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Abstract

In this paper, we introduce a special kind of finite volume method called Multi-Point
Flux Approximation method (MPFA) to price European and American options in
two dimensional domain. We focus on the L-MPFA method for space discretization
of the diffusion term of Black—Scholes operator. The degeneracy of the Black-
Scholes operator is tackled using the fitted finite volume method. This combination
of fitted finite volume method and L-MPFA method coupled to upwind methods
gives us a novel scheme, called the fitted L-MPFA method. Numerical experiments
show the accuracy of the novel fitted L-MPFA method comparing to well known
schemes for pricing options.

Keywords Finite volume methods - L Multi-Point Flux Approximation -

Degenerated PDEs - Option pricing
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1 Introduction

In finance, an option is a contract which gives to the holder the right but not the
obligation to buy (call) or to sell (put) an asset at a specific price (strike) at a certain
date in the future (expiry date). We have two main types of options which are
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European and American options. European options are options that can be exercised
only at expiry date while American options can be exercised anytime before the
expiry date. This flexibility of exercising American options leads to solve an
optimal stopping time problem in the Black—Scholes framework which incorporates
the early exercise. Many studies focused on the pricing problem of American
options were conducted and the linear complementary problem approach was quite
popular for pricing American options (see Kovalov et al. 2007; Zhang et al. 2009;
Wang et al. 2006; Topper 2005). This approach brings us to solve linear
complementary problem stated as follows (see Topper 2005):

LV >0,
V—V*ZO, (1)
LV (V-V*) =0,

where L is the following Black—Scholes operator
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with 7 is the risk free interest, V is the option value at time 7, V* is the payoff,
t =T — t with ¢ and T respectively the instantaneous and maturity time. For i,j =
l,...,n, S; represents the asset i price, o; represents the volatility of asset i, p;
represents the correlation between the assets i and j.

Furthermore, (Wang et al. 2006) proposed a power penalty method to solve the
linear complementary problem for pricing American options. The power penalty
problem is formulated as follows:

1/k
+

Lv+ vy —v]/ =0, (3)

where [ is the penalty parameter and k is the power of the method. Let us notice
that, when we take the penalty parameter f = 0 in (3), we get the Black—Scholes
Equation for pricing European options, with the operator £ defined in (2). However,
the power penalty problem (3) can not be solved analytically, therefore numerical
methods are required for its resolution. Nevertheless, the Black—Scholes operator
(2) is degenerated when the stock price approaches zero. This degeneracy can affect
the accuracy of the numerical method used for the resolution. To tackle this
problem, several methods have been proposed. The fitted finite volume method,
proposed by S.Wang in Wang (2004) whereby a rigorous proof of convergence is
provided, appears to be more attractive. Moreover, the fitted finite volume method
has been used for the resolution of the two dimensional second order Black-Scholes
PDE followed by the convergence proof in Huang et al. (2006). In spite of the fact
that the fitted finite volume methods perform well for the resolution of the Black-
Scholes PDE, they are only of order 1 with respect to asset price variable. Besides,
the fitted O-Multi-Point Flux Approximation (O-MPFA) method has been proposed
in Koffi and Tambue (2019a) to overcome the degeneracy problem of the Black—
Scholes PDE. It has been shown that the O-MPFA is more accurate than the
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classical fitted finite volume method by Wang (2004). However, the O-MPFA is
heavy (9 points stencil method) and for more general grids, the convergence rate of
the O-MPFA method may decrease (see Aavatsmark 2007).

In this paper, we focus on the L-MPFA method which is based on the
approximation of a linear function gradient defined over a given triangle and the
continuity of flux through the edges of this triangle.

Indeed, the L-MPFA method is a 7 points stencil method while the O-MPFA is a
9 points stencil method. This shows that the O-MPFA method can be computa-
tionally more expensive than the L-MPFA method. Moreover, for more general
grids, the order reduction in convergence rate is larger for the O-MPFA than the L-
MPFA (see Aavatsmark 2002). Thereby, to approximate the solution of the second
order Black-Scholes operator, we couple the L-MPFA method with the upwind
methods (first and second order). Besides, the degeneracy of the Black-Scholes
operator (2) is handled by the fitted finite volume,(Wang 2004), when the stock
price is approaching zero. The L-MPFA method coupled with the upwind methods
(1st and 2nd order) is used to approximate the solution of (3) when the Black-
Scholes operator is not degenerated. We call fitted L-MPFA method that
combination of the L-MPFA method and the fitted finite volume method. Numerical
simulations show that the new fitted L-MPFA method is more accurate than the
fitted O-MPFA method developed in Koffi and Tambue (2019a) and the standard
fitted finite volume method developed in Huang et al. (2006). Note that in dimension
one, the L-MPFA method and the O-MPFA method are identical and are well
known as Two Point Flux Approximation (TPFA). The rigorous convergence proof
of the fitted TPFA for pricing options is provided in Koffi and Tambue (2019b).
Note that the standard extension in high dimension of TPFA while keeping the two
point flux approximation is very complicated on general grid and can only converge
on M-orthogonal grids for simple diffusion problems (see Tambue 2016). Note that
L-MPFA schemes are very different to O-MPFA schemes and the current paper is
not a simple extension of the work in Koffi and Tambue (2019a). The key
differences can be summarized in the following points:

— Here, we have considered American and Europeans options rather than
Europeans options in Koffi and Tambue (2019a). Note that pricing American
put options is very complicated as the exact solution does not exist even for
constant coefficients. The American options pricing here is modeled by the
nonlinear degenerated parabolic PDEs (4). We can observe that the current novel
fitted L-MPFA is very robust for such degenerated nonlinear parabolic PDEs,
where we have coupled with implicit time stepping methods. The corresponding
nonlinear algebraic equations have been solved using a modified Newton
method as the corresponding functions are not differentiable.

— The L-MPFA schemes presented here in two dimensional domain only have one
additional cell added to the TPFA schemes, while still being able to handle
general grids.

— For more general grids, the order reduction in convergence rate will be lower for
the L-MPFA schemes than the O-MPFA schemes and few oscillations are
expected here in the non-monotone parameter regions.
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The paper is structured as follows. In Sect. 2, we present the power penalty problem
with the corresponding initial and boundary conditions.

The spatial discretization of the linear operator is developed in the Sect. 3.
Details on the L-MPFA method of the diffusion term discretization are provided.
The convection term is discretized using the upwind methods (1st and 2nd method).
At the end of the Sect. 3, the novel fitted MPFA method is provided. The 6— Euler
method is used for the time discretization method in the Sect. 4. Numerical
experiments are presented for the different numerical methods in Sect. 5. The
conclusions of our study are drawn in the last Section.

2 Formulation of the Problem
2.1 Option with Two Underlying Assets

Pricing an American option with 2 underlying assets leads to solve the following
power penalty problem:

v+ plvr —v]/ =o, (4)
where the Black—Scholes operator is defined as:
vV 1 ,,0V 'V 1 ,,%V v v
Lo=5 505 SRV, (5)

ot 277 e TP ey T 2% 2 T M
with the following initial and boundary conditions

V(x7y50) = V*(x7y) = maX(K — 01X — oYy, 0)7
V(0,y,7,) = V(x,0,7,) =K, (6)
lim,, .4 V(x,y,7) =0.
K is the strike price, V* is the payoff for basket options and «;,i = 1,2, are weights
such that oy + o, = 1.

In equation (4), when the penalty parameter § = 0, we get the Black—Scholes
Partial Differential Equation for pricing European options with the corresponding
initial and boundary conditions

V()C,y,O) = V*(x>y) = max(K — X — oy, 0)7
V(0,y,7) = V(x,0,7) =0,

lim, . V(x,y,7) =x — Ke ",

()

limy_o V(x,,7) =y — Ke

In order to apply the finite volume method, it is convenient to re-write the Black—
Scholes operator (5) in the following divergence form
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ov \
a—v-(MVV)—V(fV)—AVJrﬁ[v*—vﬁ/k:o, (8)
where
1 ox’ pPO102Xy (r—oai —§p0102)x
M = 5 ) f = )
2.2 , 1
PO102XY a5y (r—o3 —Epalaz)y

A= —3r+a%—|—a%—|—palaz.

2.2 Finite Volume Method

Let us consider the new domain @ of study by truncating D such that Q =
I, x I, x [0, T] where I, = [0, Xmax] and I, = [0, ymax]. In the sequel of this work, the
Black—Scholes operator (5) is considered over the truncated domain €.

At X = Xpax and ¥y = ynax, the linear boundary condition will be applied (Huang
et al. 2006). The intervals I, and /, will be subdivided into N + 1 subintervals in the
following way:

Ix,- = [—xi—l;xi]7 ij = [yj—hyj] laJ = 17 aN+ 1. (9)

Let us set the mid-points X1 and y;_1 as follows

Xi—1 + X Yi-1+Y; ..
xi7%:%7 yj7%:%7 17]217“'71\/1 (10)
with h; = Xiyl = X1, ;= Yisd = Vit and
X=X = 0, AN432 = AN+ = Xmaxs Y1 = Yo = 0, YN432 = YN+1 = Ymax-
For i,j=1,...,N, we denote by Cj = [x;_1;x;1] X [y;_1; ;1] a control volume
associated our subdivision. (Fig. 1)
Note that for i,j = 1, ..., N the control volume Cj; is the area surrounding the grid

point (x;,y;).
Our goal is to approximate the option function V at (x;, yj)]
by a function denoted V.
The matrix M in (8) will be replaced by its average value in each control volume

MY =—8— Mdxdy, i,j=1,....N
meas(Cj) /c,, B e (1)

where meas(C;;) is the measure of C;;. Thereby,

! Center of the control volume .C;;.
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Fig. 1 Control volume

(£i,95)
3 3
2 X, — X
[ i+} i—% pO102
.. 6 Xy — iy g Tt
MY = )

po102 ) ) i

X1+ X 1) (Yt ¥t =

g MR T 6 Yjsy = Vit

Now let us consider the divergence form given in (8). According to the finite
volume method, we integrate the partial differential equation (8) over each control
volume Cj;. For i,j =1,...,N,

/ —Zdc— / V- (MYV)dC /C V(v)dc- /C Avdc+ /C plv*—v]'/*ac=o.

(12)

The next section will be dedicated to spatial discretization of equation (12). For the
first and the last two terms on the left hand side of the equality sign, we use the mid-
point quadrature rule for their approximation as follows:

oy A% dV
adC meas(Cij)E(xi,yj, T) R i (13)
/ VdC ~ meas(Cy)AV(xi, y;, 1) = hiliAVy, (14)
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/C B -] V8ac ~ meas(Cy) pIV* — V)V = gV vy (1s)

The convection term
/ V(V)dC (16)
Cij

of (12) will be approximated using the upwind methods (first or second order).
The diffusion term

/C VMV (17)

of (12) will be approximated using the L-Multi-Point Flux Approximation
method (L-MPFA) or the fitted L- Multi-Point Flux Approximation method.
More details about these methods will be given in the next section.

3 Space Discretization

The spatial discretization of (8) consists in approximating all terms in (12) over the
control volumes of the study domain.

3.1 Discretization of the Diffusion Term

Let us start by applying the divergence theorem to the diffusion term (17) as
follows, for i,j =1,...,N:

i :/ V~(M’7VV)dC=/ (MYVV) - ndC, (18)

where n is the outward vector from the control volume.
Now, we can apply the so-called L-Multi-Point Flux Approximation
(L-MPFA) method to approximate the integral defined in (18).

3.1.1 L -Multi-Point Flux Approximation (L-MPFA) Method

The L-MPFA method takes its name from the fact that the curve connecting the
three control volume centres considered for the application of the method,
constitutes a stylized “L”. Here, we follow the description of the L-method given in
Aavatsmark (2002).

Let us consider the triangle x;x,x3 (see Fig. 2), and a linear function g defined
over this triangle. We define
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Fig. 2 Triangle xjxyx3 3

T2

1

_ [&(x2) —g(x1)
XVe = [g X3 —g(xl)]’ (19)
where
(2 —XI)T]

X = , 20
[(x3 ) (20)

Thereby, the gradient of the linear function g may be expressed as follows:

Ve=r ( (86r) = gx1)) +va (g(x) - g<x1>)>, 1)

T

where v;, v3 are respectively the normal vector to x, — x; and x3 — x; and defined
by

vy =R(x, —x1), v = —R(x3 —x1),

k=% o)

T = vIRvs.

with

and

Let’s notice that the matrix R is a rotation of angle — 7. Thereby the vector v, and
v3 have same length with the vectors x, — x; and x3 — x;.

Let us called interaction volume R, a cell grid defined as follows:
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fori,j=1,...N+1 Ry=[x_1;x] X yi-1;¥] (22)

We denote respectively by x; (xi—1,yj—1),X2(xi,¥j—1),X3(x;, ;) and x4(x;_1,y;) the
centre of the control volumes C;_i;_1,Cij—1,Ci—1; and C;;. We denote also by
X1,X,%3 and x4 the midpoints of the segment x;x;, x3x4,X1X3 and xx4. We may
notice that an interaction volume Ry, for i,j = 1,...,N + 1, is covering an area in
the intersection of the control volumes C;_;_,C;j—1,Ci—1, and C;. An interaction
volume can be divided into 2 triangles such that the half edges 1, 2 are in the
triangle 71 = x;x,x3 and the half edges 3, 4 are in the triangle 7> = x1x3x4 (see Fig.
3).

Here, we follow the procedure in Aavatsmark (2007).

In an interaction volume, we aim to compute the flux through the half edges
1, 2, 3 and 4 (See Fig. 3).

Thereby, using (18), the flux fp’7 through the half edge p seen from the centre of
the control volume C;; is expressed as follows:

[V =n MV, (23)
where n, is the vector normal to the half edge p with the same length.
Let us consider the triangle 71 = xjx,x3 from the interaction volume R

In the triangle 71, = Xjx,X,, using the flux expression (23) and the gradient
expression (21), it follows that

@ @ 9
Ci—1,5 Cij
T4 T3 3
@ @ L

7
//
1 ,
J 7
7
— 4 —
x4 4 ‘/ o
@ L 4 L J
( i~17/20 Yj-1 2)
// 1
7 * /I’
. 1
7
7
L 4 —& L 2
T1 x1 2
Ci—1—1 Ci,j—1
[ @ L J

Fig. 3 Interaction volume
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ij—1 ij—1 J—1 (v
1 12 (VZ Vtrl) — O (Vl —Vij 1)
1 I I (24)
ij— ij— ij=1 (v
2 =Wy (VZ Vw'fl) — Wy (Vl Vij 1)
where
ij—1 1 % TMl,j lv wi,jfl _ 1 TM"/71V
11 -1 <M Ly 12 -1 <M 25
1 1
. 1
ij—1 TaAij—1 ij—1 Tagij—1
51 7T X LMYy, w5, 7T X n, MY~ vy,
T
1 1
with
1
T = —vIRv.
Besides, using the property of the matrix R, we have
V4 = R(fs - X2). (25)

Moreover, using equation (19) and the expression of gradient (21) in the triangle
T1> leads to

Vs = Vij—1+ XU I(Vz - Vi,/‘—l) }’Zjl 1<V1 Vi,/‘—l)a (26)
where
y 1
—1 T
W= i1 VAR
1
ij—1 1 7
laa = Ti‘j V4RV,
1

In the triangle T1; = xX%s,
li_l'j_l :a)l Li= I(Vl —Vi_lj_]) —&-w’ L= I(Vs Vi—l,j—l)- (27)
Replacing Vs by its expression (26) in (27), it reads

i—1j—1_  i—1j-1
1 =3 (Vl VH,,’A)

+wi1?’i_l<ViJ1—Vz IREL . ]<V2 Vi.jfl) i 1(V1 Vi.jl)),

where
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i—1,j—1 1 i—1.i— 1j—1 1 o
I PR A ——— L)Y Ut 1\)3 oSV = T lvz
13 i—1,j—1 1 ) 12 i—1,j-1 1 ’
T Iy -

with

i—1,j-1
7,777 = viRw,.

Similarly, in the triangle T3 = Xs5x,x3,
Y = —of, (1}5 = Vlfi) + o, (92 = Vij)- (29)

Replacing Vs by its expression (26) in (29), it reads
= -0l (Vi.j L= Vi o 1(V2 - VLj—l) — ! (171 - Vi.jl))

w;j3 (1}2 - Vij>7

(30)

where

1 i 1
— A i
a)21—T ><n2M i, w23—T ><n2M Vs,

1 1
with

i _
T) = V3RV';

Since the flux is continuous through edges, then using (24), (28) and (30) leads to
fi=of! (Vz Vl;f—l) oy I(Vl Vu‘—l)

= (Vi=Vig ) ol <v,,. Vi (Va=Vig) -2 (0 - v,-,.)>7
H :w;’;l (172 —Vl-_j,l) —(u;f] (Vl —V,‘),;]>

=—of, <Vu—1 —Vi+as! (172 —Vij- 1) - (171 - Vz:j—l)) +o, (92 - v,-,-) .

By setting
Vio1j-1 .
gzm,wz Vij1 ,vz[ﬂ, (32)
1 V. 12}
ij

the system of equations (31) can be written as
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g=C"V+D'W, (33)
where
ij—1 ij—1 ij—1 ij—1
— Wy ) 0 o —oj 0
i i
ci = DV =
ij—1 ij—1 0 ij—1 -1
—Wy Wy Wy — Wy

Using the expressions at both sides of the second equalities of system equations (31)
gives

AYY = BYW, (34)
where
Moo=l i—lj=1i—lj—1ij—1 i1, i—lj—l i1
L T O T e T 7 e O B e L PR 777}
i
AV = ,
=1, Q-1 -1, i i ij-1
Wy 0y 4 — Wy W3 =01
Foimlj—1,  i-lj-1 -l -1 i—lj—1 i1 -1
W3 +wj, —wph Fop —op (1+/C4| ) ) 0
Bi=
ij—1 ij—1 ij N S N g | PN} i
L 0 —oy 0y Jr‘921(1+K41 L4z ) ;) + 53

Thereby, by solving (34) with respect to VV and replacing in (33) we get
g =RV, (35)
where
R = CV[A]"'Bi + DI

Now considering the triangle 7, (see Fig. 3) and applying the above procedure used
in the triangle T, we are able to calculate the fluxes through the half edges 3 and 4
as follows:

h=Sv, (36)
where
Vij-1
[
4 Vs

For simplicity, in an interaction volume R, the flux through the half edges 1, 2, 3
and 4 are given by

f=1 (37)

where
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bil Vi1j-1
h Vij-1
= , V= ’ , 38
f P v, (38)
fa Vio1y

and T7 is 4 x 4 matrix coming from RY and S¥ defined in (35),(36). T is called the
transmissibility matrix of the interaction volume ;.

Let us notice that the flux through a full edge will be the addition of the fluxes
through its 2 half edges. (Fig. 5)

Let us recall that, from (18), our aim is to compute the flux through the edges of
the control volume C;;. In order to cover the boundary of a control volume, we need
four interaction volumes

Let us denote, for the volume control C;, by gf;j the flux through lower half
eastern edge, by g¢fV the flux through the upper half eastern edge. The flux gf7
through the east edge of the control volume Cj; is calculated as follows:

The lower half eastern edge is in position 3 in the triangle 75 of the interaction
volume R;y1; (see Fig. 4). So by using (37), the flux is given by

i ity i1y i1,
;=13 Vijo1 + T35 Vi + T3y 7V

Similarly, the upper half eastern edge is in position 1 in the triangle 7; of the
interaction volume R4+ and it is in position 1 in the interaction volume. Thereby
using (37), the flux is given by

I

Fig. 4 Triangle T;
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Rij+1 Rit+1,54+1

(4, U])
Cvj,j 3

R Rit1,

Fig. 5 Flux through eastern edge of control volume Cj;

ij 1+1,1+1 i+1,j+1 i+1,j+1
£f;l - Vlj+T Vl+l/+T Vi+l,]'+l-

U

Finally the flux through the eastern edge of the control volume C; will be the
addition of ¢f;’ and ¢f?. Thus,

of ' = ef] + ef!
o= T (TLHJ +Tl+1j+1)vi+w n ( it T;ZU)VU (39)
+ T Vi,

The same method is applied to calculate the flux through the northern, western and
southern edges of the control volume C;;. The flux through the edges of the control
volume Cj; is obtained by summing up the flux through the 4 edges. This gives :

Fij = aiVij + bijVir1j + cijVigr 1 + diiVijr + eViery + oVierjo1 + ByVij-1,
(40)

where
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Fig. 6 A structure of the
diffusion matrix using L-MPFA
method

_ t+1,1+1_|_ t+1,1 Tt+1,1+l_|_Tt,/+1 ij+1 ij Tij Ti+1,/'

12 — 437l =l s
1+1 l+1 +1 i+1yj z+1 j+1 i+1j+1 ij+1 i+1,j+1
b,,: RN e wey=T U T dy =T T
z,/+1 ij+1 ij z] _ l+1,/ ij i+1,j
€j=17) 1~ y,o=—T5— 21713:/ T —-Ty

This leads to a system of equations which can be written as follows:

F =AYV + Fpup,

where
_‘7:11_ _Vll- _Wl X] ON ON
Frz Viz Y, W X,
Oy Y3 W3 X3
Fin Vin
F=|Fu |, v=|Va App = Yo Wi X4
F Vo
On
L Yyor Wver Xae
LFwl Lo Oy oo o o Oy Yy Wy

ij+1
=T

i

(41)

with Oy is N X N zeros matrix, W;,X;,Z; are tridiagonal matrix and F,, is a N? vector

coming from the boundary conditions.
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As we can see on Fig. 6, the L-MPFA method is a 7 points stencil method, unlike
the O-MPFA method (see Koffi and Tambue 2019a ) which is a 9 points stencil
method.

3.2 Discretisation of the Convection Term

The integral of convection term

/ V(e

C,,'

where

1
(r— a% — Epalaz)x

(r— o3~ 3por02)y

will be approximated using the upwind methods (1s¢t and 2nd order ). We start by
applying the divergence theorem, and we have for i,j = 1,...,N:

I — / V(V)dc; = | (f-V)-ndCy, (42)

with n an outward unit normal vector.

3.2.1 First Order Upwind Method

The first order upwind method discussed in (LeVeque 2004, chapter 4.8) will be
applied to evaluate the second term of (12).

IV is calculated by summing up the flux through the edges of the control volume

The flux through an edge using the first order upwind will depend on the sign of
f-m on this edge. If the sign of f - n is positive, V; will be used to approximate
(f - nV) otherwise we will use the value of V in other side of the edge.

By doing so, we get for i,j =1, ...,N,

I =€Viorj+ wVij1 + Vi + dyVijr + ¥iVig, (43)

where
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€j = _ljf)f_l max(fxi_lvo)muij = _hif;_l max(fyj_l,()),
Q=1 <f; max(f,0) — £ min(f;I,O)> +h; (ﬂ max(fyjao) _f)j:il min(f{l,0)>,
¢y = hfl min(f],0), ¥;; = Lif; min(f},0).

Equation (43) will lead to a system of equations which be written as follows:

I=A,V+ Fyp, (44)
Aypisa N? x N? matrix
i T Vi ~ -
112 Vlz Hl Pl ON .. .. .. ON
O, H, P
e Vin O O3 H3 P3
1= ||, v=|Vn Ay = ;
1% Va2
On—> Hy, Pyoo Oy
. . Ov-1 Hy_1 Py
' : _ON ON QN HN_
LMY ] L Vi

with Oy is N X N zeros matrix, H; is a tridiagonal matrix, P;, Q; are diagonal
matrices and F,, is a vector coming from the boundary conditions.
Therefore, combining the L-MPFA method (41) and the first order upwind (44),
we get
av
G- =AV+GOV) +F, (45)

with
—1 * 17k —1
A=1" Ay + Ay +AL | GOV) = B[ max (V' =V,0) | " F =L Fop - Fup )

where A; is a diagonal matrix of size N> x N> coming from the discretisation of
(14). The diagonal elements of A;, are (Ar), = hil;, for i=1,...,N* with 1 given in
(8). The matrix L is also a diagonal matrix of size N> x N> whose diagonal elements
are Lii:hil,-,for = 1,...,N2.
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3.2.2 Second Order Upwind Method

A second order approximation is used to calculated the flux defined in (42). For
instance, the flux ¢J¥ through the eastern edge of the control volume Cj is
approximated as follows: We will start by giving an approximation of the gradient
in the integral expression (18)

e — /g (V) ne. (46)

ij

where

ng = ’
0

is the outward unit normal vector to the eastern edge £;; of the control volume Cj;.
We set f, =f - ng and we have

2
3Viv1y — Visay
2

if e 20,

V= (47)

if f.<0.

Then we get

y 3 . 1 . 3. . ..
gJU:j Emax(f;“,O)V,-jfgmax(ﬁ*l,O)V,»_lj+§m1n(ﬁ+l,O)VH]J»fEmm(f;“,O)VHZJ- 5

(48)

with

. 1
S = (= 02 = 5 000,

We use the same argument to calculate the flux yJ%,yJ¥, sJ¥ through the northern,
western and southern edges of the control volume C;; and after sum them up. We get
then

JY = GijVFZ.j + ﬂijVi —-1,j+ K,‘jV,;jfz + ,u,-jV,',jfl + QUVU
+ ¢Vijr1 + ViiVijer + 4ijVinr (49)
+ I Visay,

where
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€ = %ljmax(f;,O),nU = —%ljmax(f;“,O) - %ljmax(f;,O),

Kij = %hi max(fy’.',O),ulj = —%himax(}fyi+l’0) —%himax(]gj,O),

Q= %lj max (', 0) —|—%h[ max (f/*',0) — %lj min(f’,0) — %hi min(f/,0),
b= %h,-min(f-y”',O) +%hi min(f},0), ¥; = —%h,-min(f;‘“,oy

Ay = %ljmin(f;“,O) +%ljmin(ﬁ,0),HU = —%ljmin(ﬁ“,O).

For the control volumes near the boundary of the study domain, the first order
upwind method is used for the approximation of the flux through edges directly
connected to the boundary.

Equation (49) leads to a system of equations which can be written as:

J = A,V + Foyp, (50)
where
oIk Vi ‘KL R Gy Oy ... o Oy 7
s Viz S, Ky R G
JiN V'lN Hy; S35 K3 R3 Gs
J= J2 V= Vs, Awp =10y . . 0 T T 0y )
J? Vo : Hy_» Sn—> Kn—2 Ry—> Gy
. : Hy_1 Sn—1 Kn—1 Ry—
LI [ Vi ] Oy ... ... Oy Hy Sy Ky |

where for i=1,...,N,K; is penta-diagonal matrice and R;,G;,S;,H; are diagonal
matrices. [, is a vector coming from the boundary conditions.

Therefore, combining the L-MPFA method (41) and the second order upwind
method (50), we have

d
d—szV+G(V)+F, (51)

with
—1 * 1/k —1
A=L7 Ay Az +AL | GO = B[ max (V' =,0)| " F= L7 Fup+ Faup |,

where A; is a diagonal matrix of size N> x N> coming from the discretisation of
(14). The diagonal elements of Ay, are (Ar), = hil;, for i=1,...,N* with 4 given in
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(8). The matrix L is also a diagonal matrix of size N2> x N> whose diagonal elements
are L,’i :hili, for i= 1,. . .,NZ.

Besides, the ellipticity condition for the PDE (2) is not satisfied when the stocks
price (x — 0 and/or y — 0) is near to zero. This may cause some oscillations of the
numerical solution when the PDE is degenerate.

Nevertheless, (Wang 2004) suggested a fitted finite volume method to deal with
the degeneracy of the PDE. Thereby, the fitted finite volume method will be applied
in the degeneracy region (x — 0 and/or y — 0) in the next section.

3.2.3 Fitted Finite Volume

The fitted finite volume method is used to approximated the flux through edges
which are (fully) in the degeneracy region i.e the western edge of the control volume
Cij,j=1,..,N and the southern edge of the control volume C;;, i=1,...,N.

For the western edge of the control volume C;; =1,...,N, using the mid-
quadrature rule, the flux is given by

SRy oV oV oV oV
/ e myy— +mp——+pV |dy =~ | my;—+mp—+pV -1,
(e, Ox oy Ox oy )

(52)

Besides,

)% )% % oV
mna}(—i—mlza)]—i-p]/—x(axax—ﬁ-day—l—bl}>7 (53)

: 1.2 _ 2 1 1
with a =507, b=r— 0] —3pg102 and d = 5 pg02y.

We want to approximate

oV
—ax 4 b
g(V) =ax o + bV,

by a constant over I, = (0,x;) satisfying the following two-point boundary value
problem

!
by ov B
glv)= (axa)c—l-bv) =Ki, (54)

v(()?yj) = VO.ja V(X1,yj) = Vl‘]
By solving this problem, it yields to
X
V:V0J+(V1J_V0J)x_’ (55)
1
Thereby, by using (52),(53), (54), (55) and the forward difference to approximate

the first partial derivative %—V we get
y
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where

1 1
a=-o0),b=r— O’% —5,06162,(1,' = Epalazyj,lj = Vil = Vit
Similarly, for the flux through the southern edge of the control volume
Ciii=1,...,N, it is given by

(%101 oy oV 1 1
/ o (mzla——l-mzza——i—qv dx%—y1|:_hi(e+k)_h; Vil
(5 gy x Y 202 (57)

1 1
—hy1Vierg — = yihi(e — k)Vip,
+2 Y1Vir11 a0 (e —k)Vio
where

1 1
e :Eag,k: r— o’ —Epalaz,h

, 1
i:Epalo'zx,-,hi = X1 =X L

=3

3.2.4 The Fitted L-Multi-Point Flux Approximation Method ( with the 1st Order
Upwind method )

1. Fitted L-MPFA method (with 1st order upwind method)
Here the fitted finite volume method is combined with the first order upwind
method . Thereby we have:

For the control volume C;;, the western and southern edges are (fully) in the
degeneracy region. The integrals over the western and southern edges of the
control volume C,; are then approximated using the fitted finite volume (56)
and (57). The integrals over the eastern and northern edges of the control Cy,
which are not in the degeneracy region, are approximated using the L-MPFA
method coupled to the upwind methods (1st and 2nd order).

Vk(V)dCyy =aa; V11 +bb1\ Va1 +cci\ Vo +ddi Via +eer Vor + BB Vo,
Cu

where
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aay = Ti; + Tay + T57 + Tp; + Ly max(f7, 0) + hy max(f}, 0)

—%xl (%ll(a—&-b) —dl);_%)’l (%h1(6+k) _h/l)7

. 1
bb][ = T3231 + T1222 —|—l] Inll’l(fxz,()) —Ehllyl,CC” = T1232 + Tf32,

. 1 1
ddy,, = TZI% + Ti% + Iy mln(fyz,O) — Ed;xl,ee” = T2112 +lex1(a — b),

1
BBy = Ts +ZYIhl(e — k).

Similarly, for the control volume Cy;, j = 1,...,N, only the southern edge is
(fully) in the degeneracy region. Then, the integral over the southern edge is
approximated using the fitted finite volume method (57). The integrals over
the eastern, northern and western edges are approximated using the L-MPFA
method coupled to the upwind methods(1st and 2nd order)

/ VkaC = ClCZl‘/'VLj + bbquJ + CC1JV2_J'+1 + dleV1J+1 + ﬁﬁl.jvl,ifl
Cyj
+ ooy Vo j—1 + eer Vo,
(58)
where
aar; =T + Ty + T+ T = T — T3 + [ max(£7,0)
. . 1 1
+ hymax(f]*,0) = by min(f}, 0), = S (Elj(a b)) — dj),
bbj =T + T3 = T3 + [ min(f},0),
cey=TH" + 1",
. , o 1
ddyj =Ty + T3/ + hymin(f,0) — S,
2. 1y 2. i
ﬁﬁu = T31J - Tzzj - T41J —h max(fy/,O),
wy = —Tof,

; 1
eerj =Ty " + lexl (a—b).

Using the same argument as above, for the control volume C; ;i = 2, .., N, the
integral over the southern edge is approximated using the fitted finite volume
(57). The integrals over the eastern, northern and western edges are
approximated using the L-MPFA method combined with the upwind methods
(1st and 2nd order)
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/ V(kV)dC = aa; 1 Viy + bbi1Vig1,1 + ccinVigi2 +ddi Vi
Ci1

59
+eei1Vio11 + a0 Vicio (59)

+ BBi1Vios
where

i+12 i+1,1

aaiy =Ty "+ Ty + Tﬂl’z + Tézz — T{22 — T;; + 1y max (£, 0)

1 g1
+ hymax(f?,0) — Iy min(f},0) — >y (Ehi(e 1k — h’)

bbiy = Ty + 115" + 1 min(f+!,0) — %h;yl,
ccip = T{?"z + TH"Z,

dd;y = Ty3 + Tyy ' — Tj5 + hymin(f}, 0),

ee;| = Télz — Tilz — T§"41 — Iy max(f', 0),

il
oo = =715,

Bhia = T5 " + gyihi(e — k).

Besides, for the control volume Cy,i,j = 2, ..., N, the L-MPFA method is used
to approximate the diffusion term and the upwind to approximate the advection
term. This leads to the following semi-discrete equation

dy
5 = AV+GV) +F, (60)

where

VT

Vin 1/k

Vo o AL1<Z+AL>’G(V)_ﬁ[max(V*_V,Oﬂ )

Vo

L Vaw |

with F the vector of boundary conditions and A; a diagonal matrix of size
N? x N? coming from the discretisation of (14). The diagonal elements of A;
are (Ar),; = hiliA, for i = 1,...,N* with 1 given in (8). The matrix L is also a
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diagonal matrix of size N> x N> whose diagonal elements are L; = h;l;, for
i=1,...,N?and

(D Ky Oy ... ... ... Oy ]
L, D, K;

Ov Ls D3 K;

Ly Dy Ky

Oy

: Ly-1 Dn-1 Ky
Oy ... ... .. ... (N Ly Dy

The elements of matrix Z are matrices. Oy is a zeros matrix of size N x N. The
matrices D;, K;, L; are tri-diagonal matrices defined as follows:

fori=1lori=N,
k=1,...,N(Dj)y =aax,k=1,...,N — I(Di)k.k+1 =dd k= 2,4..7N(D,-)k.k71 = BB
fori=1k=1,... .N(K\)y =bbisk=1,....N—1(Ki) 4 =ccri
fori=N, (Ly),, = eeni,k=2,.. ,N(Ly)y = ens + Ny k =2, ,N(Ly)j 41 = Ok
fori=2,...,N—1,
(Di)yy = aaiy, (D), = ddiy, (Ki)yy = bbiy, (Ki)yp = ccin, (Li)yy = eein,
k=2,.. N, (Di)y = is + Qis, (Ki)y = bis + Ai, (Li) . = eix + i
k=2,...,N—1,(Di); 11 = dir + Gips (Ki)g sy = Ciks
k=2,.. N, (D)1 = Big + tigs (Li)k,k—l = Olik-

where the elements aa;;, bby;, ccij, ddyj, eeyj, Bf;; are defined in (58),(58),(59), and
the elements ajj, byj, cij, dij, e, Qi Ayj, Byj, Py %y 15, n;; are defined in (40) and
(43).

2. Fitted Multi-Point Flux Approximation (2nd order upwind)
Similarly, the fitted MPFA-L method deriving from the combination of the L-
MPFA method and the 2rnd order upwind method leads to the following
equation :

d
d—];:AV+G(V)+F, (61)

where
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Y
Vi2
. VIN -1 . « 1/k
v | A=t <y+AL>,G(V)ﬁ{max(v —v,o)} :
Vi

L Vaw |

with F the vector of boundary conditions. A; is a diagonal matrix of size
N? x N? coming from the discretisation of (14). The diagonal elements of A;
are (Ap),; = hiliA, for i = 1,...,N* with 1 given in (8). The matrix L is also a
diagonal matrix of size N> x N> whose diagonal elements are L; = h;l;, for
i=1,...,N?

and
_Hl Pr R Oy ... Oy Oy i
0, Hy P, R, Oy On
Wi QO3 H; P; Ry Oy
Ov Wi Q4 Hy Py Ry
Oy  Op
Y:
On
Wn—o Onv—2 Hyo Py Ry
: . Wyo1 Ovo1 Hyo1 Pina
Oy o .. Oy Wy Ov Hy |

The elements of matrix Y are matrices. Oy is a zeros matrix of size N x N. The
matrices H;,i=1,..,N are a penta-diagonal matrices and the matrices
Pi,R;, Q;, W; are diagonal matrices.

Furthermore, The 0-Euler method will be applied on the semi-discrete equations
(45), (51), (60) and (61) for the spatial discretisation.

4 Time Discretization

Let us consider the ODE stemming from the spatial discretization and given by (45),
(51), (60) and (61)
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dy
—=A F.
o V+GV)+

By using the 0-Euler method for the time discretization, it follows

Vm+ I _ Vm

_ m+-1 m-+1
= 0(AV™ £ GO+ Flten))

(62)
+(1-0) (AV”’ LGV + F(tm)>, m=0,... M,

At every time iteration, the nonlinear system where V™! is the solution using the
Newton method. Note that

V' = [ V11 (tn), Vi2 (T, - s VIn (), Var, (5) Va2 (i), -« o Van (T - s Vi (Tn)s VN2 (T s - oo Vi () 1

Tn = mAT.

where the time step is At = %, T being the maturity time.

5 Numerical Experiments

In this section, we perform some numerical simulations for the L-MPFA method
combined to the upwind methods (first and second order) and for the fitted L-MPFA
method combined to the upwind methods (first and second order).

5.1 Errors for European Call Options

The computational domain of the problem is Q = [0;300] x [0;300] x [0; 7] with
T=1/12. The numerical experiments are performed with the strike price £ = 100,
the volatilities o1 = g, = 0.3, the correlation coefficient p = 0.3 and the risk free
interest r = 0.08.

Here, by taking f =0 in (4), the L-MPFA method illustrated in the previous
sections will be compared to the fitted finite volume method, (Wang 2004), and the
fitted O-MPFA methods for pricing multi-asset options introduced in Koffi and
Tambue (2019a). The relative error will be computed with respect to the analytical
solution of the Black—Scholes PDE defined in Haug (2007) as follows

C(S1,5,K,T) = Sle”TM(yl,d;pl) + SzefrTM(yz, —d + Uﬁ; 02)
— Ke™™" x (1 — M(—y + o VT, —)2 +02\/7§P)),
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50
Fig. 7 Analytical solution
where
Je In(S1/82) + (b1 — b2 + 0%/2)T
a/T ’
_In(Si/K) + (b +61/2)T  In(S2/K) + (b + 63/2)T
Y1 O'lﬁ s )2 0_2\/-7—, ’
o1 — poa 02 — pO|
O':\/O'%+O'%_2p0'10'2,p1: o y P2 = = )
and
x% — 2pxy + y?
M(a, b; / / ex ( 4> dxdy.
(@bip) = 27:\/1— P 2(1 = p?)

The solution using the L-MPFA coupled to the 2nd order upwind method is
illustrated as below
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Fig. 8 L-MPFA-upwind 2nd order

The L?-norm used to compute the error is given by

{v‘, C," V,“ — Yana :
err:\/Zu—lmeas( ])( 7 i ) 7 (64)

VX meas(Cy) (Vi)

where V is the numerical solution, V*"* the analytical solution and meas(C;) is the
measure of the control volume Cj;;. This gives the following tables:

Table 1 Table of errors

Fitted fin O-MPFA-1st O-MPFA-2nd fit O-MPFA-1st fit O-MPFA-2nd
vol upw upw upw upw

50 x 50 0.0317 0.0224 0.0225 0.0212 0.0212

70 x 70 0.0329 0.0248 0.0248 0.0238 0.0238

85 x 85 0.0327 0.0260 0.0260 0.0251 0.0251

Table 2 Table of errors

L-MPFA-1stupw L-MPFA-2nd upw fit L-MPFA-1st upw fit L-MPFA-2nd upw

50 x 50 0.0048 0.0049 0.0048 0.0047
70 x 70 0.0041 0.0041 0.0041 0.0041
85 x 85 0.0040 0.0040 0.0040 0.0040
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As we can observe in Tables 1 and 2, the new fitted L-MPFA method is more accurate
than the fitted O-MPFA method developed in Koffi and Tambue (2019a) and the
standard fitted finite volume method developed in Huang et al. (2006). (Figs. 7 and 8)

5.2 Errors for American Put Options

Since there is no analytical solution for the power penalty problem (4) for pricing
American put options, and the numerical solution given by the fitted L-MPFA
coupled to 2nd order upwind method is more accurate when pricing European
options (see Tables 1 and 2), we have chosen for reference solution or “exact
solution” the numerical solution given by the fitted L-MPFA coupled to 2nd order
upwind method with dr = T/256. The relative error of all the numerical methods
used in this study will be performed with respect to this reference solution. Note that
the penalty term is not differentiable, so we have used a modified Newton method

with the following approximation [V*" — V’"]i/k = max{[V*’" - V’"]l/k,O},

. Uk yrm _ m 1/k 1fV*'"—VmZe
e § T VI . (65)
0, otherwise.
that is for € > 0. In our simulation we take ¢ = 1075.
80
o]
£ 60
o]
1]
g
v 40
2
©
>
c
S 20
=%
o
0 N
0
100
300
stockl 300 50 100 150

stock2

Fig. 9 Reference solution
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Table 3 Table of errors for 4t = T/64

Fitted Fin L-MPFA- 1st L-MPFA-2nd fit L-MPFA-1st fit L-MPFA-2nd

vol upw upw upw upw
50 x 50 0.0616 0.0610 0.0583 0.0611 0.0584
60 x 60 0.0277 0.0278 0.0276 0.0278 0.0277
70 x 70 0.0184 0.0183 0.0182 0.0182 0.0180
80 x 80 0.0104 0.0100 0.0098 0.0097 0.0095

Table 4 Table of errors for At = 7/128

Fitted Fin L-MPFA- L-MPFA-2nd fit L-MPFA-1st fit L-MPFA-2nd
vol 1stupw upw upw upw

50 x 50 0.0599 0.0520 0.0476 0.0522 0.0459

60 x 60 0.0227 0.0265 0.0249 0.0241 0.0220

70 x 70  0.0136 0.0148 0.0146 0.0146 0.0144

80 x 80 0.0087 0.0068 0.0065 0.0062 0.0059

For the numerical simulations below, the computational domain of the problem is
Q =[0;300] x [0;300] x [0;T] with T =1/6,K =100, the volatilities
g1 = 05 = 0.3. The correlation coefficient is p = 0.3 , the risk free interest r =
0.08. The penalty parameter § = 256 and the power penalty k = 1/2. (Fig. 9)

Again we can observe in Tables 3 and 4, the novel fitted L-MPFA coupled to the
2nd order upwind method is more accurate than the standard fitted finite volume by
Huang et al. (2006).

6 Conclusion

In this paper, the L-MPFA methods have been introduced to approximate the
diffusion term of the Black—Scholes PDE. The upwind methods (1sz and 2nd order)
are used for space discretization of the convection term appearing in the two
dimensional Black—Scholes PDE. We have provided a novel scheme called the
fitted L-MPFA method to handle the degeneracy of the Black-Scholes PDE by
combining the fitted finite volume and the L-MPFA method coupled to the upwind
methods. Numerical experiments are performed and comparison between the L-
MPFA methods, the O-MPFA methods by Koffi and Tambue (2019a) and the fitted
finite methods by Huang et al. (2006) are performed. The results have shown that
the fitted L-MPFA method coupled to the 2nd order upwind method is more
accurate than the fitted finite volume by Huang et al. (2006) and the O-MPFA
method by Koffi and Tambue (2019a) for pricing Europeans and American options.
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