

BACHELOR THESIS

Wireless parking system

by

(13) - Erik Bjaanes
 (1) - Per Ø. Olset

 (11) - Torbjørn Årdal

Bachelor thesis
EL2-305

May 2015

 2

Reference page

TITLE REPORTNO. DATE
inPark 01 22.05.2015

PROJECT TITLE

ACCESSABILIT
Y

PAGES
Project in HO2-300 Bachelor
assignment

Open 61

AUTHORS

GUIDANCE COUNCELLOR
RETTLEIARAR/syt
RETLEIARARsvarlege er
STYRINGSGRUPPE
RETTLEIARAR

Erik Bjaanes
Per Øyvind Olset
Torbjørn Årdal

Rune Viken

EMPLOYER

INTIN AS

SAMANDRAG
I denne bachelor-avhandlinga ser vi på korleis vi kan levere informasjon til
elbil-brukarar om ladestasjonar er ledige eller ikkje, i sanntid. Vi vurdera
kva effektar eit sånt system kan ha på miljøet, og trafikkflyten. Avhandlinga
er eit resultat av ei oppgåve som vart presentert av INTIN AS. Oppgåva vår
var å implementere eit system som overvakar ledigheta til fleire ladepunkt
på eit spesifikt test-område i sanntid. Vi skulle også utvikle ein applikasjon
for mobile einingar som hentar denne informasjonen, og presenterer den
til brukaren.

SUMMARY
Th
TThe goal

In this bachelor thesis, we look at how you can provide information to users of
electric cars about the availability of charging stations in real-time. We
consider what effects such a solution might have on the environment, and
traffic flow. This thesis is the result of an assignment presented by INTIN AS.
Our task was to implement a system that monitors the availability of several
charging points, located on a designated test-site, in real-time. We would also
develop an application for mobile devices that gathers and presents this data
to the user.

KEYWORDS
EL2-305 Bachelor, Android application, charging station, sensors, INTIN
AS, Nedap, data collector, relay nodes, Sensit, inPark.

 3

Foreword
This thesis is the result of our group’s three years study at Sogn og Fjordane

University College. We chose this assignment because we found it very interesting,

and it involved aspects that each member is fond of. This includes programming,

installment at test-site, new technology and the possibility to do something

innovative.

In order to complete the assignment, we have had to rely on help from some people.

We would like show our appreciation and gratitude to Geir Henning Nore and Rune

Viken, the founders of INTIN AS, for providing this interesting assignment and being

available whenever we needed some guidance. We would also like to thank Nedap

for their support, and especially Mr. Gerjo Tannemaat. Without him we would have

used a lot more time figuring out certain parts of the user interface. As well as

tirelessly answered our questions with rapid and informative responses. Thanks to

Eivind Standnes for aiding us during the installation at Førde Central Hospital.

Additionally we would like to thank our friends and family for their continuously

support and patience with us during this period. Last, but not least, we want to

thank Joar Sande for being part of the project management group and being

available to answer questions along the way.

This group has consisted of Erik Bjaanes, Per Øyvind Olset and Torbjørn Årdal.

_______________ _______________ _______________

 Erik Bjaanes Per Øyvind Olset Torbjørn Årdal

Place/date:

Førde, 22.05.2015

 4

Table of Contents

FOREWORD 3

TABLE OF CONTENTS 4

1. ABSTRACT 6

2. INTRODUCTION 7

3. THE INPARK SYSTEM 9
3.1. CHOICE OF SOLUTION 9
3.2. TEST-SITE 9
3.3. THE NEDAP SENSIT SYSTEM 10
3.3.1. EQUIPMENT 10
3.3.2. HOW THE SYSTEM WORKS 10
3.3.3. THE SENSORS 11
3.3.4. SENSIT FLUSH MOUNT 12
3.3.5. SENSIT IR 12
3.3.6. RELAY NODE 2G 13
3.3.7. DATA COLLECTOR 13
3.3.8. SERVER AND DATABASE 13
3.3.9. SYSTEM DOWNTIME 16

4. INSTALLATION OF THE SENSOR SYSTEM 17
4.1. PLANNING THE INSTALLATION 17
4.2. HEALTH AND SAFETY 18
4.3. INSTALLATION 19

5. APPLICATION 21
5.1. INITIAL PLANNING 21
5.2. FEATURES AND DESIGN 22
5.3. GETTING STARTED 23
5.4. COMMUNICATING WITH THE DATABASE 24
5.5. CREATING THE USER INTERFACE 27
5.6. THE MAP 27
5.7. THE LIST 31
5.8. THE SETTINGS 34
5.9. TYING THE SECTIONS TOGETHER 34
5.10. REFRESHING THE DATA 37
5.11. HOW FAR DID WE GET? 38

6. ENVIRONMENT 42
6.1. DISCUSSION ENVIRONMENTAL REWARDS 42
6.2. ENVIRONMENTAL RETURN ON INVESTMENT 45
6.3. BENEFICIARIES 48

7. CONCLUSION 49

8. PROJECT ADMINISTRATION 50
8.1. GROUP ADMINISTRATION 50

 5

8.2. PLANNING PHASE 51
8.3. TIME MANAGEMENT 52
8.4. RISK ASSESSMENT 54
8.5. ECONOMY 54
WEB PAGE 55
8.6. SELF ASSESSMENT 58

9. SOURCES 59

APPENDIX 61

 6

1. Abstract

In this bachelor thesis, we look at how you can provide users of electric cars with

information about the availability of charging stations. We have named it the inPark-

system. The system aims to be efficient, well made and easy to use. The thesis is a

result of an assignment given by INTIN AS.

In addition to providing the required equipment, INTIN also made the arrangements

to have a test-site available. This test-site is located at Førde Central Hospital, where

we monitor six parking bays. We have developed an Android application that

presents the status of the parking bays in real-time.

We also consider the environmental rewards that the system might provide. We

believe that the system has the potential to make a large positive impact on the

environment as the amount of electric cars in the world only continues to grow.

 7

2. Introduction
This bachelor thesis is the final project of the three-year study of engineering at Sogn

og Fjordane University College (HiSF). The bachelor thesis makes up for 2
3
 of the last

semester, and is worth twenty credits.

Our assignment was to implement and test a system that monitors the availability of

charging stations for electric cars in real-time, and presents the relevant data to the

end-user in an Android application on a smartphone. In this thesis, we will explain

how we mounted a series of sensors at a designated test-site, how we stored the

data in real-time and how we developed our own Android application to present it.

We will also look at the potential rewards that such a solution can provide. Will this

solution provide a higher turnover of charging stations? Will it improve traffic flow?

Will it have a positive, and noticeable, impact on the environment? Will the solution

provide better, and easier, access to charging stations?

Our employer for this assignment is a company called INTIN AS. INTIN was co-

founded by Rune Viken and Geir Henning Nore in 2014, and is located in Førde,

Norway. The company specializes in smart-home technology, but as the number of

electric cars increases around the world, they would also like to help owners of

electric cars to locate available charging stations quickly and easily. In January 2015,

INTIN approached HISF with a proposal for an assignment to create, and test, a

prototype of such a system. All the members of our group found the assignment very

interesting, and we quickly informed them that we would like to accept it.

For this assignment, we will be using six sensors to detect vehicles in six different

parking bays (one sensor in each bay). Three of these sensors use both infrared and

magnets, while the other tree sensors only use magnets. Each parking bay will

simulate one charging point, and we will be describing each parking bay as a

charging point for the rest of the thesis. A Data Collector will monitor the state of the

sensors via three Relay Nodes, and forward the data to a database for storage. Our

Android application will then retrieve the data from the database, and present it in a

 8

user-friendly way. Our test-site is a small car park at Førde Central Hospital, which

visitors of the hospital use on a daily basis.

A Dutch company called Nedap Identification Systems 1 (Nedap) delivers the

equipment that we use to monitor the charging stations. Nedap is the leading

specialist in systems for long-range identification, wireless vehicle detection and city

access control. Along with the equipment, Nedap have provided a database with a

user interface so that we can manage and monitor all of the equipment.

As of 16th of May 2015, there are 1682 charging stations with 6464 charging points in

Norway. Of the 6464 charging points, 5595 of them are public2, but only 462 deliver

information about availability in real-time. When we refer to charging points in this

thesis, we refer to the remaining 6,002 charging points that do not have real-time

status information. By using the equipment at our disposal, we aim to aid INTIN in

developing a cost-efficient solution to monitor the availability of charging points, and

delivering the information to the end user in an efficient, and user-friendly way.

In this thesis we will refer to both charging stations and charging points. The

difference is that charging stations is a collective term for its combined number of

charging points.

 9

3. The inPark system
The inPark system is a combination of Nedap’s equipment, and our application. This

chapter will explain in more detail how the equipment (sensors, Relay Nodes and

Data Collector) is set up at the test-site. We will explain more about the Android

application later in this thesis.

3.1. Choice of solution

The choice to use Nedap’s solution on this project was not our decision. When INTIN

approached the school with this project, they had already decided which

manufacturer to use. They informed us that they chose Nedap’s system because

they could deliver an entire reliable, high quality wireless system, including both the

hardware and database, at a competitive price. They considered Rosim 3 and

Tinynode4, but their systems did not come with a designated database and user

interface.

3.2. Test-site

In order to test the inPark-system in optimal conditions, we needed a test-site in a

live environment. In other words, we needed to test the system at a car park that

many people used on a daily basis. This would provide us with the most realistic

results, and give us a good indicator on how stable the system would be. The original

plan was to use the car park of HiSF as a test-site, but we ended up using six parking

bays at Førde Central Hospital. This was a result of a dialogue between INTIN and the

hospital were INTIN suggested to use them as a pilot with the possibility to create a

solution tailored specifically for their needs. We agreed that this test-site would be

better because it would most likely result in a higher turnover of users, and thus

providing better test results. However, the hospital had to discuss it the issue

internally before we got permission. Our head of group attended a meeting with

hospital representatives, along with INTIN, and presented our project to them, and

how it could be used to help them. We got authorization to use six parking bays.

Three of them were short-term parking bays (15 minutes), while the remaining three

were bays meant for blood donors. Unfortunately, the process of getting this

 10

permission had severely delayed the installation of the equipment, which in turn

offset our planned schedule.

3.3. The Nedap Sensit system

An important part of our project was the communication between the sensor system

developed by Nedap and their server. In this chapter, we will walk through in detail

how the information from a car that just parked over a sensor travels through the

system and how the end user receives the data in the application.

3.3.1. Equipment

In order to carry out our experiment, INTIN provided us with the equipment listed in

table 1.
Table 1: List of equipment.

Product Quantity

Sensit Flush Mount 3

Sensit IR 3

Relay Node 2G 3

Data Collector 1

3.3.2. How the system works

The system consists of six sensors, three Relay Nodes, a Data Collector and a

database. The Data Collector retrieves the status for all the sensors at regular

intervals via the Relay Nodes, and forwards that data to the database for storage.

The system is wireless, with the only exception that the Data Collector needs an

Internet connection, and a power supply. The protocol used for the wireless

communication is proprietary, and developed by Nedap. This means that you cannot

implement a third party sensor.

When you activate a sensor, the Data Collector will immediately start retrieving its

status. If some sensors are out of range from the Relay Nodes, they are able to use

 11

other sensors to relay their status. This type of communication is called mesh

networking5, and the system utilizes a full mesh topology.

In this system, the Relay Node has a more active role in relaying information, so the

sensors can save energy. The communication frequency between the nodes is

868MHz band in Europe and in the 915MHz band in the US (see Appendix 2). When

the sensors and Relay Nodes relays the status to the Data Collector, the Data

Collector proceeds to upload the current status information over the Internet on

port 11111 to a server in Netherlands, which is managed by Nedap. Information on

how to connect was provided in a document from Nedap to INTIN. You can see this

document in Appendix 1. The Data Collectors’ installation site must have that port

opened in order for the communication to work. When the status is online, the

owners of the installation site can log on to their dedicated UI on Nedap’s server and

monitor their car park.

3.3.3. The sensors
We are using two types of sensors from Nedap. One is a flat, cylindrical, purely

magnetic sensor made for outside areas (figure 1), and the other is a slightly

elevated cylindrical sensor with both magnetic and IR sensors (figure 2).

Both sensors have a 85mm diameter, and are made of black friction welded plastic,

making them completely water and dustproof. The sensors are completely

maintenance free due to the friction weld. If a sensor runs out of battery or

otherwise stops working properly, you replace the whole sensor by drilling it up and

replacing it with a new sensor.

The only tools needed to install this system are a flat-blade screwdriver, cutting

pliers and a capable drill with a 85mm drill bit. You will also need an adhesive to hold

the sensor in place. We used concrete mortar, based on Nedap’s recommendation.

Calibration of the system is necessary after installation. Calibration is done on the

server, with the option to calibrate based on bay, zone or entire car park. You can

calibrate IR sensitivity and magnetic threshold. The whole parking lot must be empty

when performing the calibration, as the magnetic sensors will detect any metal

 12

objects within its magnetic field after installation. After calibration, these objects will

no longer trigger the sensor, so metallic grates or concrete armature is of no concern

when installing this system. In addition, The IR sensor can be calibrated to not detect

roofs and similar. Recalibration of an individual sensor is possible if needed.

3.3.4. Sensit Flush Mount
The Flush Mount is a magnetic, wireless sensor meant for

outdoor use, and it sits flush with the surface. This gives it an

advantage on car parks that are machine plowed, as there is no

risk of demounting or breaking the sensor when plowing due to

the sensor being fully submerged.

3.3.5. Sensit IR
The IR sensor is both magnetic and infrared, and like the Flush

Mount, it is wireless. It has a built in Ice-Detect, which activates

if the infrared sensor is triggered ten times in a row without

triggering on the magnet. It will then stop relying on the

infrared to determine if there is a vehicle parked above it until

the IR sensor are cleared. In short, in case of ice or snow the

sensor will work the same way as the Flush Mount. If the

sensors’ ice detection triggers, the system raises an alert in the dashboard. Due to

winter conditions in Norway, this is best utilized where snowplows has a rubber

edge, or simply where snow is not an issue. A steel edge would wreck the sensor.

Nedap also delivers a sensor type meant for indoor car

parks, called Surface Mount. It features both IR and

magnetic detection like the Sensit IR, but is flatter and has

a larger diameter than the Flush Mount and IR. The sensor

is installed by gluing it to the surface.

Figure 1: Sensit Flush Mount

Figure 2: Sensit IR

Figure 3: Sensit Surface Mount

 13

3.3.6. Relay Node 2G
The Relay Node is what the name implies. A node purely

relays information between the sensors and Data Collector. It

communicates wirelessly like the sensors, and is mainly used

for on-street applications. It is usually mounted on lamppost.

Without the dish attached it will detect signals in a 360° angle

with approximately a 25-meter radius with no interfering

obstacles. With the dish however, you can concentrate the

detection to 180° angle in front of the Relay Node, extending

the range to about a 60 meters reach with no interfering

obstacles. The Relay Node has a more active role in the mesh

network in order to ensure longer lifetime for the sensors.

As opposed to the sensors, you can change batteries in the Relay Node.

3.3.7. Data Collector
The Data Collector is the only component in the system

that is not wireless. It requires an Ethernet connection to

the Internet as well as a power supply. It receives

information from the Relay Nodes and sensors and

uploads it to the server. Even though the nodes have 35-

65m ranges, the data collector has to be within a 15m

range to the nearest node and/or sensors in order to be

functional.

3.3.8. Server and database

Along with the equipment, Nedap provided us with a database on their own server

in Holland that they would maintain themselves. They also provided us with a

website that contained a user interface so that we could access and manage the

database ourselves. The user interface consists of a dashboard where we have an

overview of the current sensor status (figure 6). On 13th of May, the system went

through an update, which reset the server uptime. The real uptime is about five

months.

Figure 4: Relay Node 2G

Figure 5: Data Collector

 14

Figure 6: Nedap User Interface Dashboard

In figure 6, you can see three tabs at the top called

“Dashboard”, “Parking Enforcement” and “Settings”.

We have not used the Parking Enforcement-section at

all, but configuring the system required using the

Settings-section quite a lot. The Settings-section is

where we did things like defining each node of the

system, in accordance with Nedap’s input

requirements, calibrate sensors and setting overstay

regulations. In figure 7, you can see our monitoring

options in Settings-section.

Figure 7: List view of monitoring options

 15

In addition to configuring the system, the user interface also allowed us to monitor

our test-site by using “Map monitor”. In figure 8, you can see each parking bay

connected to the database as illustrated by a rectangle with a signal in it. This signal

has three different states. Teal color means vacant, red color means occupied and if

orange color means that the car has been there too long (overstay). We received the

map from the hospital, and forwarded it to Nedap who inserted the bays and signal.

Figure 8: Map monitor. Graphical view of occupancy-status of each bay at test-site.

In order to register the sensors in the database, we had to create and upload a .csv

file (Comma Separated Values) to the database. In this file, we had to assign Parking

Lot ID, Zone ID, Bay ID, the serial number, and the GPS-coordinates, of the node in

that order. You can see in table 2 how we had to write down the information. In

figure 9 you can see how it looked when uploaded to the server.

 16

Table 2: Comma Separated Values (CSV) used for defining the nodes on the server

1,1,1,00.0000.E6E8,61.457192,5.888865,15.0
1,1,2,00.0000.E6E0,61.457192,5.888865,15.0
1,1,3,00.0000.E6CA,61.457192,5.888865,15.0
1,2,4,00.0000.E48F,61.457192,5.888865,15.0
1,2,5,00.0000.E49A,61.457192,5.888865,15.0
1,2,6,00.0000.E498,61.457192,5.888865,15.0
1,DC,8,00.0000.8BD0,61.457192,5.888865,15.0
1,RN,9,00.0000.DF05,61.457192,5.888865,15.0
1,RN,10,00.0000.DEE7,61.457192,5.888865,15.0

Figure 9: View of the node-list on the server

3.3.9. System downtime

There were times during this project that we did not visit the dashboard to monitor

the system for several days. One of these times we were met with a dashboard with

no nodes attached. Data Collector, Relay Nodes and sensors – all absent. We had

noticed that sometimes the Data Collector went absent for no reason at all, but

came back online by itself within a minute. When signed in to the server, we have a

report stating when the Data Collector lost connection and when it connected again.

This time it had been absent for close to six days, for no apparent reason. We

contacted Rune Viken with the problem. He then called the hospital’s IT-

department. They could confirm that there had been a glitch in their firewall, causing

the Data Collectors port forwarding to be invoked and reset it to be blocked for

outgoing connections. Luckily they were able to mend the problem within the hour,

putting the system online again.

 17

4. Installation of the sensor system
At first we were supposed to install the sensor system at six parking slots at HiSF, but

INTIN were in contact with Førde Central Hospital when the equipment arrived. It

would provide an opportunity for INTIN to get a customer and deliver an entire

system to the hospital if the equipment worked satisfactory. This delayed the initial

startup of our project, as both INTIN and our group had to wait for authorization

from the hospital to commence with the installation.

The choice of test-site serves multiple purposes. For INTIN it was a pilot project

provided free of charge for the hospital, so they both could get a preview of what

the system can do. There was also a consideration to the possibility of expansion if

the hospital wishes to implement it for their entire car park. For the hospital it could

be a possible solution for a problem with overstay at short-term parking and

authentication for the blood donor-spots. For us it was simply to provide data we

could use during testing and developing the application.

In comparison, this test-site is much more purposeful than the original plan at HiSF,

which were not likely to amount to any expansion at all.

4.1. Planning the installation

Nedap provided the installation procedure along with the sensors. This made our

planning of the installation easier. All we needed were a drill capable of drilling

tarmac and concrete, and a drill bit with the

correct diameter, which had to be a bit

larger than the circumference of the

sensors in order to have room for an

adhesive. Fortunately, the hospital had a

drill we could borrow, and INTIN rented a

drill bit with the right diameter from a local

company called Ramirent.

Figure 10: Installation in progress

 18

We also had to check if there were cables or heating elements present at the

locations we were going to drill on. The holes were required to be approximately

eight centimeters deep. Eivind Standnes, the hospital’s custodian, assured us that it

was safe to make these holes without the risk of drilling through something at that

depth. He explained that every cable buried in their car park is buried deeper than

we needed to go.

At the beginning of our project, we thought the installation and troubleshooting

would take longer than it actually did. We anticipated that it would take about three

weeks in total. In reality the installation took three days, and troubleshooting took a

few hours in between other tasks when a problem presented itself.

4.2. Health and safety

Due to a rather easy installation process, health and safety regulations did not come

in to play. We used a stepladder that is within the maximum height allowed without

extra safety precautions, as we did not need to have a higher reach than

approximately 3 meters. The maximum allowed height without securing the

platform is 4 meters6. However, we were always two men when using the ladder -

one to make sure it was steady while the other mounted the Relay Nodes - to reduce

any risk of falling.

The drill was bolted to a concrete block with 2 cm diameter bolts. The drill had to be

moved about with a small front loader. This secured a stable drilling platform.

Coolant (water) was supplied to ensure the drill stayed cool during operation. The

drill was a no-splinting type that mostly used friction to cut through the tarmac and

concrete, so no safety goggles were required. We were also given notice beforehand

from Eivind Standnes that hearing-protection would not be needed, given that the

volume the drill produced is not sufficient enough to provide any hearing damage for

the amount of time we would exposed to it.7

We did not get an accurate number of decibels produced by the drill, but it was quiet

enough to carry out conversation when drilling.

 19

4.3. Installation

Installation of the system started on 30th of March. Eivind Standnes

gave us an introduction to the drill and how we could use it safely

to drill the necessary 88mm holes for our sensors. He also helped us

move the drill with the hospitals front loader. All we had to do was

to drill the holes, wait for the excess coolant to drain away, pour the

adhesive into the hole and insert the sensors.

We used rapidly drying cement as the adhesive, which

normally takes 15-25 minutes to solidify. Once the sensors

were submerged in the cement, they had to be weighed

down in order to stop them from floating up before the

cement solidified. We gave the cement some time before

we cleaned the excess cement and water trails away.

Due to low air temperatures that day, we gave the

cement over night to make absolutely sure it had

hardened. We came back the next day to mount the

Relay Nodes and Data Collector, and clean up the rest of

the cement on and around the sensors.

The second day of the installation started with installing

the Relay Nodes. As mentioned we had three available,

but we only used two of them. The reason being that we

thought the Relay Nodes was already in range to the Data

Collector. Which would mean that there was no need for

extending the signal with another Relay Node. It should

be noted that Nedap recommended using at least two

Relay Nodes.

Figure 11: Drilling hole for sensor

Figure 12: Weighed down sensor

Figure 13: Installed Sensit IR

Figure 14: Installed Sensit Flush Mount

Figure 15: Mounted Relay Node, with dish

 20

The last thing we did was to install the Data Collector inside

the hospital. The IT department had already set up a

dedicated Internet socket for us due to the need for the

firewall exception for the required communication port.

Unfortunately, the dedicated socket was located too far inside

to receive the signal from the closest Relay Node. We

contacted the IT department to help us out in the matter.

They investigated the possibility to relocate the connection to another socket via the

connected switch, and luckily they quickly found a closer socket for us to use that

also had a vacant power socket. The new socket put the Data Collector within

proximity to the Relay Nodes.

After the installation we found that one of the Relay Nodes had to be relocated. It

did not receive communication from the sensors properly because of its placement.

After relocating it and rebooting the entire system, communication between all

nodes responded as intended.

Figure 16: Installed Data Collector

 21

5. Application

5.1. Initial planning

When we chose this assignment, we knew that it involved creating a prototype

Android application in order to test the system. We decided that we wanted to

design the application to be as robust, and as close to a complete, launch-ready

product as possible. That meant making it able to, in theory, monitor not only the

sensors we mounted at Førde Central Hospital, but also monitor many more sensors

at other car parks. We wanted to do it this way because we believed that this would

give us the best data on what impact the system would have on the environment,

and the everyday life of electric car owners.

We immediately decided that we should have a meeting with INTIN before we

started any kind of planning of the application. We wanted to find out more about

what thoughts, ideas and expectations they had about it, and the system as a whole,

because that would help us to form a baseline to start from. At the meeting, INTIN

was very helpful with explaining what they wanted from the application. The most

important thing was that the application should have a map that showed several

charging stations, and whether or not it was free. They also believed it to be a good

idea to show all the charging stations in a list, and if you clicked on one of the

charging stations in that list, the application would show you a picture, and more

detailed information about it. As a side note, they advised us to divide the features

that we wanted to put into the application into categories: “what do we need to

have”, “what should we have” and “what would be cool to have”. They believed that

such a system would make it easier to plan the application, and would help prevent

us from spending too much time working on a feature that was not very necessary.

The meeting was very productive, and we ended up adopting all of their ideas,

though we made some minor adjustments along the way.

Shortly after this meeting, our lead programmer had to leave for an internship,

which halted programming the application. The internship lasted six weeks, and

during this time the two remaining members worked mostly on the website, and

 22

getting the equipment that we received from Nedap ready for installment at Førde

Central Hospital. One of the two remaining group members also had an internship,

and used some of the days for this. The remaining member had attend some

additional classes during this time. When our main programmer got back from his

internship, we could get back to working on the application.

5.2. Features and design

We immediately had a group meeting to design the application in as much detail as

we could. We started by making a list with all the features that we wanted to

implement. See table 3. When we made this, we decided to adopt the category-

system that INTIN recommended us, but with different categories. We categorized

the features as primary and bonus features. A primary feature is a feature that is

essential to the application, and required to make the application work in a user-

friendly way. A bonus feature is a feature we would really like to implement, but is

not essential to the user experience as a whole. In other words, if you were to

remove a primary feature from the application, you would significantly lower the

user experience. If you removed a bonus feature, it would not affect the application

nearly as much.
Table 3:Simplified list of features and their priority

Feature Feature type

Map

x Marker for each car park at geographical location, with info

x Driving directions with a drawn path to each car park

x The ability to search for a location

Primary

List of available car parks with picture and relevant info Primary

Settings-section where the user can make relevant adjustments Primary

Our own database that contains detailed info about each car park Bonus

The ability to mark car parks as favorites for easier access Bonus

Route planner so the user can easily plan a long trip Bonus

After agreeing on the list of features, we started designing the user interface of the

application. From the list of features, we saw that there were three primary

 23

features, and each of them would have to cover the entire screen of the smartphone

when they were active. For example, it would not result in a good user experience if

the map only covered half the screen. Because of this, we had to divide the user

interface in three sections, and find a way for the user to be able to switch between

them as easily as possible. We will explain how we solved this problem in more

detail later.

When discussing design, we all agreed that we wanted to make the application as

user friendly as possible. One of the key elements of this is to reduce the amount of

clicks you have to do in order to go to the screen or option you want. We did not

want to make a “maze of menus”, which would ruin the user experience.

5.3. Getting started

We decided to use a program called Android Studio8 to develop our application.

Android Studio is a program that Google themselves has developed and designed

specifically for the development of Android applications. Our lead developer already

had a bit of experience with it so it was the clever choice in regards to playing on our

strengths.

One of the things that were very important to us was to be able to synchronize the

code automatically between the group members. If one person changed some code

in a file, the other people on the group should get that change as well. Our solution

was to upload the entire project to GitHub9. GitHub is a web-based hosting service

where developers can upload their projects, invite other developers to download the

code, and collaborate. The code is stored on the GitHub servers, and when one

developer uploads a change in the code, the other developers will get that change

when they perform a simple synchronization. GitHub makes it very easy for multiple

people to work on the same project, and the same code, without having to

synchronize the code manually. Another great advantage of having the project on

GitHub is that if you are on a new computer (but you want to get some developing

done), you can simply log in to your account, download the code, and start working.

 24

When you are done, you just upload the updated code to GitHub, and delete it from

that computer if needed.

The first thing we did when we started developing the application was to make a

foundation. We created a new project in Android Studio, created the most necessary

files to get a good structure, and started to construct the layout that we had

designed in a very basic form. When we got the project started with the basic files,

we uploaded it to GitHub so that we could work with the code separately, but still be

able to synchronize it. We had divided the tasks between us before we started, so

after we uploaded the project to GitHub, everyone could just start with their own

tasks.

5.4. Communicating with the database

One of the first tasks we started on was making the application able to contact the

Nedap database, and retrieve the sensor data. We prioritized this because we

wanted to get the data as quickly as possible so that we could display it, and see how

it turned out in the layout. It would then be easier to make the correct adjustments

to the layout to make it just right.

In addition to supplying us with a database, Nedap had also made a REST API that we

could use to retrieve the data from it. REST stands for Representational State

Transfer, and is an architecture style for designing networked applications10. REST is

a client/server architecture, and usually designed to use HTTP (Hypertext Transfer

Protocol) 11 requests to create, change, read or remove data that is stored in a

database on a given server. API stands for Application Programming Interface12,13,

and is collection of rules and protocols that programs can use to communicate with

each other. In other words, it is what makes our application able to interact with

Nedap’s database, without having direct access to it. The API essentially acts like a

mediator between our application and their database. For example, if our

application wants to get the status of the sensors, it asks the API “give me the status

of the sensors”. The API then takes care of asking the database for the relevant data,

and delivering that data back to the application. See figure 17.

 25

Figure 17: Communication with the database

As mentioned previously, REST usually use HTTP requests to create, update, read or

remove data from the database. Nedaps database was no exception, and therefore

we had to program our application to be able to send such requests to Nedaps

server in order to get the data we needed.

A HTTP request consists of the following elements: an URI (Uniform Resource

Identifier)14, a method15 and one, or several, headers16. An URI is what identifies

what resource the client (our application) has requested. A header specifies the

parameters of the HTTP transaction. In other words, a header carries information

such as details about the host, and login credentials. If you have to include login

credentials, you have to encrypt them. Nedap’s database use an encryption called

Base6417.

The request method specifies what the request wants. There are several methods

available, but the most common are the GET, PUT, POST and DELETE methods. You

use GET when you wish to retrieve data from a database, POST to add data to a

database, PUT to replace data in a database and DELETE to, as the name suggests,

 26

delete data from the database. For our application, we only needed to retrieve data

so we only needed to use the GET method.

Thanks to Nedaps thorough documentation of the REST API, it was very easy for us

to figure out what requests to send to get the data that we wanted. A simplified

version of such a request looks like this: “intin.nedapparking.com/parkingLots”.

When the application sends this request, it actually sends it with the structure you

see in figure 18. See figure 19 for an explanation of the structure. The login

credentials are included as a header.

When the API on Nedap’s server receives this request, it

asks the database for the requested data, and returns a

HTTP response. If the request was correct, and the

database successfully delivered the data, the HTTP

response will contain it in a format called JSON18. JSON

stands for JavaScript Object Notation, and is a syntax for

storing and exchanging data. JSON is easy for humans to

read and write, and easy for computers to parse and generate. See figure 20. When

Figure 18: Request structure

Figure 19: Explanation of request structure

Figure 20: JSON formatted response

 27

the application receives the data in JSON format, it stores it, processes it and then

shows it to the user.

5.5. Creating the user interface

As we mentioned earlier, we divided our user interface into three sections: a map-

section, a list-section and a settings-section. The list-section would just be a screen

with list containing all the charging stations with relevant information and a picture.

The map-section would be, as the name suggests, a map covering the screen, but

with some additional features such as a search function. In the settings-section, the

user could make relevant adjustments to the look and feel of the application.

In following chapters, we will write as if there were several charging stations

connected to the application, and not just the test-site.

5.6. The map

The most important visual feature of our application the map. There were many

smaller features that we wanted to implement in the map-section, and this section

definitely required the most work. The most important thing the map had to be able

to do was show the location of each car park by individual markers. As previously

stated, we only had the car park at Førde Central Hospital to use in the application,

but we wanted to build it so that it was able to support several car parks. After the

application had retrieved the relevant data from the database, it would take the

coordinates of each car park, and place a marker on the map at each car parks

coordinates. The marker would be colored green if the car park contained free

charging stations and red if there were no free charging stations in the car park.

If the user clicked the marker, a label would appear with the name of the car park,

the distance from the user’s current location, how many free charging stations and a

button to get driving directions to that car park. Additionally, we wanted to show the

user how long a charging station in the car park had been occupied, and make the

application notify the user when a selected charging station became available.

In addition to this, we wanted the user to be able to search for a specific location.

The user would type the name of the location, the map would then search for it and,

if found, move the camera to it. This way, the user could easily check for available

 28

charging stations anywhere they were, or wanted to go. Lastly, as a minor feature,

we wanted to give the user the option to choose between different map modes like

satellite and terrain modes.

Before we could even get started with implementing all of this functionality, we had

to make the map actually show up on the screen. In order to use Google Maps in

your application, you have to use the Google Maps Android API (Application

Programmable Interface)19. Google actually provides several APIs that developers

can use to make their applications (see figure 21 below), and we ended up using

three of them in our application. We will explain more about this in later sections. In

order to use Google Maps Android API, you have to log in to the Google Developers

Console with a Google account, and get an API-key that you put into your application

code. Without a valid API-key, Google Maps Android API will deny your application

access, and the map will not appear on the screen. After we had gotten the API-key

sorted out, and the map appeared on the screen, we could start implementing the

features we had planned. We decided to start with the markers.

Figure 21: Google API library

 29

The markers actually turned out to be easier to implement

than we originally thought because Android provided a very

simple method to create a marker on the map20,21. All we had

to do was provide the coordinates of each car park to make it

appear at the correct location. We also provided the other

relevant information such as the name, distance and the

number of free charging stations in that car park in order to

create the label. We got the name and the number of free

charging stations from the database, so all we had to do was

calculate the distance. We already knew the location of each

car park, but in order to calculate the distance to it, we had to

make the application find the location of the smartphone.

After a bit of work we were able to get the location of the

smartphone22, and we could simply calculate the distance to

the car park using a method that Android provided us. With the distance calculated,

we supplied it along with all the other pieces of information, and made the

application create each marker using the method that Android provided.

The next thing we tackled was the location search. Our plan was to make a search

bar at the top of the screen where the user could type the name of the location. As

the user typed a name of a location, we wanted the application to provide relevant

auto complete predictions, as we believed this would improve the user experience.

When the user clicked the search button, the map would then search for the

location, and, if found, move the camera to it. This way, the user could easily check

for available charging stations anywhere they were, or wanted to go. We were able

to make this work by utilizing the Google Geocode API23, and Google Places API24.

Geocoding is the process of converting addresses (like “The Red Keep, 1234 King’s

Landing”) into geographic coordinates (latitude and longitude). The Google Geocode

API provides a direct way to access a geocoder via HTTP requests. You can also do

something called “reverse geocoding”, which is simply converting coordinates to

addresses. The Google Places API is a service that returns information about a place.

Figure 22: Map screenshot

 30

Google Places API defines a place as an establishment, a geographic location, or

prominent point of interest.

The application utilizes both of these APIs by sending

HTTP requests. As soon as the user types in three letters

in the search bar, the application sends a HTTP request

to the Google Places API. The API tries to predict what

place the user is typing, and returns a HTTP response

with the suggestions in JSON format. For each additional

letter that the user types, the application sends a new

HTTP request. For expample, if the user types “Oslo” the

application will send two HTTP requests. One for “Osl”,

and one for “Oslo”. See figure 23. In both responses,

Google Places API will have suggested “Oslo, Norway”

and other locations around the world that resembles

“Osl”, or “Oslo”. We believe this improves the user

experience because the user does not have to type in the

entire name of the location. He/she can simply type

parts of it, and the application will make the appropriate suggestions.

When the user clicks search, the application sends another HTTP request, but this

time to the Google Geocode API. As mentioned previously, the Google Geocode API

converts addresses into coordinates. If what the user typed into the search bar was a

valid address, or name of a location, the Google Geocode API will return the

coordinates for that location. At this point, all that remains is to move the map’s

camera to the received coordinates.

The last obstacle was the driving directions. We already had a way to show driving

directions, but we wanted to create a better version. The first version worked like

this: When you clicked on a marker, Android provided three buttons by default. One

in the top right corner, and two in the bottom right corner. See figure 22. The one in

the top right corner was just to make the map move to the phones location.

However, the two in the bottom right corner did almost exactly what we wanted.

One of them showed the location of the marker, and the other provided driving

Figure 23: Search function in map

 31

directions and a drawn path. The problem with the first version was that when you

clicked these buttons, the phone minimized our application, and displayed the

location and driving directions, in the Google Maps Mobile application. In other

words, in order to get the driving directions, you had to switch applications. We did

not want this, and therefore decided to try to implement driving directions in our

own application.

After some research, we found that we could use the Google Directions API25 to

accomplish this. When we sent the correct HTML requests to the Google Directions

API (just like the Nedap database API), it returned an encoded path in JSON format.

We were able to decode the path, and draw it onto the map by using a method that

Android provided26. However, shortly after we accomplished this, we realized that

showing the proper driving directions, and manage the drawn paths properly (like

adding and removing them in an efficient way), would require a lot of time. We did

not have this time so we decided to scrap it, and just use the default buttons that

Android already provided, and the Google Maps Mobile application.

5.7. The list

As previously mentioned, it was very important to us to limit the amount of clicks as

much as possible, and deliver the information to the user as quickly as possible. Due

to this, we wanted to show as much information as possible on each item in the list,

instead of showing it on a new

screen after the user had clicked on

an item. Because we wanted to

show so much information on each

item, it became a concern that they

would become too big, and the list

would become cluttered and hard to

navigate. We discussed it, and

concluded that the advantages of showing the information without any more clicks

outweighed the size problem. We wanted the list to show the following information

Figure 24: Single item in List

 32

about each car park: a small picture, a name or address, the number of charging

stations, the number of available charging stations, an availability-indicator that

would be colored red or green and the distance to the car park from the user’s

current location. See figure 24 for the completed layout. See figure 25 for an

explanation of the layout. We also wanted each item to have a button that, when

clicked, would open a new screen that showed the user more detailed information

about the car park, and a larger picture of it. The more detailed information involved

elements such as parking or charging fees, opening hours for the car park and if the

car park was private or publicly owned.

Figure 25: Explanation for single List-view item

Except from a few adjustments, we managed to make our list of car parks work

exactly as we intended, and we completed it much faster than we originally

anticipated. The biggest adjustment we made to the list was to the button farthest

to the right on figure 25. When you click on the button, the item simply expands to

show you the details instead of showing it on a new screen. We made this

 33

adjustment because when we tried having the information on another screen, we

felt that was a bit tedious and unnecessary. There was not much information left to

tell the user that the list itself did not already tell, so making another screen to add

just a small amount of additional information seemed unnecessary to us. The

solution became to make the item in the list simply expand when the user clicked

the button, and reveal the additional information. We also made it so that when the

user clicked the picture on the list-item, the application shows it in full screen mode.

This helps the user to see what the car park, and its surroundings, actually looks like

which makes it easier to search for it. We strongly believe that doing it this way

helps our campaign of delivering the information to the user as quickly as possible,

and keeping the amount of clicks to a minimum.

The only problem that we ran into

with the list was that the database

from Nedap could not deliver the

picture or information we wanted

to show in the details-section. As

we were not able to make our own

database that could provide this

information (see “how far did we get?” section) we ended up just “hard coding” it

for preview purposes. To “hard code” means that you write the data yourself directly

into the code, instead of retrieving the data dynamically, and showing it in the user

interface. See figure 26. For example, if we would have “hard coded” the name of

the car park to “Helse Førde”, all the car parks would have that name. With the

dynamic way, the database would provide us with the correct name for each car

park, and we would simply show what we receive. If we had a database available

that could deliver the data, it would be very easy to remove the hard coded

elements, and implement the dynamic way.

Figure 26: Dynamic versus hard pseudo-code

 34

5.8. The settings

The settings-section was the subject of much discussion

throughout the development phase, and we changed our

minds on several occasions about which settings we

should implement. We had already agreed on a couple of

different settings during the planning phase, but as the

development of the two other primary features went on,

we saw that we had to make some adjustments.

We originally had plans to implement the option to show

only car parks that were within “X radius” from the user’s

current location. We changed the plan to only showing the

“X closest” car parks because we believed this would be

much more user friendly. We also wanted to implement an option to change the

color theme of the entire application between “night” and “day” modes. The idea

was that it would make the application more comfortable to use when it was dark

outside. We realized that this setting was not very useful to the application at this

time, so we scrapped it to focus on other tasks.

The reason we have only mentioned what we planned until now is that we

unfortunately were not able to implement the functionality of these settings. In

other words, we made the section with a complete layout in the application, but

nothing happens when the user clicks the buttons. The buttons are not “connected”

to the rest of the application. We knew what we wanted to implement, but we

simply did not have the time to make go through with it, and make it work properly.

We ended up just making the layout in order to show the concept of our ideas. We

will explain more about this in the “How far did we get?” section.

5.9. Tying the sections together

Until now, we have explained how we made each section of the application, and

how they work, but we still have not explained how we made the user able to switch

Figure 27: Screenshot of Settings

 35

between these sections easily. Our solution to the problem was to implement

something called a Navigation Drawer27. A navigation drawer is a user interface

element in Android, and is essentially a menu that contains a series of buttons. The

user can use this menu to switch between the different sections of the application.

See figure 28 below.

The user brings this navigation drawer out by pressing the navigation drawer button

located in the top left corner of the application, or by performing a left-to-right

swiping motion from the left side of the screen. When the button is pressed, or the

user performs a correct swiping motion, the drawer will slide in from the left as if it

were outside of the screen when it was not active. When the navigation drawer is

active and visible, it will put itself on top of the content that was already there, and

cover almost the entire screen. See figure 28 below. The button is always visible,

and the user can always perform the swiping motion in order to bring out the drawer

whenever he or she wants. When the user clicks on an item in the drawer, it will

slide back to the left, and disappear. The application will then switch to the feature

that the user selected. If the user does not want to click an item in the navigation

drawer menu, he/she can simply press the button again, or perform a reverse

swiping motion to hide the drawer. When the drawer closes, and becomes hidden,

the application will return to the content that was already there before the drawer

was opened.

Figure 28: Navigation drawer positioning

 36

The main alternative to

using a navigation drawer

was something called a

Tab Bar28. A tab bar is a

rectangle shaped bar

with a series of buttons

on it, which usually is

located directly under an

application’s action bar

at the top of the screen. You use a tab bar for the exact same thing as a navigation

drawer: switching between different screens/sections of the application.

We believe that there are several advantages in using a navigation drawer instead of

a tab bar. The biggest advantage is that a navigation drawer is not visible unless the

user brings it out, and that saves a lot of space on the screen.

Smartphones have limited screen size, which makes it very

important not to let any part of it go to waste. Tablets do have

bigger screens, but the majority of people use their

applications on smaller phones, and so designing applications

to fit these screen sizes are extremely important. We also

believe that a navigation drawer is more user friendly because

it is bigger, and that makes it easier to create a user-friendly

menu. The text on each button can be longer so that it is

easier to explain what the button is supposed to do. You also

have the space to use icons in addition to the text on the

buttons, which also makes it easier to explain what the button

function and purpose. Additionally, you often have some

room left over for your logo or other branding items. We

believe that these advantages prove that a navigation drawer

is more user-friendly, and space-efficient.

Figure 29: Action bar versus Tab bar

Figure 30: Navigation drawer screenshot

 37

Our navigation drawer consists of our logo, and three buttons with relevant text and

icons to explain what each button does, and where it takes the user if he/she clicks

on it. See figure 30. We also made it so that the navigation drawer highlights the

active section of the application. For example, if the user is using the map and then

opens the navigation drawer, the drawer colors the map-button in with a color that

is appropriate to the rest of the color theme. This removes any doubt for the user as

to where he/she is in the app. In other words, this prevents the user from “getting

lost” in our application. We chose to use only these elements on a white background

in our navigation drawer in order to keep it as simple and intuitive as possible, yet

pleasant to the eye.

5.10. Refreshing the data

The first thing our application does when you start it is to try to retrieve the data

from the database. While it is doing this, it shows a loading screen to inform the user

that the application is working, and have not frozen or crashed. After the application

has retrieved the data (or failed), the loading screen disappears and the user is

“allowed” into the application. If the application fails to retrieve the data, the

applications opens the user interface normally, but it will be

empty. In any case, the application needed to have a way for the

user to refresh the data whenever he/she wanted. If the

application failed to retrieve it, there had to be a way to try again.

If the applications data was outdated, there had to be a way to

refresh it to the latest version.

Because the application was already able to retrieve the data, all

we had to do was make it try to get the data again, but we had to

decide whether to make the application able to auto-refresh (for

example every five minutes), or if the data should be refreshed

manually. We chose make it a manual operation mainly for two

reasons. The first reason was that we feared that downloading

new data regularly would incur large costs to the user if connected Figure 31: Refresh button in application

 38

to the cellular network, and not regular Wi-Fi. The second reason was battery life.

Constantly sending HTTP requests to the database and updating the data in the user

interface would definitely have a negative impact on battery life. Because the

application already monitored its own geographical position regularly, like on a

traditional GPS device (an operation that already drains battery power), we did not

want to put any more strain on it than necessary.

We implemented the refresh feature by adding a button to the action bar in every

section of the application. We had set the action bar to be visible in every section, so

putting the refresh button on it seemed like a very good solution. The button was

very important, and putting it on the action bar made it clearly visible and easily

accessible to the user. See figure 31.

5.11. How far did we get?

The great thing about a smartphone is that it can do so many different things. The

technological advances the past few years have made the smartphones immensely

powerful for their size, and consequently, these advances have opened up a plethora

of possibilities for designers and developers of mobile applications. Sadly, some of

these possibilities never make it into the final product due to things like time

limitations. Time limitations applied to our project as well, and it forced us to scrap

some features along the way, even though we really wanted to implement them.

When we started planning the application, we immediately made a list of all the

features that we wanted to implement in a perfect world scenario. After making this

list, we realized that the list had to be trimmed. As mentioned and described earlier,

we categorized the features we wanted into primary features and bonus features.

The rule in the group was that we should implement all of the primary features first,

and then try to implement as many bonus features as we could if we had the time

and resources. The great thing about dividing the features into these categories is

that it lets you focus on developing the important features first. It also makes it

easier to prioritize the work, and it lowers stress for the developers because they do

not have to worry about one giant list of features to implement. It also saves a lot of

discussion within the group. Instead of having to decide what to remove from one

 39

long list of features, it is much easier to look at the bonus-list first, and remove one

of them seeing as they have a lower priority than the rest.

Below is a (simplified) list of features that we made, with the development status of

each.

Table 4: Simplified list of feature status

Feature Type Status

Map

x Marker for each car park at geographical location, with

info

x Driving directions with a drawn path to each car park

x The ability to search for a location

Primary Completed

List of available car parks with picture and relevant info Primary Completed

Settings-section where the user can make relevant adjustments Primary Incomplete

Our own database that contains detailed info about each car

park

Bonus Scrapped

The ability to mark car parks as favorites for easier access Bonus Scrapped

Route planner so the user can easily plan a long trip Bonus Scrapped

As you can see from the list of the primary features, the settings-section is

incomplete. We started working on it, but we only had the time to implement the

layout properly so that we could show the concept. The controls on the screen do

not do anything. Because we did not even have time to complete all of the primary

features, we had to scrap all the bonus features. Despite the fact that they did not

make it into the application, we still want to explain the idea behind them.

The scrapped feature that would have had the largest impact on the application was

the inPark database. One of the problems with the Nedap database was that it could

not store a portion the data that we wanted the application to show. In addition to

monitoring the sensors, we wanted to store the following data about each car park

remotely in a database:

x A name for the car park

x The address of the car park

 40

x A picture of the car park

x Parking & charging fees

x If the car park was public or privately owned,

x Opening hours

x What type of outlets the charging stations in the car park supported.

Our plan was to make our own database that could store all of the data in the list

above, in addition to the data that Nedap’s database provided. The application

would then get all of the required data from our database. See figure 32. We

believed it was better to make the application get everything it needed from one

database, instead of two.

Figure 32: How we intended to implement inPark database

The main reason that we scrapped this was time limitations. We would have to

program the database to send HTML requests to Nedap’s database on a regular

scheduled interval (for example every five minutes), receive the data in JSON format

and then store that data. In addition to this, we would have to program the database

to be able to receive HTML requests from the Android application, and then return

the requested data in JSON format in a HTML response.

We absolutely believed that we were able to accomplish this if we had tried, but

when we got to the point where we could start developing it, we realized that we

simply did not have the time. If we had started the development of the database at

that time, we would be unable to finish the project in time.

 41

The favorites-feature was a simple quality-of-life change that we wanted to give the

user. We assumed that many owners of electric cars use them for short trips in their

local area, or commuting. We therefore assumed that many of those people would

use the same charging station on a daily basis, and because of this, we wanted to

give the user the option to mark one, or several, car parks as a favorite. When a car

park was marked as a favorite, that car park would be more easily accessible in the

user interface of the application. For example, car parks that were marked as

favorites would appear at the top of the list, or be specifically highlighted on the

map. The main benefit from this would be that the user would be able to quickly,

and easily, check if the car park had any free charging stations.

The final feature we had to scrap was the route planner. The idea was that the user

could easily plan a trip that required charging the car along the way. The user would

enter his/her starting point and destination, and the application would then draw a

path on the map, give driving directions and display the closest car parks that

contained a charging station along the way. We naturally assumed that the battery

life was a big concern for people that had to use an electric car for long trips, and

with this feature, we wanted to remove that concern as much as possible.

We are unhappy with not being able to complete all of the primary features, and

having to scrap all of the bonus features as a direct consequence. We think that

there are two reasons that we had to make as many cuts as we did. The first being

that the internship of our main programmer impeded our progress greatly. He was

not able to work on the project while he was away, and the rest of the group had to

prioritize other tasks while he was away. The second reason is that we were

probably overly ambitious when planning the application. We wanted to implement

too many features, and some of the features were too big and advanced for us to

implement properly within the time schedule. We believe that these features would

greatly improve our application. Despite not having time to implement them, we

think that our overly ambitious planning only help to prove that “the sky is the limit”

when it comes to android development.

 42

6. Environment
These days, the environment is a big issue for a large part of the population, and we

believe it is very important to consider what kind of environmental impact this

experiment might have. Our thoughts and opinions are strictly hypothetical, and it is

not certain that our predictions, or opinions, reflect what the results would be in

reality.

6.1. Discussion environmental rewards

When discussing which rewards the environment will have by implementing this

system, we have to consider what it could mean for congestions, road dust,

emissions and power usage. We believe that it will be considerable easier for electric

car owners to know where to drive when he, or she, needs to charge their car with

such a system in place. Obviously, if a person with an electric car has to spend a lot

of time driving around to search for a charging station, that person’s car will not add

to the emissions. However, that person will contribute to releasing more road dust

into the air and increasing the possibility of more traffic congestion. More traffic

congestion leads to more emission. If the person knew exactly where to drive to find

a charging station, it would most likely improve traffic flow, lessen congestion,

reduce emission and lower the amount of road dust in the air. However, it is worth

taking into account that only 50,00029 of the 2.6 million30 privately owned cars in

Norway are electric. This equates to only two percent. We can also probably assume

that most owners of electric cars use them in their local areas, or for commuting,

and thus use the same charging station regularly. Therefore, there will not be many

people in electric cars driving around looking for a charging station on a daily basis.

On the other hand, if we take hybrid cars into the equation, the emission question

becomes more relevant. The Toyota Prius Hybrid31 has CO2 emissions starting at 86
𝑔

𝑘𝑚⁄ , while the Skoda Octavia32 releases about 116-130 𝑔 𝑘𝑚⁄ . For example, If the

inPark solution could help someone with a Toyota Prius Hybrid to find a charging

station quickly, and thus reducing the driving distance for that car, then that would

absolutely improve emissions. If you reduce the driving distance of a Toyota Prius

Hybrid by only five kilometers, you would prevent at least 430 grams of CO2 emission

 43

from being released into the atmosphere from that car alone. In comparison the

Skoda Octavia releases approximately 600 grams of CO2 in five kilometers. The

effects of the inPark system on a global scale will not be noticeable until the vast

majority of cars are either hybrid or purely electric. By then there still will not be

massive environmental rewards using this solution. Electric and hybrid cars does not

have much emission to begin with, and aiding them by reducing their driving

distance by some kilometers here and there will not make much of a difference on a

global scale.

In regards to aiding traffic flow, we genuinely believe that this system will have a

positive impact. It is no secret that the traffic flow improves when there are fewer

cars on the roads, and all drivers know where they are going, rather than driving

around looking for an unoccupied charging bay. Driving and searching for an

unoccupied lot is probably a larger problem in larger cities than in small ones. With a

system like inPark in place, you can reduce this type of traffic significantly. If there

are long queues to charge you are most likely interested in finding somewhere else

where you can charge right away instead of waiting for an unknown amount of time.

With the sales of electric cars skyrocketing it is likely that queues and waiting-time

are getting longer. When there are many electric cars driving around looking for a

charging station to use right away, there will be a correlating negative effect on

traffic flow, thus contributing to more emission from regular cars that are affected

by the increased traffic. With more search traffic it is also possible that the new

added strain to roads will eventually lead to a need for improvements on

infrastructures. Road construction on its own has a lot of emission, and reduction in

search traffic entails less need to improve infrastructure because of congestions.

If the inPark system were implemented to monitor regular car parks and their bays,

it is our opinion that this system would greatly improve traffic flow in and around

these car parks. With knowledge of where to park your car, you reduce the time you

spend on both the roads and parking structure, and increase traffic the flow for

others around you.

 44

There are two types of charging stations: quick, and regular. As seen in table 533

there are some major differences in how much electricity they use when charging a

car. When charging a car, the quick charging stations use considerably more

electricity, compared to the regular one. This is also reflected in the cost34 of using a

quick charger instead of a regular (2.50 NOK/minute versus 1.00 NOK/minute). The

inPark solution lets the user choose which one to use, but we can probably assume

that a large number of the users will choose to charge their car quickly. However, we

believe it is essential to give the user the ability to choose, even though most are

likely to prefer quick chargers.
Table 5: View of differences between charging information based on contact type.

Contact type Technical Power Charge time 0-80%
Type 2 230V / 16A / 1-phase 3,5 kW 4-5 hours
Type 2 Industrial 230V / 32A / 3-phase 12 kW 1-1,5 hours
Quick Charger AC 400V / 63A / 3-phase 43 kW 20.30 minutes
Quick Charger DC 400-500V / 100-125A 50 kW 20-30 minutes

If it is correct to assume that most people prefer quick chargers, there has to be

some consideration to the strain it will put on the power grid. It is our understanding

that most quick chargers to date are located where the capacity for the closest

transformer is sufficient35 enough to handle the extra load. Which would mean that

those who install quick charger consider the power grids capacity when installing

quick chargers in regards to their power surge.

 45

6.2. Environmental Return on Investment

Nedap have developed a Return On Investment calculator (ROI), which they

demonstrated by using Reading UK as an example36. In this example we can actually

see some of the environmental rewards given by a parking system like the one

Nedap delivers. The complex in Reading consists of 3000 sensors where each bay

has a parking fee. The numbers are based on a five-year period. This structure is a

regular car park, and not charging stations like inPark, but the results are interesting

to look at nonetheless, and if the system were implemented at all charging stations

that do not deliver real-time vacancy-status some of the figures might apply to our

situation as well. The main difference is that our purpose builds on access-

information through an application, while the Reading set up is broadcasted via

electronic signs.

In regards to search traffic, they found that it was drastically reduced when the

parking system was installed. When we discussed environmental effects, we did not

consider time at all, but when looking at figure 33 we understand that it is a lot of

time to be spared and that this might be one of the largest personal gains within

such a solution.

Figure 33: Graph to show how much search traffic was reduced in a five-year period.

 46

With the numbers from figure 34, they could determine how much emission had

been prevented each year. From figure 33, we can gather that for a five-year period

it is quite a substantial amount.

With a reduction of 13 061 𝑘𝑔
𝑦𝑒𝑎𝑟⁄ ∙ 5 𝑦𝑒𝑎𝑟 = 65 305 𝑘𝑔 CO2 in just five years,

we can only begin to understand what kind of impact a system like this could have in

the long run if used world-wide in all larger cities.

Figure 34: Graph to show reduction in emission each year.

The system set up in Reading were as previously stated 3000 sensors where all

parking bays have parking fees. The cost of the sensors were €775,000, parking signs

€220,000 and parking application €22,000 which adds up to a total cost of €917,000.

In the five-year period used by Nedap to calculate ROI, they made a simple chart to

show revenue generated by fees alone. We are unsure whether they used the

amount of extra turnover in vehicles facilitated after implementing Nedap’s system

to calculate the revenue, or if it is calculated by a total of vehicles. We do not know

the parking fee, and therefore cannot calculate it ourselves. Nevertheless the profits

go to show that it paid for itself in a rather short period of time. Looking at figure 35

you can see the number of extra vehicles facilitated and in figure 36 revenue from

fees and fines.

 47

Figure 35: View of extra cars facilitated, in numbers and percent. Figure 36: Revenue over five-year period

We think these values go to show that the rewards of such a system outweigh the

costs of implementing it.

The question is if whether or not this is transferrable to charging stations. There are

some major differences in the two scenarios. The Reading system is one large

structure consisting of 3000 parking bays, while inPark are many small locations.

However, if we think of all the charging stations as one, we believe that we could be

looking at some of the same rewards when it comes to revenue and turnover. The

contribution to reducing emission will not be comparable, as our target users drive

electric cars. Unlike most regular car parks, charging stations does not have a parking

fee. However, it seems most charging stations have a start-up fee37, and further

pricing based on time spent charging. The prices most likely deviate between the

various providers. These costs are similar to a parking fee, and could be used to

compare the economical rewards by having real-time occupancy status delivered to

customers. We believe that if the inPark system were implemented at charging

stations around the country, the owners of those stations would notice a higher

turnover and revenue than before.

With a continuous growth in the amount of electric cars out there, we think that the

inPark solution could make a correlating positive environmental impact. Reducing

search traffic for an increasing amount of electric cars will improve traffic flow. With

better traffic flow you lower emission and might reduce the need for congestion-

induced infrastructure improvements, which pollutes a great deal. The

environmental rewards really come down to how many users and connected

charging points the inPark system has.

 48

6.3. Beneficiaries

The inPark solution monitors the availability of charging stations, and makes it easier

to find them. It is therefore easy to discern that the primary beneficiaries of this

solution are the owners of electric cars. This answer, however, is not sufficient and

does not cover the whole specter of people who will benefit from it. We believe that

the solution will improve traffic flow, and that owners of regular cars will benefit

because of this due to less traffic congestion. Improved traffic flow will also benefit

people living close to the road because there will be less noise and road dust in the

air. However, as previously stated, there are currently not enough electric or hybrid

cars in the world for such a solution to make a noticeable environmental impact on a

global scale. Nevertheless, the system will provide owners of electric cars with

noticeable quality-of-life improvements such as quickly, and easily, finding an

unoccupied charging point nearby if the battery is running low.

 49

7. Conclusion
We have successfully created a solution that aids drivers of electric car to quickly,

easily and efficiently find charging points, and get information about their status in

real-time. We have also considered if such a solution could improve traffic flow,

reduce emission and help to provide a higher turnover of charging stations if

implemented on a large scale.

We believe that the inPark system can benefit not only drivers of electric cars, but

also drivers of regular cars. Providing information about charging point vacancy will

make it much easier for drivers of electric cars to plan their route, and avoid

spending unnecessary time searching for a charging point. This will improve traffic

flow, thus benefiting everyone else in traffic as well.

The amount of electric cars in Norway is still low, and therefore the environmental

rewards from our solution would be present, but not very noticeable. However, as

the amount of electric cars is steadily increasing, and more people start using our

solution, the environmental rewards will only increase.

In regards to our application, we are very satisfied with what we were able to

develop. We firmly believe that it is user-friendly, efficient and that it has the

potential to benefit drivers of electric cars. It makes it easier to plan driving routes,

and lets the user know where there are available charging points, at his/her

convenience.

Based on the figures from the Reading-example, we feel confident that the inPark

system will provide a higher turnover for the charging stations that use it. Supplying

information about vacancy in real-time will help users to avoid already occupied

places, and go to a vacant charging point somewhere else. This will result in more

people charging their cars, and less people waiting in queue.

 50

8. Project administration

8.1. Group administration

Figure 37: Group hierarchy

The head of the inPark group is Erik Bjaanes, with Per Øyvind Olset in charge of

assembly and testing, and Torbjørn Årdal in charge of application development. We

agreed that each member of the group would be in charge of their respective tasks,

but the head of the group would have veto-power. The project management group

consists of INTIN co-founder Rune Viken, assistant professor Joar Sande (HiSF) and

Erik Bjaanes.

There were three major parts of our project: developing the Android-application,

installing the system at the test-site and documenting the progress. The group

distributed the tasks based on each member’s interests and skillset. We believe that

this approach yields the best result because it gives each member the opportunity to

work on a task that he has a talent for, and is interested in doing. We also had

regularly scheduled meetings where each member explained his current progress, as

well as current challenges and problems. This made it a lot easier for each member

to stay informed on what the others were doing, thus making it easier to keep track

INTIN AS

PROJECT MANAGEMENT GROUP

Erik Bjaanes
Head of group

Per Øyvind Olset
Assembly and testing

Torbjørn Årdal
Application development

 51

of the current progress of the entire project. We did not always work separately, but

it was mainly up to each member of the group to ask for help from the others. The

regularly scheduled meetings also made it easier to assess each member’s need for

assistance. We also had regularly scheduled meetings with INTIN, but some of them

were cancelled because it was not necessary at the time. We only deemed the

meetings necessary if either party had important issues to discuss.

8.2. Planning phase

At the very beginning of our project, we made a Gantt chart to better visualize our

expected progress throughout the semester. see figure 38. We aimed to start the

development of the application in the third week of January, and have a working

prototype by the middle of February. By that time, we also aimed to have the system

installed at the test-site at a dedicated parking lot west of the HiSF building. We then

planned to spend the rest of February testing the system, and fixing eventual

problems that occured. In March, we planned to add more features to the

Activity
Week
number

 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

Define project parameters

Installing the system at
test-site
Application development - preliminary
version

Testing the system and application
#1
Application development - final
version

Testing the system and application
#2
Website development

Preliminary
thesis
Main thesis

 Figure 38: Planned time allocation viewed as Gantt chart

 52

application, and make it ready for the end-user, and then use the first half of April as

another testing period. We also planned to develop the website, and write the thesis

in parallel with the application development, and system installation. We were able

to keep all the major deadlines, but some elements forced us to make several

adjustments as the project progressed.

8.3. Time management

For detailed timesheets, see appendix 7-9.

As evident from figure 39, which shows our actual work schedule, we had to

postpone the development of the Android-application by approximately two

months. This delay was caused by an internship two of our members had to attend

for 30 business days, including the main programmer.

During the internships for two of our members, an elective subject occupied the

third, meaning that the entire group was busy doing something else for a period of

time. We knew about the internships beforehand, but we did not expect that it

Activity
Week
number

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Define project
parameters

Installing the system at
test-site
Application development - preliminary
version

Testing the system and application
#1
Application development - final
version

Testing the system and application
#2
Website development

Preliminary
thesis
Main thesis

Figure 39: Actual time allocation viewed as Gantt chart

 53

would consume so much of our designated project time. We thought that we would

be able to work on the project during the evenings. The main programmer notified

the rest of the group during the first week of the internship that we needed to

postpone the application-development completely until he got back, as he did not

find the time to do anything projectrelated. Postponing this major part of our project

obviously put us severely behind schedule. However, he worked a lot with Android

application development during his internship, and as a result, the development of

the application went a lot faster than we originally anticipated. As mentioned

before, we firmly believe that the progress and quality of our product would be

significantly lower if he had not attended this internship.

We also had to postpone the installation of our system by approximately two

months. The original plan was to install the sensors at the dedicated parking lot at

HiSF as soon as they arrived, but INTIN had contacted Førde Central Hospital shortly

after our first meeting. They wanted to secure a deal where we could install the

system at the hospital instead. There were also some minor delays with obtaining

the correct equipment for the installation, and finding a date that would work for us,

INTIN and Eivind Standnes.

Once the details had been set, we installed the system on the test-site, and we were

able to complete the installation within three days. In our original planning we had

designated three weeks to this task because we wanted to guard ourselves against

potential problems, such as drilling obstacles, network stability and calibration

issues. In addition, the given explanation of the system installation and previous

experience with new and wireless technology further led us to think it would require

a lot of work to get the system fully functional and stable. A good planning phase

before the installation combined with a system far more simple to install than first,

resulted in that the installation took three days. We are very happy with how fast we

were able to install the system with only some minor problems during, and after the

installation.

 54

The delayed progress on the programming of the application combined with the long

process of securing the installation site for our sensors led to a delay in the

documentation and main thesis as well, as there were no real progress to document.

The web page, preliminary thesis, press release and poster were all finished on

schedule. The web page was developed, and finished, during the period that we

were originally supposed to install the system, and develop the preliminary version

of the application. The website has been continuously updated during our project. It

will also receive a minor update once we have turned in this thesis, and presented

the project.

8.4. Risk assessment

Early on in the preliminary project, we sat down and made our initial time schedule

as viewed in figure 38 further up. At this point we knew about the internships two of

our members would attend during the project period. What we did not know at that

point, was at what time these internships would take place. We found it hard to do a

proper risk assessment on how we rated the risks of not being able to stay on track

according to our schedule. We did not account for an inability to work with the

project during internships, which is evident from planned versus actual schedule.

When application development and installation at test-site was postponed, the

entire projects timeframe got sidetracked. Knowing what we know now, we regret

not considering the possibility of this situation.

8.5. Economy

The only expenses in the project was the cost of the equipment from Nedap. INTIN

bought all of the equipment, and as a result, the inPark group have not had any

project related expenses. The groups feels uncomfortable disclosing the price of the

equipment in this thesis. This is because we believe it is a private matter between

INTIN and Nedap and we do not believe it is very relevant for the reader, or the

quality of the report.

 55

Web page

We had to make a web page in our bachelor project that we had to update regularly

to show our progress. The website also had to have our documentation of the

project available for download. There are numerous webpages that provides several

solutions to create webpages via point and click, drag and drop and similar.

However, we found that these solutions focused too much on effects, and

unnecessary animations, that took the attention away from the actual information.

Some effects were just plain irritating and unnecessary, and it is our opinion that the

content should be the focus, not the styling and animations.

In addition, code generated through the quick webpage solutions out there was

messy, and it was hard to get the whole picture of what was going on. Since we

wanted to learn more about web-development ourselves, we decided to make a

web page ourselves from scratch. One member of the group had previous

experience with web development, so the group delegated the task to him.

The group agreed that the user interface of the web page should be simple and

minimalistic, yet visually pleasing. We also focused a lot on limiting the amount of

clicks for the user as much as possible, just like our application. We made a banner in

SketchUp that loosely showcased the concept to add a bit of graphic to the page.

Figure 40: Preliminary draft

 56

As the project went on, we learnt more about formatting, and tools to spice up the

looks of the page. The group agreed to share the color scheme for both our

application and webpage for consistency throughout our products. A logo was made

to represent us, and INTIN provided some colors connected to development of their

own logo. We chose the green as our main scheme, and set about adding it to

elements of our page. We also added a link to INTINs’ page.

Figure 41: Second preliminary draft

At this point we were starting to see new opportunities for our page. We were

careful to not overuse the green color, and not to add too many elements. We

removed the “about us” page because the welcome page already covered that

information.

Figure 42: Third preliminary draft

 57

This version contains the final layout, but the banner image had to be modified to

better showcase the idea behind our project. A picture can say more than a

thousand words, and we put a lot of effort into the construction of the banner image

to make it easily readable.

Figure 43: Final draft

The banner image was tweaked and charging stations was added via SketchUp. We

added some signal-graphic to the sensors so they could be spotted easier, and the

different elements points toward where the information is going. The layout of the

webpage is also a dynamic sort, with the key green color showing at tactical

positions, and sliding surfaces like the menu bar and “welcome”-padding repeating

itself throughout the site. The site also responds well to smaller screens like a mobile

phone due to some clever formatting code that adapts the content to some degree

to fit smaller screens.

 58

8.6. Self assessment

We realize that our initial planning of the project was sub-par. We knew about the

internships beforehand and should have considered their time-consumption more

when we first planned the project. If we had, we could have utilized the time

leading up to the delays in a more effective way. The group had 1500 hours

available for this thesis, and we achieved 1066 hours in total for the group. This is

due to the delays from the internships and the installation process.

Despite the major delays early on in the project, we are very happy with our

progress afterwards, and the final result. We believe that our final product has high

quality, and we have worked effectively, and decisively, to achieve this in the time

we had available. We do not feel that the delays that occurred have had a negative

impact on the quality of our work, and the experience gained from the internships

led to a more optimal workflow with more progress than we would have achieved

without that experience. Another thing contributing not to hitting that 500-hour

mark was that certain aspects of the assignment took a lot less time than expected.

For instance, we expected a lot more time to go into getting the Sensit system to

work properly and having to troubleshoot them connecting to each other. When this

went without a hitch, we got a lower count on our hours, but the result remains the

same.

On the positive side, our delays have taught us about the downfalls of not assessing

risks properly. It has also taught us efficient time allocation. We are quite proud of

what we have accomplished in a rather short amount of time.

 59

9. Sources

1 http://www.nedapidentification.com/about-us/

Downloaded 08.04.15
2 http://www.ladestasjoner.no

Downloaded 16.05.15
3 http://www.rosimits.com

Downloaded 12.05.15
4 http://www.tinynode.com/?q=electric_cars_charging_station_monitoring

Downloaded 12.05.15
5 http://searchnetworking.techtarget.com/definition/mesh-network
 Downloaded 17.05.15
6 https://innsida.ntnu.no/wiki/-/wiki/Norsk/Arbeid+i+høyden
 Downloaded 19.05.15
2 Oral source: Eivind Standnes, janitor at Førde Central Hospital.
8 http://developer.android.com/tools/studio/index.html
 Dowloaded 12.01.2015
9 https://github.com/features
 Downloaded 12.01.2015
10 http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
 Downloaded 26.03.2015
11 http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
 Downloaded 26.03.2015
12 http://en.wikipedia.org/wiki/Application_programming_interface
 Downloaded 26.03.2015
13 http://money.howstuffworks.com/business-communications/how-to-leverage-an-
api-for-conferencing1.htm
 Downloaded 26.03.2015
14 http://searchsoa.techtarget.com/definition/URI
 Downloaded 27.03.2015
15 http://www.tutorialspoint.com/http/http_methods.htm
 Downloaded 27.03.2015
16 http://code.tutsplus.com/tutorials/http-headers-for-dummies--net-8039
 Downloaded 27.03.2015
17 http://en.wikipedia.org/wiki/Base64
 Downloaded 27.03.2015
18 http://json.org/
 Downloaded 30.03.2015
19 https://developers.google.com/maps/documentation/android/
 Downloaded 08.04.2015
20https://developer.android.com/reference/com/google/android/gms/maps/model/Mark
er.html
 Downloaded 08.04.2015
21 https://developers.google.com/maps/documentation/android/marker
 Downloaded 08.04.2015
22 https://developer.android.com/training/location/retrieve-current.html
 Downloaded 09.04.2015
23 https://developers.google.com/maps/documentation/geocoding/

http://www.nedapidentification.com/about-us/
http://www.ladestasjoner.no/
http://www.rosimits.com/
http://www.tinynode.com/?q=electric_cars_charging_station_monitoring
http://searchnetworking.techtarget.com/definition/mesh-network
http://developer.android.com/tools/studio/index.html
https://github.com/features
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Application_programming_interface
http://money.howstuffworks.com/business-communications/how-to-leverage-an-api-for-conferencing1.htm
http://money.howstuffworks.com/business-communications/how-to-leverage-an-api-for-conferencing1.htm
http://searchsoa.techtarget.com/definition/URI
http://www.tutorialspoint.com/http/http_methods.htm
http://code.tutsplus.com/tutorials/http-headers-for-dummies--net-8039
http://en.wikipedia.org/wiki/Base64
http://json.org/
https://developers.google.com/maps/documentation/android/
https://developer.android.com/reference/com/google/android/gms/maps/model/Marker.html
https://developer.android.com/reference/com/google/android/gms/maps/model/Marker.html
https://developers.google.com/maps/documentation/android/marker
https://developer.android.com/training/location/retrieve-current.html
https://developers.google.com/maps/documentation/geocoding/

 60

 Downloaded 11.04.2015
24 https://developers.google.com/places/android/
 Downloaded 13.04.2015
25 https://developers.google.com/maps/documentation/directions/
 Downloaded 20.04.2015
26 http://googlemaps.github.io/android-maps-utils/
 Downloaded 20.04.2015
27 https://developer.android.com/design/patterns/navigation-drawer.html
 Downloaded 27.04.2015
28 http://developer.android.com/design/building-blocks/tabs.html
 Downloaded 28.04.2015
29 http://e24.no/bil/paa-mandag-er-det-50-000-elbiler-i-norge-vi-er-noedt-til-aa-
fase-ut-en-del-av-incentivene/23436093

Downloaded 08.05.15
30 http://www.ssb.no/bilreg

Downloaded 08.05.15
31 http://www.toyota.no/new-
cars/prius/index.json#/publish/pageoverlayer_open/html=.compare-
data/preserveContent=true/styleClass=compare-overlay-
wrapper/pageName=Sammenligning%20av%20motoralternativer

Downloaded 08.05.15
32 http://www.skoda-
auto.no/sitecollectiondocuments/car%20models/2013/skodapriser%20nye%20octav
ia%20my14%2012%2004%202013%20inkl.%20frakt%20og%20lev.pdf

Downloaded 08.05.15
33 http://www.ladestasjoner.no/hurtiglading/om-hurtiglading/24-hva-er-hurtiglading
 Downloaded 11.05.15
34 http://www.ladestasjoner.no/nyheter/189-bergen-apner-verdens-storste-
ladestasjon

Downloaded 14.05.15
35 Oral source Rune Viken.
36 http://www.verkeerskunde.nl/Uploads/2015/3/SENSIT-ROI-Calculation-
Results.pdf

Downloaded 14.05.15
37 http://www.gcrieber-eiendom.no/aktuelt/verdens-stoerste-hurtigladepark/
 Downloaded 16.05.15

https://developers.google.com/places/android/
https://developers.google.com/maps/documentation/directions/
http://googlemaps.github.io/android-maps-utils/
https://developer.android.com/design/patterns/navigation-drawer.html
http://developer.android.com/design/building-blocks/tabs.html
http://e24.no/bil/paa-mandag-er-det-50-000-elbiler-i-norge-vi-er-noedt-til-aa-fase-ut-en-del-av-incentivene/23436093
http://e24.no/bil/paa-mandag-er-det-50-000-elbiler-i-norge-vi-er-noedt-til-aa-fase-ut-en-del-av-incentivene/23436093
http://www.ssb.no/bilreg
http://www.toyota.no/new-cars/prius/index.json#/publish/pageoverlayer_open/html=.compare-data/preserveContent=true/styleClass=compare-overlay-wrapper/pageName=Sammenligning%20av%20motoralternativer
http://www.toyota.no/new-cars/prius/index.json#/publish/pageoverlayer_open/html=.compare-data/preserveContent=true/styleClass=compare-overlay-wrapper/pageName=Sammenligning%20av%20motoralternativer
http://www.toyota.no/new-cars/prius/index.json#/publish/pageoverlayer_open/html=.compare-data/preserveContent=true/styleClass=compare-overlay-wrapper/pageName=Sammenligning%20av%20motoralternativer
http://www.toyota.no/new-cars/prius/index.json#/publish/pageoverlayer_open/html=.compare-data/preserveContent=true/styleClass=compare-overlay-wrapper/pageName=Sammenligning%20av%20motoralternativer
http://www.skoda-auto.no/sitecollectiondocuments/car%20models/2013/skodapriser%20nye%20octavia%20my14%2012%2004%202013%20inkl.%20frakt%20og%20lev.pdf
http://www.skoda-auto.no/sitecollectiondocuments/car%20models/2013/skodapriser%20nye%20octavia%20my14%2012%2004%202013%20inkl.%20frakt%20og%20lev.pdf
http://www.skoda-auto.no/sitecollectiondocuments/car%20models/2013/skodapriser%20nye%20octavia%20my14%2012%2004%202013%20inkl.%20frakt%20og%20lev.pdf
http://www.ladestasjoner.no/hurtiglading/om-hurtiglading/24-hva-er-hurtiglading
http://www.ladestasjoner.no/nyheter/189-bergen-apner-verdens-storste-ladestasjon
http://www.ladestasjoner.no/nyheter/189-bergen-apner-verdens-storste-ladestasjon
http://www.verkeerskunde.nl/Uploads/2015/3/SENSIT-ROI-Calculation-Results.pdf
http://www.verkeerskunde.nl/Uploads/2015/3/SENSIT-ROI-Calculation-Results.pdf
http://www.gcrieber-eiendom.no/aktuelt/verdens-stoerste-hurtigladepark/

 61

Appendix

1. Sensit User Guide

2. Sensor specifications

3. Project management group notice of meeting 1

4. Project management group meeting 1 abstracts

5. Project management group notice of meeting 2

6. Project management group meeting 2 abstracts

7. Timesheet Erik Bjaanes

8. Timesheet Per Øyvind Olset

9. Timesheet Torbjørn Årdal

10. Application source code

Appendix 1: Sensit User Guide

GUIDE

 2/21

SENSIT SITE & DATA COLLECTOR | USER Content

CONTENT
1 SENSIT SITE ___ 3
 1.1 VERIFY DATA COLLECTOR CONNECTION ____________________________ 3

2 DATA COLLECTOR ___ 4
2.1 DATA COLLECTOR WITH GPRS CONFIGURATION _____________________ 7 2.2

 GPRS MODEM LED BEHAVIOR _____________________________________ 8
2.2.1 RED LED ___ 8 2.2.2 AMBER

LED __ 8

3 APPENDIX __ 9

A DISCLAIMER DOCUMENT REVISION “ 10

 4/21

Data Collector

2 DATA COLLECTOR
You have to download from the Lantronix website the program Device Installer.

http://ltxfaq.custhelp.com/app/answers/detail/a_id/644

Configuration via the Lantronix Device Installer

Step 1: Start up the device installer and activate the search button.
Step 2: After the search sequence you see the active Xport devices. Step 3: The
X-port devices shown in red are not reachable you have to change your
network settings. (by problems ask your IT manager)
Step 4: Check which of the shown devices is your Data Collector. You can find out

this by open the housing of the Data Collector and check the used
hardware address. See picture below which has the

 hardware address nr 00-20-4A-92-0A-40

Step 5: Double click at the pictogram of the Data Collector with the correct

hardware address and get the shown information below. Activate the tab
Web configuration. Press the ok button when the Authentication required
popup appears. Please let User name and password blank.

http://ltxfaq.custhelp.com/app/answers/detail/a_id/644
http://ltxfaq.custhelp.com/app/answers/detail/a_id/644

 5/21

At the left side go to the Connection settings via Channel1 => Connection and set the
following fields:

x Active Connection:
x Active Connect : Auto Start x
 Endpoint Configuration:
x Remote Port: 11111 (port the virtual SIM is listening, page 2 in note)
x Remote Host: 217.114.111.246 (IP address Virtual SIM, page 2 in note)

Then press the Ok button and after that Apply Settings at the left side and let the

device reboot. (please
make sure that the port
11111 is open in your
firewall) Note the
Virtual SIM IP address is
static.

 6/21

Serial settings:

 7/21

Data Collector

 2.1 DATA COLLECTOR WITH GPRS CONFIGURATION
The GPRS modem needs to be configured before it can access the internet and the
SENSIT server software. This is done by sending 2 SMS text messages to the Data Collector
IP65 GPRS. Any GSM cell phone can be used to send these configuration text messages.

First the APN settings should be configured. These settings depend upon the mobile network
provider. The settings are sent in a SMS message using the following format:

PROFILE:APN=<apn>;APNLOGIN=<login>;APNPASSWORD=<pwd>;DNS=<dns>;

 Where: <apn> APN (Access Point Name)
 <login> User name
 <pwd> Password
 <dns> DNS (Domain Name Server)

Example
PROFILE:APN=gprsinternet;APNLOGIN=gprs;APNPASSWORD=;DNS=;

Next the SENSIT server settings should be configured. These settings are provided to you when
the SENSIT server software was installed. The settings are sent in a SMS message using the
following format:

PROFILE:HOSTNAME=<server>;PORT=<port>;SSL=<ssl>;

 Where: <server> SENSIT server hostname or ip-address
 <port> Port number
 <ssl> true / false depending if SSL security is used.

Example

 8/21

PROFILE:HOSTNAME=217.114.111.246;PORT=11111;SSL=false;

2.2.1 RED LED
If the LED flashes red a packet is transmitted.

2.2.2 AMBER LED
Below you can find a description of the behavior of the amber colored LED:

 x Permanently off
 Modem is in one of the following modes:
 POWER DOWN, AIRPLANE, CHARGE ONLY, NON-CYCLIC SLEEP or CYCLIC

SLEEP

x 600 ms on / 600ms off Limited
Network Service:
 No SIM card inserted, no PIN entered, network search in progress, ongoing user

authentication or network login in progress.

 x 75 ms on / 3 s off
 IDLE mode:
 The modem is registered to the GSM network. No call is in progress.

 x 75 ms on / 75 ms off / 75 ms on / 3 s off

 The modem is actively connected to the GPRS network. In this state the modem is
able to communicate with the SENSIT Server.

If you have problems or questions you can send an email to

 9/21

Sensor SPECIFICATIONS

Technical information SENSIT IR SENSIT Surface Mount SENSIT Flush Mount

Product

Operating frequency 868 – 868.6 MHz (Europe)
902 – 928 MHz (US)
915 – 928 MHz (AUS)

868 – 868.6 MHz (Europe)
902 – 928 MHz (US)
915 – 928 MHz (AUS)

868 – 868.6 MHz (Europe)
902 – 928 MHz (US)
915 – 928 MHz (AUS)

Detection Magnetic and IR Magnetic and IR Magnetic

Mounting Into the floor Glued onto the floor Into the floor, flush with the surface

Snowplough resistant Partial (rubber blade only) Partial (rubber blade only) Yes

Load resistance Heavy traffic Regular traffic Heavy traffic

Mounting dimensions Ø 78 mm [3.07 in] and 53 mm
[2.09 in] high in the floor Mounting ring: Ø 240 mm

[9.45 in] Sensor: Ø 167 cm [6.57
in] and 35 mm [1.38 in] high

Ø 78 mm [3,07 in] and 72 mm
[2.8 in] into the floor fully flush
with the road surface

Weight 365 gram [12,87 oz] 455 gram [16.05 oz] 350 gram [12.35 oz]

Protection
IP67, completely sealed Housing
PE

IP67, completely sealed Housing
PE

IP67, completely sealed Housing
PE

Colour Default black (optional yellow)
Sensor black

Mounting ring yellow or black Default black

Operating temperature -40 ... +85°C [-40…+185°F] -40 ... +85°C [-40…+185°F] -40 ... +85°C [-40…+185°F]

Storage temperature -40 ... +85°C [-40…+185°F] -40 ... +85°C [-40…+185°F] -40 ... +85°C [-40…+185°F]

Detection height 0 … 90 cm [0 … 35.5 in] 0 … 90 cm [0 … 35.5 in] 0 … 90 cm [0 … 35.5 in]

Communication range
• Sensor to Relay Node
2G(directional)
• Sensor to Relay Node 2G
(omni-directional)
• Sensor to Data Collector
• Relay Node to Relay Node
(2G)
• Relay Node 2G to Data
Collector

max. 50 meters [164 ft] max.

35 meters [135 ft]

max. 25 meters [82 ft] max.
100 meters [328 ft] max. 10
meters [33 ft]

max. 50 meters [164 ft] max.

35 meters [135 ft]

max. 25 meters [82 ft] max.
100 meters [328 ft] max. 10
meters [33 ft]

max. 50 meters [164 ft] max.

35 meters [135 ft]

max. 25 meters [82 ft] max.
100 meters [328 ft] max. 10
meters [33 ft]

Required Relay Nodes
(estimated)

Car parks: 1 per 50 sensors On-
street parking:
1 per 25 sensors

Car parks: 1 per 50 sensors On-
street parking:
1 per 25 sensors

1 per 25 sensors

Appendix 2: Sensor spesifications

 10/21

Power supply Built in lithium battery Built in lithium battery Built in lithium battery

Expected lifetime 5-10 years* 5- 9 years* 5-10 years*

Part numbers SENSIT IR
(black)
9943374 EU
9898620 US
9965955 AU

SENSIT IR
(yellow on
request)
9898344 EU
9955909 US
9965947 AU

SENSIT Surface Mount
9958525 EU 9958533
US

9963871 AU

SENSIT Flush
Mount black)
9966960 EU 9966978
US
9966986 AU

Documentation SENSIT_InstallGuide

Document version nr. v4.3

* under normal usage and normal circumstances and dependent on communication settings

www.nedapidentification.com

 11/21

Erik Bjaanes

Joar Sande

Rune Frank Viken

Førde 03.03.15

Møteinnkalling
Det innkallast med dette til møte i styringsgruppa for SensPark:

Torsdag, 05.03.15, klokkelslett
Grupperom Sande

Saksliste

1. Åpning av møtet.
2. Val av referatkontrollør.
3. Godkjenning av innkalling og saksliste.
4. Sak 1/2015 Godkjenning av forprosjektet.
5. Anna

Med vennlig hilsen

Erik Bjaanes
Prosjektleiar

Appendix 3: Project management group notice of meeting 1

 12/21

Til: Joar Sande
Frå: Erik Bjaanes
Kopi: Rune Frank Viken
Dato: 06.03.15

Møtereferat frå møte nr. 1
05.03.15
EasyPark

Sakliste

1. Åpning av møtet.
2. Val av referatkontrollør.

x Sender referatet til både Joar og Rune med spørsmål om kommentarar innan to dagar. Dersom
ikkje kommentarar, sjåast det som godkjent.

3. Godkjenning av innkalling og saksliste.
x Erik vil ha tilføre timebruk som ei sak.
x Rune vil tilføre tilpasningar som ei sak.
x Joar vil snakke om oppsett av innkalling.

4. Sak 1/2015 Godkjenning av forprosjektet.
x Referanseside treng ein rubrikk med samandrag skrevet på norsk.
x Til hovudprosjektet kan det være lurt å sjå på tidlegare prosjekt.
x Bruke Nedap som referanse.
x Litteratur på kommunikasjonsdelen av prosjektet.
x Forprosjektet godkjent når det kjem ein norsk del på referansesida.

5. Anna.
x Timebruk:

o Ingen minstekrav, og det blir sett meir på kvalitet av timane enn kvantiteten av dei.
x Tilpasningar:

o Testsite hjå Helse Vest.
o Sende data til Nobil. Intin ynskjer avklaring på avgrensingar vi vel å gjere.
o Lage eigen database, gjort obs på at vi har mest erfaring innan mySQL.
o Bruke ein lokal vert på databasen, men dette blir Intin sitt ansvar.

x Oppsett av innkalling:
o Ligg mal på Fronter.

Avtalt nytt møte 26.03.15 kl. 10:30.
Erik Bjaanes

Appendix 4: Project management group meeting 1 abstracts

 13/21

Til: Rune Frank Viken, Joar Sande
Frå: Erik Bjaanes
Dato: 24.03.15

Møteinnkalling til møte nr. 2
26.03.15, kl. 10:30, grupperom Torsheim

EasyPark

Sakliste
1. Godkjenning av referat frå førre møte
2. Status framdrift og oppfølging av sak frå førre møte
3. Ressurssituasjon og økonomi
4. Avvik og endringar
5. Oppsummering
6. Neste møte

Vedlegg: Statusrapport til sak 2

Vedlegg: Statusrapport

Planlagt versus utført Grunna to gruppemedlem i Styrt Praksis har prosjektet hatt ein
periode med mindre framdrift enn tenkt. Der vi tenkte å ha
gjennomført eit planleggingsmøte for app-design og
funksjonalitet i byrjinga av februar, blei dette møtet utført 23.
mars. Fordelen med å være litt på etterskudd har vore at vi ikkje
hadde fått sensorane i bakken før INTIN avtalte med SSF om å
bruke dei som test-site.

Avvikshandtering Grunna forsinka oppstart av programmering blir det knallhard
jobbing framover med applikasjonen. Må kontakte Eivind
Standnes (vaktmestar sjukehuset) å få sensorane i bakken so fort
som mogleg.

Kritiske faktorar Få sensorane i bakken.

Appendix 5: Project management group notice of meeting 2

 14/21

Til: Joar Sande
Frå: Erik Bjaanes
Kopi: Rune Viken
Dato: 26.03.15

Møtereferat frå møte nr. 2
26.03.15

inPark

Sakliste

1. Godkjenning av referat frå førre møte
 . Referat godkjent

2. Status framdrift og oppfølging av sak frå førre møte

 . Statusrapport OK. Avklart mykje i forkant av møtet. Fastsett dato (tysdag 31 .mars) for
montering, har teknisk informasjon for montering, kontakt hos Nedap. Ser litt meir
konkrete ting og framgang framover. Vurdert å montere Data Collector og Relay Nodes før
sensorane og få opna portane vi treng. Rune Viken tar kontakt med IT-ansvarleg hjå Helse
Vest og sjekkar portane. Montering av DC og RN same dag som sensorar.

3. Ressurssituasjon og økonomi
 . INTIN finansierer det prosjektgruppa treng av utstyr.

4. Avvik og endringar

 . Skifte namn på prosjektet frå EasyPark til inPark. Bakgrunn i at EasyPark allereie eksisterer.
a. Avvik i tidsskjema grunna styrt praksis hos to av gruppemedlemma. Blir henta inn igjen

framover.

5. Oppsummering
 . La fram kvar landet ligg, kva vi har fått avklart og planlagt ilag med INTIN.
a. Joar påpeikar at det er lurt å lage disposisjon på rapporten, og dokumentere skikkelig.

6. Neste møte

 . Torsdag 16.04.15 hjå INTIN. Klokkeslett blir avklart seinare.

Om ikkje kommentarar til referat innan 30. mars 2015, sjåast referatet som godkjent.

Erik Bjaanes

Appendix 6: Project management group meeting 2 abstracts

 15/21

Timesheet Erik Bjaanes From To Hours

05.01.15 Meeting with INTIN 11:00 12:00 1
06.01.15 Planning application 14:30 15:00 0,5
15.01.15 Meeting with Intin 14:00 15:15 1,25
16.01.15 Writing project description 11:00 15:30 4,5

21.01.15 Meeting with Joar Sande, writing abstracts of meeting
13:00/2
1:00

13:30/
22:00 1,5

22.01.15 Planning contracts, control group 12:00 15:00 3
23.01.15 Working on hypothesis 11:00 13:00 2
29.01.15 Meeting with INTIN 11:30 12:30 1
30.01.15 Sensors arrived, picked them up and met with INTIN 11:00 15:00 4
04.02.15 Tried out the sensors and getting them online 16:00 18:00 2
05.02.15 Worked on getting signal from sensors to display on server 11:00 14:00 3
06.02.15 Testing sensors and learning how to use the server 11:00 16:00 5
11.02.15 Writing preliminary report 11:00 15:00 4
12.02.15 Writing preliminary report and meeting with INTIN 10:00 16:00 6
13.02.15 Writing preliminary report 11:00 18:00 7
17.02.15 Reconnected the sensors and put them online 11:00 12:00 1

25.02.15
Updated the prelimary report, also tried registering
equiptment 11:00 15:00 4

02.03.15 Wrote notice of meeting for the controlgroup 14:00 15:00 1
05.03.15 Preparing for and held meeting for the controlgroup 10:00 12:00 2
06.03.15 Wrote meeting abstracts and talked with group members 12:00 13:30 1,5

13.03.15
Defined data collector and relay nodes on server. Website
work 11:00 17:00 6

16.03.15
Prepared for and attended meeting at Førde Central
Hospital 09:00 15:00 6

19.03.15 Group conversation, planning days to come 12:00 15:30 3,5
23.03.15 Group meeting. Planning app. 11:00 19:00 8

24.03.15
Wrote some abstracts, notice for meeting, small
statusreport 11:00 13:00 2

26.03.15
Meetings (control group, INTIN, group), wrote meeting
abstracts, app-work 08:30 15:30 7

07.04.15 Prepared for midway presentation 10:00 18:00 8
08.04.15 Presented the midway presentation 10:00 12:00 2
08.04.15 Worked on the report, spoke with INTIN 12:00 16:30 4,5
08.04.15 Worked on the report, checked the sensors 19:00 23:00 4

09.04.15
Worked on report, discussed app, made a few dummy-
sites 11:00 15:30 4,5

10.04.15
Meeting with INTIN, wrote on the report, removed
dummies, calibrated sensors 09:00 16:00 7

Appendix 7: Timesheet Erik Bjaanes

 16/21

11.04.15
Recalibrated three sensors, changed GPS-coordinates to
merge the two zones 17:00 18:15 1,25

15.04.15 Group meeting. Worked on report 09:00 12:00 3
21.04.15 Spoke with INTIN. Got some feedback on application 10:00 14:00 4
05.05.15 Press release and report. 14:00 20:00 6
06.05.15 Working on report, divided topics among members 10:00 20:00 10
07.05.15 Writing report 10:00 16:00 6
08.05.15 Working on report and press release 10:00 19:00 9
09.05.15 Writing report 11:00 20:00 9
10.05.15 Writing report 11:00 16:00 5
11.05.15 Writing report 10:00 19:00 9
12.05.15 Writing report 09:00 18:30 9,5
13.05.15 Writing report 10:30 18:00 7,5
14.05.15 Writing report 11:00 15:30 4,5
15.05.15 Writing report 10:30 20:30 10
16.05.15 Writing report 11:00 18:30 7,5
17.05.15 Writing report 15:00 22:00 7
18.05.15 Writing report 11:30 20:30 9
19.05.15 Writing report 11:00 20:30 9,5
20.05.15 Writing report 10:00 21:00 11
21.05.15 Writing report 09:00 01:00 16
22.05.15 Finishing report and handing in 09:00 14:00 5
23-
27.05.15 Preparing for presentation. Anticipated time use

25

Total number of hours

301,5

 17/21

Timeliste Per Ø. Olset Frå Til Timar

05.01.15 Møte med Intin 11:00 12:00 1,00
15.01.15 Møte med intin 14:00 15:00 1,00
16.01.15 Ugreiing av rapportbeskrivelse 11:00 15:30 4,50
22.01.15 heimeside 15:00 17:00 2,00
23.01.15 heimeside 14:00 17:30 3,50
29.01.15 møte med intin 15:30 16:30 1,00
02.02.15 sensorar og utstyr 14:00 17:00 3,00
04.02.15 heimeside og sensora 12:00 18:00 6,00
05.02.15 sensorar og utstyr 12:00 15:00 3,00
11.02.15 sensorar og server/kontrollpanel 11:00 16:00 5,00
12.02.15 forprosjekt-rapport 13:00 18:00 5,00
13.02.15 forprosjekt-rapport + sensorar + møte 11:30 16:30 5,00
17.02.15 forprosjektrapport 13:30 17:00 3,50
18.02.15 heimeside 13:00 18:00 5,00
20.02.15 heimeside 13:00 18:00 5,00
02.03.15 heimeside 16:00 18:00 2,00
13.03.15 heimeside 12:00 14:00 2,00
19.03.15 heimeside, sensorar og kontrollpanel 12:00 18:00 6,00
23.03.15 nettmøte 12:00 15:30 3,50
24.03.15 prosjektmøte 11:00 19:00 8,00
25.03.15 intin-møte, styremøte, applikasjon 08:30 18:00 9,50
26.03.15 applikasjon 08:30 18:00 9,50
27.03.15 applikasjon 08:30 18:00 9,50
30.03.15 applikasjon 09:00 18:00 9,00
31.03.15 applikasjon og sensorinnstalasjon 09:00 18:00 9,00
01.04.15 applikasjon og sensorinnstalasjon 09:00 18:00 9,00
02.04.15 applikasjon og sensorar 10:00 18:30 8,50
07.04.15 nettside 10:00 18:30 8,50
08.04.15 nettside og presentasjon 10:00 18:00 8,00
09.04.15 nettside, presentasjon og konsept-grafikk 10:00 18:00 8,00
10.04.15 nettside og konsept-grafikk 10:00 18:00 8,00
13.04.15 nettside og konsept-grafikk 10:00 18:00 8,00
14.04.15 konsept-grafikk 12:00 18:30 6,50
15.04.15 grafikk og app 09:30 16:30 7,00
16.04.15 heimeside, grafikk og møte 10:00 17:30 7,50
17.04.15 gjenomgang av dokument, heimeside. 10:00 18:30 8,50
20.04.15 nettside og app. 11:00 17:00 6,00
21.04.15 applikasjon 10:00 16:30 6,50
22.04.15 app og grafikk til app 10:00 17:30 7,50

Appendix 8: Timesheet Per Ø. Olset

 18/21

27.04.15 app og grafikk til app 10:00 15:00 5,00
28.04.15 applikasjon 10:00 17:30 7,50
29.04.15 applikasjon 10:00 19:30 9,50
30.04.15 applikasjon 10:00 18:00 8,00
04.05.15 applikasjon 10:00 18:00 8,00
05.05.15 rapport 10:00:00 18:00 8,00
06.05.15 rapport 10:00:00 18:00 8,00
07.05.15 rapport 10:00:00 18:00 8,00
08.05.15 rapport 10:00:00 18:00 8,00
11.05.15 rapport 10:00:00 18:00 8,00
12.05.15 plakat 10:00:00 18:00 8,00
13.05.15 plakat 10:00:00 17:00 7,00
15.05.15 rapport og plakat 13:00 18:00 5,00
16.05.15 rapport og plakat 13:00 18:00 5,00
17.05.15 rapport 15:00 16:00 1,00
18.05.15 rapport 11:00 20:30 9,50
19.05.15 rapport 09:00 19:00 10,00
20.05.15 rapport 09:00 21:00 12,00
21.05.15 rapport og plakat 09:00 01:00 16,00

22.05:2015 rapport 08:00 14:00 6,00

386,50

tiltenkt presentasjon

25,00

Totalt

411,50

 19/21

Timeliste Torbjørn Årdal
 Dato Frå Til Antal timar

5.1.15 11:00 12:00 1
6.1.15 14:30 15:00 0,5

14.1.15 10:00 15:00 5
16.1.15 11:00 17:00 6
20.1.15 13:00 17:30 4,5
21.1.15 09:30 14:30 5
23.3.15 11:00 19:00 8
24.3.15 08:30 18:00 9,5
25.3.15 09:00 18:00 9
26.3.15 09:00 18:00 9
27.3.15 09:00 18:00 9
30.3.15 09:00 18:00 9
31.3.15 09:00 18:00 9

1.4.15 09:00 18:00 9
2.4.15 10:30 18:00 7,5
8.4.15 10:00 16:30 6,5
8.4.15 18:00 21:00 3
9.4.15 09:30 16:00 6,5

10.4.15 11:30 15:30 4
11.4.15 13:00 18:00 5
13.4.15 10:30 17:30 7
14.4.15 10:30 16:30 6
15.4.15 09:00 17:30 8,5
16.4.15 09:30 18:30 9
17.4.15 09:30 19:30 10
20.4.15 09:30 16:30 7
21.4.15 09:30 17:30 8
22.4.15 10:00 15:00 5
27.4.15 10:00 17:00 7
28.4.15 10:00 17:00 7
29.4.15 12:00 18:00 6

1.5.15 13:30 19:30 6
4.5.15 10:00 18:00 8
5.5.15 11:00 20:30 9,5
6.5.15 08:00 17:30 9,5

Appendix 9: Timesheet Torbjørn Årdal

 20/21

7.5.15 10:00 16:00 6
8.5.15 10:00 19:00 9
9.5.15 11:00 20:00 9

12.5.15 09:00 18:30 9,5
13.5.15 10:00 18:00 8
15.5.15 10:30 20:30 10
16.5.15 11:00 18:30 7,5
17.5.15 15:00 22:00 7
18.5.15 11:30 20:30 9
19.5.15 12:30 20:30 8
20.5.15 10:00 21:00 11
21.5.15 09:00 01:00 16
22.5.15 10:30 14:00 3,5

Totalt

353

 21/21

 See ZIP-file (handed in on Fronter along with report)

Appendix 10: Application Source Code

