ N in Storfjorden.

Across the study areas, the lowest modelled BWTs corresponded
with the freezing point of saline water (−1.9 ◦C, 35 ppt salinity). Ther-
mal lows were observed near glacier fronts and at shallower and/or
barricaded inner fjords, as seen at barrier-forming islands of Akseløya
and Mariaholmen (see also Høyland, 2009; Skarðhamar and Svendsen,
2010). Rijpfjorden and Storfjorden feature colder depth-temperature
trends. Mean values for the p10-T, p50-T and p90-T models all fall
within a 0 +− 1.3 ◦C range. The western fjords feature considerably
higher variations, as seen for Isfjorden (mean p10-T: 0 ◦C, mean p50-
T: 1.6 ◦C, mean p90-T: 3.1 ◦C) and Kongsfjorden-Krossfjorden (0.5,
2.2, 3.5 ◦C). Thermal regimes in the west are warmer. Maxima in
the implemented raw data locally pass 8 ◦C in Bellsund and 7 ◦C in
Isfjorden, compared to maxima of 5.4 ◦C in Rijpfjorden and 4.4 ◦C in
Storfjorden.

3.1. GHSZ in Svalbard’s fjords

Six scenarios were modelled to predict the GHSZ extent and thick-
ness in Svalbard’s fjords (Fig. 5). With the exception of Bellsund, Mag-
dalenefjorden and St. Jonsfjorden, the models predicted NGH stability
for all fjords under at least the most favourable scenarios (p10-T ther-
mal and 95:5 Me:Et conditions). At base case p50-T thermal conditions
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Fig. 2. Nearest neighbour (NN) approach for calculating BWTs at each of the grid point surface nodes. CTD data points beyond the NN zone (numberless stars, A) are ignored in
the calculation (B), as are points that are rejected on grounds discussed in the text (star 1). CTD data that fit both the NN zone and other constraints (stars 2–5) are binned and
used to calculate 10th, 50th, and 90th percentile temperature profiles. Grid point node temperatures (p10-T, p50-T, p90-T) are then retrieved from these statistical profiles at the
corresponding grid point node depth. This is repeated for all grid point surface nodes in the grid.

Fig. 3. Overview of key input data. (A) Overview of available bathymetry (Jakobsson et al., 2020) within the study areas. Approximate geothermal gradient estimates given in
(B) are in ◦ C/km (Midttømme et al., 2015; Betlem et al., 2018). CTD data density is based on a combination of the UNIS Hydrographic database (Skogseth et al., 2019) and
unpublished data (Table 4, included in Appendix A). (C) Hydrocarbon shows in boreholes from Senger et al. (2019). Maps implement EPSG:32633 as the CRS.

Fig. 4. Modelled temperatures of the fjords based on the 10th, 50th, and 90th percentile temperature profiles calculated at each surface grid point node. Maps implement
EPSG:32633 as the CRS.
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Fig. 5. Predicted GHSZ extent and thickness for the studied fjords around Svalbard. Throughout this figure and the next, temperature increases towards the right, and pure methane
and 95:5 Me:Et scenarios are split horizontally. Geoscientific data courtesy Norwegian Polar Institute (Dallmann et al., 2015). Maps implement EPSG:32633 as the CRS.
NGH-stable regimes were predicted for Hinlopenstretet (Table 6; B:
95:5 Me:Et, E: 100:0 Me:Et), Isfjorden (B, E), Kongsfjorden-Krossfjorden
(B, E), Raudfjorden (B), Rijpfjorden (B, E), Smeerenburgfjorden (B),
Storfjorden (B) and Woodfjorden (B). Overall lateral extent varied
between 4.6% fjords extent for 95:5 Me:Et conditions and 2.6% for
100:0 Me:Et conditions. Maximum GHSZ thicknesses of up to 350 m
and 250 m were predicted, respectively.

Strong variations in the predicted GHSZ extent are observed be-
tween the different BWT models. For the Kongsfjorden-Krossfjorden
area the p10-T thermal conditions give rise to 31.7% (Kongsfjorden
A) lateral cover versus only 0.2% for the p90-T thermal conditions
(Kongsfjorden F). Implementation of the p10-T thermal and 95:5 Me:Et
conditions (Table 6; Overall A) led to calculated GHSZ thicknesses
of up to 350 m down from the seafloor. As much as 10.4% of the
lateral extent of the total modelled fjord area was predicted to be
hydrate-stable.

In general, p10-T BWT trends resulted in the largest modelled GHSZ
extent (A, D), which was further enlarged by the presence of higher or-
der hydrocarbons (A). Smaller extents were predicted for the scenarios
featuring pure methane compositions (D–F) and p90-T BWT conditions
(C, F). Only the deepest parts of Isfjorden, Kongsfjorden-Krossfjorden,
Hinlopenstretet, and Rijpfjorden featured NGH stable domains when
implementing both (F). For all areas the GHSZ retreat was paired with
thinning and dispersion.

Irrespective of the model scenario, the predicted GHSZ was thickest
in the deepest parts of the fjords (>200 m depth) and thinnest towards
7

the coast. Towards the outer rim of the zone’s spatial extent in thick-
to-thin GHSZ transects, the upper boundary of the GHSZ sometimes
deflected downward and away from the seafloor by as much as 125
m. Zones with deflected upper boundaries were most pronounced for
the scenarios in which the GHSZ was at its thickest and greatest lateral
extent (A–C). Boundary deflection reduced in prominence for warmer
and pure methane scenarios (F).

3.1.1. Isfjorden
The predicted GHSZ for Isfjorden (Fig. 6) shows that the deep basin

at the mouth of Isfjorden consistently featured the thickest parts of the
GHSZ, corresponding to the deepest section of the fjord. Water depths
exceeding 400 m generated GHSZ thicknesses ranging from 350 m (A)
to less than 100 m (F). Normalised lateral extent varied between 28.8%
for the p10-T thermal and 95:5 Me:Et conditions (A) and 0.8% for p90-
T thermal and 100:0 Me:Et conditions (F). In comparison, the p50-T
base case condition scenarios gave rise to normalised lateral extents of
14.9% (B) and 2.6% (E), respectively.

For the three 95:5 Me:Et scenarios (Fig. 6A–C), the GHSZ is pre-
dicted to extend into inner Isfjorden. The GHSZ covers outcropping
strata ranging in age from the Palaeogene to Carboniferous and cov-
ers several organic-rich sequences that include the shale-dominated
Agardhfjellet Formation associated with shale gas in Adventdalen and
in the Tromsøbreen petroleum exploration well (Ohm et al., 2019).
Major faults, which may act as potential fluid migration pathways and



Journal of Natural Gas Science and Engineering 94 (2021) 104127P. Betlem et al.
Fig. 6. Predicted GHSZ thickness and extent for Isfjorden. Seepage features (i.e., pockmarks, flares) are only plotted in (F) for clarity purpose. Geoscientific data courtesy Norwegian
Polar Institute (Dallmann et al., 2015) and Blinova et al. (2012). Maps implement EPSG:32633 as the CRS.
are closely associated with dense pockmark clusters (Roy et al., 2019,
2015), intersect with the GHSZ (Fig. 6).

The predicted GHSZ implementing the p10-T low-temperature end-
member case scenario and 95:5 Me:Et conditions (A) covers 409 of
the 1304 known pockmarks and 21 of the 33 identified flare sites in
Isfjorden. These include the eleven flares newly identified along the two
key transects (Table 5, included in Appendix A). Dispersed pockets of
NGH stability are predicted to occur in inner Billefjorden in proximity
to the minor oil discovery reported from a coal exploration borehole.
The dispersed pockets increase in thickness towards Adolfbukta. Parts
of these pockets are predicted to remain stable under p50-T and p90-
T 95:5 Me:Et configurations (B, C). The implementation of p50-T and
p90-T thermal conditions resulted in a retreat of the modelled GHSZ
to a dispersed corridor along the SW-NE axis. The lateral extent was
limited to 14.9% and 7.4% of the fjord, respectively. The amount of
upper boundary deflection decreased simultaneously, with next to no
bulging noticeable for the p90-T 95:5 Me:Et scenario.

The three scenarios implementing 100:0 Me:Et compositions saw
the calculated GHSZ limited to a small patch in the south-western
part of the study area. This area coincides with the deepest part of
Isfjorden, where thermobaric stability appears to be less sensitive to
thermal variability and dominated by the pressure component. While
several pockmarks are still in proximity (but no longer within) the
GHSZ, none of the flares are. Coupled with the p90-T thermal regime
(F), the modelled lateral extent covered less than 1% of the fjord area,
a factor 36 areal decrease compared to A and a factor 9 compared to
scenario C.

Isfjorden cross-section. The impact of thermal conditions on GHSZ
thickness is illustrated in Fig. 7 through implementation of the p10-T
(A) and p90-T (B) thermal models along a key geotransect (Blinova
et al., 2012). While zones of NGH-stability are predicted for 95:5
8

Me:Et gas compositions, no such zones are predicted for pure methane
compositions. The GHSZ is shown to retreat and disperse when defined
by the less-favourable p90-T thermal conditions. Locally, zones of upper
phase boundary deflection are transected, which are identified as local
GHSZ patches starting at depths below the seafloor.

The transect passes through the CSB and covers outcropping units
of Quaternary-Carboniferous age, with older strata observed towards
the east. Several faults reach the seafloor over the length of the cross-
section, including the large regional BFZ. Pockmarks and flares are
found within 250 m of the transect and generally near surfacing faults
and/or sub-cropping thrusts. Along with organic-rich mudstones, these
fluid conduits are found within or near the predicted hydrate-stable
regime. There is no clear indication of bottom-simulating reflectors
(BSRs) in seismic lines ST8815-222 and ST8515-121 (Fig. 7).

Temporal cross-sections in Isfjorden. GHSZ variability results from
seasonal-decadal changes in water column and bottom-water tem-
peratures are shown in Fig. 8 along the established Isfjorden tran-
sect (Skogseth et al., 2020). Each of the four historical mean water
column and bottom-water temperature trends (A–D) show a general
temperature decrease along the profile from CTD location 1 to 20.
Lower temperatures are observed for the winter months (A, C) and
higher temperatures for the summer seasons (B, D). The highest fluctu-
ations are found close to the surface and in shallow waters. Comparison
between winters and summers also illustrates the barrier effect. Even
in summer, cold and dense water remains trapped and shielded from
the inflow of warm water from the shelf behind the igneous sill found
near CTD cluster location 14.

Pure methane hydrate stability is only observed for the 2000–2009
winter p50-T thermal regimes. Winter-on-winter comparison shows a
decrease of 50%, and the lower phase boundary retreated from a
maximum depth of 310 m to 230 m for a 95:5 Me:Et gas composition. A
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Fig. 7. Key geological cross-section from seismic interpretation by Blinova et al. (2012) overlain with GHSZ extents for the p10-T (A) and p90-T (B) BWT conditions. Pockmarks
and flares within 250 m from the transect are projected along the seafloor. Some of the pockmarks are within 5–10 m of the seismic section and have been closely associated
with sub-cropping thrusts (Roy et al., 2019, 2016, 2015, 2014). Faults and stratigraphic interpretations are not shown in the bottom profile to illustrate the seismic image clearly.
The location of the seismic transect across Isfjorden is shown in the inset geological map (Blinova et al., 2012). Pockmarks and flares within 250 m of the transect have been
projected onto the profile. BFZ: Billefjorden Fault Zone.
smaller retreat (225 m to 210 m) was found for the summer-on-summer
comparison (−25%), which was in line with seasonal-decadal thermal
variations. While mostly governed by the upward migration of the base
of the stability zone, vertical thinning also resulted from a significant
retreat of the upper boundary. Fig. 6E and F show this and the overall
GHSZ retreat when the current value of decadal warming (0.7 and
0.6 ◦C per decade for winter and summer, respectively) was applied to
the 2010–2019 interval. Further fragmentation coincided with vertical
thinning and retreat of the upper boundary, as evident from the GHSZ
extent between CTD cluster locations 17 and 20. In comparison with
A and B, maximum thicknesses for E and F were limited to 155 m and
125 m, respectively, and the corresponding extents for E and F were
reduced to just 17% and 24% of those recorded for A and B. Winter
extent of the GHSZ along the transect surpassed summer extent by 60
to 130% for each decade, but generally followed a similar but stronger
trend of decline.

Several pockmarks and flare locations are found near the maxi-
mum extent of GHSZ variability. The dynamic behaviour of the GHSZ
illustrates the dynamicity and temperature-relation of vertical GHSZ
extent and the zone’s downward propagation from the seafloor. An
example hereof is found between the CTD cluster locations 18 and
20. Separation of the upper phase boundary and the seafloor gradually
leads to the full dissociation of the local GHSZ as the thermal regimes
increases from A through F, simultaneously softening the rounded
distortion (‘‘bulge’’; Fig. 8) of the zone’s outer perimeter.

4. Discussion

To correctly assess marine GHSZ potential in its geological con-
text, special attention is first given to the implemented chemothermal
conditions and parameter impact assessment. We then put the model
outcomes into a geological perspective to narrow down the scope of
future exploration efforts in Isfjorden and beyond.
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4.1. Model parameter sensitivity analysis

Betlem et al. (2019) provides an extensive sensitivity analysis cov-
ering the impact of e.g. geothermal gradients, surface thermal regimes
and chemical compositions on GHSZ extent onshore Svalbard. As this
contribution implemented few of the same data sources, the discussion
that follows only provides a brief overview of the aspects significantly
differing from Betlem et al. (2019).

The NN approach provides an alternative to the common approaches
of e.g. fixed-extent binning and kriging. The method was designed to
better capture the CTD data’s full water column data while foregoing
a potentially computationally-heavy method (e.g., Wojciech, 2018)
applied to thousands of datasets with up to hundreds entries each.

Small changes in bathymetry have been shown to affect thermal
water column conditions as Svalbard’s fjords are stratified (e.g., Mau
et al., 2013; Skogseth et al., 2020). In Svalbard’s shallow fjords the
bathymetry changes significantly even within small areas, and such
changes have a big impact on local conditions. This is for example
evident from Adolfbukta in inner Billefjorden, where deeper depths
and colder waters are found behind the shallow igneous sill and in
proximity to the retreating Nordenskiöld glacier (Rachlewicz et al.,
2007; Nilsen et al., 2008; Skogseth et al., 2020). Both the dynamic
binning extent and the interpolation of BWTs from available mid-water
column data are thus needed to account for local conditions.

When only CTD data within the NN radius are considered, areas
with sub-ideal CTD data coverage (e.g., single year, single season;
Fig. 2) adversely affected the range and statistical characterisation
of water column trends and BWTs. This is locally seen in the non-
uniqueness of the BWTs associated with the p50-T base case and
the p10-T and p90-T end-member cases (Fig. 4) and likely to have
happened regardless of the interpolation method used. For example,
areas like eastern Van Keulenfjorden feature unexpectedly high BWTs
irrespective of the scenario. With sea ice present well into the sum-
mer, such local anomalies likely result from data scarcity and/or sea-
sonal sampling bias. While the local data scarcity and non-uniqueness
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Fig. 8. Temporal GHSZ cross-sections along 20 high-confidence CTD data-cluster sites in Isfjorden. Water column temperature calculations implemented all CTD within a 500 m
NN radius within the specified date–time ranges and allowed for a 25 m depth discrepancy between CTD and bathymetry. Inset: location of pockmarks, known flares, and the
transect and CTD data-cluster sites in Isfjorden. Pockmarks and flares within 250 m of the transect have been projected onto the profile.
complicates the quantification of the BWT variability and lowers the
confidence of the calculated GHSZ in those areas, it does not affect con-
fidence in the archipelago-wide analysis as a whole. The archipelago-
wide analysis of p10 and p90 BWT end-member cases provide useful
constraints.

The 10th and 90th percentile end-members were primarily taken
based on the distribution of water column temperature data within
Svalbard’s fjords. More specifically, the chosen end-members best re-
sembled the coldest and warmest of the multitude of seasonal types and
associated temperature trends observed in Isfjorden (Skogseth et al.,
2020). Indeed, this captures the skewed distribution of water column
temperature as a result of sea ice formation (lower limit of −1.9 ◦C).
The chosen end-members are thus linked to known phenomena and
provide qualitative insights into how they may affect the GHSZ.

Only limited variability in salinity was observed for Svalbard’s
fjords. Salinity concentrations were mostly limited to the uppermost
40–50 m of the water column and deviated by no more than a few
ppt from the 35 ppt salinity assumption. The impact of such deviations
on the phase boundary curves is negligible compared to other uncer-
tainties. As such, it did not warrant the inclusion of geospatial salinity
calculations through the NN method.
10
4.2. A hybrid setting - the impact of lateral and temporal temperature
change

Parts of Svalbard’s fjords feature cold (T < −1.5 ◦C) and dense
water even in summer (e.g., Skogseth et al., 2020). Analogous to the
Laptev Sea, where subsea permafrost is widespread (e.g., Delisle, 2000),
discontinuous, shallow subsea permafrost may be present in Svalbard’s
shallow fjords. Indeed, it is perhaps not surprising that the modelled
GHSZ feature aspects more commonly associated with the permafrost-
affected hydrate setting (Ruppel, 2011; Ruppel and Kessler, 2017),
including the behaviour in which NGH are not necessarily stable at
the seafloor or surface. As seen in Fig. 8, hydrate-stable conditions
are locally only met at a certain depth below the seafloor. Small
changes in bathymetry are seemingly enough to tip the thermobaric
conditions in or out of the hydrate stable regime at the seafloor (Fig. 9).
This results in a ‘‘bulge’’ where the seafloor shoals upwards, with
the thermobaric conditions in the subsurface increasingly beyond the
hydrate stable regime (Fig. 9, a transition from 4 to 3). Ultimately, the
thermobaric regimes become hydrate unstable altogether (e.g., 2 to 1).
This phenomenon has previously been associated with shallow marine
waters in low geothermal gradient settings (Gorman and Senger, 2010)
and in deeper marine environments at high latitudes (Ruppel, 2011).
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Fig. 9. Schematic of possible GHSZ conditions within Svalbard’s fjords for a pure methane and 95:5 Me:Et gas feed. Conditions include NGH unstable (1), stable at depth (2,3), and
stable at seafloor (4) thermobaric conditions. The seafloor thermobaric conditions are indicated by a dot for each situation, with the dashed lines indicating subsurface thermobaric
conditions (hydrostatic pressure, 33 ◦C/km geothermal gradient). Each condition contains a reference to a representative location along the transect depicted in Fig. 8. This is
either the CTD data station (‘‘18’’) or a location between two CTD data stations (‘‘6/7’’).
Such behaviour is further common for the onshore setting (e.g., Betlem
et al., 2019; Ruppel and Kessler, 2017), where the GHSZ rarely extends
downwards from the surface.

The hybrid setting predicted for the majority of Svalbard’s fjords
appears to fluctuate around a tipping point of bottom-water NGH
stability, a state not unlike that predicted for onshore Svalbard (Betlem
et al., 2019). This is a fragile balance likely affected by the observed
increase in water column temperatures in Svalbard’s fjords. In and
around Svalbard, seasonal depths of zero amplitude vary between 5
and 10 m, with higher seasonal seafloor temperature differences giving
rise to deeper penetrations. Where present within this interval, seasonal
warming has the potential to destabilise the shallowest part of the GHSZ
(Wallmann et al., 2018; Riedel et al., 2018).

Decadal trends generally have a deeper penetration into the sub-
surface than seasonal temperature fluctuations. Reflecting this, the
archipelago-wide modelling results indicate an ongoing destabilisation
of the GHSZ in Svalbard’s fjords. This trend likely becomes increasingly
permanent in a warming Arctic as future winter conditions approach
the warmest of current summer conditions (Fig. 8E and F). Based
on median climate response scenarios, temperatures in the Arctic are
predicted to increase by as much as 13 ◦C (Overland et al., 2014). The
surface heat is likely to propagate through the water column and into
the sediments. Already at a tipping point of hydrate stability, decadal
warming of the water column is likely to cause the GHSZ to thin
and retreat to deeper waters before disappearing altogether. Based on
the modelling outcomes, destabilisation of Svalbard’s near-shore GHSZ
potential is possible within the next two to three decades.

4.3. Potential hotspots in Isfjorden and beyond: source rocks and fluid seeps

The absence of BSRs does not rule out NGH and may be explained
through many possible reasons (Majumdar et al., 2016). Hard fjord
bottom, high velocity sediments and poor-quality 2D seismic data make
11
the identification of BSRs especially difficult. No bottom simulating
reflectors (BSRs) have been identified in Svalbard so far. This com-
plicates targeted surveying that is needed to validate our models. The
predicted GHSZ extents thus function primarily as constraints for future
exploration: combined with geological knowledge and water column
data, the models provide best-estimates on where to look next.

Major NS trending fault systems, thrust faults associated with
Palaeogene transpression (Blinova et al., 2012; Roy et al., 2019) and
igneous intrusions (Senger et al., 2013) provide potential fluid mi-
gration pathways. High resolution acoustic shallow sub-bottom data,
shale-gas containing formations outcropping at the seafloor, methane
supersaturation, and the documented occurrence of flares in the water
column support widespread gas migration. NGH stability is predicted
for many of these areas. Enhanced acoustic reflections indicative of
shallow gas accumulations have been observed within the penetration
depth of seasonal temperature fluctuation (Roy et al., 2014, 2019).
Where present, NGH may give rise to the phenomenon of seasonal
gas migration that has previously been observed offshore Svalbard
(e.g., Ferré et al., 2020; Portnov et al., 2016). Indeed, seasonally-
unstable NGH may contribute to the pronounced seasonal and spatial
variations in the methane excess levels in Isfjorden (Damm et al., 2021).
Future exploration should focus on the pressure coring of sediment-core
samples and the occurrence of gas seepage within the modelled GHSZ
extent, not least addressing the potential occurrence of temporal NGH
destabilisation within Svalbard’s fjords.

Svalbard’s geological record comprises organic-rich source rocks at
a number of stratigraphic intervals. In central Spitsbergen, some of
these, particularly the organic-rich sequences that make up the Agard-
hfjellet Formation and Botneheia Formation, may act as unconventional
reservoirs hosting shale gas (Fig. 1). Where these are present within the
GHSZ, it is possible to envision naturally occurring disseminated NGHs
within these zones. Elsewhere, methane-dominated and even biogenic
NGH may occur at greater depth where thermobaric conditions remain
hydrate-favourable throughout the year.
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5. Conclusion

In this study we calculated the gas hydrate stability zone (GHSZ)
for Svalbard’s fjords based on statistically determined bottom-water
temperature (BWT) trends. We implemented gas feeds consisting of
pure methane (e.g., biogenic origins) and gas comprising 95% methane
and 5% ethane. The assessment of the generated GHSZ models led
to the following conclusions regarding the natural gas hydrate (NGH)
formation potential in Svalbard’s fjords:

• Hydrate stability varies significantly between the 50th percentile
BWT base case scenario and the statistically determined 10th and
90th percentile BWT end-members.

• Pure methane gas hydrate-stable conditions are only met in the
deepest parts of Isfjorden, Hinlopenstretet, Kross- and Kongsfjor-
den, and Rijpfjorden.

• The GHSZ is more extensive and thicker for gas compositions with
higher percentages of higher-order hydrocarbons.

• Proven source rocks and an active petroleum system increase the
likelihood of thermogenic NGH occurrence in Svalbard’s fjords.
The possibility of hydrate formation with higher-order hydro-
carbons is further strengthened by the presence of shallow gas
and active gas seepage within the fjords as evidenced by seepage
features, some of which newly identified in this study.

• Decadal temperature change negatively impacts GHSZ extent,
possibly resulting in a complete disappearance of the GHSZ in
Svalbard’s fjords if current warming trends continue.

In summary, the majority of Svalbard’s fjords feature suitable ther-
obaric conditions, an active petroleum system, and ongoing fluid

eepage that fulfil the main hydrate formation criteria. The assessment
onducted in this study is the first step to establish near-shore Svalbard
s a potential NGH province. Where shale gas-bearing formations are
resent within the GHSZ, it is easy to envision naturally occurring dis-
eminated gas hydrate within these zones. This is possibly the case for
he flares identified in Isfjorden, which are the current best candidates
or where to look next for naturally occurring gas hydrates in Svalbard.
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