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Abstract

We define the pAPN-spectrum (which is a measure of how close a function is
to being APN) of an (n,n)-function F and investigate how its size changes when
two of the outputs of a given function F' are swapped. We completely characterize
the behavior of the pAPN-spectrum under swapping outputs when F' is the inverse
function over Fan. We further theoretically investigate this behavior for functions
from the Gold and Welch monomial APN families, and experimentally determine
the size of the pAPN-spectrum after swapping outputs for representatives from all
infinite monomial APN families up to dimension n = 10; based on our computation
results, we conjecture that the inverse function is the only monomial APN function
for which swapping two its outputs can leave an empty pAPN-spectrum.
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1 Introduction

Let Fon be the finite field with 2™ elements for some positive integer n. We call a function
from Fon to Fo a Boolean function on n variables. We will denote the set of all such
functions by B,,. We shall denote by % or 1/a the multiplicative inverse of a in Fon,
adopting the usual convention % =1/0=0.

For a Boolean function f : Fon — Fa, we define the Walsh-Hadamard transform to
be the integer valued function

Wi (u) = Z (—1)f @+T (uz)
z€Fon
where Tr} : Fon — [y is the absolute trace function, Trf (z) = Z?;()l .

A vectorial Boolean function, or (n,m)-function, is a map F : F} — FZ', for some
positive integers m and n. When m = n, it can be uniquely represented as a univariate
polynomial over Fan (using the natural identification of the finite field Fon with the
vector space Fy, via some basis) of the form

2n—1
F(z) = Z a;zt, a; € Fon.
i=0

The binary weight wa(i) of a positive integer i is the number of non-zero bits in its
binary expansion, i.e. wy(i) = ZJK:O b;, where i = Z]K:o b;27 for some positive integer K
and for b; € {0,1}, where the sums involved are being computed over the integers. The
algebraic degree of F' is then the largest binary weight of an exponent i with a; # 0. For
an (n,n)-function F' and for a,b € Fon, we define the Walsh transform Weg(a, b) of F' to
be the Walsh-Hadamard transform of its component function Tr} (bF(x)) at a, that is,

WF(CL,b) _ Z (_1)Tr?(bF(x)+ax).

zE€Fon

For an (n,n)-function F, and a,b € Fan, we let Ap(a,b) = {z € Fan |F(z + a) +
F(z) = b}|. We call the quantity Ap = max{Ar(a,b) : a,b € Fan,a # 0} the differential
uniformity of F'. If Ap = 0§, then we say that F is differentially J-uniform. Since z + a
is a solution to F'(xz + a) + F(x) = b whenever z is, the differential uniformity is always
even and is thus at least 2 for any F. If § = 2, then F' is an almost perfect nonlinear
(APN) function.

For an (n,n)-function F' and an element a € Fan, the function D, F(z) = F(a +
x) + F(z) is called the (first-order) derivative of F in direction a. In this way, the
number Ap(a,b) can be interpreted as the number of solutions z € Fan to the equation
D,F(x) = b. From this point of view, a function F' is APN if and only if all of its
derivatives D, F' for a # 0 are 2-to-1 functions.

APN functions are of significant interest in cryptography for the construction of block
ciphers since they provide optimal resistance to differential cryptanalysis. Furthermore,



some classes of APN functions correspond to optimal objects in other areas of mathemat-
ics and computer science, such as coding theory, projective geometry, and combinatorial
design theory. Nonetheless, being cryptographically strong functions, APN functions
are by design unpredictable and difficult to construct and analyze. For the purpose of
making their analysis more tractable, a number of characterizations of APN-ness have
been derived and can be found in the literature (see, for instance, [3, [7, 8, [19]). We give
some of them below.

Lemma 1. Let F be an (n,n)-function.

(i) We always have
> Wila,b) > 2932771 - 1),
a,bEFQn
with equality if and only if F' is APN.

(13) If, in addition, F is APN and satisfies F(0) = 0, then

> Wi(a,b) =221 (327 - 1),
a,bEFQn

(ti1) (Janwa- Wilson-Rodier Conditiorﬂ) F is APN if and only if all the points x,y,z €
Fon satisfying
Flz)+F(ly)+ F(z2)+ F(zr+y+2)=0

belong to the surface (x +y)(z+ 2)(y + 2z) = 0.

Along with S. Kwon, we introduced in [4] a notion of partial APN-ness in our attempt

to resolve a conjecture on the upper bound on the algebraic degree of APN functions [3].

For a fixed xg € Fan, we call an (n,n)-function a (partial) xo-APN function (which we

typically refer to as xo-APN, partially APN, or just pAPN, for short) if all points, z, y
satisfying

F(xo)+ F(z)+ F(y) + Fleo+2+y) =0 (1)

belong to the curve
(0 + z)(z0 + y)(z +y) = 0. (2)

We will also refer to as the Janwa-Wilson-Rodier equation; the Janwa-Wilson-Rodier
condition then essentially states that has no solutions = outside of the curve (xg +
z)(zo +y)(x +y) =0.

We will refer to the set of points xg € Fon for which a function is zg-APN as the
pAPN-spectrum of the function. Certainly, a function is APN if and only if it is z¢o-APN
for every point xg; that is, its pAPN-spectrum is Fon.

An alternate way to express the fact that a given function F' is 2¢-APN is to say that
for any a # 0 the equation F(z + a) + F(z) = F(z9+ a) + F(x¢) has only two solutions

!We have been calling this the “Rodier condition”, but we realized that it did occur in the literature
prior to Rodier’s work, for power monomials in [I1], so we will now call it by the three names.



x, namely = zy and = x¢ + a. An interesting approach is taken in [13], where it was
observed that the partial APN concept is connected to the notion of a partial quadruple
system (an instance of the much more general class of configurations called packings).

Another interpretation (observed by one of our reviewers) of partial APN-ness is the
following: for an (n,n)-function F on Fan, let D be the graph {(z, F'(z)) : x € Fan}
of the function F, and let a,b € Fan. Let D + (a,b) denote the shift of D by (a,b).
Then the DDT (difference distribution table) is the array whose (a,b) position is the
intersection size of D N (D + (a,b)). The vectorial DDT does not just tabulate the sizes
of the intersections, but the set of elements in D N (D + (a,b)). Then, xg € Fan is an
element in the pAPN-spectrum of F' if and only if (xg, F(z9)) € D is not contained in
any of these intersections provided the intersection has size at least 4. So the points in
the pAPN-spectrum are exactly those which are never in the large intersections.

In this paper we show an intriguing property of the inverse, Gold and Welch functions:
swapping two of their output values leads to a reduction in the size of their pAPN-
spectra; in some cases, this reduction is quite significant. This shows that the effect of
swapping two points in a given function can be quite unpredictable: as shown in [21],
swapping two points of an APN function cannot increase the differential uniformity to
more than 4; we note that differentially 4-uniform functions can be seen as a weakening
of APN functions. In this sense, a function obtained from a two-point swap from an APN
function is “close to APN” from the point of view of its differential uniformity. Since
the notion of a partially APN function is itself a relaxation of that of an APN function,
one would naturally expect that swapping two points in an APN function should give a
function that is “close to APN” from the point of view partial APN-ness as well; instead,
we see that the pAPN-spectrum can be reduced from full to empty by such an operation.
Furthermore, Theorems [4] [6] and [§| show that characterizing which elements of the field
belong to the pAPN-spectrum of such a function is, in general, very difficult.

The structure of the paper is as follows: in Section |2 we recall the conditions on
the existence of solutions for quadratic and cubic equations over binary finite fields, we
describe the Janwa-Wilson-Rodier equation for the swapping of two points, and prove
that, for a function F satisfying Ap(a,b) # 2 for any a,b € Fan, both F' and any function
obtained by swapping two of its outputs, have an empty pAPN-spectrum. In Section
we discuss the pAPN property for the inverse function swapped at two outputs, and we
completely characterize the cases in which the resulting function has an empty pAPN-
spectrum. In Sections [ and [5], we discuss the pAPN property for the Gold and Welch
function swapped at two outputs. Finally, in Appendix [A] we give computational results
for each of the infinite APN monomial families over Fan (except for the inverse, since it
is characterized in Section [3]) for 4 < n < 10. As discussed there, and according to these
experimental results, it appears that the inverse APN function is the only monomial
APN function whose pAPN-spectrum can be reduced to the empty set by a two-point
swap.



2 Considerations and useful remarks

Throughout the paper, we shall be using the following result from [1} 20], which describes
the existence of solutions for quadratic and cubic equations over binary finite fields.

Theorem 2. Let n be a natural number, and consider the finite field Fon.

(1) The equation 2% 4+ ax +b =0, with a,b € Fan, a # 0, has solutions in Fon if and
only if Tr} (a%) = 0. Otherwise, its two solutions are in Fozn.

(2) The equation x®+ ax +b = 0, with a,b € Fan, b # 0, has, denoting by t1,ts for the
roots of t2 + bt +a® = 0 (note that these are in Fon or Foan, see above):
(i) three solutions in Fon if and only if Tr}(a®/b?) = Tr'(1) and t1,ts are cubes
in Fon for n even, and in Fo2n for n odd;
(ii) a unique solution in Fon if and only if Tt} (a®/b?) # Trt(1);
(ii3) no solutions in Fon if and only if Tr(a/b?) = Tr}(1) and t1,ts are not cubes

in Fon for n even, respectively, Fozn for n odd.

A construction proposed in [21] designed to construct differentially 4-uniform per-
mutations that involves swapping two outputs of a given (n,n)-function, has been the
subject of many papers since then (see [6] 16, 17, 18, 22], to cite just a few works; a
generalization allowing the modification of any two output values, of which swapping
is a special case, is investigated in [12]). This naturally leads to the question of how
swapping two outputs of a given function F' would affect its pAPN-spectrum. We now
describe the Janwa-Wilson-Rodier equation for an (n,n)-function F' with two output
points swapped. More precisely, given two points xg # x1 in Fan, we let Ggyz, be the
{zg, z1 }-swapping of F' defined by

Gagey (1) = F(z) + ((z +20)”" "+ (2 + 21)*" 1) (y0 + 91, (3)

where yo = F(x0),y1 = F(z1). We will sometimes denote G5, simply by G if there is
no danger of confusion.
Note that 22" ~! = 1 in Fa» unless « = 0, and so for any z,y € Fon, the expression
(x +1)?" ! is equal to 1 if z # y and is equal to 0 if z = y.
The Janwa-Wilson-Rodier equation of G = G4, at ¢ € Fan becomes
0=G()+G@)+Gy)+Gla+y+ ) =FQ+F@)+Fy)+Flz+y+0)
+((C+z) " P+ (CH+m)T T+ @) T @) T (Y a0)t T (@)
Hy+2)* T @ty eo) T (@ y ) ) (vo + )

We consider several cases depending on the value of (:

o If ( = xg, then (4] becomes (for x # ¢ # y # x)
0= F(zo) + F(z) + F(y) + F(z +y + o)
+ (@) 7+ (g +20)” T+ @y 2o+ 20 (o + 30)-
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o If ¢ = x1, then () becomes (for x # ( # y # )

0=F(z1)+ F(x)+F(y) + Flx+y+z1)

+ ((z + 20) L+ (y+20)? 4 (x +y+ o+ $1)2n71) (yo + y1)- (6)

o If zy # ( # z1, then becomes (for z # ¢ # y # x)

0=F)+Fx)+ F(y)+ Flx +y+ ()
+ (@ +20)* T+ (r+21) T+ (y +30)* (7)
Hy o) T @y Crao) T (@ y R a)? T (yo + )

We shall be referring to Equations f throughout the paper.

When studying how swapping outputs affects the pAPN-spectrum, we do not restrict
ourselves to APN functions and often drop the conditions on the parameters in the
definition of the infinite families; for example, in our experimental results for the Gold
functions in Table EI, we consider all functions of the form z2*! over Fan regardless of
the value of ged(i,m). In a number of cases, the functions in question are not APN,
but are still differentially two-valued, i.e., there is a positive integer s > 1 such that all
non-zero derivatives of these functions are 2°-to-1. While such a function is clearly not
(-APN for any ¢ € Fan, it is also easy to see that swapping two of its outputs will always
result in an empty pAPN-spectrum. The following proposition therefore allows us to
eliminate some trivial cases.

Proposition 3. Let F : Fon — Fon be such that Ap(a,b) > 4 whenever Ap(a,b) # 0.
Then F has an empty pAPN-spectrum. Furthermore, for any xg,x1 € Fon, the pAPN-
spectrum of the {xg, x1}-swapping Ggzyz,, as defined in , s also empty.

Proof. We use the fact that a function F' is (-APN if and only if the equation D,F(¢) =
D,F(z) only has the trivial solutions * = ¢ and z = a + ¢ for any a € F5,. Since
Ap(a,DoF(()) > 4 for any a € F}, and any ¢ € Fon by the hypothesis, it is clear that
F' cannot be (-APN for any (.

Suppose now that xg,z1 € Fan, and G = G4, is obtained by swapping the outputs
of F' at zg and z1. Consider some ( € Fon. Let a,b € Fan be such that zg = ( + a and
x1 = ( + b. First, suppose that ab = 0, say a = 0. Then

DyG(C) = G(Q) + G(C+b) = F(C+b) + F(C) = Dy F(C).

Since Ap(b, Dy F(¢)) > 4, there must be some w € Fon such that Dy F'(w) = Dy F'(¢) and
w # ¢, ¢ +b. Thus {zg,z1} N{w,b+ w} = 0 and hence

DyG(w) = DyF(w) = DF(C) = DyG(C),

showing that GG is not (-APN.
Suppose now that ab # 0, and let ¢ = a + b. We then have

DG(C) = G(O) +G(C+a+b) = F(Q) + F(C+a+b) = DF(C)



due to {xo,z1} N{{,( +a+ b} = 0. Since Ap(c, D.F({)) > 4, we can find w € Fon
with D.F(w) = D.F(¢) and w # {,{ + a + b. Suppose now that z9p = ( + a = w. Then
x1=(+b=w+a+b=w+c Thus, {xg,21} and {w,w + ¢} are either identical or
disjoint. In both cases, we have

D.G(w) = D.F(w) = D.F(¢) = D.G((),

witnessing that G is not (-APN. O

3 The pAPN property for the inverse function swapped at
two outputs

In this section, we discuss the pAPN property for the inverse function swapped at two
outputs, and we completely characterize the cases in which the resulting function has
an empty pAPN-spectrum. We recall that the inverse function is APN over Fon for odd
values of n, and is differentially 4-uniform for even values of n [I5]; by Proposition (3| it
then has an empty pAPN-spectrum in the even case.

Theorem 4. Let F(x) = 22”2 be the inverse function on Faon and let Gyey be the
{zo, x1}-swapping of F for some xg, 1 € Fon with xo # x1. If n is odd, then:

(1) If zox1 = 0, then Gyyz, is not (-APN for any ¢ € Fon.

(13) If xoz1 # 0, then Gyyz, is not (-APN for ¢ € {xo,x1}, and is 0-APN if and only if
Try (93—()) = Tr} (%) = 1. Furthermore, if Tr} <ﬂ> =0, Gya, 15 not (-APN for

1 o

the solutions of (? + xoC +xox1 = 0, and, if Tr} (@> =0, Gyyz, 15 not (-APN for

z1

the solutions of the equation (* +x1( + zox1 = 0 (note that, if the trace is 1, there
2
are no solutions). Furthermore, Gyyz, is not (-APN if Tr} (M) =0, or

(z140) (z0+¢)*
x x 2 . .
Tr} (%) = 0. Otherwise, Gyyz, is (-APN.

If n is even (we let w is a primitive element of Fy), then:
(i) If xo = 0, then Gogz, is not x1-APN, and, for ¢ # x1, Gog, is (-APN if and only
of Try (xfjrc) (: Try (:B1C+C>> =1 and ( # 1w, T1W?.
(ii) If zowy # 0, then, Guyz, is not (-APN for ¢ € {wxg, wz1,w?rq, w?z1}. Further-
2
more, for those values of ¢, Ggyz, is not (-APN if Tr} (M> =0, or

(z1+0) (z0+()?
X X 2 . .
Try (%) = 0. Otherwise, Gyyz, is (-APN.

Proof. In the following, we will write G as shorthand for G 4, -

We first examine the case when xg = 0. Let ¢ be an arbitrary element of Fan, and
consider the Janwa-Wilson-Rodier equation for G at (. We distinguish three subcases,
namely ( =0, ( = z1, and { # 0, x1, which we treat next.



Suppose first that ( = 0. We then work under the assumption zy(z + y) # 0, and
obtain from

0=F(z) + F(y) + F(z +y) + ((z +2)* " + (g +2)* 7 + (@ +y +2)* )y
— xQ"—Q + y2"—2 + (.Z' + y>2"—2

+((@+a)” 7+ (y+ o)

+(r+y+ 1‘1)2n_1) Y1-

Taking x such that x # 0, z1 and letting y = x+x1, we get x2n_2+(x+x1)2n_2+x%n_2 =

0. Multiplying both sides by x12z(x+21) renders z2 +zx; +:L‘% = 0, which, by Theorem
has two solutions if and only if Tr}(z?/2%) = Tr(1) = 0, and that is true if and only
if n is even. These solutions are r = wz,w?z; (where w be a primitive element of Fy),
which are always nontrivial. Therefore, G cannot be 0-APN when n is even.

If n is odd, then we take z,y € Fan such that x # 0,y,z1,21 + y and y # x1, and
Equation becomes

F(z1) 4+ F(z) + F(y) + F(z +y) =0,

that is,
oy + 2y + v1y® 4+ 212° + 2ya =0,

and taking an arbitrary a # 0, 1, we see that the pair z = 1 (1 + ﬁ), Y= (a + ﬁ)
is a solution to the above equation. We now argue that zy # 0 and r # y. Both of
these conditions are equivalent to the equation a? +a+ 1 = 0 having no solutions in Fan,
which is true since n is odd and a? + a = 1 would imply Tr} (a? +a) = Tr}(1). Next, we
verify that y # x4+ x1. Assuming that y = 4+ 1 leads to a® +a? +a+1= (a+1)3 =0,
which is impossible by the choice of a. Thus, G is not 0-APN when n is odd.

We now consider the case of o = 0,{ = x1 (for any n, odd or even). Equation @
transforms into

0=F(z1)+F@)+ Fly)+ Flz+y+a)+ (@ '+ T+ @+y+20)” . (8)

Let x,y,a € Fan be such that = # y = ax # 0 (thus, a # 0,1) and z # z1(a+1)"! (so
that y # x + x1). Then (8]) becomes

O=a] 2427 2+ 2+ (@+y+2)” P+um
— a2 oy )22

which is equivalent to 0 = 2% + y? + 2y + z1(z + y) = 2*(@* + a + 1) + z12(a + 1),
rendering the solution z = x1(a + 1)(a® + a + 1)~! (taking a # w,w? for n even, with
no restrictions for n odd as we have a® +a+1 # 0) . It is easy to see that neither z nor

ax can be equal to x1, and so G is not x1-APN.
Finally, given x¢g = 0, we consider the case of ( # 0, x1. Then, equation becomes

0=F)+F(x)+Fly)+Fx+y+)
+ (3:2“1 + (x4 3171)2“1 +y2 7+ (y + xl)Qn’l 9)



ta+y+ O "+ @ty+C+2)

We now assume that G is (-APN, and so @D has only trivial solutions. Take y = 0 and
r1+(#x#xin @ We get ("' + 271+ (2 4+ ¢)7! + y1 = 0, which is equivalent to
22(14+41¢) + 2¢(1 +y1¢) + ¢ = 0, and moreover (with y; = 1/x1), 22 +2( + 951211( =0.
By Theorem [2| this equation has no solutions if and only if

Cay .
T | Bt | — e <1> —1. 10

Now, take 0 £y =21 #x # 0 in @D, aswellas v # 21 +(, o # (. We get (1 4+ 271 +
(x4 x1 4+ ¢)~' = 0, which is equivalent to 22 + z(z1 + ¢) + 21¢ + ¢? = 0, which has no

solutions if and only if
w (Gror) = (55e) - "

Now, put together the conditions from equations and . We obtain

0="n <x1+<> i <x1+<> =T,

When n is odd, we have Tr}'(1) = 1. We obtain a contradiction, and therefore, G cannot
be (-APN for n odd.
For n even, the conditions from equations and are equivalent since Tr'(1) =

0, and

7 +< + - <+C 1. Therefore, when n is even and Tr?

1 +
G is not (-APN. Assume now ¢ # 0,21, and Tr} (wH—C) Tr} <
y = 0. Then, Equation @ becomes

c) = = 0, the function

) = 1. Let first

0=C 4o+ @+ + (@+2)” 14+ (@+C+2) Dy
Taking x = z; or x = ( + =1, we obtain the equation
0=¢ ' +art + (o + 07 thatis, 0= ¢? + 21¢ + 23,

and so we can see that G is not (-APN for the two solutions of (% +x1¢ +2? = 0, namely
(o = xw and (G = zr1w?, where w is a primitive element of F4. In these two cases, if

n =0 (mod 4), then Tr} (

= +C) = 0, leading to a contradiction. If n =2 (mod 4), then

Tr (35 +<) = 1, and thus these are valid solutions of Equation @ Combining these

facts, we see that G is not (-APN in this case if ( = 21w or { = r1w?.

Taking x # 1, + x1, we obtain the equation

C2551

0=¢Ct4+at+ @+ +a7!, thatis, 0= 2%+ Cx + ,
1+ (¢




which does not have solutions since Tr} (xxl ) =1.
1+¢

Let now 2y # 0. Assume that ¢ € {0, 21, 71w, 71w}, and TrY (mfjrc) Tr" (x1+4) =

1, since in the other cases we have shown that G is not (-APN. Equation @D becomes

O=¢ 42ty +Fa+y+ O+ (@+z) T4 (y+a)? !
Fat+y+ O T @ty )T Yy

If y = z + ¢, and excluding the trivial solutions z,y = (, we see that, in the cases
r = x1,x1 + (, we obtain the equation

0=¢'+a7' + @+,

which has only the solutions (y = z1w and ¢; = z1w?, which we have excluded.
If x # x1,( + 1, we obtain the equation

0=¢ 4zt + @+ +a7l,

which has as we have seen no solutions since Tr} (Iﬁ §> = 1.

If y # x+ ¢, we consider the following cases: if x = x1 or ¢ = y+( +x1, the equation

above becomes

1

0=¢C'+y '+ (@m+y+Qh

which is equivalent to
0=y +y(z1+¢) + (¢ + 1),

which has no solutions since Tr} (ﬁ) =1 ez, y+(+x (y#x1, 2+ (+21),

the equation above becomes

1

O=C 4zt vyt @+y+07H

which, taking y = = + a, a # 0,{ + 1, is equivalent to
0=2%4azx + ((a+0),

which only has the trivial solutions z = (,x = ( + a.

Therefore, G is (-APN if and only if Tr} (zfjrc) (: Tr! (x1+4>>

We now turn to the case when xgx1 # 0. We first assume that ( = 0. Then, suppose
r = xg. Equation @ becomes

0=ag"+y ™"+ (y+a0) "+ (1+ g+ 20”7+ (g +eo+2)” ") (25" +a77).

If y = x1, this equation becomes CL'al + :L'fl + (21 + 20)~! = 0, which is equivalent to
2

22 + 2wy + 23 = 0, and this has solutions if and only if Tr} <z—8> = Tr} (1) = 0, which
0

holds if n is even. Note that these solutions are 1 = wz1,w?xo, so, in these two cases,
G is not 0-APN.

10



If © = 29, y # x1, we have the options y = x¢ + x1, which gives the same equation
as y = x1, or y # xg + x1, which renders

0=y ' 4 (y+x0)  +a7l.

This equation is equivalent to y? + zgy + zox; = 0, which has solutions y if and only if
iy (zl) ~0.

z0
The case x = x1 is symmetrical. Now, suppose x,y # xg,x1. Take y # x4+ xg, x+ 1.
Then, becomes

iy (@ ty) T =0
which is equivalent (taking y = ax, a # 0, 1) to

z(1+a+a®) =0

which has a solution if and only if n is even (note that the existence of solutions is
independent of the values of g and z1, and that we can choose x so that the conditions
x,y # xo,x1 and y # x + xo, x + 1 are satisfied). Hence, G is never 0-APN if n is even.

It only remains to investigate the cases y # x +xg or y = x + 1 (with z,y # x¢,x1)

for n odd. However, these cases yield the same conditions Tr (i—?) = Tr} (%) =1

Hence, G is 0-APN in the odd case if and only if Tr} (%) =T} (%) =1, and is
never 0-APN in the even case.

Let now ¢ # 0. We examine two subcases, depending on whether ( is one of xg, x1
or not.

We first assume that ¢ = 2 (the case when { = 7 is treated in a similar manner).
Then equation becomes

0=a8 2 +2¥ 24y 24 (x+y+m)* 2

(ot a0 (12)

-1 1 2" —2 2" -2

+y+a)” T+ (@ y a0+ :cl)Q"‘l) (2222272

Note that, if one of the terms in the parenthesized expression equals 1, then (dis-
carding the cases corresponding to trivial solutions) the latter vanishes. We consider the
following cases:

e y =1x; and x = zg immediately implies the trivial solution x = (.

e y =127 and = # x9. Equation , taking x # 0,z + x1, reduces to 0 = x%n_z +
2" 2 —i—x%n_Q + (x4 21 +10)?" 2, which is equivalent to 2?4 (2o +z1 )z +zox; = 0,
leading to the trivial solutions x = xg,x1. If we take z = 0 or x = x¢ + 1, the
equation 1:61 + :cl_l + (zg + x1)~! = 0, which is equivalent to a:% + zox1 + :c% =0,
which has solutions z1 = wzg,w?z; if n is even, and no solutions if n is odd. So,
if n is even, and z; = wxg, w?z1, G is not zo-APN.

e y =19 and x # x1. Equivalent to the previous case.
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e y = x9 and x = z; immediately implies the trivial solution y = (.

e 1,y #* x9,x1 but y = x + xg+ x1. Equation , taking x # 0, xg + 1, reduces to

0= x%n_Q +22" 24w+ xo+2)? 2+ x%n_Q,
which is equivalent to 22 + (2o + 1)z + zoz1 = 0, which only has trivial solutions.
Taking z = 0 or = x¢ + =1, we obtain as before that, if n is even, and z; =
wxg, w?x1, G is not xg-APN.

o x,y # x0,%1, Y # x + xg + x1. The equation above is then

0=a2" 2+ a2 21y 2 f (wt+y+a)? 2rad 242t 2

=22 24y P (wty +wo)P R a2 R (13)
Taking = = 0, equation reduces to
0=y + (y+20)” 2 +ai"

which is equivalent to y? 4+ yxo + xox1 = 0, which has solutions in y if and only if

Tr? (xg%) =Tr} (i—;) = 0. In this case, notice that y = z¢ is not a solution, so
0

that we can conclude that, if Tr? (%) = 0, the function is not zo-APN.

T

If Tr} (%) # 0, we consider the case z # 0 (similarly, y # 0). Taking y = = + x,
then Equation reduces to

O=za'+ (x+z0) '+ a7l

and further to 0 = 22 + zgz + zoz1, which does not have solutions since we have
assumed Tr? (m—l) # 0.

0
Taking y # x + xg, we can write y = x +a, a # 0, 29, x¢o + x1. Then, Equation
reduces to

O=z'+(@+a)™ +(at+z) " +a7t

which is equivalent to 0 = 22 + ax + % (recall that y # x + xo + z1, that
is, a + xo + x1 # 0). Thus, the previous equation has solutions « if and only if

Tr? adzo)ry N If g is odd, we can take a = x1, since in that case, the
a(a+zo+x1)

trace becomes Tr} (% + 1) = 0, which holds by our assumption (note that, by

inspection, the solutions are nontrivial). We now assume that n is even. With
a = xg/x1 (recall that Tr}(1/a) = 1), we write the expression inside the trace as

(a + zp)z1 _ z
ala+zo+z1) (2+1)(az+1)

12



where z = x1/(a + xo). If Tr} ( Tra ) 0, taking z = o /2, we get that the trace

satisfies Tr} ( = (a+1) =0. If Tx} <1+a) = 1, then we write

D) (a0 )

(at+m)rr a0 x?

ala+zo+x1) a ala+mzo+r1)

( + ) B CE2 2 $2
Thus7 TI{L <%> = TI{L (% + m) TI‘I (? + m . Under

Tr?}? (1+a) = 1, we look for a value of a such that (%)2 = a(a++§+x) (thus, the
above trace is 0). That will happen if and only if ( ) ( “) o+1=0.
With z = %, by Theorem [2, the equation 23 + z + a + 0 has three solutions
or no solution in [Fy» if and only if Tr} (ﬁ) Try (1+a> = Tr}(1) = 0, since
n is even, along with some conditions on the roots of an associated quadratic,
or a unique solution if Tr} (p%a) # Tr?(1) = 0, which always happens by our

a(a+zo+z1)
solutions of the Janwa-Wilson-Rodier equation are nontrivial.

assumption. Thus, there exists a such that Tr?} (M) = 0. Note that the

Therefore, for any n, G is not xo-APN, regardless of Tr} (%) By symmetry, G
is not x1-APN.

Consider now the case of { # xg, r1,0. Assume first that zy # 0. Then, we can write
x = B¢, and y = af, with o, 8 # 0,1 and « # 8. Equation then becomes

0:C2”—2(1+a2n—2+52"—2 (1+a+ﬁ)2 _2)—|—P( A _2+$%n 2)7

where P = (. +20)?" '+ (z +2)> "4+ (y+z)? T+ (y+az) P+ (@ +y+C+
70)?" "+ (x+y++21)%" "L Assume that P = 0 (which can be achieved, for instance,
if all the parenthesized expressions in P are different from zero). The equation becomes

0=¢"2(1+a® 2+ 572+ (1+a+ 5772,
which, since ¢ # 0, is equivalent to
0=14a""7+5"2+(1+a+p)"7?
which, assuming 1 + a + 8 # 0, and multiplying both sides by a5(1 + a + /), becomes

O=af(l+a+p)+B1+a+8)+all+a+p)+af
=af+a’B+af+B+aB+ B +a+at+aB+af
=a+a?+ B+ B2+ a*B+af?

Writing 5 = ya, with v # 0,1 the equation above becomes

’a’

0=a+a®+ya+~2a®+ v +v%® = a1 +7)(ya® + (1 +v)a +1).

13



Since a # 0, # 1, we obtain the equivalent equation

1 1
ot 00y T2,
gl gl

which has as only solutions o = 1, 1, which are not valid.
We need then to assume that P=0and 1 +a+ 8 =0, or that P=1. If P =0 and
1+ a+ B =0, the equation becomes

0=¢"(1+a™" +(1+a)7,

which is equivalent to o + « + 1 = 0, which has solutions o = w,w? (where w,w? € Fy
are the solutions of 2 + x + 1 = 0) if and only if n is even. In the case n odd, then,
there are no solutions, and in the case n even, these solutions are nontrivial as long as
P =0, i.e., as long as either ( # wxg,w?xg, wry,w?e, or, if ( = wxg, then x; = w?xo,
or, if ¢ = wxy, then zg = w2z, or, if ¢ = w2z, then 1 = wxg, or, if ( = w?zq, then
xp = wx1. In those cases, G is not (-APN.

If P =1, an odd number of terms in the parenthesis must be zero. Taking z = xg
and y = 0, P = 1 if and only if ¢ = z9+1. Then, the equation becomes 0 = (zg+z1)~!,
rendering trivial solutions.

Now, let P =1, and consider z = zg and y # 0. If { = ¢ + z1, then, P = 1 if and
only if y = 1, rendering only trivial solutions.

Let ¢ & {xo + x1,x0,21}. Taking x = xg and y # 0, we see that P = 1 if and only
if (to produce valid solutions) y = z1 or y = ( + x¢ + 21, or y # x1,( + xo + z1. The
first two cases yield only trivial solutions. Let y = x¢y + . Then, the equation becomes
0= ¢4 (zg+ O + 27, which is equivalent to ¢% + 29¢ + zoz1 = 0, which has
solutions if and only if Tr} (ﬂ> = 0. In that case, G is not (-APN for the solutions

o
o, ¢1 of this equation. By symmetry, if Tr’ (i—?) =0, G is not (-APN for the solutions

o, C1 of the equation (2 4 x1¢ + zoz1 = 0.
Let now x = 29 and y ¢ {0, g, x1,(,( + o + x1}. The equation is then

0=C'+y ' +w+ao+ ¢ +arl,

which, taking y = ( + a, where a ¢ {0,x0,( + z0,{ + 1,20 + 21} (note that we were
assuming ¢ # 1), is equivalent to
¢z + 21)

2
+ +()+ —F7-—F=0,
a a(zo + ¢) 21+ C

which has solutions a if either ( = zg and so, a = (, which is not permissible, or

TrY} <%> = 0. Hence G is not (-APN, under this last trace condition. By

symmetry, if Tr} <%> =0, G is also not (-APN.

Take now again P = 1 but = # x¢, and, by symmetry,  # x1 and y # xox1. Then,
P=1lifandonlyify=x+(+x9 or y = x+(+x. Taking y = x4+ ( + zg, and writing
x = ( + a, where a # 0,z9 4+ x1,( + x9,( + 1, the equation is

0=C'4+(C+a) ™ +(a+z) +a7,

14



which we have already handled.
Finally, let ¢ # x¢,x1,0 and take x = 0. We can write y = a(, with a # 0,1. Then
Equation @ becomes

0= 21+ 24 (1402 2) + P2+ a8n2),

where P = (a¢ +20)*" 7' + (al + 21)*" '+ (C(1 + @) +20)*" 7 + (C(1 + ) + 21)*" .

If P = 0, this equation is equivalent to ((1+ a+ a?) = 0, which has no solutions if n
is odd, and has the solutions o = w, w? if n is even. These solutions are valid if and only
if P=0,ie. if ( & {wzo,w?z0,wr1,w?x1}, or, if ¢ = w{wg,z1}, then z1 = w?{x0, 71},
or, if ( = w?{wg,z1}, then 27 = w{zo,21}. In these cases, as seen before, G is not
C-APN.

If P =1, then we must have that o = a(, and =1 # (1 + «)(, or that 1 = a(, and
xo # (1 + a)¢. Assume that zp = a(, and 21 # (1 + «)¢. Then Equation becomes
0= ¢4+ ¢ (1+a) t+2;" which is equivalent to ¢(¢(1+a)+ax)) = 0, which, since

¢ #0,a # 1, is equivalent to o = C+C:v1' Together with 9 = a¢ and z1 # (1 + «)(, this

implies ¢? 4 xo¢ +zoxr; = 0 and ¢ # 1 +1. A solution exists if and only if Tr7 (i—é) =0,
and, for those ¢, only if  # x1+1. However, in that case, GG is not (-APN. By symmetry,
G is not (-APN if (2421 +xor1 = 0 and ¢ # x¢+1. However, we have already obtained
a less restrictive condition, and so this case does not yield anything new.

We can simplify the results for n even and xzgr; # 0; there are two possibilities for
the Janwa-Wilson-Rodier equation at (. The parenthesized expression is either equal
to 0 or to 1.

Consider ¢ # 0 (the case ( = 0 was already treated). If the parenthesized expression
in is 0, ¢ # g, x1, and x, y,x + y + ( # 0, then equation @ transforms into

el vy @ty + QT =0,

which is equivalent to 0 = 2%y + zy? + 22¢ + y*¢ + 22 +yC? = (z +y)(x + ) (y + ¢),
rendering trivial solutions.

If the parenthesized expression in is 0, ¢ # zg,x1 and x = 0, but y,y + ¢ # 0,
then Equation transforms into

Cl+y '+ w+ O =0,

which is equivalent to 0 = y? + Cy + ¢2, which has solutions if and only if TrY (g) =
Tr7 (1) = 0, which is always true for n even. These solutions are always nontrivial, since
y =1z = 0 and y = ¢ are never solutions, under ¢ # 0. These solutions are, of course,
only valid if the parenthesised expression evaluates to 0. For ( = x1 4+ xg, however, this
expression is always zero, and so the function cannot be (-APN.

Take now x1 # 2o +¢. We know that 32+ y+¢? = 0 has exactly two different roots,
Yo = Cw and y; = (w?, where w is a primitive element of F;. When y; =z for j,k =0,1
or y; = x} + ¢, these solutions are not valid, since then the parenthesized expression
is 1. Suppose that yo = 9. The equation 22 + (z¢ + ¢?> = 0 always has solutions in
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2

¢ since n is even and Tr} (%) = Tr(1) = 0, namely {y = zow and (; = zow?. The
0

other forbidden roots give the values (y = 1w and ¢; = zjw?. For these four values, the

function G can thus be (-APN. For all other values, G is not (-APN.
If ( = xgw, then we consider the following subcases:

o If 21 = wxo = ¢, then, taking y = x + wx(, Equation [6] becomes
0= (wzg) ' +2 7+ (z 4+ wz) t + P(:ral + (wzo)™Y),

where P = (x4 x9) " + (y +20)?" ~! 41, which has the nontrivial solutions z = zy,
y = w?xg and y = xo, v = w?xg, implying that G is not (-APN in that case.

e A similar analysis can be done for x; = w?xg, or 1 # wxy = (, rendering that G
is not (-APN under these conditions on (.

By symmetry, we obtain a similar result in the case of y = 0. If the expression
in the parentheses in is0and y = x4+ ¢, but = # 0,(, then transforms into
¢+ 27t + (2 + ¢! = 0, which is equivalent to 2% + ¢z + (% = 0. We have already
handled this equation in the case x = 0 above, and we do not get any new information
from this.

If the parenthesized expression in is 1, we cannot possibly have zg = 1 + (. We
must then have that x = zg, or x = z1, or y = xg9, or y = x1, or ¢ +y = ( + xg, or
x4y =+ x1. We take first the case  # xg,x1, 20+ x1. If £ = ¢, then the equation
becomes (! + CL'al +y (o +y+ )+ {Eal + :rfl = 0, which is equivalent to

v (z1 + Q) +y(C +20) (¢ + 1) + a1 (( +21) =0,

and that, since x1 # (, is equivalent to 32 +y(¢+xg)+Czo = 0, that is, (y+)(y+zg) = 0.

Note that both solutions implied by this equation are invalid, since y = ( is one of
the trivial solutions, and y = xg leads to the expression in the parentheses in to
evaluate to 0, and hence implies = y, another trivial solution. The other cases also
yield trivial solutions.

We now consider ¢ € {xg,x1, 29 + x1}. Suppose that ( = x¢, and the parenthesized
expression in is 1. Then, we have that = z1, or y = x1, or z + y = 29 + 1. On
inspection, they either yield trivial solutions, or a contradiction. We have then that the
function is (-APN.

Note that, for n even, for any of the possible values ¢ such that G is (-APN, namely
¢ € {wrg, w?rg, w1, w?z1}, there are no nontrivial solutions to the equations ¢ + zo¢ +
zory = 0 and (% + 21¢ + xox1 = 0. Therefore the conditions for n even are further
simplified. O

To supplement the above discussion, we perform an exhaustive search by going over
all pairs (wg,71) € F2%, and compute the size of the pAPN-spectrum of the (zg,1)-
swapping of the inverse function x2"~2 over Fon for 4 < n < 10. The results are
presented in Table [l below. The sizes of the pAPN-spectra of all (xg,x;)-swaps are
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given in the last column, with multiplicities given in superscript, e.g., the entry 0%

for n = 4 indicates that the pAPN-spectrum of the (zq,z1)-swapping is empty for 45
pairs {xg,z1}. The remaining columns give the exponent d, the differential uniformity
of 2" =2 (which is known to be 2, respectively 4 for odd, respectively, even n [15]), and
the size of the pAPN-spectrum of z2"~2. We recall that the pAPN-spectrum of the
inverse function over Fon is full for odd values of n, and is empty for even values of n by
Proposition

For odd dimensions, an empty pAPN-spectrum is obtained precisely in the case of
swapping a pair (zg,x1) = (0,2) with 0 # 2 € Fan. In even dimensions, the points
(20, 1) whose swap gives an empty spectrum are much more varied, and do not exhibit
any clear pattern. However, any swap of the form (zg,z1) = (0,z) with 0 # z € Fon
gives a function with a large pAPN-spectrum, e.g. containing 8 elements for n = 4, or
30 elements for n = 6.

n d ér Spectrum Swapped spectrum

4 7 4 0 077,20 8"

5 15 B 32 0°T, 67°5, 815, 91°°

6 31 1 0 TT97, 9567 4593063

7 63 3 198 0727 26559, 28559, 29557 30°°7, 327057, 35559 3657

] 127 4 0 Q19125 5T0200 3060 {5755

9 255 9 519 0T, 116799, 118599, 11999, 120°7%, 1229178, 12479995, 125599
1264599 1274599 199198 1994599 13013797 1374599 1334599 13413797
1351599 1364599 1384599

10 511 4 0 0277233 920IT5 415315 51 (T023

Table 1: pAPN-spectra of two-point swaps of the inverse function

4 The Gold APN case

A natural question arising from the above investigations is, how does swapping output
values affect the other infinite families of APN monomials. In this section, we present
our results on the Gold functions.

We will need the following theorem from [14], which shows that a trinomial 2 —az—b
in the finite field F,» has either zero, one, or p? roots, where g = ged(n, k). This result
was made more explicit by [9].

Theorem 5. Let p be a prime. Let f(z) = 2 az—bin Fpn, g = ged(n, k), m =
n/ ged(n, k) and Try be the trace function from Fpn to Fpe. For 0 <i < m—1, we define
t; = Z;”:_fp"(j*l), ag=a,Bo=0b. If m > 1, then, for 1l <r <m—1, we set

-
k kr X ki
ay = oY and B, = Zassz ,
=0
where s; = Z;;Zl pFUD  for0<i<r—1 and s, =0. Then:
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o if a1 =1 and By—1 # 0, then f has no roots in Fpn;
o if a1 # 1, then f has precisely one root in Fpn, namely © = Brm—1/(1 — am—1);

o if a1 =1 and By—1 = 0, then f has precisely p9 roots in Fpn given by x + o7,
where 0 € Fpo, 7 is fixzed in Fpyn with Pl = a, and, for any e € Fpn with

1 ki
Try(e) # 0, where x = Try (e Z Z ! | ativ?™

=0 7=0

Theorem 6. Let F(z) = 22t be the Gold function on Fon, where n is odd and
ged(k,n) = 1. Let Gogy be the {0,271 }-swapping of F for some x1 € Fs.. Then:

(1) Gog, is not 0-APN;

(i7) Goz, ts not x1-APN for 0 # x1 € Fan if and only if there exists 0 # t € Fan such
n—1
that Y 2" =0
i=0

(791) if 0 # ¢ # x1, then Gog, is (-APN if and only if there are no solutions to either
. k
of u2 +u+ (21/O)%* =0, and v + y(z1 + O 1+ 22" + & =0, that is, if

z1+C
n—1 T
and only if Z (Cl)
i=0

2kz

2k 27@1
#Oandz<m1+g <%k+xxllig>> 20

Proof. Let Gyyz, be the {zo,x1 }-swapping of F'. The Janwa-Wilson-Rodier equation (4]
of Gz, at ¢ becomes

kay + kaC + y2kx + kaC + Czkx + CZky
+(C+20)” T+ CH2)" (@t z) T+ @) T+ (yHa0)T T (14)
+y+a) T+ @ty + o) T+ @y + ) ) (o + 1) = 0.

We will use below the fact that under ged(k,n) = 1, the equation 22°~1 — ¢ has a
unique solution in Fon. Let zyp = 0 (hence yp = 0). We consider three cases depending
on the value of (.

In the first case, suppose that { = 0. If 0 # x # y # 0, then equation becomes
k k n__ m__ n__
y+y e+ (r+2) T+ y+r) T+ @ty o) )y =0.

If x = x; (similarly, for y = z; and = + y = x1), then we get (certainly, 0 # y # x1,
respectively, 0 # x # x1), x%ky + kaml = 0, rendering (y/acl)Qk_1 = 1, and since
ged(k,n) = 1, this last equation has only the trivial solution y = z;.

We now assume z # :cl =+ y and z +y # x1. Thus, recalling that y; = :c% +1
equation ) becomes z? y + y "r + ;1:2 +1

)

= 0. Taking v = z/x1,v = y/x1, and
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dividing by :E%kﬂ above, we get v +0v2"u+1 = 0. Let us take o with o2" + o #0,1.
Such an « certainly exists; we can, for instance, take « to be a primitive element of Fon.
Writing v = au, the above equation becomes

-1
k k
u2 = (042 -+ Oé) .

Since n is odd, gcd(2¥ +1,2" — 1) = 1, and so, the equation above has a unique solution
u # 1 in Fon for every a € Fon satisfying a? +a # 0,1. Thus, Goz, cannot be 0-APN.
In the second case, let ( = 1 # 0. If 21 # x # y # x1, then equation becomes

eyt oy P 2P+ 22y (15)
F (@ @ty ) =0.
If x = 0, then y # 0,z; and the above equation becomes y2k:c1 + a:%ky = 0, which only
has the trivial solutions y = 0 and y = x1. The cases when y = 0 and y = x + =1 are
handled similarly.
We next assume that xy # 0, + y # x1. Thus, equation becomes

2yt ¥ ¥ e+ w2 2Py 2P =0, (16)

Dividing by x%kﬂ and labelling u = z/x1,v = y/x1, we obtain

Wot+u? 0o u+ 0 futov+1=0. (17)

We now let w = u + v and rewrite as w2 (u+1) + w(u+1)2" +1 =0, that is,
w +wu+1)" 1+ (u+1)"t=0.
We now apply Theorem Here, p = 2, a = (u + 1)2k_1, b= (u+1)"1 and

— n —
M= cqthmy = " Then,

2kn_y

142k ... 4 2k(n=1) 2271 "
) = (1) =2 =

Ap—1 = ((U + 1)2k_1

Furthermore,

n—1 =2 9k(j+1) ;

o Z':i 2 - 2k2
Bn-1= Z ((u +1)? 1) ! (u+1)71)
=0
n—1
_ (u + 1)2k(1+1) (2k(n—i—l)_1)_2ki
=0

|
—

n

= (u+ 12" (w4 1)

~
I
o
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n—1 )
Thus, 8,-1 = 0 if and only if there exists u such that Z (u+ 1)721“(2“1) = 0. We

=0
n—1

conclude that Gz, is not x1-APN if and only if there exists ¢t # 0 such that Z 2" — .

1=0
In the final case, we assume that 0 # ( # z1 # 0. Equation becomes

0= x2ky + kax + kaC + CQkx + y2kC + CQky
n (x2n—1 oz a)? g2 (18)
+y+a)" T+ @y O T+ @y )T ) w
We will show that equation has no nontrivial solutions x,y. All of the resulting
subcases are similar, so we will explicitly describe only some of them.
If the expression in the parentheses in is equal to 0, then we need to investigate

the equation
k k k k k k
Pyt et (et C+Hy=0.

Writing y = ax, we get
22 o 4 22 a2 x2kg“ + x{zk + a2kx2k§ + a:cCQk =0,
which becomes
2 a+ o)+ 221+ a?) + 2P (a+1)=0.

Dividing by :c2k+1, and labelling z = . we get

x’

zzk(a—i—l)—l—z(a—l—l)Qk +a+a? =0.

k
1o _ o 414041 _ (a+1)* a4l _ (oz—i—l)Qk_l—i-l
Y

Dividing by 1+« and observing that ;1% = T s

we obtain . . .
2 42+ 1) T (a+ 1) T 41 =0,

which can be factored as
(z+1D)¥ + (z+ D(a+ 1) =0,

that is,
E+D)(+ 1)+ (a+ 1PN =0,

with roots z = 1 and z = a. Both of these, however, are trivial, since then x = (,
respectively, y = (.

Assume now that the parenthesized expression in does not evaluate to 0 (which
can only happen if an odd number of terms vanish). Equation becomes

2yt e+ a2+ Ty + 2 =0
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If x = 0, then becomes kaC + CQky + x%kﬂ = 0. Dividing by C2k+1 and labelling
u = 1y/(, we get u?" 4 u+ (:101/C)2kJrl = 0. By the same argument as in the previous
case, solutions to this equation exist if and only if Z?;(} (a:l/C)(QkHﬂki = 0. Thus, if
there exist solutions to this equation other than u = £+ or v = 14+ £ (which would give
y = x1 or y = ( + x1, making the parenthesized expression in vanish), then Go,, is
not (-APN (note that y = 0,y = ¢ cannot be solutions).

We have to ensure that the potential solutions of u2" +u+(z; /C )2*+1 = 0 are different
from u = % (which would give y = z;) and u =1+ %1 (which would give y = ¢ + 1),
since in both cases the expression inside the parentheses in would vanish. If y = z1
or y = ( + z1, since x = 0, then becomes x%kg + C2kx1 + x%kﬂ = 0. Dividing by
:L‘?k+1 and relabelling z = %, we obtain the equation 2 p 41 = 0, which has no
solutions by Theorem

If x = z1, then transforms into
k k k k k k k
Byttt al (Y (+ Py +at T =0,
k
which can be rewritten as ka +y(x + C)Qk_l —+ :p%k + % = 0. If a solution y exists to

this previous equation (observe that y cannot be equal to z1), then Gy, is not (-APN.
By a similar argument as the one in the second case, by Theorem [5] we get a,—1 = 1,

and
. n—1 X . $1<2k
/Bn—l = (1‘1 + <)2 Z <($1 + C)72 (:U% + x] + C))

1=0

oki

n—1 2k 2]“
Therefore, Gy, is not (-APN if and only if Z (x1 + ()_2k m%k + 716 =0.
P 1+ ¢

The remaining cases give the same equations (up to relabelling).

Remark 7. Our computations for 4 < n < 10 suggest that swapping any two outputs
in a Gold APN function produce a function with a non-empty pAPN-spectrum, but we
do not yet have a theoretical argument explaining this. See Table [6] in the appendiz for
detailed computational results.

5 The Welch APN case

Recall that the Welch APN function is defined over Fon as F'(z) = 223 for n = 2k + 1.

In this section, we generalize this function by allowing & in 22°+3 to be any positive
integer.

To simplify notation, we denote

E(zn,z,y) ="+ (C+a)” T+ T (@ a) T !
+y+a)" T @y + O T (@ y (o) T

k k k k
C(C,x,y):CQ +3+x2 +3+y2 +3+($+y+§)2 +3
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in Fon. Certainly, E(¢,z1,x,y) € {0,1}.

Theorem 8. Let F(x) = 22" 3 be the Welch function on Fon, where n is odd and let
Gogz, be the {0, x1}-swapping of F' for some 0 # x1 € Fon. Then:

e Gog, is not 0-APN if ged(28 4+3,2" — 1) = 1 (which always happens if n = 2k +1),
nor x1-APN in general;

o if ( # 0,z1, then Goz, is not (-APN if and only if there is a solution (z,y)
of the system C((,xz,y) = 0 and E((,z1,z,y) = 0, or C((,x,y) = l‘%k+3 and
E(C,.’El,.’[,y) = ]-7 where xl7< 7& z 7& ) # $17€'

Proof. Let Gy, be the {0, 21 }-swapping of F. The Janwa-Wilson-Rodier equation
of Goz, at ¢ becomes
C2k+3 +x2k+3 _|_y2k+3 + (x+y+<)2k+3
(T CH ) T T T () T (19)
Hy+ o) @y + O T @by Cha)T el P =0
First, assume that ¢ = 0. Then becomes
xzky:s + xz’wzy + x2k+1y2 + yzkxs + y2k+1x2 + y2k+2:c
+ (a:%n_l + 22 ()P T 42 (20)
+Hy+a)" T+ @y T+ @y ) )l P =0
If the expression inside the parentheses vanishes (with y = ax # 0,z), the equation

becomes .
al@d® T+ (®+a+1)=0,

which does not have solutions other than o« = 0,1 (which contradict y # 0,x), since
ged(k,n) = 1 and n is odd. Thus, we need to assume that the parenthesized expression
in does not vanish, that is, F(0,z1,z,y) = 1. The equation thus becomes

$2’cy3 + m2k+2y + $2k+1y2 + y2km3 + y2k+1m2 + y2k+2$ + x%’“+3 —0.
Taking y = ax # 0,z (so, a # 0,1) we obtain,
x2k+3a(a2k_1 + D)@+ a+l)= a:%hr?’,
and since a(an_l +1)(a® 4+ a+1) #0, if ged(2F 4 3,2" — 1) = 1, then there exists a
unique solution

2k 43
k X
2243 1

a(e?* 14+ 1) (a2 4+a+1)

and so Gz, is not 0-APN.
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We argue now that when n = 2k + 1 we have ged(2¥ +3,2" — 1) = 1. Let us denote
d = ged (2% +3,2" — 1). We then have
2k =—3  (mod d)
22M+1 = 1 (mod d),

and so

2241 = 2.32  (mod d)

92 H1 = 1 (mod d),

which, by subtraction, renders 17 = 0 (mod d), and so, d = 1 or d = 17. However,
by [10, Lemma 9] we know that ged(2%+1,2" —1) = 28cd(n,2s) 1

SEedm 1
odd becomes ged (2" —1,2% +1) = 1. Therefore, gcd(2¥+3,2" —1) = 1, when n = 2k +1.
Now, suppose that ( = x;. Then becomes

which, if s = 2 and n is

k n n n
2 42 P ? @hy+2)? T (@ T 42 T o+ (@)

T ) T @yt e) T ) R =0

If the parenthesized expression above does not vanish, that is, F((,z1,z,y) = 1, the
equation becomes
k k k
2By B ety )T =0,
which, dividing by x%hr?’, and taking v = z/x1,v = y/x1, becomes
W2 4 (0 + 1) = 0.

Noting that v = 0 can not be a solution, we take v = au with a # 0,1 and divide both
sides by u2"+3. Since ged(2F +3,2" — 1) = 1, then a unique (2¥ + 3)-root exists and this
last equation becomes

l+u(lt+a) (1 4 2" +3)1/25+3)

8=

which (taking « such that 8+ a + 1 # 0) renders the solution u = (8 + a + 1)~
Surely, one can find many values of « such that 1 # u # v # 1, and consequently,
1 # x # y # x1. Therefore, Goz, is not x1-APN, either.

Finally, assume that 0 # ¢ # x;. If the expression in the parentheses in is zero,
that is, F((,z1,z,y) = 0, the equation becomes

C2k+3 423 y2k+3 t(z+y+ €)2’f+3 —0.

If the expression in the parentheses in is not zero, that is, E((,z1,z,y) = 1, the
equation is then

x%’%s 4 C2k+3 423 y2k+3 F(z+y+ C)2k+3 -0,

which concludes the proof of the theorem. O
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Remark 9. As with the Gold function, our computational results in Table [5] suggest
that swapping any two points of the Welch APN function leads to a function with a
non-empty spectrum. At the moment, we cannot theoretically justify why this happens.
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A Experimental data on the infinite APIN families

For functions from each of the infinite APN monomial families over Forn with n < 10
(except for the inverse family which is characterized by Theorem , we have computed
the size of the pAPN-spectrum of G, for all possible pairs (zg, 1) € F3.. The results
are given in Tables [6] below.

In all cases, the results are computed for generalizations of the respective infinite
families, with all restrictions on the parameters dropped. This means that we consider
the following functions over Fon, with the parameter ¢ being any positive integer in the
range 1 < <n—1:

44 3% 21 7 .
o 2272742 =1 for Dobbertin,

2i_gi .
o 12" ~2'+1 for Kasami,

iy oi/2_ i o(3i+1)/2_ . . .
o 22V 1 op 2" H2 I for even and odd values of i, respectively, for Niho,
o 223 for Welch, and
o 22t for Gold.

The first two columns of each table specify the degree n of the extension field Fan
and the value of the parameter i¢. The third column gives the smallest element from
the cyclotomic coset of the resulting exponent d. The fourth and fifth columns give
the differential uniformity and size of the pAPN-spectrum of z¢ over Fan, respectively.
Finally, the last column describes how the pAPN-spectrum changes after swapping two
output values of the function. More precisely, for every pair {xg, x1} C Fon with xg # x1,
we compute the size of the pAPN-spectrum of G4, ; the last column then lists the sizes
of all possible spectra obtained in this way. The frequencies with which these sizes occur
over all possible pairs {zg,x1} are given as superscripts. For example, the first row of
Table [2| contains 04,260 815 in the last column. This means that, out of the 120 pairs
{zo, 1} C Faa, 45 pairs produce a function with an empty pAPN-spectrum, 60 pairs
produce a function which is (-APN for two values of ¢, and the remaining 15 pairs lead
to functions that are (-APN for 8 values of (.

By Proposition all exponents d such that 2% has 2%-to-1 derivatives for some
fixed s > 1 are omitted. All such functions and all two-point swaps of these functions
have an empty pAPN-spectrum by the proposition, and are therefore of very limited
interest. These include all Gold functions with ged(i,n) > 1 and all Kasami functions
with ged(i,m) > 1 and n/ged(i,n) odd. They also include the exponents i = 3,4 for
n =6 and ¢ = 5 for n = 10 in the Dobbertin case; ¢ = 3 for n = 6 in the Kasami case;
i =1for even n, i =4 for n =6 and ¢ = 8 for n = 10 in the Welch case; i = 1,2 for n
even, t =3 forn=5,i=4forn=6,7i=>5forn=8 and i =6 for n =9 in the Niho
case.

We note that in some cases, swap operations lead to a full-sized pAPN-spectrum,
indicating that the corresponding function is APN. This occurs exclusively in even dimen-
sions for APN functions, and is caused by pairs {z¢, 21 } with xg # x1 but F(z¢) = F(x1),
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where F is the function in question. Consider, for example, F(x) = 23 for n = 6 and
1 = 2 in Table [2} there are 63 pairs leading to a pAPN-spectrum of size 64. We know
that APN power functions over even-degree extensions of Fy are 3-to-1; in this case, 3
has 21 non-zero images y, for each of which there are three pre-images x1, zs, z3 such
that F'(z1) = F(x2) = F(x3) = y. Since a pair of elements from among {1, zs, x3} can
be selected in three different ways, each of the 21 images contributes three pairs, leading
to these 63 pairs which trivially preserve the APN-ness of the initial function.

The only exceptions to this occur for n = 4; for example, for F(x) = 23 in Table
there are 30 pairs giving a full pAPN-spectrum, while the trivial pairs as described
above account for only 15 of these. To the best of our knowledge, n = 4 is the highest
extension degree for which APN functions at Hamming distance 2 from each other exist;
this is reflected in e.g. [12] and agrees with the results presented in the tables.

Conversely, we can observe that the inverse function is the only APN function among
the ones considered whose pAPN-spectrum can become empty after a two-point swap.
We ran a separate experiment in which we computed the sizes of the pAPN-spectra of
all two-points swaps for representatives from all known CCZ-equivalence classes of APN
functions, and observed the same phenomenon: the inverse function is the only one for
which an empty pAPN-spectrum could be obtained by swapping two points. Based on
this, we formulate the following conjecture.

Conjecture 10. Let F' be any APN power function over Fon, CCZ-inequivalent to the
inverse power function x> =2, and let Guyzy be the (zo,x1)-swapping of F for some
(o, 71) € F3.. Then the pAPN-spectrum of Gpyz, is not empty.

According to some limited computational experiments, the same might be true for
quadratic APN functions; however, we do not state this a conjecture in general since we
do not have enough data, nor heuristics on why that would happen.

We note that the multiset of the sizes of the pAPN-spectra of all functions obtained
by swapping two points in a given function is not CCZ-invariant. Counterexamples can
be found easily, for instance by considering the Kim function and its CCZ-equivalent
permutation [2] over Fys: the pAPN-spectra of all functions obtained by swapping two
outputs of the former are of even size, while pAPN-spectra of odd size can be obtained
from the latter. Hence, our conjecture relates only to power APN functions and does
not include the ones CCZ-equivalent to them.

Some of the functions listed in the table have a singleton pAPN-spectrum, e.g.
F(z) = 27 for i = 3 and n = 7 in Table 2l All such functions are 0-APN.

The function F(z) = x'® over Fys, as given in Table [4, is remarkable due to the
fact that all possible pairs {xo,z1} lead to a function with a singleton pAPN-spectrum.
When xg = 0, the resulting function is x1-APN, and when zy # 0, the resulting function
is 0-APN.
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Table 2: pAPN-spectra of two-point swaps of the Dobbertin function

n i d O0F Spectrum Swapped spectrum
4 13 74 0 0%, 290, 81°
2 3 2 16 1630, 4%
5 1234 15 2 32 031, 6175, 8175, 9155
6 1 23 10 0 02018
2 3 2 64 10189’ 12378’ 16189, 223787 243787 26378, 6463, 863
5 31 4 0 01197’ 2567’ 3063’ 4189
7 15 20 2 128 259, 28559 2939 31778 312667 "325%9 "yo177
274 43 2 128 22889’ 268897 28127, 308897 322667’ 361778, 38889
3 47 4 1 04572’ 13556
6 63 2 128 0127, 26889, 288897 29889’ 308897 322667’ 358897 36889
§ 1 29 10 0 032610
276 21 4 1 0140257 118615
3 43 30 0 032640
4 9 2 256 256255, 482040, 522040’ 542040’ 562040, 586120, 603060, 625100, 705107
74255’ 802040, 864080, 883060
5 59 12 0 032640
7 127 4 0 019125’ 128255, 210200’ 43060
9 1 29 8 0 O30STS
2 117 6 1 080227, 150589
3 5 2 512 112137977 1141533’ 1].84599, 120137977 ].221379’77 124:91987 12614308,
128183967 1309198’ 1329198’ 13491987 13645997 14245997 1444599
4 95 8 0 0130816
5 83 6 1 0802277 150589
6 17 2 512 1064599, 1144599’ 1189198, 12022995’ 12213797’ 124183967 12611242,
1284599, 1329198’ 13618396, 1384599, 1429198
785 8 0 0130816
8 255 2 512 0511, 11645997 11845997 11945997 1206132’ 1229198, 124229957 12545997
12645997 1274599’ 1289198, 12945997 130137977 1314599’ 13345997
13413797’ 1354599, 1364599, 1384599
10 1 29 4 0 0523776
2,4,6,8 213 2 1024 10241023, 22410230’ 228102307 23015345, 23225575’ 241102307 243102307
24425575’ 245102307 24620460, 24710230, 250306907 25120460’ 252204607
25430690 25510230 25810230 26020460 2615115 2621023 26310230
26425575 26510230 26610230 26710230 26810230 26910230 27010230
27120460 27220460 2745115 27520460 27820460 27920460 28310230
29110230
3 151 6 0 0523776
7 89 6 0 0523776
9 511 4 0 0277233’ 2230175’ 415345, 5101023
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Table 3: pAPN-spectra of two-point swaps of the Kasami function

n i d dp Spectrum Swapped spectrum
4 13 3 2 16 16%7, 470
2 7 4 0 0%5, 290, 81>
5 14 3 2 32 103!, 6195, 8310
23 11 2 32 1031, 6199, 310
6 15 3 2 64 10789, 12378 16189, 22578 24378 26578, 6453, 863
7 1,6 3 2 128 228897 268897 28127, 308897 3226677 361778, 38889
2,5 13 2 128 211277 278897 28889, 292667’ 308897 321778, 38889
3’4 23 2 128 258897 28889, 29889’ 301778’ 3]_26677 328897 42127
S 1’7 3 2 256 2562557 4820407 5240807 5440807 5620407 5840807 6230607 6620407 705107
742557 761020, 802040, 822040, 8830607 902040
2,6 13 12 0 (32640
3’5 39 2 256 2562557 532040’ 552040’ 572040’ 604080, 614080, 626630, 652040, 812040,
832040, 8540807 8810207 98255
4 31 16 0 (32640
9 1,8 3 2 512 1129198’ 1144599, 11613797, 1184599, 1209198’ ]_2245997 1249198’
126204407 12845997 130137977 13213797’ 1364599, 13845997 1409198’
1424599
2’7 13 2 512 1081533, 11845997 1199198’ 1204599, 1219198’ 1224599, 123137977
1244599’ 1254599’ 12645997 1274599’ 12822995, 129137977 1304599’
1324599, 13313797’ 1354599, 144511
45 47 2 512 1164599, 1179198 1214599 1034599 1944599 1959198 1949198
1279198’ 128137977 12945997 131275947 132107317 13345997 1359198’
13645997 99511
10 1’9 3 2 1024 ]_02410237 21210237 21610230, 21820460, 22020460’ 222102307 22410230’
226204607 230306907 232204607 23815345, 240102307 24251157 2465115,
252102307 256102307 258306907 26230690, 26410230, 266204607 26835805,
270204607 27210230’ 276204607 27820460, 28030690, 28430690, 286102307
288204607 29010230’ 292102307 20410230
3’7 57 2 1024 10241023’ 2]_9204607 22010230, 22710230’ 22810230, 22910230, 23110230’
232368287 23310230’ 23410230’ 23510230’ 24010230’ 242204607 24410230’
2485115, 255102307 259102307 260204607 26310230, 266409207 26910230,
270102307 27110230’ 272102307 27320460’ 27410230, 275102307 276102307
277204607 27820460, 279204607 28010230, 28120460, 28210230, 28310230,
28430690, 29010230
5 63 32 0 (523776
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Table 4: pAPN-spectra of two-point swaps of the Niho function

n i d 6r Spectrum Swapped spectrum
i 3 3 2 16 16%7, 4%
5 12 5 2 32 10°1, 6197, 8310
471 2 32 10%!, 6%%, 8310
6 3 15 38 0 02016
5 71 6 0 02016
7 125 5 2 128 20589, 28127 307778, 327067 34589 3559 38880
3 29 2 128 25889’ 288897 298897 301778, 312667, 32889’ 42127
4 19 4 1 045727 13556
6 15 2 128 228897 268897 2810167 32889, 341778, 362667
S 3 39 92 256 2562557 5320407 5520407 5720407 6040807 614080, 6266307 652040, 812040,
832040, 8540807 8810207 98255
4 19 16 0 (32640
6 29 10 0 032640
715 14 1 132640
9 172 5 2 512 112137977 1141533’ 1184599, 120137977 12213797, 12491987 12614308,
128183967 13091987 13291987 13491987 1364599, 1424599’ 1444599
3 39 8 0 0130816
419 2 512 116999, 117511, 1199999, 1214999 1924599 1234399 1949198
125275947 1269198, 127137977 1289198, 1299198’ 13045997 1314599,
13291987 1334599’ 1356132
5 63 6 1 01292837 11533
7 13 2 512 1081533, 1184599, 1199198’ 1204599’ 1219198’ 1224599’ 12313797,
1244599’ 12545997 1264599, 1274599’ 12822995, ]_29137977 1304599’
1324599’ 133137977 13545997 144511
8 31 2 512 1064599, 11445997 11891987 120229957 12213797’ 124183967 12611242,
1284599, 1329198’ 136183967 13845997 1429198
10 3 39 32 0 0P23776
4 19 6 0 0523776
5 125 34 0 (728776
6 71 6 0 0723776
7 9 2 1024 10241023, 20620460, 20810230, 21010230’ 212112537 22020460, 22210230’
230102307 2325115’ 23410230’ 23615345, 238102307 24225575’ 24815345,
2545115’ 25620460, 258102307 260204607 2625115, 264306907 26620460,
268306907 270409207 272306907 27430690’ 27820460, 28010230, 28620460,
28810230, 29210230’ 294102307 30010230’ 30810230
8 61 6 0 0323776
9 31 30 0 0323776
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Table 5: pAPN-spectra of two-point swaps of the Welch function

n i d dp Spectrum Swapped spectrum
4 23 7 4 0 075,200 815
) 1 5 2 32 10%1, 6155, 8310
24 7 2 32 1031, 6155, 8310
3 11 2 32 1031, 6155, g310
6 25 7 6 0 (2016
3 11 10 0 02016
7 1 5 2 128 208897 281277 3017787 3226677 348897 36889, 38889
2,6 7 6 1 054617 12667
3 11 2 128 211277 27889’ 28889, 292667’ 308897 3217787 38889
4 19 4 1 045727 13556
5 13 2 128 21127’ 27889, 28889, 292667, 308897 321778’ 38889
8 27 7 6 0 (32610
3 11 10 0 (32640
4 19 16 0 (32640
5 25 6 0 (32640
6 13 12 0 (32640
9 1 5 2 512 112137977 1141533’ 11845997 120137977 12213797, 12491987 12614308,
128183967 13091987 13291987 1349198, 1364599, 1424599, 1444599
2,8 7 6 1 01292837 11533
3 11 8 0 0130816
4 19 2 512 1164599 117511, 1194599 1214599 1924599 1234599 1949198
].25275947 1269198, ].27137977 1289198, 12991987 1304599’ 1314599’
1329198’ 13345997 1356132
5 35 6 1 01292837 11533
6 25 8 0 0130816
7 13 2 512 1081533, 1184599, 1199198’ 1204599’ 1219198’ 1224599’ 12313797’
1244599’ 12545997 1264599, 1274599’ 12822995, 12913797’ 1304599’
1324599’ 133137977 13545997 144511
10 29 7 6 0 o2Z3776
3 11 10 0 (P23776
4 19 6 0 0523776
5 35 34 0 (523776
6 49 8 0 0523776
7 25 8 0 0523776
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Table 6: pAPN-spectra of two-point swaps of the Gold function

n i d Jdp Spectrum Swapped spectrum
4 13 3 2 16 1630, 490
5 14 3 2 32 1031, 6195, 8310
23 5 2 32 1081, 6155, 8310
6 15 3 2 64 10789, 12378 16189, 22578 24378 26578, 6453, 863
7 1,6 3 2 128 228897 268897 28127, 308897 3226677 361778, 38889
2’5 5 2 128 208897 28127, 3017787 322667’ 34889, 36889, 38889
3’4 9 2 128 228897 26889, 2810167 32889’ 3417’787 362667
8 1,7 3 2 256 2562557 4820407 5240807 5440807 5620407 5840807 6230607 6620407 70510’
742557 761020, 802040, 822040, 8830607 902040
3’5 9 2 256 256255, 4820407 5220407 5420407 562040, 586120, 603060, 625100, 70510’
742557 802040, 864080, 883060
9 18 3 2 512 1129198, 114%99, 11619797, 118%99, 1209195, 1227599, 124919,
12620440, 12845997 13013797’ 132137977 1364599, 1384599, 1409198,
1424599
277 5 2 512 112137977 1141533’ 11845997 120137977 122137977 12491987 12614308,
128183967 13091987 13291987 1349198, 1364599, 1424599, 1444599
4,5 17 2 512 1064599, 1144599, 11891987 12022995’ 12213797’ 124183967 12611242,
1284599, 1329198’ 136183967 1384599, 1429198
10 179 3 2 1024 10241023’ 2121023’ 216102307 21820460, 22020460, 222102307 22410230’
226204607 230306907 232204607 238153457 24010230, 2425115’ 2465115,
252102307 25610230, 258306907 26230690, 264102307 26620460, 26835805,
270204607 27210230’ 276204607 27820460, 28030690, 28430690, 28610230,
28820460, 29010230’ 292102307 29410230
377 9 2 1024 102410237 206204607 208102307 210102307 21211253’ 220204607 22210230’

230102307 23251157 234102307 236153457 23810230, 24225575’ 24815345,
2545115’ 25620460, 25810230, 26020460, 2625115, 26430690, 26620460,
2683(]6907 27040920’ 2723()6907 27430690’ 27820460, 280102307 28620460,
28810230, 29210230’ 29410230’ 30010230’ 30810230
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