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Abstract
1.	 Predicting plant–pollinator interaction networks over space and time will im-

prove our understanding of how environmental change is likely to impact the 
functioning of ecosystems. Here we propose a framework for producing spatially 
explicit predictions of the occurrence and number of pairwise plant–pollinator 
interactions and of the species richness, diversity and abundance of pollinators 
visiting flowers. We call the framework ‘MetaComNet’ because it aims to link 
metacommunity dynamics to the assembly of ecological networks.

2.	 To illustrate the MetaComNet functionality, we used a dataset on bee–flower 
networks sampled at 16 sites in southeast Norway along with random forest 
models to predict bee–flower interactions. We included variables associated 
with climatic conditions (elevation) and habitat availability within a 250 m radius 
of each site. Regional commonness, site-specific distance to conspecifics, social 
guild and floral preference were included as bee traits. Each plant species was 
assigned a score reflecting its site-specific abundance, and four scores reflecting 
the bee species that the plant family is known to attract. We used leave-one-
out cross-validations to assess the models' ability to predict pairwise plant–bee 
interactions across the landscape.

3.	 The relationship between observed occurrence or absence of interac-
tions and the predicted probability of interactions was nearly proportional 
(GLMlogistic regression slope = 1.09), matching the data well (AUC = 0.88), and ex-
plained 30% of the variation. Predicted probability of interactions was also cor-
related with the number of observed pairwise interactions (r = 0.32). The sum 
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1  |  INTRODUC TION

Nearly nine of every 10 species of flowering plants rely on in-
teractions, mainly with insects, for cross-pollination (Ollerton 
et  al.,  2011). However, wild plants are experiencing a shortage of 
pollinators in both natural and managed terrestrial ecosystems 
(Bennett et  al.,  2020), which can considerably affect plant repro-
duction and persistence (e.g. Gomez et  al.,  2010; Ollerton,  2017; 
Thomann et  al.,  2013). Our ability to predict how plant communi-
ties will respond to environmental change partly relies on our ability 
to predict how plant–pollinator interactions vary in heterogeneous 
landscapes (Tylianakis & Morris, 2017).

Most approaches to modelling plant–pollinator interactions in 
heterogeneous landscapes have focused on network properties, 
such as modularity (reviewed in Pellissier et al., 2018), but these 
properties may not fully encapsulate the underlying community 
assembly processes (Olito & Fox, 2015). An alternative approach is 
to model pairwise plant–pollinator interactions directly, and to de-
rive network properties by aggregating model predictions (Graham 
& Weinstein,  2018), for instance by including plant and pollinator 
abundances, traits and phylogenies (e.g. Benadi et  al., in press; 
Pichler et  al.,  2020; Stock et  al.,  2021). However, Benadi et  al. (in 
press) found a drop in model performance when predicting into 
novel habitats, which may arise from differences in habitat envi-
ronmental conditions influencing pollinator distributions (e.g. Hoiss 
et al., 2012). Hence, accounting for processes behind community as-
sembly (as per Vellend, 2016) is central for making spatial predictions 
of plant–pollinator interactions. We therfore hypothesise that the 
number of pairwise interactions between plants and pollinators can 
be effectively modelled as a function of plant and pollinator affil-
iations and of variables underlying pollinator community assembly 
at different spatial scales. We propose a conceptual framework to 
make spatial predictions of pairwise interactions between plants and 
pollinators, which we refer to as ‘MetaComNet’ because it aims at 
linking meta-community structuring factors to the structure of eco-
logical networks.

MetaComNet is pollinator-oriented in that it focuses on predict-
ing the occurrence, or number, of plant–pollinator interactions by 

modelling the distribution of wild bees across plant species while 
considering regional and landscape level factors. The response 
variables considered are the number, or presence/absence, of ob-
served interactions between pollinator and plant species observed 
in specific localities. We focus on pollinators because they tend to 
display more pronounced spatial turnover in interaction networks 
than plants do (Trøjelsgaard et  al.,  2015). MetaComNet builds on 
Tylianakis and Morris (2017) who define the occurrence, or number, 
of interactions between plants and pollinators as the endproduct of 
processes and conditions that determine species composition at dif-
ferent spatial scales (Figure 1). We pose the following hypotheses 
relevant at different spatial scales:

Regional scale: If community, or network, assembly is ecologically 
neutral, the abundance of species within communities (Vellend, 2016) 
will be proportional to species commonness in the regional species 
pool, in turn dependent on climatic requirements and the biogeog-
raphy of species (Cornell & Harrison, 2014). Accounting for differ-
ences in regional commonness is also important because species 
abundance is related to the level of random interactions (reviewed in 
Krishna et al., 2008; Tylianakis & Morris, 2017; Vázquez et al., 2007). 
In MetaComNet, the regional commonness of pollinators is included 
as a regional level predictor of pairwise interactions to account for 
neutral network assembly processes.

Landscape scale: Pollinator communities are assembled through 
dispersal processes (Hagen et al., 2012) and through mechanisms of 
species sorting determined by the suitability of an area as habitat 
for the species (environmental filtering). Dispersal rates depend in 
part on geographic distance and barriers (Carstensen et  al.,  2014; 
Trøjelsgaard et al., 2015); hence the likelihood of a species occurring 
in a habitat patch, and of it interacting with the plants therein, is 
expected to decrease with the distance to the nearest population 
in the region. In MetaComNet, we accounted for the influence of 
immigration rates by including site- and species-specific estimates of 
the distance to the nearest population. To support viable pollinator 
populations, a location must contain enough nesting and foraging 
resources within enough proximity (Westrich, 1996). The amount of 
semi-natural habitat or degree of landscape diversity within a 250 m 
radius can be used as a proxies for habitat amount since solitary bee 

of predicted probabilities of bee–flower interactions were positively correlated 
with observed species richness (r = 0.50), diversity (r = 0.48) and abundance 
(r = 0.42) of wild bees interacting with plant species within sites.

4.	 Our findings show that the MetaComNet framework can be a useful approach 
for making spatially explicit predictions and mapping plant–pollinator interac-
tions. Such predictions have the potential to identify areas where the pollina-
tion potential for wild plants is particularly high, and where conservation action 
should be directed to preserve this ecosystem function.
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species richness increases with habitat area at this scale (Steffan-
Dewenter et al., 2002). The distance to soil deposits with high sand 
concentrations can be used as a proxy for distance to high quality 
nesting substrates, because many species prefer such substrates for 
nest sites (Antoine & Forrest, 2021; Heneberg et al., 2013).

Local scale: At the scale of individual flowers within habitats, the 
occurrence and number of bee–plant interactions will depend on the 
attractiveness of the flower. Flower attractiveness depends in part 
on their relative abundance (Fowler et al., 2016; Stavert et al., 2019), 
even though visitation rates to flowers may saturate (Totland, 1994) 
or show unimodal responses (Benadi & Pauw, 2018). Other factors 
determining flower attractiveness to pollinators are, for example, 
particular morphological characteristics (e.g. Benadi et al., in press; 
Pichler et al., 2020; Stock et al., 2021), non-visual cues such as floral 
scent (Larue et al., 2016) and pollen toxicity that require adaptations 
to overcome (reviewed in Rivest & Forest,  2020). Trait-matching 

reduces the frequency or even excludes some combinations of part-
ners in plant–pollinator networks (Olesen et al., 2011). However, 
which floral traits select for specific bees is not always easy to pre-
dict and species may respond to different traits on the same plant 
(Rowe et al., 2020). Also, in bumble bees, pollen preferences can be 
more directly related to phylogenetic relationships than to probos-
cis length (Wood et al., 2021). In MetaComNet, trait-matching be-
tween plants and pollinators can be accounted for by assigning a set 
of functional and/or floral preference traits reflecting the expected 
plant–pollinator associations.

The MetaComNet model integrates data from the three geo-
graphic levels indicated above into a data frame illustrated in 
Table 1. The model parameters include response variables (number, 
or the presence or absence of interactions), grouping variables (pol-
linator species, plant species, site identity) and predictor variables 
such as pollinator traits, plant traits and site-specific environmental 

F I G U R E  1  Conceptualisation of the MetaComNet framework and the hierarchical assembly of plant-bee interaction networks. The 
likelihood of a bee interacting with a plant species growing in a habitat patch is a product of a series of scale-dependent conditions, that is, 
regional commonness of pollinators, landscape habitat suitability (nesting and foraging resources) and distance to neighbouring populations, 
and local composition of flower plants, their abundance and level of attractiveness
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conditions. Using empirical data from Norway, we illustrate the abil-
ity of MetaComNet to predict the occurrence and number of inter-
actions between wild bees and plants.

MetaComNet uses a random forest modelling framework 
(Breiman, 2001) to model pollinator–plant associations because of 
its ability to define nonlinear interactions between predictor vari-
ables. Random forest models also offer an intuitive way to view the 
hierarchical assembly of pairwise interaction networks (Figure  1). 
Moreover, random forest models have been shown to outperform 
other machine learning and glm-based techniques when predicting 
pairwise plant–pollinator interactions in both simulated and empir-
ical data (Pichler et al., 2020) and to perform as well as mechanis-
tic likelihood-based models (Benadi et al., in press). We used three 
random-forest approaches to test if predictor variables (see Table 2) 
could predict spatial variation in:

•	 Occurrence and number of pairwise interactions between wild 
bee species and plants.

•	 Species richness, Shannon diversity and abundance of wild bee 
floral visitors.

2  |  MATERIAL S AND METHODS

2.1  |  Bee–flower network sampling

We sampled bee–flower networks along 16 roadsides (sites) in 
Southeast Norway in 2017. Eight of the study sites were located 
on sandy sediments and the remaining eight were located on clay 
dominated sediments (Skoog,  2018). At each study site, flower-
visiting bees were collected during 1 hr by two observers along a 
50 m transect, once during early to mid-July and once during early 

to mid-August in 2017. A total of 910 interactions between wild 
bees (n = 45 species) and plants (n = 44 species) were observed. We 
only included non-parasitic bees (n = 39) in our analyses because 
parasitic bees do not visit plants for nectar and pollen. We esti-
mated the site's abundance of flowering plant species by recording 
the number of occurrences (presence/absence) of each plant spe-
cies in a grid of sixteen 25 × 25 cm squares within six 1 m2 quadrats 
placed in a 2 by 30 m grid along the roadside, totalling 96 squares 
per site. No permissions were required to conduct the fieldwork.

The site-specific plant abundance was used as a proxy for the 
number of flowers from that species within a site, and was based on 
species which were flowering at the time of the inventory. Plants that 
did not occur within any of the six 1 m2 vegetation quadrats within 
a site, but with bee visitation records were given a plant cover abun-
dance value of 0.05 to indicate that the plant was locally present.

We assigned variables to the recorded plants and bees that we 
expected would influence the number of plant–pollinator interac-
tions. For plants we used the site abundance since we expected a 
high correlation of bee visitations with plant abundance. Because 
our aim was not to identify functional traits that determine bee–
flower interactions, but to account for floral associations of bees 
in our models, we assembled a binary network of 207 bee spe-
cies and 61 plant family interactions based on existing informa-
tion from interaction records sampled at a greater temporal and 
spatial extent than our study area (Rasmussen et al., 2021; Wood 
et al., 2021). This approach provided a more inclusive measure of 
host plants of bees, closer to the fundamental niche, than what 
would be achieved from a single survey, such as ours. We used a 
detrended correspondence analysis (DCA) in the Vegan package in 
r (Oksanen et al., 2018) to establish the four main axes of corre-
spondence between plant families and non-parasitic bee species 
associations (Figure S1). We used the plant and bee DCA scores to 
account for plant–bee associations.

TA B L E  1  Variables included in the MetaComNet network model. The data frame contains columns with response variables including: 
(i) number, or presence or absence, of observed interactions between a pollinator species and a plant species in a particular study site. 
Grouping variables include: pollinator species (Pol.), plant species (Plnt.) and site identity (Site). Predictor variables that can be linked 
to pollinator species, plant species or the site. Pollinator variables include the regional commonness (RC); the distance to the nearest 
known population of that species (Dst); and traits (Tr8s) related to environmental requirements or the floral preference of the species. 
Plant variables include the local commonness (LC), or abundance, and traits (TR8s) related to pollinator affiliations. Site-specific variables 
include geographic coordinates that are used for calculating distances to potential source populations and for extracting georeferenced 
environmental variables (Env) such as m a.s.l., or area of semi-natural habitat within 250 m radius in the surrounding landscape

Response variables Grouping variables Predictor variables

Number Presence Pol. Plnt. Site Pol. Plant. Site

0 0 Pol.1 Plnt.1 S.1 RC; Dst; Tr81−n LC; Tr81−n xy; Env1−n

5 1 Pol.2 Plnt.1 S.1 RC; Dst; Tr81−n LC; Tr81−n xy; Env1−n

2 1 Pol.1 Plnt.2 S.1 RC; Dst; Tr81−n LC; Tr81−n xy; Env1−n

10 1 Pol.2 Plnt.2 S.1 RC; Dst; Tr81−n LC; Tr81−n xy; Env1−n

0 0 Pol.1 Plnt.1 S.2 RC; Dst; Tr81−n LC; Tr81−n xy; Env1−n

0 0 Pol.2 Plnt.1 S.2 RC; Dst; Tr81−n LC; Tr81−n xy; Env1−n

2 1 Pol.1 Plnt.2 S.2 RC; Dst; Tr81−n LC; Tr81−n xy; Env1−n

0 0 Pol.2 Plnt.2 S.2 RC; Dst; Tr81−n LC; Tr81−n xy; Env1−n

… … … … … … … …



    |  5Methods in Ecology and Evolu
onSYDENHAM et al.

In our model we distinguished between solitary and social wild 
bees (Bombus spp.) because solitary bee diversity responds more 
strongly to landscape conditions at local spatial scales than bum-
ble bees (Steffan-Dewenter et  al.,  2002). We used records from 
GBIF.org (GBIF, 2021) to estimate the regional commonness of bee 
species and the distance to the nearest known occurrence of each 
species. We downloaded occurrence records covering our region 
(Figure 1, xmin = 9.99, xmax = 12.19, ymin = 59.09, ymax = 61.31, projec-
tion: WGS84) and excluded records older than 20 years and with a 
coordinate uncertainty >100 m. To estimate regional commonness, 
we tallied the number of 10 km grid cells within which a species had 
been observed. For each site we calculated the geographic distance 
to the nearest GBIF record of each species.

For each site we obtained information on environmental condi-
tions known to affect wild bee distributions. As a proxy for climatic 
conditions, we used elevation above sea level, obtained from a dig-
ital elevation model with a 50  m resolution (Norwegian Mapping 
Authority, 2016). As proxies for landscape conditions, we used the 
European ELC10 land cover map (Venter & Sydenham,  2021) to 
calculate: the proportion of grassland area and Shannon landscape 

diversity within a 250 m radius. As a proxy for nesting conditions, we 
calculated the distance to sand-dominated geological deposits, that 
is, soils with a high permeability (Geological Survey of Norway, 2011).

2.2  |  Modelling and predicting empirical bee–plant 
interactions

We assembled a data frame where each row was defined by a study 
site, a plant species found within the study site, and one of the bee 
species occurring in the 16 study sites (Tables 1 and 2). The data frame 
included (response) variables for the presence (1) or absence (0) as 
well as the number of visitations recorded of the bee species on the 
plant within the site. The predictor variables were the bee species-
specific variables: regional commonness; site-specific distance to 
the nearest known occurrence; DCA scores; and Bombus versus 
non-Bombus. Plant species-specific variables were: DCA scores; and 
site-specific abundance. Site-specific variables were: Elevation; pro-
portion of grassland and Shannon landscape diversity within a 250 m 
radius; and distance to geological deposits dominated by sand.

TA B L E  2  Description of variables included in the MetaComNet network model. The model data frame contained 9,594 rows defined by 
combinations of the grouping variables: bee species, plant species and site identity

Variable Description

Response variables

Occurrence of interactions The presence or absence of interactions between the bee species and plant within a site. 
The variable was transformed into a two-level categorical variable for models using 
classification trees and left as a numeric variable (zero or one) for the models using 
regression trees

Number of interactions Number of interactions between the bee species and plant within a site, used in regression 
trees

Grouping variables

Bee species Character string with 39 unique values, one per bee species

Plant species Character string with 44 unique values, one per plant species

Site Character string with 16 unique values, one per study site

Predictor variables

Regional commonness Number of 10 km grid cells within the region, occupied by the bee species

Distance to conspecifics Geographic distance from the site to the nearest GBIF record of the bee species, ranging 
from 200 m to 45.5 km

Elevation Elevation of the study site, random from 147 to 222 m a.s.l.

Grassland 250 m Proportion of area classified as grassland within 250 m of the site, ranging from 5% to 70%

Landscape H 250 m Landscape Shannon diversity (or heterogeneity) within 250 m of the site, ranging from 0.59 
to 1.48

Distance to sandy soils Geographic distance to soil deposits with high concentrations of sand, ranging from zero to 
2,130 m

Plant abundance Number of 25 × 25 cm squares, within which the plant species occurs, ranging from 0.05 
to 64, out of 96 possible (i.e. occurring in all 16 25 × 25 cm squares in all 1 × 1 m plant 
quadrats)

Plant DCA1-4 Plant family scores along the first to fourth detrended correspondence axes, one column 
per axis

Bee DCA1-4 Bee species score along the first to fourth detrended correspondence axes, one column 
per axis

Bee sociality Categorical variable indicating if the bee species belonged to the Bombus genus or not
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We used random forest (Breiman, 2001) with the Ranger package 
(Wright & Ziegler, 2017) via the Caret package (Kuhn, 2018) in r (R 
Core Team, 2020). We fitted three models to the data depending on 
the type of response variable: the presence versus absence of inter-
actions, using classification trees; the presence (one) versus absence 
(zero) of interactions using regression trees; and number of inter-
actions using regression trees. The three resulting model outputs 
were: predicted probability of interactions, that is, class probability; 
predicted frequency of interaction, that is, predicted proportion of 
presences; and predicted number of interactions. We used leave-
one-out cross-validation, by iteratively training models on data from 
15 sites and predicting onto the remaining site to allow assessing 
model performances across all 16 sites as well as their variability in 
terms of predicting pairwise interactions within sites. We also con-
ducted leave-one-out cross-validations for each bee and plant spe-
cies by iteratively training models on data (across sites) where the 
focal bee or plant species had been removed, and then attempted to 
predict pairwise interactions for the removed species. This approach 
allowed us to assess if models differed in their ability to predict plant 
interactions for bee species, and bee interactions for plant species, 
not encountered while training the models (Stock et al., 2021). To 
assess model fit during training, we used a fivefold cross-validation 
with accuracy, for classification trees, and root mean square error 
(RMSE), for regression trees. The hyperparameters in random forest 
models were tuned by cycling through a range of possible values, fol-
lowing default settings in caret (Kuhn, 2018), and selecting the com-
bination of tuning parameters that resulted in the highest accuracy.

We tested if the predicted probability, frequency or number of 
interactions corresponded to the observed presence or absence of 
interactions. Predictions of interaction probabilities and frequencies 
were compared against actual occurrences of interactions by calculat-
ing the logistic GLM regression slopes, with the predicted probabilities 
logit-transformed so that regression slopes equal to one would indi-
cate a 1:1 relationship between predicted probability, or frequency, 
of occurrence and observed proportion of occurrences. Because we 
did not expect a linear relationship (on the logit-scale) between occur-
rences and predicted number of interactions, we compared logistic 
GLMs with the number of interactions left un-transformed, log(x + 1), 
or square root transformed and selected the square root transformed 
model because it had the lowest Bayesian information criterion (BIC). 
For all three models we used NagelKerkes log likelihood-based R2 
from r package MuMIn (Barton, 2018), from the GLM models, and the 
area under the curve (AUC) from r package pROC (Robin et al., 2011) 
to assess model performance. We calculated the regression slopes for 
the first two models (with presence/absence as response variables), 
and the average R2 and AUC. To assess the models' power to predict 
the number of interactions, we calculated the Pearson correlations 
between the observed number of interactions and predicted prob-
ability, frequency and number of interactions. All validation metrics 
were calculated by (a) including predictions and observations from 
all 16 sites, (b) and by calculating the mean, and standard deviation 
from predictions for each site individually. We calculated the scaled 
importance of predictor variables from each of the 16 models in order 

to assess if the variation in variable selection across models differed 
between the three modelling strategies.

2.3  |  Predicting flower-visitor richness, 
diversity and abundance

We tested the level of correspondence between the sum of predicted 
pairwise bee–plant interactions and observed flower-visitor species 
richness, diversity and abundance within sites. For each of the three 
models, we calculated predicted flower-visitor species richness from 
the sum of predicted probabilities of interactions and from the sum 
of predicted frequencies of interactions for each plant species per 
site. We also calculated the predicted abundance of flower visitors 
as the sum of predicted number of interactions across bee species. 
We then calculated the Pearson correlation between predicted spe-
cies richness or abundance and observed: flower-visitor species rich-
ness; species diversity; and species abundance.

2.4  |  Mapping flower-visitor species richness

To illustrate how the predicted flower-visitor species richness can be 
mapped and thus used to identify areas where plants are most or least 
likely to be pollen limited, we re-fitted the random forest regression 
to the occurrence of interactions using all the data from the 16 sites 
and used this model to produce prediction maps. We created predic-
tion maps of flower-visitor richness for plant species belonging to the 
Compositae and Leguminosae families. For each plant family and bee 
species combination, we created a data matrix with one row per cell. In 
addition to the environmental variables, each row contained the plant 
family specific DCA scores, the bee species-specific DCA scores, re-
gional commonness, if the species belonged to the Bombus genus, and 
the distance of the centroid of the raster cell to the nearest occurrence 
of the bee species. We held the plant commonness constant at 16 or 
50 indicating the number of 25 cm plots within the vegetation quad-
rats where the plant occurred, to illustrate how local floral abundance 
can affect flower-visitor diversity. To aid visual interpretations of the 
model predictions, we masked out areas with predicted species rich-
ness lower than the third quantile of predicted values.

3  |  RESULTS

3.1  |  Predicting pairwise interactions between bee 
and plant species

There was a positive relationship between observed and predicted 
occurrence and number of bee–plant interactions irrespective of the 
modelling strategy (Figure  2a–i). However, predictions from random 
forest classification trees (Figure 2a–c) and from random forest regres-
sions (Figure  2d–f) explained more of the variation in observed oc-
currences of interactions than those from random forest regression 
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models on the number of interactions (Figure 2g–h). Compared to an 
ideal 1:1 relationship between observed and predicted occurrence or 
number of interactions, the random forest regression (i.e. with pres-
ences treated as one's and absences as zero's) was the most similar, 
with an average regression slope closest to one (1.09 ± 0.04 SE). For 
single site predictions, regression slopes varied less (lower standard 
deviation) for predictions from regression trees (Figure 2d) than those 
from classification trees (Figure 2a). Moreover, predictions from clas-
sification trees more often underestimated the occurrence of interac-
tions, while predictions from the number of interactions overestimated 

the occurrence of interactions. All model predictions were similarly 
correlated with the observed number of interactions (Figure 2b,e,h). 
Bee and plant species-based leave-one-out validations showed that 
classification trees and regression trees on occurrence or absence of 
interactions, performed equally well and outperformed regression 
trees based on number of interactions when attempting to predict 
pairwise interactions for bees and plant species (Figures S2 and S3).

Comparing predictor variable importance (Figure  2c,f,i) across 
the 16 models for each of the three modelling strategies also showed 
that models for interaction frequencies (Figure  2f) were generally 

F I G U R E  2  Predictions of occurrences and number of pairwise interactions between wild bee and plant species. Results for models 
on: (a–c) predicted probability of interactions from classification trees; (d–f) predicted frequency of interactions, from regression trees on 
presences and absences; (g–i) and predicted number of interactions, from regression trees. Figures in the left panel (a, d, g) show logistic 
GLM regression curves for observed occurrences of interactions against the model predictions across the 16 study sites (networks). Ideal 
1:1 relationships are shown as black dashed lines for reference. Figures in the mid panel (b, e, h) show data points in red together with 
boxplot summary statistics for the observed number of interactions against predicted values. Validation metrics are shown for validations 
across all 16 sites (Slope ± SE, R2, AUC and Person's r) together with and summarised with means and standard deviations for within site 
validations (Slopesite, R2

site
, AUCsite and Person's rsite). Figures in the right-hand panel (c, f, i) show the boxplot summary statistic for the relative 

importance of predictor variables across the 16 random forest models
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more in agreement on the relative importance of variables, than 
those of interaction probabilities (Figure  2c) and number of inter-
actions (Figure 2i). Regional commonness was the most important 
predictor of interaction frequencies, followed by the distance to 
conspecifics and variables associated with plant and pollinator asso-
ciations (Figure 2f). For all three modelling strategies, elevation and 
landscape conditions were consistently among the least important 
variables in predicting pairwise interactions (Figure 2c,f,i).

3.2  |  Predicting flower-visitor species richness, 
diversity and abundance

Predicted bee species richness and abundance were positively cor-
related with observed flower-visitor species richness, diversity and 
abundance. The Pearson correlation coefficient between observed 
flower-visitor species richness, diversity or abundance, and pre-
dicted species richness was similar for classification (Figure  3a–c) 
and regression random forest models (Figure 3d–e). In both cases 
median values for observed species richness, diversity and abun-
dance, increased with predicted species richness but the rate of 
increase seemed to saturate at a predicted species richness at and 
above two. In comparison, correlations between predicted flower-
visitor abundance and observed flower-visitor species richness, di-
versity and abundance were weaker (Figure 3g–i).

3.3  |  Mapping flower-visitor species richness

The random forest regression models produced the most accurate 
predictions of observed pairwise interactions (Figure 2), and equal to 
or stronger relationships with the number of pairwise interactions, 
and species richness, diversity and abundance of flower visitors 
(Figure 3) than the other two models. It showed increasing flower 
abundance increased the predicted flower-visitor species richness 
to both Compositae (Figure  4b,c), and Leguminosae (Figure  4e,f). 
However, despite some overlap, there is a considerable difference 
between the two plant families in terms of where plants were pre-
dicted to receive the highest richness of floral visitors (Figure 4e–g). 
For Compositae, areas with predicted values at or above the third 
quantile were mainly concentrated on areas with sand dominated 
geological deposits (around the Gardermoen airport, Figure  4d; 
Figure S2). For Leguminosae, the area predicted with highest diver-
sity of wild bees was found southwest of the Airport (Figure  4g), 
where the soil substrate is dominated by marine, clayish deposits.

4  |  DISCUSSION

The aim of this study was to develop and test a framework for pro-
ducing spatially explicit predictions of plant–pollinator networks. 
Despite the relatively low predictive importance of landscape level 
variables, there was a considerable spatial difference in the predicted 

species richness of bees that visit plants belonging to Compositae 
and Leguminosae (Figure 4).

Approaches to modelling plant–pollinator networks can be clas-
sified according to the main strategies of species distribution mod-
elling identified by D'Amen et al.  (2017). In the ‘assemble first and 
predict later’ approach (sensu D'Amen et al., 2017), network indices 
are modelled as functions of environmental conditions (reviewed 
in Pellissier et al., 2018). The advantages of this strategy are that 
structural properties of entire networks are captured; and network 
indices have hypotheses affiliated to their drivers and relationships 
to ecosystem functioning. A problem with this strategy is that dif-
ferent species compositions can result in similar network properties 
(Olito & Fox, 2015), so that processes such as, for example, compe-
tition, trait-matching and neutrality can all theoretically give rise to 
similar degrees of modularity within ecological networks (reviewed 
in Dormann et al., 2017). An alternative strategy is the ‘predict first 
assemble later’ (sensu D'Amen et al., 2017), where distributions of 
flower visitors are modelled individually, and the resulting predic-
tions are then aggregated to network properties. This approach 
is typically adopted in single plant species systems and, for exam-
ple, used to predict pollinator abundances in crops (e.g. Gardner 
et al., 2020; Lonsdorf et al., 2009). A drawback of this approach is 
that because species are modelled individually, it is difficult to link 
predictions to community assembly processes (sensu Vellend, 2016) 
and meta-community ecological theory (sensu Leibold et al., 2004). 
In the final strategy, the ‘assemble and predict together’ strategy 
(sensu D'Amen et  al.,  2017), species interactions are modelled si-
multaneously for all pollinator species across plant species and com-
munities. This strategy has been adopted in recent frameworks for 
predicting plant–pollinator interactions and allows linking network 
assembly to metacommunity ecological theory such as trait-based 
species sorting among communities (Leibold et  al.,  2004). For in-
stance, Graham and Weinstein (2018) predicted plant hummingbird 
interactions simultaneously for hummingbird species along a gra-
dient of elevation and outlined a strategy for how functional traits 
could be integrated into their modelling framework. In addition to 
trait-based pollinator species sorting, the role of pollinator abun-
dances has previously been included into models of plant–pollinator 
interactions that identify linkage rules within networks (Bartomeus 
et  al.,  2016). Furthermore, in addition to trait-based filtering, and 
random (i.e. abundance-based) encounters, plant–pollinator in-
teractions, for example, between mustards and wild bees, have 
been shown to depend on habitat isolation (Steffan-Dewenter & 
Tscharntke, 1999). By including the influence of dispersal limitation, 
in addition to those of trait-based species sorting and random en-
counters, MetaComNet extends existing ‘assemble and predict to-
gether’ frameworks for predicting plant–pollinator interactions.

A direct comparison of the predictive power of MetaComNet 
and other frameworks for predicting pairwise interactions (e.g. 
Pichler et  al.,  2020; Stock et  al.,  2021; Benadi et  al., in press) is 
partly hindered by differences in study designs, and particularly 
that we in our models included spatial predictors in order to predict 
across networks of pairwise interactions (sites). For instance, Stock 
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et  al.  (2021) devised a cross-validation strategy to assess within-
network model prediction of: pairwise interactions; interactions for 
particular bee or plant species; or particular combinations of bees 
and plants. The most similar strategy to that we followed would be 
that of the ‘pairwise interactions’, however, in some instances par-
ticular plant species occurring in the validation data, would not have 
been found in the combination of sites used to train our models. 
Predicting across networks will therefore produce a mix of the cross-
validation strategies proposed by Stock et  al.  (2021) and we only 
found marginal differences in model performances when predicting 

pairwise interactions within and across sites (Figure  2) and when 
predicting interactions for individual species of bees (Figure S2) and 
plants (Figure S3). However, despite including spatial variables and 
cross-validating predictions into new sites which we would expect 
would reduce model performances, our models yielded AUC statis-
tics for predictions of interaction occurrences that were comparable 
to those obtained using simulated and empirical data for within net-
work predictions (Pichler et al., 2020; Stock et al., 2021). This may 
suggest that plant–pollinator trait-matching and neutral, abundance-
based, processes, are likely to be the main structuring processes 

F I G U R E  3  Relationships between observed flower-visitor species richness, diversity or abundance and predictions flower-visitor species 
richness and abundance modelled with three random tree approaches: (i) predicted probability of interactions based on classification trees 
(a–c); (ii) predicted frequency of interactions from regression trees on presence/absence data (b–h); (iii) and predicted number of interactions 
from regression trees (g–i). The Pearson correlation coefficient between observed and predicted values is shown for each of the modelling 
approaches. Data points are plotted as red points together with their boxplot summary statistics
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behind network assembly, although our models did identify spatial 
signals in plant–pollinator interactions (Figure 4).

We used detrended correspondance scores to reflect the floral 
associations of bees, and bee associations of plant families (Figure 
S2). Another option would be to use morphological and phenolog-
ical traits instead (Pichler et  al.,  2020). A benefit of the latter ap-
proach is that novel interactions can be predicted, for example, for 

invasive species, if one has information on their traits. Alternatively, 
or additionally, to traits one can use information on phylogenetic re-
latedness when modelling interactions (e.g. Benadi et al., in press; 
Stock et  al.,  2021) because plant–pollinator associations are often 
somewhat phylogenetically conserved (e.g. Wood et al., 2021). If in-
formation on host plants of some pollinator species is not known, 
and one wishes to apply the approach using DCA scores adopted in 

F I G U R E  4  Spatial predictions of flower-visitor species richness in a representative landscape in the study area, the area surrounding Oslo 
airport Gardemoen (a). Predicted flower-visitor species richness to plant species in the Compositae (b–d) and Leguminosae (e–g) families 
depended on plant abundance, shown by predicting with plant abundances held constant at low (b, e) and high (c, f) levels. The predicted 
flower-visitor species richness differs spatially between the two plant taxa (d, g), illustrated by masking out areas with predicted values less 
than the 75th quantile of predicted values from (c) and (f) respectively. Satellite imagery from Copernicus Sentinel-2 data (2019)/processed 
by the Norwegian Mapping Authority

(a) (b)

(e) (f) (g)

(c) (d)
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this study, a potential would be to use the average DCA score values 
from the closest relatives for which one has information, or assume 
that the species will be restricted to the same host-plant families 
as in its native range (Vaudo et  al.,  2020). Using floral preference 
traits, inferred from, for example, DCA scores, should therefore not 
nescecarily hinder the prediction of novel interactions. However, a 
limitation of using floral association (e.g. DCA) scores is that they do 
not provide tests of how specific plant–pollinator trait-combinations 
influence pairwise interaction probabilities. Thus if an aim is to iden-
tify linkage rules in ecological networks then, hypothesised, func-
tional traits should be used in the MetaComNet framework instead 
of floral preference scores.

In our models, we treated absences of interactions with the same 
degree of confidence as presences. However, because one is unlikely 
to detect all interactions when sampling plant–pollinator interaction 
networks (Chacoff et  al.,  2012), data on multiple interaction net-
works are likely to include many false absences, resulting in models 
underestimating pairwise interactions. A sophisticated approach to 
handling false absences would be to incorporate species-specific de-
tectability's into the model to weight the absence values in the data 
(e.g. Graham & Weinstein, 2018). However, obtaining enough data 
to estimate detectability requires extensive, and repeated, surveys 
with the cost of a decreased sample size of environmental conditions 
(study sites) which may reduce the ability to parameterise the ef-
fects of environmental filtering on network assembly. An alternative 
is to remove plausible but unobserved pairwise interactions from 
the training data and thereby retain only the most credible absence 
values (Liu et al., 2015). However, this approach requires some de-
gree of subjectivity in terms of which traits are included when esti-
mating and setting thresholds for interaction credibility. We are also 
unsure how one would weight the credibility of an interaction in a 
spatial setting, where some pairwise interactions might be consid-
ered credible, but were unobserved because of environmental con-
ditions at larger spatial scales than within the network. Removing 
such plausible but unobserved pairwise interactions from the data 
would likely result in models underestimating, for example, the land-
scape context effects on interaction occurrences. A final approach 
is to remove all absence values and use the frequency of trait-pair 
interactions (e.g. flower-visitor trait by plant trait, or flower-visitor 
trait by environmental filter combinations) to estimate the likelihood 
of species interactions within networks (e.g. Bartomeus et al., 2016). 
However, the frequency of recorded interactions per species (and 
trait group) is vulnerable to the same biases as the absence values. 
Moreover, the same biases are likely to occur in both training and 
validation data, unless these were sampled independently using 
different protocols. It may therefore be difficult to detect such 
biases, in terms of whether the model over- or under-predicts in-
teractions in the validation data. Still, in our models, models using 
classification trees underestimated occurrences of pairwise interac-
tions (Figure  2a, slope  =  1.21) more frequently than models from 
regression trees (Figure 2d, slope = 1.09), suggesting that the latter 
approach may be less vulnerable to biases that would lead to un-
derestimations. If the detectability of interactions does not depend 

on the predictor variables used in the MetaComNet models, and 
occurrences of pairwise interactions vary according to the predic-
tor variables, then the occurrence if pairwise interactions should be 
proportional to the predicted probabilities of occurrences (Elkan & 
Noto, 2008). We therefore suggest that absence values, and the in-
formation they contain, are included in models aimed at predicting 
plant–pollinator interactions.

Despite a reasonable fit to the validation data, a considerable 
amount of variation in pairwise bee–plant interactions was left 
unaccounted for by our models (Figure  2a,d,g). While some of 
this unexplained variation is likely attributable to random error, 
it seems fair to assume that a large fraction of it was due to un-
measured predictor variables. Negative biotic interactions, such 
as interspecific competition which can suppress bee–flower visita-
tions (Wignall et al., 2020), were not accounted for in our models. 
However, we would expect that negative biotic interactions would 
result in our models overestimating local interaction probabilities, 
which was not the case. By contrast, our models tended to under-
estimate the occurrence of pairwise interactions (i.e. Figure 2a,d, 
regression slopes >1) which may suggest that there were elements 
related to habitat conditions, such as habitat continuity (Morandin 
& Kremen, 2013), that could result in higher-than-expected occur-
rences of bees. A potential solution for future implementations 
of MetaComNet would be to use annually updatable land cover 
maps (e.g. Venter & Sydenham, 2021) to estimate the continuity of 
habitat patches. It could also be that bee species were found more 
frequently than predicted because the distance to source popula-
tion variable was too conservative, that is, because species occur-
rences in the GBIF record did not reflect the actual distribution of 
species. Ideally one would have more information on the location 
of potential source populations, than from potentially scattered, 
and potentially biased, species observation records. Another im-
portant contributor to the unexplained variation in our models was 
the small number of study sites available (15 for building models, 
1 for validating). In order to accurately estimate the contributions 
of landscape level variables, we therefore suspect that increasing 
the sample size of study sites will enable stronger predictions of 
bee–flower interactions than what was possible given the limited 
data available to us. Despite these potential limitations, our mod-
els did produce prediction maps that correspond well with how we 
would expect floral visitation patterns to be distributed (Figure 4), 
that is, with Compositae-visiting solitary bees being concentrated 
near sandy soils, and Leguminosae-visiting bumble bees being less 
concentrated on sandy soils (Figure S2).

5  |  CONCLUSIONS

Spatial models of pollinator diversity should theoretically allow for 
identifying areas (a) where plant populations would benefit from 
pollinator enhancement schemes, and (b) where plant populations 
are likely to have a higher genetic diversity because of high levels 
of pollination. We believe that the modelling framework presented 
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here provides a promising avenue for producing spatially explicit 
predictions of plant–pollinator interactions. If possible, future stud-
ies adopting the framework should attempt to assess the degree of 
pollen limitation within plant populations to empirically test if pre-
dicting interaction partner diversity allows to also predict the degree 
of pollen limitation experienced by plant species.
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