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The elegance of the single-pushout (SPO) approach to graph transformations arises from 
substituting total morphisms by partial ones in the underlying category. SPO’s applicability 
depends on the durability of pushouts after this transition. There is a wide range of work 
on the question when pushouts exist in categories with partial morphisms starting with 
the pioneering work of Löwe and Kennaway and ending with an essential characterisation 
in terms of an exactness property (for the interplay between pullbacks and pushouts) and 
an adjointness condition (w.r.t. inverse image functions) by Hayman and Heindel.
Triple graphs and graph diagrams are frameworks to synchronise two or more updatable 
data sources by means of internal mappings, which identify common sub-structures. 
Comprehensive systems generalise these frameworks, treating the network of data sources 
and their structural inter-relations as a homogeneous comprehensive artefact, in which 
partial maps identify commonalities. Although this inherent partiality produces amplified 
complexity, we can show that Heindel’s characterisation still yields existence of pushouts in 
the category of comprehensive systems and reflective partial morphisms and thus enables 
computing by typed SPO graph transformation.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and motivation

We dedicate this paper to Michael Löwe, the founder of the single-pushout approach [1] and simultaneously a pioneer 
in the investigation of categories of partial algebras with partial morphisms between them, cf. e.g. [2].

In this paper, we combine these two theories. We introduce the category of comprehensive systems, formally a category in 
which the inner structure of the objects can be described with partial maps, and will show that SPO rewriting is applicable 
in this category.

Comprehensive Systems have been introduced in [3] as a means for global consistency management. A comprehensive 
system represents a collection of inter-related software artefacts. Furthermore, they generalise other related formalisms 
such as triple graphs [4] and graph diagrams [5,6].

To provide an intuition of a comprehensive system (Definition 5 in Sect. 3), take a look at Fig. 1. It depicts an abstract 
representation (i.e. model) of the databases of three information systems run by a fictitious insurance company: There is 
a Contract Management System (CoM) D1 that stores insurance contracts in an object database, a Case Management System 
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Fig. 1. Comprehensive system D: insurance information system databases. (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

(CaM) D2 storing information over active and resolved insurance claims in a relational database, and a Customer Relationship 
Management System (CRM) D3 storing customer contacts in a JSON document database.

It is necessary to maintain global consistency of the databases’ contents, especially in the presence of global consistency 
rules [7–9]. Let us assume the following consistency requirements in this scenario:

CR1 The name, address, and email information for every customer/client/ contact record, representing the 
same real-world person, stored in the three systems, must be unambiguous.

CR2 The existence of a case in D2 necessitates the existence of a respective contract in D1.

Violations of these constraint can only be discovered, if common and related elements in the systems are identified. Thus, 
one has to specify that the client record for “Immanuel Kant” in D1 refers to the same real-world entity as the respective
customer record in D2 and contact record in D3. Such traceability links a.k.a. inter-model relationships are commonly 
used in practice, e.g. [10–12,7]. In Fig. 1 we employ “tentacles” ( ) to visualise the following: (1) The sameness of the 
records for “Immanuel Kant” in all three systems, (2) the sameness of the records for “Arthur Schopenhauer” in D1 and D2, (3) 
the dependency of a case in D2 towards an existing contract D1, including a witness (4) for the relationship between 
the owner-link in D1 and the foreign key in D2. We refer to these elements as commonalities.

D1/2/3 may abstractly be formalised as graphs, see Sec. 2.1 for further details. Likewise, the collection of all common-
alities are collected into a graph called D0. Elements of D0 witness related elements among D1/2/3 and they must also 
respect node-edge-incidences (see witness (4)), such that their respective “tentacle”-ends ( ) are in fact graph morphisms 
d j : D0 → D j , j ∈ I = {1, 2, 3}.

For |I| = 2 the underlying star-shape of comprehensive systems (finite collections of arrows (d j) j∈{1,...,n} with common 
source) reduces to the span shape • ← • → •, which is the underlying setting for triple graphs [4], the common source 
in the middle specifying the commonality graph. An extension of triple graphs are graph diagrams [5,6], a framework for 
multi-ary model synchronisation. Since multi-ary commonality relations such as the ternary tentacles of identical clien-
t/customer/contact records in Fig. 1 can not be encoded with multiple binary relations [13], one must distinguish 
relations of different arity in the underlying shape for graph diagrams: E.g., in Fig. 1, a shape that both supports binary 
(dependency between contract/case records) and ternary (sameness among client/customer/contact records) 
relations is needed. In larger system landscapes (n > 3), there may be many more commonality relations of arbitrary arity 
k ≤ n, which would cause a considerable amount of heterogeneity in the underlying shape for graph diagrams. Moreover, 
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the graph diagram schema and hence the basic setting for implementations must be altered, each time new commonality 
relations are added.

We showed in [3,14] that comprehensive systems are a homogeneous generalisation of graph diagrams. They are homo-
geneous, because we need only one fixed shape to encode commonality relations of arbitrary arity (i.e. a star-shape with 
commonality graph D0 as centre surrounded by graphs D j representing related systems) and must not alter the base set-
ting, if new relations are added. It is a generalisation, because we can implement each graph diagram as a comprehensive 
system, i.e. by jointly collecting different commonalities into D0.

An important distinction, however, is that graph morphisms d j : D0 → D j in comprehensive systems are allowed to be 
partial. For example d3 : D0 → D3 in Fig. 1 is undefined on (2), (3) and (4) in D0: “Arthur Schopenhauer” is not represented 
in D3 and contract/case records have no counterpart in D3. We show that comprehensive systems with total homo-
morphisms form a category CS and, when restricting its morphisms to those morphisms that reflect definedness (yielding 
subcategory RCS ⊆CS), SPO rewriting is possible. For this, we will consider the category Par(RCS), i.e. RCS equipped 
with partial morphisms, cf. Sect. 2.2. Although this requires handling both intrinsic and extrinsic partiality,1 we can prove 
existence of all pushouts in this category (Theo. 1 in Sect. 4) and demonstrate applicability of SPO rewriting.

About this version. The present paper is an extended version of the paper [15] published in the proceedings of the 2020 
edition of the International Conference on Graph Transformation (ICGT 2020) [16]. Compared to the conference version, we 
exchanged its rather simplistic running example with a more interesting scenario, which allows us to talk about hetero-
geneously typed models and typing-morphisms between Comprehensive Systems (Sect. 3.4). Furthermore, we added some 
more background material on graph rewriting in general, span and partial map categories, as well as upper adjoints (Sect. 2). 
Finally, we could transfer an important graph-based criterion for “conflict-freeness” for matches of SPO-rules to comprehen-
sive systems (Theo. 2 in Sect. 5), which marks the most substantial extension compared to the conference version.2

2. Background

We expect the reader to have basic knowledge of category theory. For categorical artefacts, we employ the following 
notations: Categories like C will be denoted in a double-struck font. When distinguishing between members of C, we write 
|C| (or just C) for its objects and C→ for its morphisms. Cop denotes the opposite category of C, i.e. the category with 
the same objects as C but reversed arrows.

In general categories C, there are identities idA : A → A and composition g ◦ f for f : A → B and g : B → C . SET is 
the category of sets and total mappings and we reserve the variable name G for categories that are based on a signature 
with unary operation symbols only, cf. Sect. 2.1. Monomorphisms (�), epimorphisms (�) and – if applicable – inclusions 
(↪→) are highlighted by a special arrow notation. We furthermore expect the reader to be familiar with basic universal con-
structions like pullbacks, coproducts, and pushouts and their respective universal properties. We demonstrate our notations 
and terminology exemplified for pullbacks:

A
f

B

D
f ′

g′

� C

g (1)

(1) depicts a pullback diagram in C, i.e. A, B, C, D ∈ |C| and f , g, f ′, g′ ∈C→ . When referring to a pullback in the text, we 
say that the span (g′ : D → A, f ′ : D → C) is the pullback of the co-span ( f : A → B, g : C → B). Alternatively, we call the 
commutative square described by the equation f ◦ g′ = g ◦ f ′ , a pullback square. When domains and codomains are clear 
from the context we just write (g′, f ′), ( f , g), or (g′, f , f ′, g) to refer to the respective span, co-span or square. Sometimes, 
we call the morphism g′ the pullback of g along f and D the apex or pullback object. The latter is highlighted with a small 
adjacent right angle. Since pullbacks are unique only up to isomorphism, we always assume a fixed choice of pullbacks, 
whenever we speak of a concrete pullback (of a given co-span).

Finally, we sometimes use the categorical term diagram. Formally, a diagram D in C is a functor D :S →C where S is 
a small category, the shape of the diagram. Diagrams can also be defined as graph morphisms D : S →C from some schema 
graph S to (the underlying graph of) C. However, we have to use the (equivalent) functorial definition here, because certain 
properties of comprehensive systems are then easier to prove.

2.1. Graph-like structures = abstract syntax

Fig. 1 shows (an excerpt of) a model of the stored information in the three systems D1/2/3 and thus abstracts away from 
technical details such as programming languages, encoding and network communication. Models in Software Engineering 

1 “Intrinsic” refers to partiality within an RCS-object, whereas “extrinsic” describes partiality of the morphisms outside of these objects.
2 We discuss conflict-freeness in terms of rewriting in span categories, another main research area of Michael Löwe.
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Fig. 2. Abstract syntax translation.

�DG ::=
sorts: V(ertices), (E)dges
opns: s(ource), t(arget): E --> V

Listing 1: Signature �DG .

(SE) come in all different kinds of concrete graphical or textual syntaxes. A strength of the graph transformation approach 
is its ability to treat such artefacts uniformly by applying a second abstraction step: When only considering the abstract 
syntax, i.e. “forgetting” the concrete syntax as illustrated in Fig. 2, every model can be considered as some sort of “graph-
like structure”. In Fig. 2, the concrete JSON syntax is translated into an abstract syntax tree, i.e. a directed acyclic graph, 
depicted on the bottom right. Moreover, the figure shows how a class of similarly-structured SE-models is constrained by 
typing. E.g. the members of D3 should represent contact records with salutation, email and address fields. This 
may be specified by a schema or metamodel (top left in Fig. 2), which is translated to a graph as well. Hence, a well-known 
approach is to represent the conformance relation of a model to its metamodel as a graph (typing) homomorphism [17].

A category G is called based on a signature with unary operation symbols only, if it is isomorphic to a category of total 
algebras Alg(�) w.r.t. a signature � which only contains sorts and unary operation symbols. The simplest example in our 
context – and the rationale behind using letter G – are directed graphs, which is based on the signature �DG in List. 1.
This category Alg(�DG) is isomorphic to a category of presheaves [18] SETBop

with B := BDG being the small category 
shown in (2).

E

idE

V

idV
s

t

(2)

We do not endorse directed graphs in particular and could likewise choose G to be given by hypergraphs [19,20], bipartite 
artefacts like condition-event-nets [21], or E-Graphs [22], which distinguish between object and value nodes as well as 
reference and attribute edges and therefore are well-aligned with object diagrams in UML [23] and MOF [24]. It is well-
known that all these categories are topoi and thus possess all limits (e.g. pullbacks) and colimits (coproducts, pushouts) 
[18].

Objects of such categories G have been called “graph-like structures” [25], and thus we will overload the term “graph” 
and call G-objects “graphs” and G-morphisms “graph (homo-)morphisms” bearing in mind the above mentioned more 
general setting. Furthermore, objects of G are sufficiently concrete, i.e. set-based, and we can talk about elements: A graph 
G ∈ |G| can be seen as a functor G : Bop → SET . An element x ∈ G of graph G is a member of the carrier set G(s) for 
some sort s ∈ |B|. Likewise, “∀x ∈ G” means “for all x of any sort s in the carrier sets of G”.

Remark. G will serve as the base category (or base structure) for assembling comprehensive systems. Actually, we could 
have traded G for more general (weak) adhesive (HLR) categories [26] w.r.t. an admissible subclass M of all monomor-
phisms.3 Adhesive HLR categories have mainly been introduced to model graph transformations featuring calculations on 
attributes: Note e.g. that some nodes in Fig. 2 are using an italic font and have no node outline to highlight the fact that 

3 It seems that the subsequent proofs can still be carried out, if G is such a more general structure. We will provide respective facts from time to time.
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(a) DPO derivation.
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(b) SPO derivation.

Fig. 3. Graph rewriting.

these nodes represent values, e.g. Strings and Integers. Attributed graphs [22] model this by associating an algebra 
with these base type nodes. The latter poses some challenges regarding adhesiveness, in turn requiring to work with a 
special subclasses of morphisms, which are isomorphic (static) on the “data part”. However, we continue with graph-like 
structures because we are not focusing on attributes here and we want to stay in the tradition of Michael Löwe, who 
originally investigated graph-like structures only. To be technically sound, we assume that all graphs featured in forthcom-
ing examples implicitly contain nodes for all possible base type values and that objects created by universal constructions 
do not “rename” them. Our conjecture is that the attribution concept introduced by attributed graphs can seamlessly be 
incorporated into comprehensive systems in the future.

2.2. SPO rewriting

Graph rewriting also known as graph transformation [27] is a powerful and well-investigated formal tool that generalises 
traditional string-grammar rewriting [28]. The common de-facto standard of algebraic graph transformation was introduced 
in 1973 by Ehrig et al. [29] in terms of the double-pushout approach (DPO): Consider Fig. 3a, a DPO-rule is given by a span 
(l, r) of morphisms in a “suitable” category C. Traditionally this category C was given by the category of labelled directed 
graphs. It was later abstracted to a general setting of High Level Replacement (HLR) [30] structures and since the discovery of 
adhesive categories [31], the ambient category C is generally assumed to be an arbitrary (weak) adhesive (HLR) category 
[26]. Given a match m (i.e. morphism incident to l), one can rewrite G to H via rule (l, r) at match m, written G (l,r)@m� H , 
if there exist morphisms l′, r′, m, m′ such that the squares (a) and (b) are pushout squares. The morphism m′ is called 
the co-match, object C the context, and span (l′, r′) the trace of the derivation. A rule is called linear if both l and r are 
monomorphisms (or members of a special class of monomorphisms M resp.), which is the most common case since it 
guarantees that both pushout squares are well-behaved. This well-behavedness (exactness) property refers to the so-called 
(weak) van Kampen property [31], which asserts a certain interplay between pushouts and pullbacks. In practice, a rule 
application at a given match involves constructing a pushout complement (a) followed by a pushout construction (b). 
Intuitively, the former models “deletion” while the latter models “insertions” when the rule is linear. Raoult [32] was the 
first to propose replacing this construction with a conceptually simpler variant, which only requires a single pushout when 
exchanging total with partial morphisms. The construction in [32] was set-based and could not model deletions properly. 
Following Raoult’s idea, Kennaway [33] and Löwe [1], independently of each other, developed the theory for single pushout 
rewriting:

Definition 1 (SPO - rule, match, derivation, conflict-freeness). An SPO rule is a partial morphism ρ : L ⇀ R ∈ Par(C)→ , i.e. 
a morphism of the category of partial morphisms Par(C) over a given category of total morphisms C (note the partial 
arrow-tips in Fig. 3b). A match for ρ at (host) G ∈C is a total morphism μ : L → G ∈C→ . A pushout of ρ and μ in Par(C)

generates the (SPO-) derivation G 
ρ@μ� H with trace ρ ′ and co-match μ′ , see Fig. 3b. The match μ is called conflict-free, if μ′

is a total morphism.

The relation between DPO and SPO as well as other algebraic graph transformation approaches such as e.g. sesqui pushout 
rewriting (SqPO) [34] has been a recurring theme in Michael’s work [35,36]. In fact, DPO with left-linear rules is a special 
case of SPO at conflict-free matches [25]. We discuss this relationship and a concrete characterisation of conflict-freeness for 
comprehensive systems in Sect. 5.

First, we have to check whether the ambient category actually admits SPO rewriting, i.e. does the category of partial 
morphisms Par(C) over C possess pushouts? A significant contribution to answer this question is the work of Hayman 
and Heindel [37], which provides a sufficient and necessary condition in terms of hereditary pushouts and upper adjoints. We 
will explain both concepts in the following subsections.

2.3. Span and partial map categories

Michael had the courage to leave the comfortable world of total morphisms and utilised partial morphisms [38] for the 
SPO approach. While other researchers adhered to total morphisms, he forcefully followed through with extrinsic partiality 
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Fig. 4. Arrows and composition in Par(C).

and proved that it is worthwhile [1]. Originally, he used the following definition4:
A partial morphism f : A ⇀ B is defined by a pair (dom( f ), f ) where dom( f ) ⊆ A is a subobject of A and f : dom( f ) →

B is a total morphism. This notion is equivalent with the common approach to consider the category of partial morphisms 
Par(C) over a category with total morphisms C as a subcategory of the span category Span(C), for a more comprehensive 
survey we refer to the seminal work of Robinson and Rosolini [38].

We recall the notion of span categories here: Let C be an arbitrary category, which has all pullbacks. A concrete span
between A and B (A, B ∈ |C|) is given by a pair of morphisms (m : X → A, f : X → B) sharing the same domain. Among 
all concrete spans between A and B we can define a relation ≈A,B that is defined as follows: Two spans between (m :
X → A, f : X → B) and (m′ : X ′ → A, f ′ : X ′ → B) between the same pair of objects (A, B) are said to be in relation 
≈A,B if and only if there exists an isomorphism i : X → X ′ such that m = m′ ◦ i and f = f ′ ◦ i, cf. Fig. 4a. Due to the 
isomorphism property, these relations form a family of equivalence relations ≈:= (≈A,B)A,B∈|C| . A representative (m, f ) of 
a class of equivalent spans is called an abstract span and denoted by [m, f 〉. The span category Span(C) over C shares 
the same class of objects with C, i.e. |Span(C)| = |C|, and the hom-set Span(C)(A, B) of morphisms between a pair of 
objects A, B ∈ |Par(C)| is given by the set of all abstract spans between A and B . Identities are given by abstract spans 
that have pairs of C-identities as representatives, while composition is defined via pullback, see Fig. 4b: The composition 
[n, g〉 ◦ [m, f 〉 of abstract spans [m, f 〉 and [n, g〉 is given by the abstract span [m ◦ n′, g ◦ f ′〉 where n′ and f ′ are derived 
as the pullback of ( f , n).

The underlying category C can be embedded into Span(C). The functor that embeds C into Span(C) is called the 
graphing functor � [39] due to historic reasons.5 This functor is an identity-on-objects functor and maps every morphism to 
a trivial span:

� :
{

C → Span(C)

f ∈C(A, B) �→ [idA, f 〉 ∈ Span(C)(A, B)

The span category Span(C) has some notable subcategories. We are most interested in the category of partial mor-
phisms Par(C) ⊆ Span(C), which imposes the restriction that the left legs m of all Par(C)-morphisms [m, f 〉 must be 
monomorphisms. In the following, we will solely focus on the span category Par(C) and denote arrows in this category 
[m, f 〉 : A ⇀ B with a partial arrow-tip to distinguish them from total arrows f : A → B ∈C→ and also use � to denote the 
embedding functor from C into Par(C). When the inner leg m of a partial arrow span [m, f 〉 is an isomorphism, the class 
[m, f 〉 is the same as [idA, f 〉, hence [m, f 〉 has a pre-image under � and can be seen as a total morphism. In this case, we 
denote it with a regular arrow-tip: [m, f 〉 : A → B .

For C := G, we can refer to elements inside objects of G. Hence, there are special monomorphisms: inclusion-arrows 
m : A ↪→ B – highlighted by a hook-arrow – that do not “rename” elements, i.e. with B being the underlying signature of 
G, for all s ∈ |B| there are inclusions A(s) ⊆ B(s) between carrier sets. Since we are working with classes [m, f 〉 of spans 
in Par(G), we might as well choose m as an inclusion as the chosen representative for the abstract span. In this case, 
we overload the morphism names of right legs, i.e. a partial morphism f : A ⇀ B ∈ Par(G) is the class [⊆, f 〉, which is 
represented by a concrete span (⊆ : dom( f ) ↪→ A, f : dom( f ) → B), which brings us back to Michaels original definition of 
partial morphisms in [25]. Such a partial morphism f is “total”, if the inclusion is an identity. We will use G-inclusions 
whenever there is a choice for monomorphisms (replacing � with ↪→).

Finally, we can introduce the notion of hereditary pushouts, one requirement for the existence of pushouts in Par(C).

Definition 2 (Hereditary pushout [33,40]). A pushout in C is called hereditary, if its �-image is a pushout in Par(C). If all 
pushouts exist in C and they are all hereditary, we say that C is a hereditary pushout category.

4 ... which is also the way to define “intrinsic” partiality, i.e. partial operations of partial algebras. The combination of both is very thoroughly investigated 
in [2].

5 Recall that every function f : A → B gives rise to a relation graph( f ) = {(a, f (a)) | a ∈ A} ⊆ A × B , called the graph of the function. The function 
f : A → B thus turns into the span (idA , f ) of projections from the graph to the domain and codomain of f .
28
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Fig. 5. Subobject lattices.

The following result can be found in [33]:

Proposition 1. If the �-image of a C-span has a pushout in Par(C), then this cocone consists of two total morphisms, which are the 
�-image of the pushout of this span in C. �

The following result was stated in [37] but fully worked out already in [1]:

Proposition 2. G is a hereditary pushout category. �
Finally, hereditariness can equivalently be characterised by a condition which is similar to the so-called weak vertical 

Van Kampen property [41,40,39]:

Proposition 3 (Equivalent characterisation of hereditariness [40]).

A0
g0

f0 B0

g′
0

C0 f ′
0 D0

A
fg

B

g′

b

C

c

f ′ D

(3)

A pushout g′
0 ◦ f0 = f ′

0 ◦ g0 is hereditary, if and only if in any commutative cube as in (3) with rear faces being pullbacks and vertical 
front left and back right arrows (c and b in (3)) being monomorphisms, the following equivalence holds: The bottom face is a pushout if 
and only if (1) the two front faces are pullbacks and (2) the vertical front right arrow (the dashed arrow in (3)) is a monomorphism. �
2.4. Subobject lattices and upper adjoints

The following notions of sub-object lattices are well-known from the literature, e.g. [18]: Let C be a category with 
pullbacks. For every object A, there is a pre-order (Sub(A), �) of (abstract) A-subobjects. An A-subobject [m] ∈ Sub(A)

is given by an equivalence class [m] := {m′ | m ≡A m′} of monomorphisms m′ : M ′ � A with codomain A. The respective 
equivalence relation ≡A is defined on pairs of monomorphisms m : M � A and m′ : M ′ � A: m ≡A m′ , if and only if there 
exists an isomorphism i : M → M ′ such that m = m′ ◦ i holds.

In the sequel, we will use monomorphisms m, n, . . . as representatives for subobjects [m], [n], . . . (i.e. seamlessly adding 
and removing brackets on demand) and implicitly assume their domain to be the corresponding upper case letter M, N, . . .. 
Note that when C = G, we can again choose representatives of subobjects to be inclusions since we are working with 
classes of monomorphisms.

The order relation � between two subobjects [m] and [n], written [m] � [n], holds, if there is a (necessarily monic and 
unique) C-morphism f : M → M ′ with m = n ◦ f , see Fig. 5a. Furthermore, the existence of pullbacks in C turns the partial 
order � into a semi-lattice, where the meet [m] � [n] (think intersection) of two subobjects [m] and [n] is given by the 
diagonal of the pullback of m and n (recall that pullbacks always preserve monomorphisms), cf. Fig. 5b. The existence of 
joins [m] � [n] (i.e. effective unions), see Fig. 5c, is not always given in an arbitrary category C with pullbacks. However, if 
C has coproducts and images that are stable under pullback, the subobject semi-lattice Sub(A) has joins, hence, becomes 
a full lattice:
29
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Definition 3 (Images and effective unions). A category C is said to have images if and only if for every C-morphism f : A → B
there is a least (w.r.t. �) [m] ∈ Sub(B) such that f = m ◦ e for some e : A � M and we call the domain of m the image object
Im( f ) := M . Further, if C has coproducts, then, for a family ([mx])x∈X of subobjects of A for some index set X , we define 
the effective union as �x∈X [mx] := [ j : Im(u) � A] where u is the unique mediator morphism u : ∐

x∈X Mx → A w.r.t. the 
family (mx : Mx � A)x∈X and j arises from the image factorisation u = j ◦ e of u. Thus, in particular, for all y ∈ X

[my] ��
x∈X

[mx]. (4)

Now we can discuss upper adjoints w.r.t. to inverse image functions, the second ingredient for the existence of pushouts 
in Par(C). This notion can be described as a special case of the pullback functor and its right adjoint: Recall, that every 
pre-order is a category where the hom-set between two objects has at most one element. Thus, partial orders are skeletal 
categories and monotone functions6 are functors between such categories.

Definition 4 (Inverse images and upper adjoints [37]). Let f : A → B be given in a category C with pullbacks. We denote 
by f −1 : Sub(B) → Sub(A) the inverse image function which assigns to [m] ∈ Sub(B) its pullback along f . A monotone 
function ∀ f : Sub(A) → Sub(B) is called an upper adjoint of f −1, if for all [n] ∈ Sub(A) and [m] ∈ Sub(B):

f −1[m] � [n] ⇐⇒ [m] � ∀ f [n] (5)

Note that ∀ f is unique, if it exists [37], and that f −1 is monotone, since pulling back is functorial and preserves 
monomorphisms. We remark that, in G, the upper adjoint is the right-adjoint of the pullback functor f −1. In [42], it 
was shown that for [n] ∈ Sub(A) validity of the condition

∀x, y ∈ A : f (x) = f (y) ⇒ (x ∈ N ⇐⇒ y ∈ N) (6)

implies ∀ f [n] : ( f ◦ n)(N) ↪→ B and that the co-unit εn : f −1(∀ f n) → n is an isomorphism.
There is a generic construction for upper adjoints in categories with effective unions:

Proposition 4 (Upper adjoints). Let C be a category with pullbacks, coproducts and images that are both stable under pullback. Let 
further f : A → B ∈C→ and [n] ∈ Sub(A), then ∀ f [n] :=�{[m] ∈ Sub(B) | f −1[m] � [n]} is the upper adjoint of f −1 .

Proof. To prove that ∀ f is monotone, assume [n], [n′] ∈ Sub(A) with [n] � [n′]. Hence X := {[m] ∈ Sub(B) | f −1[m] � [n]}
⊆ {[m] ∈ Sub(B) | f −1[m] � [n′]} =: X ′ and thus there is the mediator u : ∐[m]∈X M → ∐

[m]∈X ′ M , such that ∀ f [n′] becomes 
a factor in a decomposition of 

∐
[m]∈X M → A. Since ∀ f [n] is the least of these factors, we obtain ∀ f [n] � ∀ f [n′].

In equivalence (5) “⇒” follows immediately from (4), such that it remains to prove “⇐”. For this it is sufficient to show 
f −1(∀ f [n]) � [n] for all [n] ∈ Sub(A), because f −1 is monotone.7 Let [n] ∈ Sub(A) be arbitrary and ∀ f [n] :=�x∈X mx : J �
B . Further, let j : J � B be the representative of �x∈X [mx] and fix some y ∈ X . Then there is the coproduct injection 
i y : M y → ∐

x∈X Mx and by the definition of �x∈X [mx] in Definition 3, we obtain the diagram

M y i y

my

∐
x∈X Mx e J

j
B (7)

which is mapped by f −1 (interpreted as pullback functor) to the upper part of the following diagram:

f −1M y
f −1 i y

f −1my

hy

f −1∐
x∈X Mx

f −1e

v

f −1 J
f −1 j

A

N

n

6 A function U : (X, ≤X ) → (Y , ≤Y ) between two partially ordered sets is called monotone, if it preserves the order, i.e. ∀x, x′ ∈ X : x ≤X x′ ⇒ U (x) ≤Y

U (x′).
7 If pullback functors have right-adjoints, this inequality corresponds to the co-unit of adjunction f −1 � ∀ f :C ↓ A →C ↓ B .
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In this diagram, hy exists with n ◦ hy = f −1my , because y ∈ X and thus f −1[my] � [n] by the definition of ∀ f . Because 
we assumed coproducts to be stable under pullback, the image f −1∐

x∈X Mx of 
∐

x∈X Mx under f −1 is the coproduct of 
( f −1Mx)x∈X and f −1i y is the respective coproduct injection. We obtain v as the unique mediator out of this coproduct 
w.r.t. all arrows {hy | y ∈ X}, i.e. v ◦ f −1i y = hy and hence for all y ∈ X : n ◦ v ◦ f −1i y = f −1my = f −1 j ◦ f −1e ◦ f −1i y , the 
last equality by functoriality of f −1. By universality of coproducts this yields n ◦ v = f −1 j ◦ f −1e. Since pullbacks preserve 
images, the latter term in the above equation is the image factorisation of n ◦ v and hence f −1∀ f [n] = f −1(�x∈X [mx]) � [n], 
the former being the least, the latter being some subobject of A factoring through n ◦ v . �
3. Comprehensive systems

For the rest of the paper, we fix a sufficiently large natural number n (usually a number which always exceeds the 
possible number of distributed systems under consideration). Hence, all constructions are parametrised by the constant n.

3.1. Definitions and background

Definition 5 (Comprehensive system). Let (Ci)0≤i≤n be an n + 1-tuple of G-objects. We call

• (C j)1≤ j≤n the Components and
• C0 the (graph of) Commonality Representatives

of a Comprehensive System

C := (c j : C0 ⇀ C j)1≤ j≤n

i.e. an n-tuple of partial graph morphisms (c j)1≤ j≤n , which we call projections.8

In order to make reading easier, we always use letter i, if indexing comprises graphs C0, C1, . . . , Cn and we use letter j, 
if indexing is only over the components C1, . . . , Cn . Moreover, we denote the whole comprehensive system with a bold face 
letter C.

Comprehensive systems admit an all-embracing view on a system of possibly heterogeneously typed components, in 
which all inter-model relationships are coded, cf. Fig. 1. They have been treated on the level of graphs in [8] and – on a 
more abstract level – in [43].

Definition 6 (Morphism of comprehensive systems). Let C := (c j : C0 ⇀ C j)1≤ j≤n and D := (d j : D0 ⇀ D j)1≤ j≤n be two compre-
hensive systems. A morphism f : C → D is a family ( f i : Ci → Di)0≤i≤n of total G-morphisms, such that for all 1 ≤ j ≤ n and 
all x ∈ C0:

c j(x) is defined =⇒ d j( f0(x)) is defined (8)

and

(d j ◦ f0)(x) = ( f j ◦ c j)(x). (9)

Whenever we mention morphisms f : C → D between comprehensive systems, we implicitly assume the components of 
C and D be denoted as in Definition 5 and we assume the constituents of f be denoted as in Definition 6.

There is the obvious identical morphism idC for each comprehensive system C and composition can be defined compo-
nentwise. Hence we obtain

Proposition 5 (Category CS and component functors). Let G be a category as described above and let n be given as above.

• Comprehensive Systems and morphisms between them constitute a category, denoted CSn,G . Since n is a constant, we omit index 
n and we also write just CS, if the base category is clear from the context.

• For each i ∈ {0, . . . , n} there is the component functor (_)i :CS →G defined by (_)i(f : C → D) = f i : Ci → Di for any f.

Let us investigate the consequences of strengthening the definition of CS-morphisms (Definition 6) by additionally 
requiring

d j ◦ [idC0 , f0〉 = [idC j , f j〉 ◦ c j (10)

8 One might consider elements of C0 to be tuples (of arbitrary size k ≤ n), in which common elements are listed, hence the term “projection” for the c j .
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to be a commutative square in Par(G). Recall that the definition of composition of partial morphisms involves pullbacks 
and consider the G-diagram in (11):

C0 C0
idC0 f0 D0

dom(c j)

⊆c j

c j

dom(c j)

⊆c j

c j

iddom(c j ) f− j�
�

dom(d j)

⊆d j

d j

C j C jidC j f j
D j

(11)

The bottom left and top right squares are pullbacks, which are needed for the composition of [id, f j〉 ◦ c j and d j ◦ [id, f0〉
respectively, cf. Fig. 4b. Condition (10) requires the apexes of these pullbacks to be equal and since the bottom left pullback 
is constructed along an identity, this apex can be chosen as dom(c j). Hence, we may define a morphism in comprehensive 
systems as a family ( f−n, . . . , f− j, . . . , f0, . . . , f j, . . . , fn) of G-morphisms defined on domains of definitions of projection 
morphisms dom(c j), on C0, as well as on components C j , as shown in the right-hand side of (11), such that the upper 
squares f0 ◦⊆c j = ⊆d j ◦ f− j are pullbacks and the lower squares f j ◦c j = d j ◦ f− j commute. Translating this notion back into 
the formulation of Definition 6, the upper pullback turns the implication in (8) into an equivalence (while commutativity 
of the lower right square corresponds to (9)). In such a way, definedness of a projection is not only preserved but also 
reflected:

Definition 7 (Reflective CS-morphism). A morphism f : C → D (Definition 6) is called reflective if and only if the implication 
(8) is an equivalence.9

Further, let RCS denote the category of comprehensive systems (|RCS| = |CS|) and reflective CS-morphisms 
(RCS→

�CS→) between them.

Let us investigate why we have to restrict ourself to this sub-category for applying SPO rewriting on comprehensive 
systems.

3.2. Why must definedness be reflected?

Since our goal is to show that SPO rewriting is applicable for comprehensive systems, we must show that the respective 
category of partial morphisms has all pushouts. Assume we would look for the existence of pushouts in Par(CS). In this 
case let’s consider for n = 1 two simple comprehensive systems:

Counterexample 1 (Pushouts in Par(CS)). Let G = SET and A0 = {∗} and A1 = {•} be two one-element sets and let A =
(a1 : A0 ⇀ A1) with a1 the totally undefined map depicted with (∗ •) and A′ = (a1

′ : A0 → A1) with a1
′ the unique total 

map from A0 to A1 depicted (∗ �→ •). If we only work with preservation of definedness, then morphism [idA, f〉 : A → A′ , in 
which f0 maps ∗ to ∗ and f1 maps • to •, is an admissible morphism. We claim that the span A′ [idA,f〉←−−− A 

[idA,f〉−−−→ A′ does 
not possess a pushout in Par(CS).

If there would be a pushout of this span of two total morphisms in Par(CS), then, by Proposition 1, it must coincide 
with the pushout of them in CS. Since f is an epimorphism in CS (because all f i are epimorphims in G), the pushout in 
CS must have p1 = p2 = idA′ as cocone, see the left top square in (12).

(∗ •) f

f

(∗ �→ •)
p2

(∗ �→ •) p1
(∗ �→ •)

u ?

(∗ •)

m

h

(∗ �→ •)
idA′

idA′ (∗ �→ •)

(12)

The two partial morphisms [m, h〉 and [idA′ , idA′ 〉 let the outer rectangle of partial morphisms commute, i.e.

[m,h〉 ◦ [idA, f〉 = [idA′ , idA′ 〉 ◦ [idA, f〉

9 In categories of partial algebras (and total homomorphisms between them), this definition coincides with the subclass of closed homomorphisms. See 
[2] for a thorough investigation of closed, full, and normal homomorphisms.
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Fig. 6. Matching with reflective CS-morphisms.

in Par(CS), because the pullback object of m and f equals the pullback object of idA′ and f in CS. If there would be a 
unique mediator u, see the dashed line in the diagram, we must have u = [idA′ , idA′ 〉, because the lower rhombus must be 
commutative. However, for this u the right rhombus fails to be commutative, because u ◦ [idA′ , p2〉 = [idA′ , idA′ 〉 �= [m, h〉.

This example shows that we cannot expect to have all pushouts in Par(CS), even if the two morphisms, for which the 
pushout shall be constructed, are total monomorphisms. Intuitively, we can expect to have pushouts (of monomorphisms), 
i.e. unions, only if there are unique embeddings. The example of the two different “embeddings” [m, h〉 and [idA′ , idA′ 〉
shows that this is not the case in Par(CS). We will show in the sequel that working in the category RCS removes these 
deficits.

Finally, we give an example why the restriction to the category RCS is useful in practice, too. The top part of Fig. 6
shows a rule ρ : L ⇀ R that updates the address-field of customer and client records representing the same person in 
CoM and CaM. This rule, however, neglects the possibility of contact records in the CRM. The reflection-property prevents 
application of an underspecified rule at match μ in a host comprehensive system G: E.g. with G = D (D known from Fig. 1), 
ρ cannot be applied on the records for “Immanuel Kant”, see the lower half of Fig. 6: The definedness of projection g3 on 
the commonality witness (1) is not reflected at the node sameness in L. In this way reflective rules restrict the application 
of rules that are underspecified (not taking all system components into consideration). Thus, the reflection requirement can 
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be seen as a kind of built-in negative application condition [44]. In [15] we also demonstrated that this requirement serves 
to prevent multiple applications of rules which involve commonalities.

3.3. Important properties

In the sequel, we will use formulations like “a property is valid componentwise” in RCS or some construction “is carried 
out componentwise”. Since many of the following considerations are based on this methodology, we give a formalisation: 
“Pushout”, “Pullback”, “Monomorphism”, “Commutativity” impose truth of a predicate (a certain property) on a diagram in 
a category C. For pushouts and pullbacks the underlying diagram is a square, for the predicate “Monomorphism” it is a 
single arrow, for “Commutativity” it is an appropriate triangle of arrows. E.g. RCS-morphism f : A → B is a componentwise 
monomorphism means that each f i is a G-monomorphism. More precisely: Given a diagram D : S → RCS of any of the 
above mentioned shapes in RCS, let Di := (_)i ◦D : S →G with component functor (_)i :RCS →G from Proposition 5, 
then the predicate p is true componentwise if and only if it is true for Di in G for all i ∈ {0, . . . , n}.

Another formulation is “componentwise construction of predicate p”, where p is based on a certain universal property 
and thus transferring existence from universal constructions from G to RCS. If e.g. p is the predicate for pushouts, 

componentwise construction of a RCS-cospan C f′−→ D
g′

←− B from a RCS-span C
g←− A

f−→ B consists of two steps: In a first 

step, one constructs pushout cospans Ci
fi

′
−→ Di

gi
′

←− Bi of spans Ci
gi←− Ai

fi−→ Bi for each i ∈ {0, . . . , n}. In a second step 
one tries to define the projections d j in D := (d j : D0 ⇀ D j)1≤ j≤n , cf. Definition 5, with the help of the pushouts’ unique 
mediators. The cospan morphisms f′ and g′ consist of the respective components ( f ′

i )0≤i≤n and (g′
i)0≤i≤n . The phrase “p

can be constructed componentwise” then means that the newly constructed object D is an admissible object according to 
Definition 5, that the newly created morphisms f′ and g′ are admissible according to Definition 6, and that predicate p
holds on the resulting diagram in RCS, i.e. the square that arises from enhancing the above RCS-span by the RCS-
cospan yields a pushout in RCS. This procedure applies to other universal constructions in a similar way and after such a 
construction, we know that property p is valid componentwise.

“Commutativity” is valid componentwise by definition, but we also obtain

Proposition 6 (Componentwise properties of RCS). Morphism f : A → B is a monomorphism if and only if it is such componentwise.
Moreover, RCS has

1. all pullbacks,
2. all pushouts,
3. all coproducts,

(is thus cocomplete), and they are constructed componentwise, respectively.

Proof. (1.) Componentwise validity of monomorphy and componentwise construction of pullbacks have been proven in [45]
for so-called S-cartesian functor categories. We showed in [3] (see also [14]) that - for a certain schema category and using 
G as the underlying adhesive category - this functor category is equivalent to RCS.

Thus, it remains to prove (2.) and (3.).
For the proof of (2.), let a span (f : A → B, g : A → C) of RCS-morphisms be given with f = ( f i : Ai → Bi)0≤i≤n and 

g = (gi : Ai → Ci)0≤i≤n . Resolving these two morphisms into a triple of G-morphisms for each j ∈ {1, . . . , n} as in (11) and 
constructing pushouts componentwise in G, i.e. for f0 and g0, f j and g j , and for the span of resulting domain mappings 
f− j and g− j , see the dashed arrow in (11), yields two cubes on top of each other for each j ∈ {1, . . . , n}, shown in (13), in 
which the dashed vertical front right arrows d j and d j are unique mediators w.r.t. the middle pushout:

A0
g0

f0 B0

g0
′

C0 f0
′ D0

dom(a j)

a j

f− j

g− j

dom(b j)

b j

g− j
′

dom(c j)

c j

f− j
′ dom(d j)

d j

d j

A j f jg j

B j

g j
′

C j
f j

′ D j

(13)
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Because G is a hereditary pushout category by Proposition 2 and because the top face in the upper cube in (13) is 
a G-pushout and the two back faces are pullbacks, cf. Definition 7, the prerequisite of the equivalent characterisation of 
hereditaryness in Proposition 3 are fulfilled. Hence the fact that the middle layer in (13) is also a pushout (by construction) 
implies that the two upper front faces become pullbacks and the vertical upward arrow d j in the front right can be chosen 
to be an inclusion. This shows that the componentwise construction indeed yields an admissible comprehensive system

D := (d j : D0 ⇀ D j)1≤ j≤n

and a commutative square g′ ◦ f = f′ ◦ g in RCS. It remains to show that it is also a pushout.
Let for this a RCS-object Z := (z j : Z0 ⇀ Z j)1≤ j≤n and two CS-morphisms h : B → Z and k : C → Z be given such 

that h ◦ f = k ◦ g. Then componentwise considerations easily yield unique u := (ui : Di → Zi)0≤i≤n factoring through the 
components of h and k, see (14).10

B0

h0

g0
′ D0 u0

Z0

dom(b j)

b j

dom(d j)

d j

d j

dom(z j)

z j

B j

h j

g j
′

D j
u j

Z j

(14)

It is easy to see that universality of d j and d j yield commutativity of all squares in (14) such that it remains to show that 
u is an RCS-morphism. In particular, we have to show (8) as equivalence (commutativity (9) is already given). Let for this 
x ∈ D0 be given. It is well known that pushouts in G yield jointly surjective cospans, i.e. x has a preimage y in C0 or in 
B0, cf. (13). Assume w.l.o.g. that there is y ∈ B0 and g0

′(y) = x (the case, where there is a preimage in C0, is similar). Then 
again using (8) as equivalence (since f, g, f′ , and g′ are reflective) several times yields

d j(x) is defined ⇐⇒ b j(y) is defined (because g′ : B → D ∈RCS→)

⇐⇒ z j(h0(y)) is defined (h : B → Z ∈RCS→, cf. (14))

⇐⇒ z j(u0(x)) is defined (h0 = u0 ◦ g0
′ and x = g0

′(y)),

which shows that u is an RCS-morphism.11

The proof of the existence of coproducts (3.) is similar: Let (Ax := (ax
j : Ax

0 ⇀ Ax
j)1≤ j≤n)x∈X be a family of comprehensive 

systems indexed over some (possibly infinite) index set X . It is then easy to see that

A := (
∐
x∈X

Ax
0

∐
x∈X ax

j−−−−⇀
∐
x∈X

Ax
j)1≤ j≤n

is the coproduct of them, where 
∐

x∈X Ax
i denotes G-coproducts (hence the RCS-coproduct is constructed component-

wise). For each j the partial morphism 
∐

x∈X ax
j is defined to be equal to ay

j on each A y
0 (y ∈ X). The unique mediator for a 

family (fx : Ax → B) can be shown to be a RCS-morphism by similar arguments as above for u. It is well-known that all 
colimits can be constructed from binary pushouts and coproducts [46], hence RCS is indeed cocomplete. �

The equivalent characterisation of hereditaryness in Proposition 3 uses the predicates pushout, pullback, monomorphism, 
and commutativity, of which we have shown that validity in RCS is equivalent to componentwise validity. By jumping back 
and forth from a comprehensive system to its components, this yields

Corollary 1. RCS is a hereditary pushout category. �
Although it is not the focus of this paper, we mention another important consequence for the application of graph 

transformations in RCS:

10 The diagram in (14) depicts the situation for h, for k the situation is the same.
11 A more general proof has been given in [45], if G is a (variant of an) adhesive category, such that the result carries over to these base structures, as 

well.
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Fig. 7. Typing T for the running example.

Corollary 2. RCS is a weak adhesive HLR category [27] w.r.t. the class of all monomorphisms.

Proof. Heindel proves in [39, Prop. 8.1], that this conclusion can be drawn from Corollary 1, if pushouts are always stable 
under pullbacks, i.e. the implication “top face pushout, all side faces pullbacks ⇒ bottom face pushout” holds for all choices 
of vertical morphisms in (3). But this implication is true in RCS by Proposition 6 and because this holds in G [18]. �

This corollary guarantees validity of the classical theorems for graph rewriting [27] such as Local Church Rosser, Paral-
lelism, or Local Confluence Theorem to hold in RCS, as well.12

3.4. Typing

In Sect. 2.1, we mentioned that typing morphism are a common means to restrict a class of similarly structured models. 
In our running example, we only want to allow certain types of commonalities between different element types of systems 
components, e.g. “sameness” among client/customer/contact records and “dependency” of cases on contracts
in Fig. 1. It is also important to specify where rules should be applied, e.g. that we want to update the address field, cf. 
Fig. 6. Thus, we need a typing mechanism.

The categorical interpretation of typed structures are slice categories C ↓ T for an object T ∈ |C|, called the type object. 
A slice category has morphisms t A : A → T , also called instances, with codomain T as objects. A morphism f : t A → t A′

in 
this category is a morphism f : A → A′ ∈C→ between the respective domains that respects typing, i.e. t A′ ◦ f = t A holds.

The comprehensive system T shown in Fig. 7 may serve as a suitable type object for the system D of our running example 
in Fig. 1. It combines the individual metamodels of D1/2/3 together with the custom commonality types “sameness” and 
“dependency” together with commonalities witnessing common base type appearances (String and Integer). Moreover, 
there are three “edge”-commonalities to express relationships of owner/FK (T1/2), address (T1/2/3), and email (T1/3) 
features. This demonstrates the usefulness or property (8), preservation of definedness, e.g. the fact that t3 : T0 ⇀ T3 is 
undefined on Dependency enforces T-instances to not have Dependency-typed commonalities, whose projections into 
the third component are defined: The concepts case and contract have no counterpart in the CRM. However, working 
with RCS ↓ T would impose too strong restrictions on the instances, i.e. the additional reflection property would enforce 
every commonality type to have a manifestation in every instance, which is practically unfeasible. Therefore, we have to 
combine CS- and RCS-morphism types into the following definition that only requires reflection of definedness for 
morphisms between instances and not for typing morphisms.

Definition 8 (Typed comprehensive systems). Let T ∈ |CS| be a comprehensive systems. The category of typed comprehensive 
systems TRCS(T) over T has tC : C → T ∈ |CS ↓ T| as objects and reflective morphisms f : C → C′ ∈RCS→ as arrows such 
that tC′ ◦ f = tC commutes in CS (recall that RCS ⊆CS).

We remark that TRCS(T) = I ↓ T is a general comma category, where I :RCS ↪→CS is the inclusion functor.
One can show that all important properties are transferred to this category:

Proposition 7. The category TRCS(T) has all pullbacks, pushouts and coproducts, which are stable under pullback.

12 Whereas we obtain this result as a corollary from hereditariness, it is proved directly for underlying adhesive categories in [45].
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A0 e0

f0

Im( f0)
m0

A0
′

dom(a j)

⊆a j

a j

u

f− j

�
I i�

dom(a j)
′

⊆a j
′

a j
′

A j
e j

f j

Im( f j)
m j

A j
′

(a) Images componentwise.

dom(a j)
u

e j◦a j

I

a j
′◦iâ j !

Im( f j) m j
A j

′

(b) Unique diagonal.

Fig. 8. Images in CS.

Proof. Is due to the fact that pushouts, pullbacks and coproducts are constructed componentwise in the same manner as in 
the proof for Proposition 6. It remains to show, that the componentwise constructions actually fall into TRCS(T), i.e. that 
compatible typing morphisms are retained. We are discussing the situation for pushouts:

Consider again the diagram in (13): Now, let A, B, C be domains of objects in TRCS(T) and f and g be TRCS(T)-
morphisms, i.e. there are additional CS-morphisms tA : A → T, tB : B → T, tC : C → T such that tC ◦ g = tA and tB ◦ f = tA . 
The fact that all horizontal faces in (13) are pushouts yields a family of morphisms (t D

α : Dα → Tα)α∈{−n,...,−1,0,1,...,n}13 such 
that t B

α = t D
α ◦ g′

α and tC
α = t D

α ◦ f ′
α . It remains to show that t D

0 ◦ d j =⊆t j ◦t D − j and t D
j ◦ d j = t j ◦ t D − j , which immediately 

follows by using the jointly epimorphism property of the middle pushout, combined with morphism property of f′ and g′
(commutativity (9)), and the commutative triangles, mentioned above.

The proof for coproducts works analogously and for pullbacks it is almost trivial since typing is retained by simple 
postcomposition. �
4. Result: pushouts along partial maps of comprehensive systems

The goal of this section is to prove that SPO rewriting is well possible for (typed) comprehensive systems by showing 
that the categories Par(RCS) and Par(TRCS(T)) possess all pushouts. This will follow mainly from a result of Hayman 
and Heindel:

Proposition 8 (Existence of pushouts of partial maps, [37]). Let C be a category with pullbacks in which for each span C
g←− A 

f−→ B

of morphisms there is a cospan C
f ′

−→ D 
g′

←− B making the resulting square commutative. Par(C) has all pushouts if and only if C is a 
hereditary pushout category and inverse image functions have upper adjoints. �
Proposition 9. RCS and TRCS(T) have images and the pullback functors preserve them.

Proof. Let f : A → A′ = ( f i : Ai → Ai
′)0≤i≤n be a CS-arrow. We use G’s epi-mono-factorisations [18] to decompose f0 and 

( f j)1≤ j≤n accordingly. In particular f0 = m0 ◦ e0. Then the pullback of m0 and ⊆a j
′ and its unique mediator u w.r.t. f− j and 

e0◦ ⊆a j yields the situation in Fig. 8a, where the left upper square is a pullback by the pullback decomposition lemma.
In G pullbacks preserve epimorphisms, i.e. u is an epimorphism and the square in Fig. 8b has a unique diagonal [18]

â j : I → Im( f j), such that everything commutes. Adding this diagonal in Fig. 8a yields Im(f) := (Im( f0)
â j−⇀ Im( f j))1≤ j≤n

and the inclusion m : Im(f) ↪→ A′ . Moreover, Im(f) can be shown to be the image of f : A → A′ in RCS, because it was set 
up by componentwise epi-mono-factorisation (in G), in which the mono-part is componentwise the least subobject of the 
respective codomains of f0 and f j . Images in TRCS(T) are constructed in the same way, i.e. if tA : A → T and tA′ : A′ → T
are TRCS(T) objects, we get a typing morphism tIm(f) : Im(f) → T by simply composing tA′ ◦ m.

Pullback functors preserve images in RCS and TRCS(T) because of the essential uniqueness of epi-mono-
factorisations, preservation of monomorphisms and epimorphisms [18] under pullbacks in G, and componentwise pullback 
construction (cf. Proposition 6). �
Theorem 1. Par(RCS) and Par(TRCS(T)) have all pushouts.

Proof. Firstly, RCS has all pushouts by Proposition 6 (TRCS(T) due to Proposition 7 resp.) and thus span-completions. 
Secondly, RCS and TRCS(T) have images (Proposition 9) and coproducts, therefore inverse image functions have upper 
adjoints (Proposition 4). Hence, we can apply Proposition 8 to yield the desired property. �
13 Let D− j := dom(d j) and T− j := dom(t j).
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(b) Domain of definition of the diagonal.

Fig. 9. Pushout construction in Par(C).

5. Conflict-freeness and relationship with DPO

We begin with an analysis of Par(C)-pushouts in terms of an elementary construction in the underlying category 
C. This construction has originally been formulated for graph-based structures using set-theoretic concepts in [25] and was 
later stated purely categorically in [37]. Michael Löwe also developed an even more general (pushout-like) gluing construction
of morphisms in arbitrary span categories [35,36]. Fig. 9a depicts a gluing construction diagram for the Par(C)-pushout 
from Fig. 3b in Definition 1:

The squares (i) and (ii) are pullbacks, the bottom right square is a pushout, and δ is its diagonal. Special attention goes 
to D , the domain of definition of the pushout diagonal [d, δ〉 : L ⇀ H in Par(C). Intuitively, it is the “biggest” subobject of L, 
on which the domain restrictions of both ρ and μ are totally defined and that is also a subobject of the intersection of the 
domains of definition of [m, μ〉 and the rule [λ, ρ〉 [25]. Categorically, cf. [37], D is given by applying the comonad κ−1∀κ :
Sub(L) → Sub(L) w.r.t. to the adjunction κ−1 � ∀κ (Definition 4) on [m] � [λ] ∈ Sub(L), which is given by the pullback 
(intersection) of m and λ. The morphism κ := κL is constructed by calculating the colimit (A, (κx : x → A)x∈{G,M,L,K ,R})
of the diagram (μ, m, λ, ρ) in C by subsequent pushout applications, see Fig. 9b. In [37], it was shown that, for this 
constructed D , one also obtains ∀ρ [m] = [m′] and ∀μ[λ] = [λ′].

In Definition 1, we introduced an SPO-derivation as a single pushout in a category of partial morphisms Par(C) along 
a total match morphism μ. Thus, m is the identity on L, and therefore M = L and [m] � [λ] = [λ]. The match μ is said to be 
conflict-free when the co-match [m′, μ′〉 is total, i.e. m′ is an isomorphism. It is desirable to have a concrete characterisation 
of conflict-freeness, i.e. for m′ being an isomorphism in RCS.

Indeed, there exists a characterisation in G: A match μ : L → G w.r.t. a rule [λ,ρ〉 : L ⇀ R is conflict-free, if and only if 
the following statement holds:

∀x, y ∈ L : μ(x) = μ(y) =⇒ (x ∈ K ⇔ y ∈ K ), (15)

see [25]. Our goal is to show that (15) characterises conflict-freeness also in RCS, although the involved construction of 
upper adjoints can, in general, not be carried out componentwise. Recall that we can choose involved monomorphisms 
λ, m′, m, etc as inclusions. Again, we use capital letters to denote the respective domains of partial maps, cf. Sect. 2.4.

Theorem 2 (Conflict-freeness). Let in RCS a linear rule [λ,ρ〉 : L ⇀ R be given. A total match μ : L → G is conflict-free, if and only 
if (15) holds for μ in RCS.14

Proof. “⇒”: Assume that μ is conflict-free, i.e. μ′ is total. Thus, m′ can be chosen as identity and it follows that B = R and 
D = K. Now assuming that the implication in (15) does not hold, i.e. ∃x, y ∈ L : μ(x) = μ(y) and w.l.o.g. x ∈ K ∧ y /∈ K. Now, 
when constructing the colimit A of the spans (λ, ρ) and (m, μ) the morphism κ : L → A maps x and y to the same element 
because μ does. Let z := κ(x) = κ(y). Thus z /∈ ∀κλ due to the definition of ∀κ , cf. Proposition 4, and therefore x /∈ D. But 
this is a contradiction since we already had D = K and x ∈ K.

“⇐”: The construction in Fig. 9b shows that validity of the implication (15) carries over to κ , because ρ is a monomor-
phism, thus

∀x, y ∈ L : κ(x) = κ(y) ⇒ (x ∈ K ⇐⇒ y ∈ K). (16)

In the sequel, we refer to objects and morphisms in Figs. 9a, 9b. To show that m′ is an isomorphism, we have to take 
a closer look at the construction of the upper adjoint ∀κλ, when (16) is valid. There is no larger subobject of A, which 
pulls back to a subobject of λ, than the one, which arises from componentwise construction of upper adjoints in G, i.e. by 
calculating ∀κi λi for all −n ≤ i ≤ n, where κ− j/λ− j are the restrictions of κ0/λ0 to the domains of definition of l j/k j . By (6)
(and surrounding remarks) and (16) there are resulting pullback squares for all 1 ≤ j ≤ n, see Fig. 10.

14 A statement x ∈ K for some comprehensive system K means: x is an element of a component K j or a commonality representative in K0.
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Fig. 10. Componentwise construction of upper adjoints possibly yields no RCS-morphism ∀κλ (dotted lines).

Because κ is a reflective morphism, the universal property of ∀κ0 , being the right-adjoint of the pullback functor in G
(see Sect. 2.4), yields unique partial G-morphisms p j in the comprehensive system P = (p j : P0 ⇀ P j). E.g. the arrow ⊆ in

K0
κ ′

0 P0

dom(k j)
κ ′

− j

P− j

⊆ (17)

arises due to the universal property of the right-adjoint.
Universality also yields CS-morphism ∀κλ : P → A. However, this arrow must not necessarily reflect definedness, see 

the dotted lines in Fig. 10.
To achieve reflection of definedness, one reduces P0 to the largest subalgebra P ′

0, such that the restriction of this arrow 
becomes reflective. To define P ′

0, one has to remove elements z from P0, for which there is j, such that p j is undefined, 
but a j is defined, together with all z′ which are mapped to z by a sequence op of applications of functions in P0, i.e.: If z
is thus removed, every z′ , for which z = op(z′) must also be removed. Clearly, definedness of a partial morphism on some 
element z′ implies definedness also on z = op(z′), i.e. we remove only elements, where p j is undefined. Thus, the graphs 
(P j) j≥1 or j≤−1 remain unchanged.

Assume now that m′ in Fig. 9a is not an isomorphism, then, by the definition of upper adjoint (Definition 4), m is 
also not surjective. Hence there is y ∈ K \ D. Because P j are not reduced for j ≥ 1, we have K j = D j , see Fig. 10, hence 
y ∈ K0 \ D0. Let

z := κ0(y),

then z ∈ P0 (left pullback square in Fig. 10). Assume z ∈ P ′
0, i.e. p j(z) is defined if and only if a j(z) is defined. Since 

d0 : D0 → L0 arises as the component with index 0 of the pullback of ∀κλ along κ0, we must have y ∈ D0, a contradiction.
Thus, z ∈ P0 \ P ′

0 such that z must have been removed from P0 when creating P ′
0. But then, by the above remarks, 

p j(z) must be undefined, i.e. z /∈ P− j . Hence, (17) yields y /∈ dom(k j) such that k j(y) is undefined and thus: (I) a j(z) is 
undefined, because κ ◦ λ : K → A is reflective. Then, z can only have been removed due to some z′ , for which z = op(z′)
and p j(z′) undefined and (II) a j(z′) is defined, see the construction above. But this contradicts the fact that a j is a partial 
G-morphism, because then z = op(z′) yields (II) ⇒ ¬ (I). �

SPO at conflict-free matches generalises DPO and SqPO with linear left-hand sides: When a match is conflict-free, the 
morphisms m, m, m′ in Fig. 9a are isomorphisms and likewise can be chosen as identities since all constructions are only 
up to isomorphism. Hence, the upper row in Fig. 9a collapses. The square (ii) is a pullback, more concretely the chain of 
morphisms (λ′, μ) is constructed as a mono-final pullback complement [39], which coincides with the pushout complement 
[34] if the latter exists. The square with diagonal δ is a pushout by construction and therefore the gluing diagram in Fig. 9a 
becomes the diagram of a SqPO or DPO derivation, cf. Fig. 3a.

Finally, we demonstrate the differences between SPO, SqPO and DPO at a concrete example. Fig. 11 shows two rule 
applications that are possible in SPO but not in DPO because in both cases there exists no pushout complement (because 
the dangling (Fig. 11a) and identification (Fig. 11b) conditions [27] are violated). The rule in Fig. 11a demonstrates how 
the application of a rule, which specifies the deletion of a contact-object in the CRM (e.g. cause a customer opts out 
from receiving more marketing material), leads to a deletion of incident edges, including a deletion of the commonality 
(1), otherwise the inclusion H ↪−→ G would not be reflective. The match μ in Fig. 11a is conflict-free and the rule could 
also be interpreted as a SqPO-rule leading to the same result. The rule application in Fig. 11b shows a match μ that is 
not conflict-free, i.e. μ′ is partial. The rule specifies a deletion of contracts when there is a case depending on two
contracts (e.g. due to removing ambiguity). Constructing the Par(RCS)-pushout for this rule and the non-injective μ
results in deleting both contracts together with associated commonalities, an effect known as “precedence of deletion over 
preservation”. As the latter effect may be undesired in practice, matches are sometimes required to be monomorphisms as 
well [47]. Moreover, this SPO rule application can not be interpreted as an SqPO rule application, because SqPO requires 
final pullback complements when applying the left leg of a rule, but the four morphisms in Fig. 11b obviously do not form 
a pullback.

As a conclusion, SPO is much more “liberal” compared to the more restrictive DPO when it comes to rule application, 
which, however, sometimes may lead to undesired results.
39



P. Stünkel and H. König Theoretical Computer Science 884 (2021) 23–43
Fig. 11. Non applicable DPO rules.

6. Conclusion

We introduced the category CS of Comprehensive Systems which is basically a functor category invented in [8] and gen-
eralised in [45], its basic ideas originating from the theory of triple graphs [4]. A CS-object represents an all-embracing 
view on a software system of possibly heterogeneously typed components, in which all inter-model relationships are in-
ternalised and where “partiality” is the crucial methodology allowing to collect (possibly different kinds of) commonalities 
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Fig. 12. Overview over categories.

between components into a single component. As long as the parameter n is chosen large enough, the overall schema of 
CS-objects remains constant independent of the system landscape under consideration.

Despite the presence of heterogeneous typings, a universal treatment of these systems can be achieved by representing 
the components as graph-like structures, i.e. objects of a presheaf topos category G, a category based on signatures with 
unary operation symbols only. In contrast to “fully” partial algebras, comprehensive systems allow partiality only for the 
inter-relation between commonalities and components, whereas the algebraic inner component structure remains total.

Graph transformations and especially the SPO approach rely on the existence of (certain) pushouts, which do not exist 
in Par(CS) even in simple examples. Hence, we narrowed the universe of discourse from CS to the subcategory RCS, 
which has the same objects as CS, but morphisms are claimed to reflect definedness of the partial maps within the 
systems. Typed systems TRCS(T) over a fixed type system T were introduced alongside.

In order to investigate the applicability of the SPO technique for comprehensive systems, the categories Par(C), whose 
morphisms serve as SPO rules, were introduced. Comprehensive systems were put into this context. The complete picture 
of all mentioned categories is depicted in Fig. 12, where dom is the usual domain functor out of comma categories, I,I ′
are inclusion functors, R� is the restriction of the graphing functor to RCS, and �(T) analogously embeds typed systems.

We proved the following main results:

• RCS is a hereditary pushout category and hence also a weak adhesive HLR category, i.e. fundamental results about 
parallelism and confluence are valid.

• Par(RCS) and Par(TRCS(T)) possess all pushouts and qualify for successful application of SPO rewriting in RCS
and TRCS(T).

• The set-theoretic characterisation of conflict-freeness carries over to SPO rewriting in RCS.
• Definedness-reflecting (closed) morphisms inherently contain negative application condition facets.

7. Related and future work

The best reference for Single Pushout Rewriting is [1], see also [48]. Pushouts in partial map categories and especially 
hereditariness of colimits have been thoroughly investigated in [37,40].

Our approach still lacks the proof that it is practically useful, but we hope that SPO rules can serve as a basis for repair 
rules [45,49] in order to maintain consistency of multimodels [43,7]. Another important aspect is a detailed analysis of 
attributes and computations on them, which is often necessary in practice. Though, we conjecture that the results of this 
paper still hold when we exchange G with attributed graphs, it may be worthwhile to look at possibilities that avoid 
“copying” the algebra part n-times for every component of a comprehensive system, possibly by borrowing ideas from [50].

The strength of “intrinsic” partiality in algebraic structures is nothing new [51]. These old insights not only helped us 
to prove SPO applicability in comprehensive systems, but, in former papers, we were also able to generalise the dynamical 
behaviour of triple graph grammars and graph diagram grammars [3,14], which was already mentioned in the introduction. 
Michael Löwe recognised these strengths especially in [25], e.g. the simplicity of initial graph-like structures, but he was also 
interested in partial algebras in later years: [2] demonstrates that he continued to work in that area. There is, however, a 
subtle, but important difference between partial algebras and comprehensive systems: Whereas the former allow partiality 
for all operations, the latter allow partiality only for the commonality definitions but not for the inner component structures, 
such that general results for partial algebras not always carry over.

Compared to the previous conference version, we now provided an analysis of conflict-freeness and accounted for typed 
comprehensive systems. Still, more properties of graph rewriting of comprehensive systems remain to be investigated. E.g. 
we have to consider comprehensive systems as an indexed category N →CAT , i.e. we want to investigate the behaviour, 
which arises when n is varied. The situation is as in the following quotation: “The contents of this [paper] should rather be 
considered a starting point . . . than the final document of this research issue”.15
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[20] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, F. Zanasi, Confluence of graph rewriting with interfaces, in: H. Yang (Ed.), Programming Languages 

and Systems, in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2017, pp. 141–169.
[21] H. Ehrig, M. Löwe, Categorical principles, techniques and results for high-level-replacement systems in computer science, Appl. Categ. Struct. 1 (1) 

(1993) 21–50, https://doi .org /10 .1007 /BF00872984.
[22] H. Ehrig, U. Prange, G. Taentzer, Fundamental theory for typed attributed graph transformation, in: H. Ehrig, G. Engels, F. Parisi-Presicce, G. Rozenberg 

(Eds.), Graph Transformations, Springer, Berlin, Heidelberg, 2004, pp. 161–177.
[23] Object Management Group, Unified Modeling Language (UML) v.2.4.1, http://www.omg .org /spec /UML, 2015.
[24] Object Management Group, Meta Object Facility (MOF) core specification v. 2.4.1, http://www.omg .org /spec /MOF, 2016.
[25] M. Löwe, Algebraic approach to single-pushout graph transformation, Theor. Comput. Sci. 109 (1) (1993) 181–224, https://doi .org /10 .1016 /0304 -

3975(93 )90068 -5.
[26] H. Ehrig, U. Prange, Weak adhesive high-level replacement categories and systems: a unifying framework for graph and Petri net transformations, in: 

K. Futatsugi, J.-P. Jouannaud, J. Meseguer (Eds.), Algebra, Meaning, and Computation: Essays Dedicated to Joseph A. Goguen on the Occasion of His 
65th Birthday, in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2006, pp. 235–251.

[27] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic Graph Transformation, 1st edition, Springer-Verlag, Berlin, Heidelberg, 2006.
[28] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, World Scientific, 1997.
[29] H. Ehrig, M. Pfender, H.J. Schneider, Graph-grammars: an algebraic approach, in: 14th Annual Symposium on Switching and Automata Theory, SWAT 

1973, 1973, pp. 167–180.
[30] H. Ehrig, A. Habel, H.-J. Kreowski, F. Parisi-Presicce, From graph grammars to high level replacement systems, in: H. Ehrig, H.-J. Kreowski, G. Rozen-

berg (Eds.), Graph Grammars and Their Application to Computer Science, in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1991, 
pp. 269–291.
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