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Abstract
This article introduces a new problem of distributed knowledge graph, in IoT
5G setting. We developed an end-to-end solution for solving such problem by
exploring the blockchain management and intelligent method for producing the
better matching of the concepts and relations of the set of knowledge graphs.
The concepts and the relations of the knowledge graphs are divided into several
components, each of which contains similar concepts and relations. Instead of
exploring the whole concepts and the relations of the knowledge graphs, only the
representative of these components is compared during the matching process.
The framework has outperformed state-of-the-art knowledge graph matching
algorithms using different scenarios as input in the experiments. In addition,
to confirm the usability of our suggested framework, an in-depth experimen-
tal analysis has been done; the results are very promising in both runtime and
accuracy.

1 INTRODUCTION

IoT (the Internet of Things) is expeditiously rapidly arising, and the current extent of data and information shift this
technology to handle knowledge instead, in particular in 5G environment, where the transactions became more and more
larger and bigger.1-3 IoT 5G networks foster new smart devices and applications as never seen before. Industrial Internet
of Things (IoTs) and smart agriculture are few examples of the huge potential number of IoT 5G network applications that
are offered to our society. For instance, in the context of health monitoring, Kavitha et al4 developed an intelligent IoT
system which provides different functionalities such as data preprocessing, context-aware, and decision-making process
to handle medical data in IoT settings. Smart sensors offered by IoT 5G environment technologies result the creation of
large volumes of data varied in time and space. For instance, smart cities are growing rapidly as they aim to deal with over
2.5 billion citizens with a multitude of smart devices by 2050. Making sense of the city interaction is vital to avoid both
internal and external conflicts in IT governments.5,6 Although the current IoT 5G technologies handle with knowledge
graphs,7-9 it has, however, two main issues of these observed solutions as:

1. Missing of common standardization of heterogeneous knowledge graphs of the different sites in the IoT 5G network
environments.10

2. A known issue of knowledge graphs deals with privacy preservation as well as security issues in IoT 5G network
environments.11
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To deal with the first issue, knowledge graph matching is needed. It is the process of finding the mappings between
two knowledge graphs represented in different contexts. It can be applied to several real-life problems. Bellini et al12 intro-
duced a system for the management of large-volume of concepts and relations from heterogeneous sources. Qui et al13

developed a semantic graph-based method by incorporating semantic graph structure information and context infor-
mation that can be used to identify the nontaxonomic relationships in IoT environments. Le et al14 developed a unified
intelligent solution to manage billions of concepts. It also enriches millions of triples for linking to a graph in real-time per
hour. All these solutions only deal with two knowledge graphs and did not consider the matching of several knowledge
graphs in a real time. Therefore, new approaches to solve the distributed knowledge graphs matching are primordial.

To deal with the second issue, a new security strategy is needed. Blockchain management is an accurate tool for pro-
viding high secure platform in IoT 5G environment.15 Revanesh et al16 developed a hybrid deep learning framework based
on metaheuristic, and blockchain technology for a reliable trustworthy routine scheme in wireless sensor networks. The
disseminated routing info in the network is handled by blockchain technology, in which the optimal routing is determined
using the Salp swarm intelligence solution. The convolution neural network is also integrated to learn the different vari-
ation among the nodes of the network. Dai et al17 implemented an RL (reinforcement learning) based on blockchain for
security in next-gen networks, both wireless and other. Their invented system was shown to maximize the utility of the sys-
tem, and was also able to accurately cache data sharing across many types of networks. Weng et al18 invented DeepChain,
a framework that possesses a DL (deep learning) based framework that is able to solve known federated learning issues.
In DeepChain, the learners may behave maliciously while updating parameters. To solve this issue, they propose a value
driven incentive approach using blockchain to motivate nodes to behave correctly. Liu et al19 handle industrial IoT based
issues using blockchain. They adopt an RL approach to give a way to evaluate IIoT systems in terms of latency, privacy,
security, scalability, and decentralization. The existing blockchain management solutions do not deal with the different
interactions of the knowledge graphs in IoT 5G environment. This research explores the blockchain technology for better
secure the distributed knowledge graphs matching process.

Through our own literature search, we have seen that our work here is the first study to explore the distributed knowl-
edge graph matching problem in the IoT 5G environment. In addition, it developed an end-to-end framework which
explore both the security issue, and the matching performances. Our contributions are noted clearly as follows:

1. We introduce a new problem, called distributed knowledge graph matching problem. Each IoT node in the set of
knowledge graphs is represented by the set of concepts and the set of relations while each relation represents the
correlation between two concepts.

2. We further develop a blockchain management strategy for handling the concepts and the relations of the knowledge
graphs in a secure way, which is based on Etherum service to store, manage, the concepts and the relations across the
different sites in IoT 5G networks. It provides a secure mechanism for concepts and relations sharing.

3. We present a new approach for knowledge graphs matching. It adopts decomposition method to split the concepts and
the relations of the knowledge graphs into similar groups. Instead of exploring the whole concepts and relations of the
knowledge graphs, only the representatives of the groups are exploited for better and accurate matching. In addition,
matching similar concepts and relations instead of homogeneous knowledge graphs gives better accuracy in the final
matching results.

4. Extensive experiments were carried out to validate the applicability of the proposed framework. Two well-known
knowledge graph matching are used. The first data are called Kensho Derived Wikimedia, with more than 75 million
items. The second one is CORD-19 knowledge graph with more than 66 000 concepts and 133 relations. The results
reveal that both the suggested framework outperformed the state-of-the-art knowledge graphs matching solutions in
terms of runtime, and the quality of returned solutions.

We organize things as follows. Works on the knowledge graph matching problem, and blockchain management are
discussed in Section 2. Section 3 presents the proposed framework for distributed knowledge graph matching problem.
A performance evaluation of the proposed framework is given in Section 4. Finally, Section 5 draws the conclusions and
future perspectives of the knowledge graph matching problem.

2 RELATED WORK

This research work is based on two main topics: knowledge graph matching and blockchain management.
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2.1 Knowledge graph matching

Matching strategies based on concepts are appropriate for connecting database records. Much research has explored meth-
ods for improving the efficiency of knowledge graph matching. Solutions regarding the knowledge graph matching issue
mainly is categorized into two groups: i) solutions based on the reduction of the search space by employing computa-
tional intelligence, data mining, and machine learning methods and ii) solutions based on high-performance computing
while parallel matching is established. This work focuses on the solutions based on the reduction of a search space and
approaches in this category are discussed in the following section. Li et al20 developed a concept regarding matching
approach, named VMI. For each concept, it builds two distinct vectors, such as the vector name as well as a virtual doc-
ument vector. The VMI method is able to reduce similarity measurements by using multiple indexing and candidate
selection and operates effectively only in large cases with a limited number of data properties. The best results are obtained
when users specify all the corresponding data properties and methods of retrieving values. Therefore, the approach used
is based solely on the generic matching concept algorithm. However, some processes are applied to particular areas, that
is to say, using simple string comparative methods for names/data characteristics utilizes comprehensive instance infor-
mation. In the 2009 OAEI competition*for small knowledge graph, VMI obtained successful matching. However, with
increasing instances, its quality decreases. Wang et al21 developed an approach that is based on the hypothesis that, two
entities of the same real-world object may be matched when they are related to previously matched entities. This technique
incorporates multiple lexical matches using a new voting aggregation process and only uses the structural information
and the correspondences observed to locate the additional information, which can then primarily be broken down into
two stages: the identification of highly accurate seminal correspondences by lexical information and the derivation of
additional matching outcomes based on the semantic matching of the previous stage with a structural matching strategy.

Based on the findings of the 2010 OAEI study, this method obtains a reasonable accuracy for certain medium and
small knowledge databases. Shao et al22 presented RiMOM at the OAEI competitions in 2013 and 2016. It introduces
an iterative matching framework in which the distinctive information is centered on a blocking technique for minimiz-
ing the number of pairs of candidates. As a key to the index of the concepts, it uses predicates, and its distinctive object.
Moreover, a weighted, exponential similarity averaging method is used to ensure that the concept matching fits with the
high precision. The new blocking approach decreases the computational cost significantly without losing precision and
recall. RiMOM achieves 99% accuracy in small and medium knowledge graphs. Alam et al23 developed an expansion of
MERGILO, a method to reconcile knowledge graphs extracted from the text by graph matching and word similarity. Com-
pared with the generic approaches, the results of the extended MERGILO show significant improvement. Rosaci24 found
that graph matching can be used to link various smart agents. The knowledge graph of an agent simulates the actions of
an agent, and, if an agent proposes, then any agent in the group will know the relation between itself and another agent.
Rosaci25 then used the hierarchical model to identify semantic associations between web data. The semantic connections
represented by metadata are discussed in the context of a collection of network entities. The usefulness of this approach
has been demonstrated in well-known web user recommendation systems. The interlinking issue was first addressed as
problems of duplication or record linkage by the database community, where Elmagarmid et al26 based their research
on several methods to tackle the problems of heterogeneity in graph matching and proposed a method of handling a set
in organized property-segmented documents. To address the matching problem in LOD by using rules taken from the
association rule mining technique, Niu et al27 developed the extended inverse functional property suite (EIFPS) tech-
nique, which is considered to be a semi-supervised learning approach. A limited number of current matches owl:sameAs
are used as seeds and the related rules as criteria for optimizing precision are considered. It presented a graphic metric
that measures the likelihood and law of Dempster while integrating confidence values. Then, by presenting the power of
resource homogeneity for the e-learning context, Ceron et al28 presented the LOM framework. To expand and improve
the available tools for online learning semantically, the use of the initial associative classifier for ontology matching was
then developed and investigated. This model uses a feature-based similarity function that needs historical knowledge as
the training set. This method was evaluated and verified at the 2014 OAEI knowledge graph database competition. The
results for several larger knowledge graph databases showed 90% precision. Ochieng et al29 presented an approach that
splits a graph into many partitions. Cluster-based similarity aggregation (CSA)30 is a system integrating varied factors (i.e.,
five measures, a string-similarity calculation, and a WordNet-based similarity measure) to derive the alignment of ontol-
ogy concepts. Algergawy et al31 then proposed a large-scale ontology matching clustering approach. The main concept
is to divide the schema graph by using context-driven structural node similarities into clusters. The Vector Space Model

*http://oaei.ontologymatching.org/.

http://oaei.ontologymatching.org/
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(VSM) is also defined after the partitioning of each ontology to discover similar clusters and generate the same concepts.
Belhadi et al32 proposed the genetic feature selection for ontology matching (GFSOM), a hybrid solution for improving
the ontology matching process. The relevant properties of the ontology are first selected using the feature selection pro-
cess. The genetic algorithm is then performed in order to explore the alignment space between two ontologies. Belhadi
et al33 proposed a pattern mining for ontology matching (PMOM), which is a data mining based solution for the ontol-
ogy matching. The set of frequent patterns of both ontologies are first discovered, instead of exploring the whole set of
properties, only these relevant patterns are checked to find the best alignment.

2.2 Blockchain management

Dai et al17 created an RL (reinforcement learning) architecture using blockchain to secure next-gen networks, both wired
and wireless. Their novel system was shown to maximize utility as well as cache data sharing accurately across the entire
network. Weng et al18 invented DeepChain, a novel framework which can be defined as a distributed DL (deep learning)
system that can be used for solving FL (federated learning) issues. In their novel system, learners are known to behave
in an incorrect manner when parameter updates are taking place. Their system is based on having incentives that are
value-driven incentive in a blockchain based system that mandated participants to hopefully behave in correct manners.
Liu et al19 handle blockchain enabled IIoT (the Industrial Internet of Things) problems and make use of an RL (rein-
forcement learning) based approach that can give a clear mechanism for the evaluation of IIoT (the Industrial Internet
of Things) systems maintaining security, privacy, trust, scalability, latency, and decentralization. Qiu et al34 dealt with
optimization problems, and a Q-learning approach to be able to solve and describe access selection, view change, as
well as resource allocation in blockchain systems. Liu et al35 implemented a reinforcement learning blockchain-enabled
approach that could create a safe and secure environment and can maximize collection of data in IIoT systems. Dai et al36

handled the offloading problem online using a Markov decision tree. Their system integrates RL, blockchain mining, and
the well know Genetic Algorithm to be able to maximize offloading performance long term. Chai et al37 implemented a
FL (federated learning) hierarchical system that can be used for knowledge sharing in vehicles. In a similar area, Lu et al38

implied that an asynchronous, blockchain-based FL solution could handle security issues in the Internet of Vehicles (IoV).
Youyang et al39 created a novel FL based strategy that uses blockchain. Their system enables learning at a local level for
terminal devices through the exchange with the global learning based model using blockchain technology. Furthermore,
their system was also able to allow autonomous ML (machine learning) for sustaining a global model without the need for
a centralized authority. Luo et al40 discussed a blockchain-based IoT technology that can synchronize the local views in
between many different SDN (software-defined network) controllers and is able to achieve an accurate consensus in the
global view. Their novel approach was able to reduce computational resources while also able to consider hidden features
for controllers as well as resource constraints in the environment simultaneously. Abbas et al41 looked at authentication
of distributed medical patients in hospital-based networks using blockchain. We have seen ample work in the emerging
telecommunications field recently that uses blockchain technology and artificial intelligence based solutions in 5G IoT
environments in many different fields.42-44

2.3 Discussion

As seen in the above short review of literature, current knowledge graph matching solutions have good results on
small-scale databases (ie, many small and medium concepts) in terms of runtime and the solutions of the quality. It also
focuses on discovering matching inside the knowledge graph, and does not deal with distributed knowledge graph match-
ing problem, which is vital in IoT 5G environments. It also neglects security problems, as for the existing blockchain
learning technologies; they are not dedicated to semantic knowledge graph matching. In this work, we present an
end-to-end solution based on intelligent blockchain management for matching knowledge graphs in distributed IoT 5G
environments.

3 IBM-DKG: INTELLIGENT BLOCKCHAIN MANAGEMENT FOR
DISTRIBUTED KNOWLEDGE GRAPH MATCHING

The proposed IBM-DKG shown in Figure 1 (intelligent blockchain management for distributed knowledge graph match-
ing) employs both blockchain management and decomposition for distributed knowledge graph matching. The process
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F I G U R E 1 IBM-DKG framework

starts by transforming the knowledge graphs into a set of groups of similar concepts and relations. Instead of exploring
the whole knowledge graphs, only the representative groups are checked for retrieving the best matching of each pair of
the knowledge graphs. The output of the IBM-DGK will be the set of alignments of each pair of the knowledge graphs in
the system. The detailed explanation of the proposed framework is presented in the following section.

3.1 Distributed knowledge graph matching

The aim of this part is to build a distributed knowledge graph matching system. We consider a set of knowledge graphs,
where each knowledge graph is represented by a set of concepts C, and set of relations R. Each relation relies semanti-
cally two adjacent concepts in the graph. Distributed knowledge graph matching problem aims to determine the shared
concepts from of the set of knowledge graphs in distributed settings. In this section, we will present a new approach
for accurately solve the distributed knowledge graph matching problem. The knowledge graphs are divided into sev-
eral dependent groups, each of which contains highly correlated concepts. The concepts of each group are intelligently
explored in order to deduce the shared concepts. The decomposition step is considered as pre-processing, where the
matching could be applied several times in the same set of derived groups. Each group of concepts shared maximum
number of relations. Instead of running the matching on the whole concepts and relations of each knowledge graph, the
concepts of each group are explored, where the similarity among the representative of the groups is determined. The set
of knowledge graphs , the set of concepts  is considered as input, and the best matching as ∗. The set of groups ,
and the representative of each group Gi is noted gi. The first step is to generate the representative of the groups in . The
first loop step is to scan all the concepts for each knowledge graph in . We determine the distance between each group
representative and each concept in Ki. The lowest distance value between the concept c and all the groups representa-
tive in g is returned. The concept c is assigned to the cluster with the lowest distance value. All groups representative are
updated and kept in the set g′. This process is repeated until a stabilization among groups is observed. The final groups
of each knowledge graph are stored in matrix, which is called . Each element [i][j] is the distance between the
gj and the ith concept of the jth group.

After the decomposition step, the groups of the knowledge graphs are explored in order to find the best matching
∗ of each pair of knowledge graphs. Instead of comparing all concepts, only the representatives of the groups are
checked and compared. If the similarity between the g1

i and g2
i , the two representatives groups of the knowledge graphs

K1 and K2, respectively, is greater than a given threshold, then the concepts of the groups Gi of both knowledge graphs
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are concatenated to the matching results of the knowledge graphs K1 and K2. This process is repeated for all groups of
the knowledge graphs K1, and K2. The complexity of the proposed solution for distributed knowledge graph matching
depends on the number of concepts |C|, the number of relations |R|, the number of groups |G|, the number of knowl-
edge graphs |K|, and the number of possible matching p. In the designed model, the decomposition step thus needs
O(|C| × |R| × |K|). This process is performed only once for the set K whatever the number of matching to be established.
Only similar groups are exploited during the matching process. This requires O

(|C|×|R|×|K|
|G|

)
. The total cost of the proposed

solution for establishing p matching is O
(|C| × |M| × |K| + p × |C|×|R|

|G|
)

, which is significantly lower than the baseline
solutions that require O(|C| × |R| × |K| × p).

For instance, consider two knowledge graphs K1 = {R′
1,R′

2, … ,R′
30} and K2 = {R1,R2, … ,R30} of the same concepts

C = {C1,C2, … ,C60}. Each relation describes two different concepts in C. The first step aims at extracting the set of
relations Rand R′ and grouping them into several subsets. The matching process is then performed to derive an align-
ment among the two knowledge graphs. The reference alignment represents the set of the common relations among two
knowledge graphs. Thus, the optimal matching between K1 and K2 is, for example, R1 = R′

12, R3 = R′
15, and R10 = R′

26.

3.2 Security

The main objective of this part is to secure the proposed framework using blockchain technology. Ethereum is used
as a service to store, and manage the data across the different sites in a safe way. It provides a secure mechanism for
data sharing by creating a highly guarded blockchain system. The blocks are first created, where each block contains
the representative groups of the knowledge graph derived by each site. Once the block of the given site is calculated,
a hash is determined, in order to avoid updating of the representative groups of the knowledge graph of the site. The
hash is used here to protect the representative groups of the knowledge graph of each site, and easily identify unexpected
changes by the hackers. A proof of work strategy is also integrated for avoiding automatically detecting the hashes. All
sites read the proof of work, and agree about the entities that are able to create new blocks. The smart contract are also
delivered to the sites. The smart contracts are cached in the different blocks of the sites, which can be used to automat-
ically exchange hidden information among sites. All sites accept request authentication for data exchanging. Each site
enrolls agreement with the certificate authority and saved its public and private keys in hidden space. The encryption
system is also needed to be used for ensuring the privacy of data transportation across the different sites of the pro-
posed system. The certificate authority permanently verified both the data source and destination. If the data are sent
or receive from nonlegitimate site, a transaction is rejected, and a report is made, where the IP address of the detected
site is stored in a block list. Once the certificate authority checks the validity of the transaction, both signature and the
encrypted data are given back to the designated site which will be delivered to the blockchain system as saved inquiry from
that site.

Algorithm 1 presents the formal description of the IBM-DKG framework. The set of relations Ri of each knowl-
edge graph Ki is considered as input, and the best alignment  as output. The set of clusters is represented by , and
the set of centroids is stated as g. The first step is to randomly initialize the centroids using the function InitializeCen-
ters(). The first loop aims to scan all the set of relations. The function Distance(e, g1) calculates the distance between
the relation and the first centroid g1. Consider e = {(Name, Joe), (age, 26), and (type, man)} and the centroid is set as
g1 =(26, man, USA), Distance(e, g1) aims to calculate the intersection of values, which is set to 2. The next loop finds
the smallest distance between the relation e and all the centroids in g, where it conserves the range r. Each relation e
is assigned to the cluster r, which represents the minimum distance using the function AddElement(). Afterward, the
centers are updated and kept in the set g′. If gnew is equal to the previous center in g, then the decomposition process
is then terminated; otherwise, the same process is repeated until gnew and g become the same. It scans the set of cen-
troids Gi, Gj of the two knowledge graphs Ki and Kj, and the minimum distance between two centroids with the function
Distance( gi

l1
, gj

l2
). The minimum distance is selected and the two clusters are added to the list of the alignment clusters

list using the function AddClusters(). It scans again the whole relations of the two aligned clusters. Here, p and q are
represented as the two selected clusters, and scans all the relations e1 and e2 for both clusters p and q, and the mini-
mum distance is computed. For the set of aligned , the alignment results of the clusters p and q are then added and
denoted as p,q. This process is repeated for all the clusters in list. The privacy of the whole process is ensured by the
standard and generic blockchain technology, which is not stated here since it is not the major problem to be solved in
this article.
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Algorithm 1. IBM-DKG: Intelligent blockchain management for distributed knowledge graph matching

Input :Ci = {Ci
1,Ci

2...C
i
ci
}: the set of ci concepts of the knowledge graph Ki.Ri = {Ri

1,Ri
2...R

i
ni
}: the set of ni relations of

the knowledge graph Ki.
Output: : Alignment set.
InitializeCenters(gi)
for each relation e ∈ Ri do

dis ← Distance(e,gi
1)

r ← 1
for j=2 to k do

d ← Distance(e,gi
j)

if d < dis then
dis ← d
r ← j

end if
end for
AddElement(e,ci

r)
end for
repeat

change ← false
gi

new ← UpdateCenter (g,i)
if gi != gi

new then
change ← true

end if
until change == false
list ← ∅
for p = 1 to ki do

min ← Distance ( gi
p, gj

1)
index ← 1
for q = 2 to kj do

d ← Distance(gi
p, gj

q)
if d < min then

min ← d
index ← j

end if
end for
list ← list ∪ AddClusters( ci

p, cj
r)

end for
← ∅
for each (p, q) ∈ list do

min ← ni × nj
for each instance (e1, e2) ∈ (i

p,
j
q) do

d ← Distance(e1, e2)
if d ≤ min then

min ← d
p,q ← (e1, e2)

end if
end for
← ∪p,q

end forreturn 



8 of 13 DJENOURI et al.

20 30 40 50 60 70 80 90 100

% Concepts/Relations

70

75

80

85

90

95

100
A

cc
ur

ac
y

Kensho Derived Wikimedia
IBM-DKG GFSOM PMOM

20 30 40 50 60 70 80 90 100

% Concepts/Relations

80

82

84

86

88

90

92

94

96

98

100

A
cc

ur
ac

y

CORD-19 Knowledge Graph
IBM-DKG GFSOM PMOM

F I G U R E 2 Accuracy comparison of the IBM-DKG and the state-of-the-art knowledge graph matching solutions by varying the
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4 PERFORMANCE EVALUATION

Extensive experiments were conducted on well-known knowledge graphs to validate the usefulness of proposed
IBM-DKG framework. The experiments were carried out on a desktop with an Intel i7 processor and 16 GB of main
memory. Python language was used for all the implemented algorithms. We used two different datasets:

1. Kensho Derived Wikimedia Dataset†: It represents the Wikipedia, the free knowledge base. It is almost 20 years old
and recently added its six millionth article in English. The dataset was created in 2012 but has been growing rapidly
and currently contains more than 75 million items.

2. CORD-19 Knowledge Graph‡: It is comprised of 50 752 gene nodes, 10 781 disease nodes, 5738 chemical nodes, and
535 organism nodes. These nodes are connected by 133 relation types including Gene–Chemical–Interaction Rela-
tionships, Chemical–Disease Associations, Gene–Disease Associations, Chemical–GO Enrichment Associations, and
Chemical–Pathway Enrichment Associations.

We split these two datasets into different knowledge graphs in order to simulate the mechanism of distributed knowl-
edge graphs matching proposed in this article. Two baseline algorithms have been compared with, which represents the
state-of-the-art knowledge graph matching algorithms. The first algorithm called GFSOM32 which received the best paper
award in the international conference on genetic and evolutionary computing. The second algorithm called PMOM33

which is recently published in European conference on advances in databases and information systems. The runtime is
calculated by seconds, and the accuracy is determined by computing the percentage of the corrected matched.

4.1 Accuracy

Figures 2 and 3 present the accuracy of the IBM-DKG on Kensho Derived Wikimedia database and CORD-19 Knowledge
Graph compared with GFSOM and PMOM. In Figure 2, we fix the number of knowledge graphs to 20, and we varied the
percentage of concepts, and relations used on each knowledge graph from 20% to 100%. However, in Figure 3, we fix the
percentage of concepts and relations used on each knowledge graph to 100%, and we varied the number of knowledge
graphs from 2 to 20. The results reveal that IBM-DKG outperforms the two baseline algorithms in terms of accuracy,
determined by the number of corrected matching. Indeed, the accuracy of IBM-DKG exceeds 97% of corrected matching;

†https://www.kaggle.com/kenshoresearch/kensho-derived-wikimedia-data.
‡https://www.kaggle.com/yitongtseo/cord19-named-entities.

https://www.kaggle.com/kenshoresearch/kensho-derived-wikimedia-data
https://www.kaggle.com/yitongtseo/cord19-named-entities
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however, PMOM accuracy goes below 94%, and the GFSOM accuracy goes below 86%. This is explained by the fact that
GFSOM and PMOM are approximate-based solutions. GFSOM is based on stochastic based process, which can refer to
genetic algorithm, and PMOM is based on the relevant patterns discovered in each ontology, which are highly dependent
to the minimum support value. However, IBM-DKG uses efficient strategies to match the knowledge graphs. It benefits
from the decomposition step by dividing the concepts and relations of the knowledge graphs into small components, each
of which contain few but highly correlated concepts and relations. It also provides an efficient blockchain management
for ensuring the safely sharing of the different representatives of the groups of the knowledge graphs.

4.2 Computational time

Figures 4 and 5 present the runtime of the IBM-DKG on Kensho Derived Wikimedia database, and CORD-19 Knowledge
Graph, compared with GFSOM and PMOM. By varying with the number of concepts, relations, and the knowledge graphs
used as input, IBM-DKG outperforms the two baseline algorithms in terms of runtime. Indeed, the computational time of
IBM-DKG does not exceed 45 ms; however, PMOM runtime reaches 60 ms, and the GFSOM runtime exceeds 48 ms. This
is explained by the fact that IBM-DKG only explores the representative of the groups of the knowledge graphs, whereas
the GFSOM uses high number of concepts and relations in the matching process, and PMOM studied the different
correlations among the concepts and the relations of each knowledge graph which is high time consuming.

4.3 Discussions

From our extensive experiments dealing with distributed knowledge graph matching problem, some perspectives remain
to be studied:

1. Preprocessing of knowledge graphs: In order to increase the distributed knowledge graph matching performances, the
data should accurately preprocessed. The preprocessing step should include different directions, for instance, remov-
ing outliers and noises from the knowledge graphs, missing of outlier detection from the knowledge graphs in the
advanced solutions for outlier detection.45-48 Adaptation of such methods allows the process of distributed the knowl-
edge graph matching more robust and accurate. One way to adapt such methods for dealing knowledge graphs, is
to develop operators dedicated to the knowledge graphs such as the local reachability distance among concepts and
relations, and the set nearest neighbors of the knowledge graphs. Another interesting preprocessing step is feature
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F I G U R E 5 Runtime comparison of the IBM-DKG and the state-of-the-art knowledge graph matching solutions by varying the number
of knowledge graphs

selection.49 The idea is to apply the feature selection methods in order to select the relevant concepts and the relations
for participating in solving the distributed knowledge graph matching problem. This selection allows to considerably
reduce the dimensions of the problem by removing the irrelevant concepts and relations before the matching process.

2. Explainable matching: Distributed knowledge graph matching solutions might derive various results from the same set
of knowledge graphs. Indeed, different matching may be produced from the same concepts and relation. These results
depend to many factors such as the algorithm used during the matching process, and the score function employing
for computing the matching score. The problem is to make an explanation of the results in order to decide the better
matching to the end-user. A crowd-sourcing may be one way to address this issue, where different knowledge graph
matching approaches should work together to identify the best matching. Agents represented by approaches and pro-
grams could find locally the matching and send them to the end-user. Another way to address this challenging issue
is to use the explainable AI tools50 in order to compute the contribution of each concept and relation in the final
matching, and then decide which criteria should be targeted in order to find the best matching to the end-user.
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3. Missing of ground truth: Missing of the ground truth is a common problem in evaluating knowledge graph matching
algorithms, in particular, for real scenarios, such as IoT applications. As challenges for future research regarding the
quality assessment of the knowledge graph matching results, the following issues and research questions remain to be
addressed:

• Defining useful, publicly available benchmark data for IoT problems is beneficial for analyzing the distributed
knowledge graph matching algorithms.

• It would be very useful to identify the meaningful criteria for an internal evaluation of knowledge graph matching.
One way to address this challenging issue is to provide unified ranking-function scores to rank the matching. These
functions should be independent of the whole process for identifying the best matching.

5 CONCLUSIONS

This article developed an end-to-end framework for dealing with the distributed knowledge graph matching problem in
IoT 5G networks. The framework used both artificial intelligence and blockchain management for accurately find the
shared concepts and relations from the set of knowledge graphs. The concepts and the relations of the knowledge graphs
are decomposed into similar groups. Instead of exploring the whole concepts, and the relations of the knowledge graphs,
only the representative of the groups are compared during the matching process. To certify the validity of the proposed
framework, intensive experiments have been carried; the results are very promising in both runtime and accuracy. In
addition, the framework outperforms the existing matching algorithms by varying the number of concepts, the number
of relations, and the number of knowledge graphs. As future perspective, we plan to investigate in preprocessing step of
the knowledge graphs by filtering and/or removing noises, and/or exploring the feature selection process in order to only
process the set of relevant concepts of the knowledge graphs. Exploring explainable AI for knowledge graph matching is
also an interesting topic that will be considered in our future agenda.
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