
A FRAMEWORK FOR
MULTI-MODEL CONSISTENCY

MANAGEMENT

Doctoral Dissertation by
Patrick Stünkel

Thesis submitted for
the degree of Philosophiae Doctor (PhD)

in
Computer Science:

Software Engineering, Sensor Networks and Engineering Computing

Department of Computer Science,
Electrical Engineering and Mathematical Sciences

Faculty of Engineering and Science

Western Norway University of Applied Sciences

September 16, 2021

©Patrick Stünkel, 2022

The material in this report is covered by copyright law.

Series of dissertation submitted to
the Faculty of Engineering and Science,
Western Norway University of Applied Sciences.

ISSN: 2535-8146
ISBN: 978-82-93677-99-4

Author: Patrick Stünkel
Title: A Framework for Multi-Model Consistency Management

Printed production:
Molvik Grafisk / Western Norway University of Applied Sciences

Bergen, Norway, 2022

to my parents

in memoriam Michael Löwe† (1956 - 2019)

PREFACE

Dear Reader,
whatever might have brought you here, I can assure you that I will appreciate every

second that you may spend on these pages! There is a significant but unquantified
amount of work hours that went into writing this text and still there are parts that could
have deserved more refined formulations, more examples, more time. It is certainly a
challenge to put all the insights and knowledge attained over this four year long period
of my life into one comprehensive text (= linear sequence of characters). Yet, I hope that
this result marks a satisfying attempt and that it, in spite of the common impression,
will find its way into the hands of more people than the small circle of supervisors, close
colleagues, and opponents. I also hope that you may find the diagrams in this thesis
appealing, the presented concepts useful, and/or the discussions thought-provoking.

Voss, 16.09.2021

SCIENTIFIC ENVIRONMENT

The author of this thesis has been employed as a Ph.D. research fellow at theDepartment
of Computer Science, Electrical Engineering (Institutt for datateknologi, elektroteknologi
og realfag (IDER)) at the Western Norway University of Applied Sciences (Høgskulen på
Vestlandet (HVL)) and is enrolled in the Ph.D. program Computer Science: Software
Engineering, Sensor Networks and Engineering Computing at HVL.

The research presented in this thesis has been conducted in the Software Engineering
research group at IDER under supervision of Prof. Yngve Lamo (HVL), Prof. Harald
König (HVL/FHDWHannover), and Prof. Adrian Rutle (HVL).

ACKNOWLEDGMENTS

There are 3+ 1 names that have to be mentioned first. Without them, this thesis would
not exist. Yngve Lamo was the initiator behind my PhD position at HVL and has been a
constant source of ideas, inspiration, and general advice. Harald Königwas the one that
encouraged me to apply for a PhD position at HVL. From this moment on, he helped
me in various ways during all stages of this PhD project. He had a significant impact
on the quality of this thesis and the formal aspects of my work. Furthermore, he has
been a focal point during my visits to Hannover, providing hospitality and insightful
discussions. Adrian Rutle, with whom I spent innumerable hours drafting new ideas,
polishing joint papers, hunting for dangling words, and refining formulations. He also
invited me to his home. We went skiing together and always remained the focal point
when I looked for general advice about work and life in Norway. These three persons
read the many early drafts of this thesis, and I am greatly indebted for their support.

In addition to these central people, I must mentionMichael Löwe, who left us way
too early in 2019. His sharp mind, seemingly endless energy, and unique way of
thinking things to their last consequences was what got me hooked and finally lead
me to pursue an academic career in Computer Science. His intellect and advice, even
though at times being very “direct”, is sadly missed. Thus, I want to dedicate this
thesis to his memory.

Of course, there are many more people whose influence brought this project to
a good end. Uwe Wolter was the one that helped me to consolidate my somewhat
fragmented knowledge about category theory originating from a brief exposure during
mymasters. Zinovy Diskinwas the one who opened the last doors to the higher spheres
of category theory by pointing me in the right direction. He must also be credited for
inviting me to Canada to conduct my research stay at McMaster University in Hamilton,
Ontario. I definitely learned a lot during our intensive period of work together, which,
however, had to be ended prematurely admits to a global pandemic.

At HVL, I want to thank all my colleagues for making working there always a
pleasant experience: Kristin, Pål, Lars Michael, and Håvard for being the superiors that
an employee could wish for by keeping formalities and politics out of the way so I could
focus on my research; Violet and Volker for inviting me over for board games several
times and, in 2018, giving me the opportunity to visit Brasil; and all those fellow PhD
students I spent the office, lunches, and chats in front of the coffee machine with: Alex
& Angela, Justus, Rui, Michele, Tim, Suresh, Anton, Faustin, Saleh, Rizwan. Most notably,
there are Fernando with whom I spent a lot of time skiing and pub crawling during my
first months in Bergen, and, of course, my board neighbour Frikk with whom I had
countless insightful philosophical discussions.

Outside the office building, probably the most important person in Bergen is Bjørnar
Skaar Haveland. Hewas the first real Norwegian that I talkedwhowas notmy supervisor.
He invited me to move into his “Kollektivet”. Moving in into Nøstegaten was probably
on of my best decisions ever and helped me so much in my first months in Bergen, far
from home. Thus, I want to thank all those who lived or stayed at Nøstegaten while I
was there: Henrik, Anders & Astrid, Camilla, Runa & Osamah, Janine. And also Elsa (for

keeping on building a canoe polo community in Bergen) and the other two German
expatriates, Seb & Carsten, for good times in the mountains together.

Another big acknowledgment goes out to the “paddle family” (in no particular
order: Victor, Ruben, Rafal, Julian & Tess, Martin & Nicole, Espen, Marit, Eirik, Helge,
Halfdan,Mie,Mia, Sasha, Rob, Kamilla & Johann, Rasmus & Vilde,Mariann, Jasper, Claire,
Nico &Marelene,Mark Basso,Marcio, John, Lucie&Lee, Silje& Lars Georg,Martin&Marita,
Johann (ISL), Herrmund, Derek & Tora) for numerous “best days ever” on, in and by
the river. Most of these names are or had been located in Voss, which has become
my new home after returning to Norway after my research stay. In this small town, I
have mention two persons especially: Dag Sandvik was the first person that took me
paddling in Norway and has since become a good friend always providing tasty food,
fantastic coffee, and good (philosophical) conversations. Preben Ukvitne is probably the
person I paddled the most with. He let me stay at his place on very short notice after
leaving Canada head over heels.

Last but not least, there are all my friends and my family back in Germany. Living
in a different country, keeping contact and friendships over long distances is not always
easy. But knowing that it was possible withmy friends back in Germany is undoubtedly
uplifting. I would like to thank my parents, uncle Thomas, and my badass grandfather
Manfred for always supporting me. Anne & Charly for always inviting me over when I
am back in Germany and visiting me in Norway. Simon Hirt for all the good times on
the river and visiting me several times in Norway with Nadja, Pascal and Anna. Daniel
Steinmeyer for agreeing to read the final draft of this thesis on very short notice and
giving very extremely constructive remarks. My oldest friends Philipp, Dustin, Basti,
Tom, and Johannes for the possibility to always come back home and continue exactly
where we left off. And, of course, the Linden “hood” Fabi, Lisa, Steffen, and Jessi for
inviting me again and again for breakfast and board games.

ABSTRACT

Software systems have become crucial for society and the economy to function.
Constantly they are permeating more and more application domains. Also, they
are getting increasingly integrated with already existing systems. As a result, the
development and maintenance of such systems are getting increasingly complex
as well. Abstraction is a central key to tackle this complexity. Thus, the software
engineering research discipline conceives software systems through the means of
models, i.e. simplified representations of reality that simultaneously describe and
prescribe the structure and the behaviour of these systems. When engineering system’s
integration, the overall design involves multiple models at the same time because each
model focuses on a specific aspect of the overall system. This setting is commonly
called a multi-model. A major open challenge in software engineering is to maintain
the consistency of a multi-model: The individual members of a multi-model are
often overlapping and are authored by distinct stakeholders, which may result in
inconsistencies, which negatively affect the quality of the system under development.
Hence, there is a necessity for a recurring activity, which I am going to call multi-model
consistency management throughout this thesis. This general activity includes several
challenging software engineering sub-problems such as aligning heterogeneousmodels,
automatic consistency verification and model repair, therefore touching on a range of
related research fields. In this thesis, I address limitations with existing approaches
and develop a solution to the issue of multi-model consistency management. The
fundamental novelty of my solution is its ability to handle multi-models of arbitrary
arity because established approaches are mainly limited to binary situations.

Software engineering is a constructive scientific discipline and, therefore, this thesis
follows a constructive approach. In particular, three artefacts are constructed: (i) A
conceptual model of the problem domain; (ii) A formalism called comprehensive systems
(iii) A prototype tool calledCorrLang. Each artefactmarks a contribution to the existing
body of scientific knowledge providing value for both researchers and practitioners
in software engineering. The conceptual model provides methodological value for
software engineers, software architects and decision-makers dealing with multi-model
consistency management problems by providing guidelines for analysing concrete
scenarios. The formalism provides theoretical value and allows to abstractly represent
and reason about inter-related software models in a technology-independent way,
which can be used to develop solutions on a high level of abstraction. Simultaneously,
it represents a generalisation of existing formalisms that have been used to describe
the synchronisation of multi-models. Finally, the prototype provides practical value,
which on the one hand, demonstrates the implementability of the conceptual and the
formal framework, and on the other hand, it is directly applicable for end-users to solve
concrete multi-model consistency management problems.

SAMANDRAG

Programvaresystema har vorte naudsynt for samfunnet og økonomien i sitt virke. Dei
gjennomsyrar stadig fleire område. Samstundes aukar graden av integrasjonen mellom
systema. Som et resultat har utviklinga og vedlikehald av slike systema vorte stadig
meir komplekst. Abstraksjon er sjølve nøkkelen for å takla denne kompleksiteten. Difor
forstår forskingsdomenet programvareutvikling (Software Engineering) programvaresys-
tema gjennom modellar, dvs. forenkla bilete av røynda som på ei og same tid skildrar
og spesifisera strukturen og framferda til slike system. Når ein jobbar med ei mengd
av samankopla system må ein bruke fleire modellar fordi kvar modell omfattar berre
eitt einskild aspekt ved heile det underliggande systemet. Situasjonen omtalast gjerne
som ein multimodell (multi-model). Ein situasjon som representerer eit uløyst problem
i vitskapen bak programvareutviklinga. Det kan nemleg vera utfordrande å halda alle
modellar konsistente fordi det er indre samanknytingar mellom dei enkelte delane av
ein multi-modell som oppstår gjennom overlappingar og relasjonar mellom dei enkelte
elementa. Når fleire aktørar modifisera dei einskilde modellane slik, kan det oppstår
inkonsekvensar som har negativ innverknad på kvaliteten til det overordna systemet
som er under utvikling. Det er såleis naudsynt med systematisk gjentakande aktivite-
tar eg vil samanfatta under omgrepet multimodell konsistenshandtering (multi-model
consistency management). Dette emne som då skal undersøkjast i denne avhandlinga
inneberer ulike utfordrande problem. Til dømes, tilpassingar av heterogene modellar,
automatisk konsistensverifisering og modellreparasjon. I denne oppgåva tek eg opp
svakheitar ved eksisterande tilnærmingar og presenterer ei løysning på problemet med
multimodell konsistenshandtering. Den mest grunnleggande nyvinninga i løysninga
mi er evna til å handtera multimodeller av vilkårlig aritet, fordi etablerte tilnærmingar
hovudsakleg er avgrensa til binære situasjonar.

Programvareutvikling er ein konstruktiv vitskapeleg disiplin, og difor følgjer denne
avhandlinga ein konstruktiv tilnærming. Spesielt verte tre artefaktar konstruert (i) Ein
konseptuell modell av problemdomenet; (ii) Ein formalisme kalla omfattande system
(comprehensive systems) (iii) Eit prototypeverktøy kalla CorrLang. Kvar av desse
artefaktane er eit bidrag til den eksisterande mengda av vitskapeleg kunnskap, med
verdi for både forskarar og praktikarar innan programvareutvikling. Den konseptuelle
modellen har ein metodisk verdi for programvareingeniørar, programvarearkitektar og
avgjerdstakarar som jobbar med problema knytta til konsistensstyring av fleire mod-
eller. Formalismen har teoretisk verdi og gjev ein høve til å representera innbyrdes
relaterte programvaremodeller på ein abstrakt, teknologiuavhengig måte, noko som i
neste rekke opnar for å resonnere over dei. Samstundes representerer denne formalis-
men ein generalisering av eksisterande formalismar som har blitt brukt til å skildre
synkronisering av multimodeller tidlegare. Til slutt gjev prototypen praktisk verdi. På
den eine sida demonstrerer den at det konseptuelle og formelle rammeverket er gjen-
nomførleg, og på den andre sida representera den eit løysning som direkte kan takast i
bruk for multimodell konsistenshandtering.

LIST OF ABBREVIATIONS

BNF backus naur form.

BPMN Business Process Model and Notation.

BX bidirectional transformations.

CR consistency rule.

CS computer science.

CSP constraint satisfaction problem.

Decision Model and Notation Decision Model and Notation.

DPO double pushout.

DSL domain specific language.

EHR electronic health Record.

EMF Eclipse Modeling Framework.

ER entity-relationship.

FHIR Fast Healthcare Interoperability Resources.

FOL first order logic.

GG Graph Grammar.

GP general practitioner.

GT graph transformation.

HL7 Health Level 7.

HLR high level replacement.

HTTP HyperText Transfer Protocol.

ICD International Classification of Diseases.

ICT information and communications technology.

IDE integrated development environment.

JSON JavaScript Object Notation.

LOINC Logical Observation Identifiers Names and Codes.

MDA Model-Driven Architecture.

MDSE model-driven software engineering.

MOF Meta Object Facility.

OCL Object Constraint Language.

OO object orientation.

OWL Web Ontology Language.

PL programming language.

RDF Resource Description Framework.

REST REpresentational State Transfer.

RPC Remote Procedure Call.

SAT satisfiability.

SE software engineering.

SMT satisfiability modulo theories.

SNOMED-CT Systematized Nomenclature Of Medicine - Clinical Terms.

SOA service oriented architecture.

SOAP Simple Object Access Protocol.

SQL Structured Query Language.

TGG triple graph grammar.

UML Unified Modelling Language.

URL unique resource locator.

WS web service.

XMI XML Metadata Interchange.

XML eXtensible Markup Language.

XSD XML Schema Definition.

Contents

Preface i

Scientific Environment iii

Acknowledgments v

Abstract vii

Samandrag ix

List of abbreviations xi

I INTRO 1

1 Introduction 3
1.1 Challenges: Interoperability, Consistency, and Traceability 3
1.2 Solutions: Software Engineering and Modelling 6
1.3 Motivational Scenarios . 10

1.3.1 Semantic Interoperability between Software Systems 10
1.3.2 Consistency of Software Design Documents 17

1.4 Research Project: Multi-model Consistency Management 23

2 Method 27
2.1 Philosophy of Science . 27

2.1.1 Philosophy: A (short) historical account 27
2.1.2 Science: The Demarcation Problem 29
2.1.3 Research Methodology . 30

2.2 Research Methodology in Constructive Sciences 31
2.3 Research Methodology in Software Engineering 33
2.4 Research Methodology in this PhD project 34

II CONTRIBUTIONS 35

3 Conceptualisation 37
3.1 Existing Concepts & Ideas . 37

3.1.1 View-based Software Development 37
3.1.2 (In)consistency Management . 38

3.1.3 Traceability Management . 40
3.1.4 Consistency Management in UML 41
3.1.5 Multi-View Modeling . 41
3.1.6 Metamodeling . 42
3.1.7 Model Transformation . 43
3.1.8 Model Management . 44
3.1.9 Megamodeling . 45
3.1.10 Model Repair . 46
3.1.11 Bidirectional Transformations . 47
3.1.12 Coupled Evolution . 49

3.2 Generic Model Management Framework 50
3.2.1 Artefacts . 50
3.2.2 Operations . 51

3.3 Multi-Model Consistency Management Framework 54
3.3.1 Model Spaces . 54
3.3.2 Commonalities . 55
3.3.3 Consistency Rules . 56
3.3.4 Model Repair . 57
3.3.5 Architectures . 57
3.3.6 Summary: Conceptual Model . 59

4 State of the Art 61
4.1 Method . 61
4.2 Feature Model . 63

4.2.1 Models . 64
4.2.2 Change . 65
4.2.3 Conformance . 66
4.2.4 Correspondence . 68
4.2.5 Matching . 72
4.2.6 Consistency . 72
4.2.7 Verification . 73
4.2.8 Repair . 74

4.3 Observations . 79
4.4 Demonstration of Selected Approaches 80

4.4.1 Echo . 80
4.4.2 Epsilon . 83
4.4.3 eMoflon . 87

4.5 Summary & Identified Limitations . 89

5 Formalisation 91
5.1 Representation . 92

5.1.1 Formalising Models . 92
5.1.2 Formalising Conformance . 98
5.1.3 Formalising Change . 104
5.1.4 Formalising Correspondence . 109

5.2 Verification . 114

5.2.1 Verification via Merging: Colimit 117
5.2.2 Verification via Weaving: Comprehensive System 121

5.3 Restoration . 126
5.3.1 Back- and Forth-propagation . 126
5.3.2 Adhesivity . 128
5.3.3 Triple Graph Grammars and Graph Diagrams 133

5.4 Summary & Future Directions . 136

6 Implementation 141
6.1 First Iteration: GraphQL Federation . 142

6.1.1 Background: Web Services & GraphQL 142
6.1.2 Problem Statement: Federation 145
6.1.3 Existing Tool: Apollo Federation 147
6.1.4 Solution Design: Declarative Schema Merging 149
6.1.5 Solution Implementation: GraphQLIntegrator 152

6.2 Second Iteration: Model Management Functionality 154
6.2.1 Tech Spaces: Integrating EMF . 155
6.2.2 Comprehensive Systems: Generalising the Federation 157

6.3 Third Iteration: Consistency Management Functionality 159
6.3.1 Integration of existing verification tools 159
6.3.2 Common Constraints: INTEGRITY & FORALL 160
6.3.3 Model Management via Goals 162

6.4 Summary & Future Directions . 164

7 Validation 167
7.1 Validation of the Conceptual Framework 167
7.2 Validation of the Formalism . 169
7.3 Validation of the Tool . 170

7.3.1 Feasibility . 170
7.3.2 Features . 178
7.3.3 Scalability . 180

III OUTRO 189

8 Conclusion 191
8.1 Summary . 191
8.2 Threats to Validity . 192
8.3 Related Work . 193

8.3.1 Industrial Solutions . 193
8.3.2 Academic Approaches . 194

8.4 Future Work . 195
8.5 Conclusion . 196

Bibliography 236

A Literature Study Refinements 237

B Proofs 243
B.1 Proof of Theorem 8 . 243
B.2 Proof of Theorem 9 . 245
B.3 Proof of Theorem 5 . 246
B.4 Proof of Proposition 13 . 247
B.5 Proof of Theorem 14 . 247
B.6 Proof of Theorem 15 . 249
B.7 Proof of Proposition 17 . 250
B.8 Proof of Theorem 18 . 251

C Category Theory Essentials 253
C.1 History and Background . 253
C.2 Introduction . 254
C.3 Important Concepts . 262

Part I

INTRO

“No problem is so big or so complicated that it can’t be run
away from!”

—Linus van Pelt in The Peanuts (Charles M. Schulz) CHAPTER 1
INTRODUCTION

It is hard to think of any aspect of our everyday life that is not already permeated or
at least affected by information and communications technology (ICT). For instance,
purchasing an item in an online retail store, paying for it by credit card, booking an
appointment at a doctor, reading a PhD thesis in a PDF reader etc. This phenomenon
has been recognised by computer scientists [201], social scientists [83], economists [423],
policy makers and journalists [16] alike. These days, it appears in the public discussion
under the name “digitization”, which describes the ever-increasing importance of ICT,
especially in sectors, which traditionally were not associated with computing.

Arguably, the most important part of ICT is Software. Software development and
maintenance are complex processes, which involve amultitude of different stakeholders
and constantly changing requirements. Thus, there are many examples of software
projects that were delayed, went over budget, or simply failed [63, 137, 315, 358].

Considering the socio-economic relevance, efficient (i.e. sustainable resource con-
sumption) delivery of correct (i.e. meeting the requirements), safe (i.e. absence of
unintended behaviour), and secure (i.e. protection against intrusion and abuse) software
systems marks a major challenge in the 21st century.

1.1 Challenges: Interoperability, Consistency, and Traceability

Software is the designation for the entirety of all non-material computer programs. A
program is a collection of machine-readable instructions that tell a computer how to
act in order to perform a specific task. In this thesis, I will often speak of software
systems (Grek: “systema” = composition) to highlight the fact that a software product
generally consists of several smaller parts called components or modules. Software
systems have different shapes, complexity and purposes. According to Ivari [248], the
most common purposes of software systems are to automate (i.e. to reduce the share of
manual activities), to augment (i.e. to provide assistance during a manual activity), to
mediate (i.e. to act as means of communication), or to inform.

Nowadays, software systems have become more and more integrated [38], i.e.
formerly independent software systems have to interact with each other. Examples
are given by novel applications such as Industry 4.0, which describes the integration
of industrial assembly lines with internet technology, and Internet of Things, which
describes the integration of homeapplianceswith internet technology. Another example
is the growing number of applications and platforms that allow citizens to interact

Introduction

Folkeregisteret
(National person registry)

GP medical practices

Authentification Provider

Regional Hospital Organisations

Core Journal &
 Documents

User Clients

Social Services

Fig. 1.1: Helsenorge

with public authorities, one concrete representative being the web portalHelseNorge1 in
Norway. HelseNorge is an interface for Norwegian residents to electronically interact
with the national healthcare system and to inspect and review their personal medical
information. As a web portal, HelseNorge communicates with several other software
systems. A simplified overview is sketched in Fig. 1.1. HelseNorge is accessible through
various types of client devices. User authentication and authorisation are governed
by a digital authorisation provider (“bankID”). An authorised user can inspect their
hospital journals, which are maintained by the different regional hospital organisations
in Norway. Further, she/he can communicate and book appointments with her/his
GP. Moreover, the portal provides a digital mail box for the correspondence between
citizens and health care providers, allows to record core medical information (e.g.
allergies or vaccinations) in a central place, and is integrated with the national social
service provider (“NAV”) and the national person registry (“Folkeregisteret”). All
parties in Fig. 1.1 operate one or multiple software systems, which most likely were
built at various points in times, using different technologies, and created for diverse
purposes. This organisational, functional, and technical heterogeneity is a potential
source of interoperability issues [33].

Definition 1.1 Interoperability [95]

Interoperability is the ability of two or more systems or components to exchange
information and to use the information that has been exchanged.

The Healthcare Information and Management Systems Society, Inc. (HIMMS), an
industrial consortium fostering usage and improved quality of ICT in health care,
distinguishes four levels of interoperability [223]: Foundational interoperability describes
the basic ability of two or more systems to communicate in the first place. Structural
interoperability describes their ability to process the exchanged information. Semantic
interoperability describes their ability to interpret this information in “the same way”.
Finally, organisational interoperability refers to high-level aspects such as business

1www.helsenorge.no

4 Chapter 1

www.helsenorge.no

1.1 Challenges: Interoperability, Consistency, and Traceability

processes, regulations, laws and social factors. Semantic interoperability marks one of
the main motivations for the work presented in this thesis. This issue is a long-standing
research topic [382, 473] and requires the discovery and alignment of shared concepts in
the domains of the respective software system [33]. The latter is conceptually similar
to consistency management in software design and development and forms the second
motivation for this thesis.

Definition 1.2 Consistency [95]

Consistency describes the degree of uniformity, standardisation, and freedom
from contradiction among the documents or parts of a system or component.

As mentioned in the beginning, software development involves multiple stake-
holders, various technologies, and requirements that are constantly changing. Hence,
software systems are seldom built by a single person. Instead, there are multiple teams,
each focusing on a different component or aspect of the system under development.
These teams produce various artefacts when designing the system, e.g. a list of func-
tional requirements, a plan of the system architecture, a diagram showing the domain
entities and their relationships and so on. These artefacts describe different parts of
the same system. Consequentially, there are overlaps between these artefacts. Problems
occur when overlapping system specifications differ. Such inconsistencies can lead to
misunderstandings, incompatible components, unwanted behaviour or even system
failure. Allegedly, the company Airbus lost approx. 6.1 billion dollars due to inconsis-
tencies in design documents [496], and an investigation [437] on the MARS Climate
Orbiter accident revealed that its crash was due to an inconsistency (mismatch between
metric and imperial units). Inconsistencies arise when some of the design artefacts
change but not all occurrences of overlaps are changed accordingly. Thus there is a
need for traceability among design artefacts.

Definition 1.3 Traceability [95]

1. The degree to which a relationship can be established between two or more
products of the development process [...].

2. The degree to which each element in a software development product
establishes its reason for existing; [...].

The term traceability originated in the Requirements Engineering (RE) research
discipline, i.e. the ability to follow the life of a requirement throughout the various
stages of the software development process and their different design artefacts [459].
It was later generalised to describe any kind of relationship between artefacts in the
software development process [7]. The issue of traceability has been investigated
by a large number of studies, see [352, 434, 459]. Yet, evidence for rigorous use of
traceability solutions in industrial settings is rare. Moreover, existing solutions are
reported as ad-hoc, vendor-specific, restricted to a certain domain or having limited
interoperability [138, 352, 462].

Chapter 1 5

Introduction

1.2 Solutions: Software Engineering and Modelling

The scientific discipline that investigates the issues related to software and its devel-
opment is called software engineering (SE). Its history is intertwined with the history
of computing itself [56]. Konrad Zuse’s Z3 (1941) or Mauchly and Eckert’s ENIAC
(1943-1945) are considered to be the first “real” computers. Prior to these inventions,
computers were merely an abstract idea, solely playing a role for some mathematicians
and logicians [465]. During its infancy, computer programming was performed close
to if not directly on the machine: Instructions were literally “hard-wired” such that
there was no strict distinction between hardware and software. Hence, programming
used to be an expert activity. It was performed by a small team of scientists with exten-
sive knowledge of the inner workings of the machine. A major breakthrough fuelling
the expansion of programming was the invention of compilers and the first high-level
programming languages FORTRAN [27] and COBOL [414], which allowed to write
instructions on a higher level of abstraction [484]. During the 1960’s, programming
grew from being an expert activity into a profession and the term “Software Engineer-
ing” was born. One of the first “big” commercial SE projects was the development of
the mainframe operating system OS/360 at IBM. It uncovered many of the inherent
difficulties of writing complex software systems with a big team of engineers. Many of
these insights are reported in Brook’s influential book [63]. Software projects at that
time often exceeded time and budget, which coined the term “Software Crisis”. This
Software Crisis was the incentive for a NATO conference held in Garmisch in 1968
[356], which is associated with SE becoming its own research discipline [64]. Boehm’s
article [52] also played a major role in disseminating software engineering issues in
the scientific community. Today, SE represents a distinct discipline within computer
science (CS). Parnas [375] defines Software Engineering as the multi-person creation of
multi-version software, while the IEEE standard glossary [95] defines it as follows:

Definition 1.4 Software Engineering [95]

Software Engineering is the application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of software.

SE is considered to be a socio-technical engineering discipline [158]. This means it is
situated in the tension field between the study of people and their behaviour in relation
to software on the one side and the study of (formal) foundations of software methods
and tools on the other side. There has been a heated dispute [221] about the direction
that should prevail in SE research. In his famous position paper [115], computer scientist
Edsger W. Dĳkstra promotes a rigorous use of mathematical methods as the solution
to the Software Crisis. This line of thought gave rise to the formal methods research
discipline [2, 50, 237]. Others emphasised the importance of the socio-organisational
part of software engineering [431]. This research direction provided evidence about
the efficient organisation of people in the software development process. Traditionally,
software development adhered to a long-running sequential “waterfall” process, while
nowadays, most software projects follow a more “agile” approach, i.e. delivering the
functionality of a software system in small iterations [40]. Again others argue that due
to its intrinsic complexity [62], there is not a single comprehensive approach but rather

6 Chapter 1

1.2 Solutions: Software Engineering and Modelling

a set of best practices [250, 375] and design patterns [191] that Software Engineers
should apply. Taking an Hegelian stance, the “conclusion”, most likely, lies in the
pluralism of all the knowledge, methods and tools [60] which have been aggregated
throughout the more than 60-year-long history of software engineering.

model-driven software engineering (MDSE) is a major sub-discipline of software
engineering, which I am going to focus on in this thesis. MDSE emphasizes the
importance of models as the primary entity in the software development process. The
term model, in the most general sense, refers to any artefact related to the creation
of a software system. The design artefacts mentioned in Section 1.1 are archetypical
example for such models.

Remark 1.1 Model – Etymology and Interpretation

The termmodel is arguably one of the most ambiguous terms in science. Its origin
(Lat: “modulus” = measure, standard) alludes to its most broad conception: A
model is a simplified representation of reality. It is used in this interpretation
by the empirical sciences (e.g. Bohr’s atom model, Newton’ classical mechanics)
and social sciences (e.g. Schulz von Thun’s four-sides communication model) to
formulate scientific theories. Logicians use the term model to describe a formal
construct that satisfies a given proposition. Statisticians use model as another
name for assumptions over a dataset (population). The Artificial Intelligence (AI)
sub-discipline Machine Learning uses the term model to describe a set of trained
parameters for a machine learning algorithm. In Software Engineering, model is
used in a rather undisciplined manner and may refer to various types of design
documents. A detailed historical account of the term model in science is given in
[417].

A speciality of the model-driven approach to software engineering is the double
nature of softwaremodels. They are simultaneously descriptive and prescriptive. Amodel
describes a certain component or aspect of the software systems under development, i.e.
acting as a simplified representation of the problem domain for which the system is
developed. Likewise, a model prescribes the structure or behaviour of the respective
component or system aspect, i.e. acting as a specification. Sufficiently “formal” models
can replace source code (the machine instructions written in a programming language)
given the necessary code generation or model execution facilities [61].

To illustrate this idea, consider Fig. 1.2. The figure depicts a simplified representation
of (an iteration of) the software development process. The process (iteration) begins in
the problem domainwith an informal description of the system’s requirements, often
given in natural language. The problem domain and the requirements are analysed and
translated into an abstract solution,which is technology independent. This development
phase is called design and its products are models. Models guide the engineers during
programming, i.e. the translation of the abstract technology-independent solution into a
technology-specify solution (i.e. program code). The resulting program is generally
augmented with code from existing software libraries and integrated with generic
system components such as databases or web servers before it is automatically compiled
into binary artefacts. These artefacts are the final result of the software development
process and can be deployed on a given platform (computer hardware, virtual machine,

Chapter 1 7

Introduction

Requirements Design
Artefacts

Source
Code

Artefacts
Binary

Artefacts

Analysis Design Development Deployment

0101

A
+ n: S

B
+ a: I

Compiler or
Interpreter

Code Generator or
ModelExecution

(MDSE)

(classic)

Fig. 1.2: Software Development Process: Classical and Model-Driven

hosted “cloud” infrastructures, etc.). In a “classical” software development process,
the transitions between the different stages, except for the final compilation, are based
on manual activities. In the model-driven variant, the models created during the design
phase are directly passed on to a code generation or model execution engine, see the
second branch in the lower half of Fig. 1.2. Thus, the “automation border” is shifted
from the solution domain towards the problem domain.

The fundamental goal behindMDSE is to raise the abstraction level from the solution
domain (technology) to the problem domain (people). The most obvious benefit
of model-driven software engineering, conveyed by the presentation in Fig. 1.2, is
automation [102, 476]: The generation of concrete artefacts (source code) from an abstract
description (model) renders many repetitive and error-prone activities, including
coding, redundant. This increases efficiency and possibly contributes to higher product
quality. In recent years, the communicative aspect of MDSE received increased attention.
This aspect is associated with domain specific languages (DSLs) [180, 321, 474]. This
concept, first reported in [43], trades the expressiveness of a generic programming
language against a less expressive but also less complex textual or graphical language.
This language embodies the concepts of the problem domain, which alleviates the
communication between domain experts and the software engineers because it abstracts
away from technical details of the solution domain. A third benefit is that formalmodels
allow the application of means for verification, simulation and exploration early on in the
development process. Thus, conceptual inconsistencies in the abstract specification
[249, 251] can be detected early and future system behaviour can be simulated [41].

MDSE has reportedly been successfully applied in industry [243, 486, 487], however,
it is not universally adopted by the software industry yet [351]. Still, MDSE-like ideas
can be observed throughout the history of software engineering. The introduction
of high-level programming languages and compilers could be considered as a first
attempt to raise the abstraction level in programming. With data types and control
structures, programmers could express their solutions on a higher level of abstraction
and did not have to reason about memory addresses and instruction counters any
more. The first programming languages FORTRAN and COBOL can be considered as
domain specific in the sense that they targeted a certain domain (scientific computing
and accounting, respectively).

In general, behavioural and structural models have been used as software specifica-

8 Chapter 1

1.2 Solutions: Software Engineering and Modelling

tions since the very beginning. Flow charts, originally introduced by the psychologists
Frank and Lillian Gilbreth and later adopted by the computer scientists John von Neu-
mann and Hermann Goldstine [210], allowed to develop an algorithm independently
of a concrete technology. The flowchart variant by Nassi and Shneiderman [355] as
well as state charts [219] are other examples of behavioural models.

The introduction of relational databases facilitated the design of the data model
independent of the program code. This sparked interest in structural modeling. Chen’s
[85] entity-relationship (ER)model is amethod to describe a datamodel on the conceptual
level in terms of entities and relations between them. The conceptual ER model is
translated into a logical model (tables) understood by the databasemanagement system.
This translation follows a standardised process. Hence, it is possible to automate it.
This motivated research within Computer Aided Software Engineering (CASE) – inspired
by Computer Aided Design (CAD) in other engineering disciplines. The final goal
was to completely automate the software development process. CASE had a period
of popularity during the 90s but it could never met the exaggerated expectations.
Nowadays, some CASE tools still exits but are considered niche application.

Around the peak period of CASE’s popularity, the object orientation (OO) paradigm,
which is still prevalent today, spread among software developers. This novel approach
to software design and programming required new notational systems for describing
data structures and algorithms as flow charts and ER diagrams were not perfectly
suited any more. An abundance of visual languages were created and eventually
consolidated in 1997 when theObject Management Group (OMG)2 adopted the graphical
notation developed by Booch, Jacobsen and Rumbaugh [405] as the first version of
the Unified Modelling Language (UML) [365], which remains the de-facto standard
modeling language in software engineering. Inspired by the CASE approach, the
“vision” of aModel-Driven Architecture (MDA)was formulated [388], which proposed to
replace coding by UML modeling, i.e. software systems are automatically generated
from a UML model that is refined through several stages. Just as CASE, MDA did not
prevail but some of the concepts and technology that was developed in this context
such asMeta Object Facility (MOF) [368] is still in use.

Kent [273] proposed a more broad and inclusive vision calledModel-Driven Engi-
neering (MDE). He emphasizes that MDE is not strictly tied to OMG-standards and
highlights the underlying ideas (e.g. utilising abstraction). This term developed into
research domain, labelled by various similar acronyms3, which comprises scientific
investigations concerning Unified Modelling Language (UML), DSLs, automated soft-
ware development, Language Engineering, Metamodelling, as well as formal modelling
(e.g. Z, B, VDM and Alloy [249]), and also approaches related to industrial engineering
toolkits such as Matlab/Simulink [261]. In this thesis, I will stick to the term MDSE as I
am working within software engineering and want to utilise the prescriptive power of
models. I interpret MDSE more in a methodological (i.e. working with abstraction in a
rigorous way) and less in a technological (i.e. focusing in the OMG-ecosystem) way. In

2an organisation originally founded to standardise an object-oriented communication protocol called
CORBA

3The literature contains a whole family of related acronyms (e.g. MDSD, MBSE, ...) which arises
from the cartesian product of {Model-Oriented (MO),Model-Based (MB),Model-Driven (MD)} and
{Software Development (SD), Software Engineering (SE), Engineering (E)}.

Chapter 1 9

Introduction

the SE dichotomy “people vs. technology”, MDSE leans more towards the technology
side. However, people-oriented SE methodologists themselves propose an idea called
Domain Driven Design (DDD) [160] which relies on the same basic ideas (i.e. starting
with abstract domain models instead of coding). Commercial actors are currently “sell-
ing” MDSE under the name “lowcode” platforms, e.g. OutSystems4, Mendix5 or Amazon
Honeycode6.

Concerning the challenges mentioned in Section 1.1, MDSE represents both a
“means” as well as an “end” to these challenges: On the one hand, well-described
domain models play a central role for achieving semantic interoperability. On the other
hand, model traceability and consistency management are long-standing open research
problems in MDSE, which hampers its further adoption by the industry [351], see the
“tool-related” challenges in the MDSE state-of-the-art report in [72]

1.3 Motivational Scenarios

After having introduced both problem domain (i.e. software, interoperability, con-
sistency, traceability) and solution domain (i.e. software engineering and modeling
(MDSE)), it is now time to have a look at two concrete problem scenarios that act as the
motivators for this PhD project.

1.3.1 Semantic Interoperability between Software Systems
Landscapes of software systems in organisations are highly heterogeneous. Simultane-
ously, integration of software systems is a common and important issue. Integration
means to turn separate things into a “whole”. In this case, several independent soft-
ware systems are aligned to create a distributed system, i.e. a system of systems [51]. Let
me explicate this issue on a concrete example from the health-care domain, namely
hospitalising a patient due to a broken leg. As in any other organisation, ICT plays an
important role in supporting this process.

Fig. 1.3 depicts an architectural overview of the software systems involved. Upon
arrival at the emergency room, an electronic health Record (EHR) is created, which will
be continuously updated throughout the whole hospital stay. The software system
storing these records is called a journal system. In the beginning, the patient’s record is
augmented with externally available information (medical history, allergies, etc.). This
information can be retrieved from the patient’s general practitioner (GP) by accessing
their journal system. Planning the patient’s surgery involves a software system whose
task it is to schedule the required resources (personnel, surgical suites, beds, ...).
Furthermore, during the hospital stay, X-ray images and blood samples are taken and
evaluated, which is performed by specialised software systems. Eventually, when
the patient is discharged, a third-party payment collector is invoked, who invoices
the patient for the received treatment. Thus, the overall picture includes (at least) six
software systems, which communicate within and across three different organisations.
Interoperability between these systems is indispensable: The medical history has to

4https://www.outsystems.com
5https://www.mendix.com
6https://www.honeycode.aws/

10 Chapter 1

https://www.outsystems.com
https://www.mendix.com
https://www.honeycode.aws/

1.3 Motivational Scenarios

Payment
Collector

Drug Supplier Laboratory

Hospital

GP

Admission Diagnostic Treatment Discharge

Medical
Journal

Medical
Journal

Operation
Scheduling

X-Ray
ImagingLaboratory

Invoicing

MedicalHistory
Patient

CarePlan

Medication
Practicioner

WorkPlan

Operation
Diagnostic
Result

Invoice

Payment

XML

«RPC»

«RPC»

XML

«DB»

«File»

«Messaging»

ContactData

Procedure

Observation

Allergy

Coverage

Observation

BloodProbe

Specimen
ImagingStudy

Report

Fig. 1.3: Systems around a patient treatment process

be retrieved from the GP’s journal system, the blood test results must be sent to the
journal system, and the payment collector requires the patient’s address and some
general information about the received treatment to write the invoice. However, and
this is especially true in the health-care domain [467, 481], interoperability between
software systems is not always given. Missing interoperability means that data is
transferredmanually, which unnecessarily binds human resources and is another source
of potential errors [159, 468].

Sheth [427] HIMSS [223] EIF [94] Problem Domain
System Foundational Technical

Hardware, Operating Systems, Networks
Syntactic Encodings, Formats, Protocols
Structural Structural Data representation and structures, Schemas
Semantic Semantic Semantic Terminology, Meaning

- Organisational Organisational Business processes, Services
- - Legal Laws, Regulations

Table 1.1: Levels of interoperability

Sec. 1.1 discussed four levels of interoperability, which are proposed by the HIMSS
society [223]. Both, more fine-grained and more coarse-grained categorisations have
been presented in the literature. A selection is shown in Tab. 1.1. In [427], Sheth
focuses on technical issues and further distinguishes between system and syntax related
concerns on the foundational level, while the European Integration Framework (EIF)
[94] considers all levels below semantic interoperability as “technical” but adds a

Chapter 1 11

Introduction

new level of legal interoperability. Some researchers [22, 387] proposed a pragmatic
interoperability level that lies between semantic and organisational interoperability.
Each level addresses a different problem domain, similar to the OSI reference model
for networking [457].

Beginning on the topmost organisational levels, a legal and organisational framework
is required, which enables interoperability. Most of the intricacies related to this aspect
are of managerial and juridical nature and thus outside the scope of this thesis. From a
software-oriented point of view it is important to note that the common consensus on
an interoperable system architecture is given by the so-called service oriented architecture
(SOA) [222]: Every system is conceived as provider for a set of services. A service
realises a concrete business functionality (e.g. storing a medical record, retrieving a
blood test result), has well-defined in- and outputs, and can be called other systems or a
human actor. Services are orchestrated to perform a business process. The SOA-concept
is also embodied in ICT management and architecture frameworks, such as ITIL [247]
and TOGAF [220]. A recent industry trend calledMicroservice Architecture [12, 183, 185]
is based on the same underlying idea and promotes to design a complex software
system as a collection of smaller independent and domain specific software systems
communicating witch each other.

The bottommost system interoperability level considers the technical solutions to
physically connect systems with each other. With the ubiquity of the internet and
internet technologies such as IP, TCP, and UDP, connecting software systems is not a
major difficulty any more, but there are network safety (timeouts, connection failures,
message loss) and security (privacy, authorisation, encryption) considerations which
have to be addressed. These issues are investigated within their respective research
domains [454] and are also outside the scope of this thesis.

Given physical inter-system connections, syntactical interoperability considers the
different protocols and formats that are used to facilitate information exchange over
the network. According to [240], there are four approaches for achieving information
exchange between software systems, which are also mentioned in Fig. 1.3:

File Transfer Systems communicate via writing and reading files to and from a shared
location.

Shared Database Systems communicate via storing their data in the same database.

Remote Procedure Call (RPC) Systems communicate via calling each other’s proce-
dures over the network.

Messaging Systems communicate via writing and reading messages to and from a
central message broker.

There is a variety of tools and implementations behind each approach: For instance, file
transfer mechanisms are included in every major operating systems and programming
language; open-source and/or commercial Database Management Systems are encoun-
tered in every enterprise system landscape; there are programming-language-specific
RPC mechanisms but arguably the most popular RPC implementation strategy today,
web services (WSs), utilises the HyperText Transfer Protocol (HTTP). Messaging sys-

12 Chapter 1

1.3 Motivational Scenarios

tems have predominantly been associated with commercial products7 in the past, but
recently there have been more popular open-source solutions8. All four approaches
have different advantages and disadvantages, see [240, 282], but share the common
requirement for data serialisation and deserialisation. Internally, a software system or-
ganises its data in terms of memory addresses and pointers (data structures). When
data is written to disk or sent through a network interface, it has to be translated (seri-
alised) into a linear sequence of bytes. To make sure that this sequence of bytes can
be read and translated back (deserialised) to a memory-based data structure at the
receiving system, a shared definition of the serialisation format is required. The textual
formats eXtensible Markup Language (XML) and JavaScript Object Notation (JSON)
are highly prevalent and are being used as file formats, for storing objects in databases,
for encoding WS-requests and -responses, and also as a message format of message
brokers. There are also binary formats9, which offer a more compact encoding but
require an additional infrastructure for reading and writing, e.g. code generators.

Generic serialisation formats are equipped with a schema. A schema is a formal
description of the possible types of data elements and their internal structure. All
schema-related issues are considered on the level of structural interoperability. The
concept of a schema was originally introduced in databases. Relational database
management systems require the existence of a schema before data can be written to the
database. XML and JSON offer optional schema facilities and so domany non-relational
databases. The advantage of optional schemas is the greater flexibility. The downside is
the greater risk of communication errors since there will always be an (at least implicit)
schema that must be adhered to by the serialisation and deserialisation procedure. If
the schema is not explicitly formulated it is still hard-wired into the program code.
An explicit schema causes overhead but has the advantage that it allows to inspect
and reason about the format, enables automation (e.g. generating (de-)serialisation
procedure from a given schema), and allows to verify the well-formedness of the
serialisation result.

Fig. 1.4: Semantic Interoperability Gap [33]

A schema – explicit or implicit – par-
tially captures a semantic aspect as it
(partly) represents the specific domain
of the software system [33], which leads
us to the level of semantic interoperabil-
ity. From a pragmatic point of view, the
goal on this level is to make sure that all
systems interpret the exchanged informa-
tion in “the same way” [387]. Because of
distributed ownership and different pur-
poses, the conceptual data models – also
called domain models [160] – differ. How-
ever, there are shared concepts In Fig. 1.3, the conceptual data models are indicated by

7E.g. TIBCO (https://www.tibco.com) or IBM WebSphere (https://www.ibm.com/products/mq).
8E.g. as RabbitMQ (https://www.rabbitmq.com) or Apache Kafka (https://kafka.apache.org).
9E.g. Protocol Buffers (https://developers.google.com/protocol-buffers),ApacheThrift (https:

//thrift.apache.org/), or Apache Avro (http://avro.apache.org/)

Chapter 1 13

https://www.tibco.com
https://www.ibm.com/products/mq
https://www.rabbitmq.com
https://kafka.apache.org
https://developers.google.com/protocol-buffers
https://thrift.apache.org/
https://thrift.apache.org/
http://avro.apache.org/

Introduction

{
 "resourceType": "Observation",
 "id": "1548991",
 "code":{ "coding":[{
 "system":"http://loinc.org",
 "code":"1988-5" }
] },
 "subject":{ "reference":"Patient/1548623" },
 "encounter":{ "reference":"Encounter/1548710" },
 "effectiveDateTime":"2020-03-13T21:53:14-04:00",
 "valueQuantity":{
 "value":2.1431,
 "unit":"mg/L" }
}

{
"patientId" : "1548623",
"physicianId" : "321",
"received" : "2020-03-13T16:51:11",
"analyzed" : "2020-03-19T21:53:14",
"CRP" : {
 "value" : 2.1431,
 "unit" : "mg/L" }
}

Medical Journal System Query Response

Laboratory System Query Response

Fig. 1.5: Exchanged Blood Tests: Data view

dashed ovals10, which contain terms that the respective systems operate with. These
ovals partly overlap, which hints to shared or exchanged information. The latter
manifests in the so-called semantic interoperability gap [33], which is shown in Fig. 1.4:
Different conceptual models lead to different logical models (= schemas), which again
lead to different physical encodings.

Taking an example from the hospital scenario in Fig. 1.3: The results of the blood
tests that are processed by the laboratory systems should be transferred to the patient
record in the journal system. It is more than likely that the physical representations
of blood test results differ between both systems, see Fig. 1.5. This figure shows two
concrete representations of the same information, both encoded as JSON documents
(i.e. syntactical interoperability is achieved). But the structure of these documents
obviously differs. Carefully looking at the content reveals identical information, which
is highlighted by the dashed lines in Fig. 1.5. To transfer this data between the systems,
the document must be transformed while preserving the semantic equalities a.k.a. the
data mapping problem [136].

According to the survey in [33], there are two approaches to address this issue:

Standardisation i.e. forcing homogeneity. Either on the level of conceptual models or
on the level of logical models.

Mediation i.e. performing intermediate translations or transformations.

There are many examples of the first approach: In the industry domain, RosettaNet
[106] is a well-known standardised message schema. In the health care domain, Health
Level 7 (HL7)11 groups together a set of standards electronically representing messages,
clinical documents or clinical knowledge, the most recent one being Fast Healthcare
Interoperability Resources (FHIR). The difficulty with the standardisation and its
top-down nature is that with a growing number of systems and growing number of
use cases and domains, the common standard tends to become rather complex or
partly generic to accommodate for the plethora of requirements coming from different
stakeholders [33]. Moreover, it is not always feasible to enforce a standardised data
model on already existing systems. For instance, the development effort for this

10These ovals can be seen interpreted as “bounded contexts” in the sense of DDD [160]
117 stands for OSI-layer seven, i.e. the application layer.

14 Chapter 1

1.3 Motivational Scenarios

Observation

 id: String

 effectiveDateTime: DateTime

Coding

 system: String

 code: String

Encounter

Patient

Resource

 id: String

Quantity

 value: Decimal

 unit: String

encounter

subject

FHIR Resource Model
type Query {
 testResults(patient: ID!
 from: Timestamp,
 to: Timestamp): [BloodTestResult]
}

type BloodTestResult {
 patientId: ID!
 physicianId: ID!
 received: Timestamp!
 analzed: Timestamp
 CRP: Quantity
 Leucocytes: Quantity
 Thrombocytes: Quantity
 Cholesterol: [Quantity]
}

type Quantity {
 value: Float!
 unit: String
 comment: String
}

Laboratory GraphQL Schema

Ontology

valueQuantitycode

1

2

3

4

Fig. 1.6: Exchanged Blood Tests: Schema view

adaption may be unreasonably high. It may even be impossible to achieve if the
respective software system is bought from an external vendor.

Mediation, as a bottom-up approach, avoids these problems. In this approach,
heterogeneity is accepted and for different schemas intermediate translations are
defined. To avoid ad-hoc solutions, researchers propose to use semantic web technology
[184, 317, 382]. Semantic web technology is based on ontologies [444]. The latter is a
formal and therefore electronically processable description of objects of the real world12.
To apply semantic web technology, schemas have to be annotated with references to
concepts defined in an ontology such that schema translation and process orchestration
can be (partly) automatised [337] with the help of specialised tools.

Applying the idea of mediation to the example from Fig. 1.5, one has to analyse
related elements on the schema level, see Fig. 1.6. Assume for this scenario that the data
model of the journal system is based on the standardised FHIR resource model while
the laboratory system is based on a home-grown solution, where the schema is defined
using the GraphQL, a modern WS technology. FHIR defines a collection of health-
related resource types, e.g. Observations, Patients. An (excerpt of) this datamodel
is shown in Fig. 1.6, depicted using UML class diagram syntax. FHIR is generic in the
sense that an Observation can represent various types of medical observations. Thus,
there is an element called coding, which allows referencing an existing ontology. In the
health care domain, several such ontologies exist. For example, the WHO International
Classification of Diseases (ICD)13, the Systematized Nomenclature Of Medicine - Clinical

12The name originally stems from philosophy, i.e. the study existence, being and reality, see also
Chap. 2.

13https://icd.who.int/browse11/l-m/en

Chapter 1 15

https://icd.who.int/browse11/l-m/en

Introduction

Terms (SNOMED-CT)14, or Logical Observation Identifiers Names and Codes (LOINC) 15.
“LOINC is a common language for clinical and laboratory observations” and thus
an appropriate ontology for annotating observations. Concretely, for the example
in Fig. 1.5, there is a LOINC element representing the result of a “C-reactive protein
(CRP)”16 blood test with the code 1988-5. The laboratory system has a custom-made
schema, which is presented in textual syntax. The schema consists of types, which
represent complex elements (think of “classes” in UML) that have fields, which
either have scalar type (think of “attributes” in UML) or complex type (think of
“references” in UML). Fig. 1.6 shows how the CRP TestResult object can be identified
with a Observation with LOINC-code 1988-5, which visualised by dotted lines. Thus,
the mappings from Fig. 1.5 appear again in Fig. 1.6 – this time on the type level.

Ontologies and semantic web technologies are a powerful approach to address
schemamediation, in particular, and semantic interoperability in general [33]. However,
from an SE perspective there are still several unsolved problems [107]: First, an
ontology seldom covers all elements of a domain model. Secondly, ontologies such as
SNOMED-CT or LOINC contain a lot of ambiguities, which eventually necessitates
human supervision and expert domain knowledge to align schema elements and
ontology terms correctly. Thirdly, implementations of the semantic web idea are
currently tied to a specific technology stack comprising technologies such as Resource
Description Framework (RDF) orWebOntology Language (OWL).Meanwhile, software
practitioners have adopted different and more lightweight technologies for developing
WSs [49]. The authors of [107] therefore propose a pragmatic model-driven approach
that bridges the gap between the “academic” semantic web approach (focus on formal
foundations and logic) and “practical” WS implementations (focus on messaging
patterns).

MDSE and ontologies are conceptually similar but are investigated by two disparate
scientific communities. Their relationship has been further analysed in [26]: The biggest
conceptual difference is that MDSE focuses more on prescription while ontologies focus
on description. Moreover, they employ disparate technologies and tools (UML/MOF
vs. RDF/OWL). Yet, both domains are founded on the idea to work with abstract
representation of reality, i.e. models.

Thus, after the above discussion, the following practical issues still remain:

• Detection of shared concepts among the schemas of different software systems,

• representation of such shared concepts,

• definition of data type mappings based on shared concepts,

• maintaining the consistency of data elements instantiating shared concepts.

The final bullet point of the preceding list describes a general issue with distributed
storage of information. In every system landscape as displayed in Fig. 1.3 there will
be multiple “replicas” of the same information. For example, there will be multiple
Patient records (one for the hospital, one for GP, one for the payment collector, . . .). A

14https://www.snomed.org/
15https://loinc.org/
16A common blood test for detecting inflammations.

16 Chapter 1

https://www.snomed.org/
https://loinc.org/

1.3 Motivational Scenarios

Patient
 appeal

Patient
Consultation

Extract
Patient

Information

Select
Consultant

Send Referral

PatientData

Diagnosis

C
on

su
lta

nt

Rejection

Acceptance

Referral

PostalCode

Practicioner

Specialization

Rejection

Approval

Referral
Finished

TM

items

1..1

0..*

1..*

patient

address
0..*

0..* 0..* Physician

specialization: String

id: Identifier

Patient

ssn: Identifier

fullName: String

salutation: String

birthdate: Date

Record

created: DateTime

RecordItem

comment: String

lastModified: DateTime

contents: Byte[0..*]
Address

postalCode: String

city: String

street: String

Measurement

code: String

value: Real

unit: String

Diagnosis

icd10code: String

shortDesc: String

1..1
author

Patient

PK ID

address

name

RecordItem

PK,FK patient

PK,FK physician

date

Physician

PK ID

specialization ...

Behaviour Architecture
Requirements

Database
Schema

Reference

Implementation

Business Rules Structure Referrer Consultant

Send E-
Referral

Journal
Export

Consultat Referrer

Receive E-
Referral

Create
Journal
Export

Referral System

Physician

facilitates facilitates
facilitates

Requirement
1.1.1

realises

participation participation

has has

Patient
Referral

realises realises realises

public class Patient {

 private String id;
 private String name;
 private List<RecordItem> record;

 public Patient(String id) {
 this.id = id;
 }

 public String getId() {
 return id;
 }
}

Fig. 1.7: Designing a “Patient Referral”: Big Picture

record generally comprises several features or fields. In case of the Patient, there will be
a birthdate, an address, the contact information of a relative etc. If one of this fields
is changed, e.g. the respective person moves to another address, that information must
be changed for all replicas, otherwise it will be inconsistent. Hence, I conclude with
formulating the following consistency rule (CR), which will be revisited several times
throughout this thesis and thematically leads to the second motivational scenario.

CR1 The values of every field of each replica of a shared data element (Persons,
Observations, etc.) must be equal.

1.3.2 Consistency of Software Design Documents

Design and development of complex ICT systems and processes involve multiple stake-
holders (clients, domain experts, business analysts, enterprise architects, software
developers, system administrators) and documents (requirements, specifications, draw-
ings, source code). To give a more concrete example, let us consider a software project
aiming to develop an ICT solution facilitating electronic patient referral. A referral is “the
act of sending a patient to another physician for ongoing management of a specific
problem with the expectation that the patient will continue seeing the original physi-
cian for co-ordination of total care” [424]. It is an important and recurring process
in the healthcare domain and ICT support for it is desirable [481]. There are several
aspects that have to be addressed during the design and development process. An
overview of the abstract referral process and its various aspects in Fig. 1.7.

Chapter 1 17

Introduction

Each aspect has specific purpose and comprises one or more design documents,
where each aspect is associated with a different language. The functional and non-
functional requirements are denoted in the Requirements Interchange Format (ReqIF)17, an
XML-based file format for storing and exchanging requirements. The content of a ReqIF
document is basically a hierarchically-ordered list of all requirements written in natural
language, which are augmented with optional meta-data (e.g. whether a requirement
is mandatory or what the acceptance status of the requirement is). The architecture is
described using theArchiMate18 modeling language, which is often used in combination
with the TOGAF architecture framework and allows enterprise and system architects
to describe the system’s architecture and context on an abstract level. The behaviour
is described in terms of process models, which are denoted utilising Business Process
Model and Notation (BPMN) [364], a popular process modeling language. The structural
aspects (components and data types) are described using UML, the de-facto standard
modeling language in software engineering. The business rule aspect embodies the
domain specific expert knowledge. In this example, this knowledge is represented
in the form of decision tables, which are encoded employing the standardised Decision
Model and Notation (Decision Model and Notation) [369]. The database schema aspect
describes the data format for eventually storing the process data persistently. It is
described in terms of a relational schema technically realised via statements written in
Structured Query Language (SQL). Finally, the reference implementation contains a concrete
programming language realisation of the patient referral application, which is given as
Java code. Since every languages is assigned to exactly one aspect, I may sometimes
use the aspect name and language interchangeably.

Fig. 1.7 reflects the principle of Separation of Concerns: Each stakeholder focuses
on their particular domain and uses the tools and languages that are best suited
for their individual use case. Forcing everyone to work on a single centralised
specification document is considered unfeasible, even impossible [68, 87, 187, 462].
Hence, distributed system specifications are inevitable. This, however, bears the
dangers of fragmentation, redundancy and eventually inconsistencies [280]. For example,
imagine that the UML designer deletes a class, which the process designer just created
a reference to. There are manifold possibilities of inconsistencies such as the value
consistency (CR1) in Sec. 1.3.1 or more intricate behaviour or interaction inconsistencies
[455, 462], which require an in-depth analysis to be detected. In general, inconsistency
arises from violated consistency rules, which can be generic (like CR1), language-specific
(e.g. the inheritance relationship among UML classes must be acyclic), domain specific
(e.g. all entities representing clinical information must be annotated with LOINC
codes), or project-specific (e.g. the implementation of the persistence layer must
follow the Repository pattern [160]). The scope of a consistency rule may span one or
more documents/aspects and there are varying degrees of importance, i.e. some rule
violations may jeopardize the correct workings of the system immediately while other
rules are merely project conventions.

Let us have a look at some concrete consistency rules within the patient referral
scenario. During the first stage of the development process – the analysis – the more
general aspects of the system specification play an important role, i.e. the requirements,

17https://www.omg.org/spec/ReqIF/About-ReqIF/
18https://www.opengroup.org/archimate-forum/archimate-overview

18 Chapter 1

https://www.omg.org/spec/ReqIF/About-ReqIF/
https://www.opengroup.org/archimate-forum/archimate-overview

1.3 Motivational Scenarios

Send E-
Referral

Medical
Summary

Consultat Referrer

Receive E-
Referral

Create
Journal
Export

Referral System

Physician

facilitates facilitates
facilitates

Requirement
1.1.1

realises

participation participation

has has

Patient
Referral

realises realises realises

domain model

Patient Referral

C
on

su
lta

nt

Send
Report

Receive
Referral

R
ef

er
re

r

Send
Referral

Receive
Report

 Legend:

Actor

Role Process Service

Component

Data
Entity

Requirement

ReqIF ArchiMate

UML

BPMN

Medical
SummaryPatient

Diagnosis

Pysician1 *

1
*

*
1

«CR2»

«CR3»

«CR4»

«CR5»

«CR5»

Fig. 1.8: E-Referral Analysis Stage: Requirements (ReqIF) – Architecture (ArchiMate) –
Process (BPMN) – Data (UML)

the system architecture, the domain model and the abstract process model. Fig. 1.8
depicts the contents of the relevant design documents. The requirements are listed in a
tabular form and the business architecture is depicted utilising the graphical ArchiMate
syntax. A legend explicates the interpretation of the graphical elements. Domain and
process model are presented in UML and BPMN syntax, respectively, and I assume the
reader to be familiar with these visual languages. Moreover, Fig. 1.8 contains coloured
dotted lines to highlight the fact that those elements are subject to specific consistency
rules. Let us assume the following list of consistency rules in this scenario:

CR2 Every accepted functional requirementmust be implemented by an application service.

CR3 Each process elementwithin the architecture modelmust be refined by a UML class.

CR4 Each process element within the architecture model must be refined by a BPMN
diagram.

CR5 Each role that participates in a process must appear represented as a pool in the
respective BPMN diagram.

The consistency rules express the fact that there are “overlaps” among the ReqIF,
ArchiMate, UMLandBPMNdocuments: Some concepts (processes, roles, requirements,
data entities) appear in multiple documents simultaneously at different stages of
refinement. CR2–CR5 enforce that these concepts are represented accordingly. Overlaps
are a special case of traceability relations [434], compare Def. 1.3 in Sec. 1.1. Hence, there

Chapter 1 19

Introduction

items

1..1

0..*

1..*

Patient
 appeal

Patient
Consultation

Extract
Patient

Information

Select
Consultant

Send
Referral

PatientData

Diagnosis

C
on
su
lta
nt

Rejection

Acceptance

Referral

DMN

patient

address
0..*

0..* 0..*

Practicioner

Physician
specialization: String
id: Identifier

Patient
ssn: Identifier
fullName: String
salutation: String
birthdate: Date

Record
created: DateTime

RecordItem
comment: String
lastModified: DateTime
contents: Byte[0..*]

Address
postalCode: String
city: String
street: String

Measurement
code: String
value: Real
unit: String

Diagnosis
icd10code: String
shortDesc: String

1..1

author

 Legend (Correspondences):

2

1

Correspondence between UML Attributes,
BPMN DataObjects and DMN Columns

Implementation of BPMN DataObjects
through UML Classes

Definition of BPMN BusinessRuleActivities
through DMN DecisionTables

Rejection

Approval

Referral
Finished

3b

3d

3...
1

2

3c

3a

BPMN

UML

Fig. 1.9: E-Referral Design Stage: Process (BPMN) – Data (UML) – Decision Tables
(DMN)

can be many more cases of inter-document relationships subject to more intricate
consistency rules.

Let us assume the development process of the eReferral system has proceeded
further into the design stage. At this point, the UML and BPMN documents have been
refined to contain a more detailed specification. Additionally, business rules have
been formulated in DMN augmenting the system specification. The result is shown in
Fig. 1.9. Compared to Fig. 1.8, the UML data model has been extended with additional
entities, attributes, and data types. The process model has also been refined and now
shows a simplified version of the referral process in [481] from the viewpoint of the
referring physician: The process is triggered by a patient’s appeal beginning with an
introductory consultation. Afterwards, information about the patient and its medical
history is extracted while in parallel a consultant is selected via a business rule. The
patient information is then sent to the consultant. The consultant can either approve
the referral or reject it. In the latter case, another consultant has to be found. If a
consultant accepts the referral, the process is finished. Moreover, there is a decision
table, which embodies the business rules and specifies the behaviour of the business
rule activity “Select Consultant”.

There are traceability relationships among these three design documents, which
are visualised through coloured dashed lines in Fig. 1.9. First, there is a relationship
between the business rule activity in the BPMN diagram and the decision table in the
DMNmodel. The process model focuses solely on behaviour and has no notion of data.
Yet, the running process will produce and consume various data elements. To make the
required data explicit during the design phase, BPMN provides the graphical element
called data object (visualised by a file symbol), which refers to elements specified in
the UML model. Simultaneously, the columns of the decision table have a data type,

20 Chapter 1

1.3 Motivational Scenarios

which is defined in the UML model and may also be represented via a data object in
the BPMN diagram. Let us assume that these traceability relationships are subject to
the following consistency rules:

CR5 Every Activity of type business rule in BPMN must be defined by a corresponding
decision table in the DMNmodel.

CR6 Every data object in BPMNmust be implemented by a corresponding class or an
attribute in the UML model.

CR7 Every Column in DMNmust must be implemented by a corresponding attribute
in the UML model and the column type must correspond to the data type of the
attribute.

CR8 Columns in DMN may be associated with a data object in BPMN. In this case,
being an a column on the input side of the decision table means that there must be
a corresponding consumedBy association between the respective data object and
activity in the BPMNmodel. Accordingly, a column on the output side enforces
a producedBy association. Moreover, this relationship must be compatible with
the implementation-relationship between data objects and attributes (CR6) such
that each triple of data objects, attributes and columns is in a ternary “to-one”
relationship.

The traceability relationships in Fig. 1.9 and their consistency rules CR5-CR8 illus-
trate that there can be involved inter-model relationships of various arities. Furthermore,
these relationships may not be as easily identifiable as simple overlaps that are identi-
fied over equality of their names. Hence, domain specific expert knowledge and/or
means for comparing heterogeneous design documents are required.

The design documents are constantly being modified to account for new require-
ments or changed regulations. Due to the fragmented nature of the systemdevelopment
process, inconsistencies will arise eventually. Since inconsistencies are expected to have
a negative impact of the quality of final development result, it is desirable to resolve
them [462], ideally relying on some sort of tool support and automation. A special case
of this form of consistency restoration is synchronisation [19]: Often an inconsistent up-
date is actually an “incomplete” update, a change to an element has not been applied
to all occurrences within the various models. A synchronisation mechanism ensures
that a change is applied consistently among all models.

To explicate this further, let us consider the final implementation stage of the system
development process, which involves the UML model, the database schema and
the reference implementation shown in Fig. 1.10. The seasoned software expert will
immediately identify the presented situation as an instance of the object-relational
mapping problem: The UML class diagrams can be more or less directly translated
into a corresponding representation in the form of Java classes. Some of these
classes are marked as “entities” (note the respective stereotype in UML and the
@Entity-annotation in the Java code, see [456]). This means that those classes must be
represented as database tables. However, the underlying conceptual models behind
UML/Java (object-oriented) and the database schema (relational) do not match exactly.
Therefore, special mapping rules have to be defined, e.g. relational database schemas

Chapter 1 21

Introduction

items
0..*

JournalRecord
<<entity>>

patientID: Identifier

RecordItem
coding: String
contents: Byte[0..*]

Measurement
<<entity>>

value: Real
unit: String

Diagnosis
<<entity>>

shortDesc: String

container

Journal_Records

PK id

patientID

Record_Items

PK id

FK record_id

type

coding

shortDesc

value

unit

@Entity
public class JournalRecord {

 @Id
 private Long id;

 private String patientId;

 @OneToMany(mappedBy = "container")
 private Collection<RecordItem> items;

}

@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "type")
public class RecordItem {

 @Id
 private Long id;

 @ManyToOne
 @JoinColumn(name = "record_id")
 private JournalRecord container;

 private String coding;

 private transient byte[] contents;
}

@Entity
public class Measurement extends RecordItem {

 private Double value;

 private String unit;
}

@Entity
public class Diagnosis extends RecordItem {

 private String shortDesc;

}

JournalRecord.java RecordItem.java

Measurement.java

Diagnosis.java

UML SQL
JAVA

Fig. 1.10: E-Referral Implementation Stage: Data Model (UML) – Database Schema
(SQL) – Reference Implementation (Java)

have no corresponding concept for object-oriented inheritance, therefore there are three
distinct mapping strategies to address these situations, see [181]. More specifically, the
consistency rules for the in this case are as follows:

CR11 Every UML class must be implemented by a Java class and attributes and
references must be implemented by respective fields of the class.

CR12 Every UML class with the stereotype «entity»must be mapped to a database
table where the respective attributes are realised as columns if not the respective
field has been marked as transient in the Java implementation. Furthermore
the corresponding Java class must receive the annotation @Entity and there must
be a new field id.

CR13 A reference between entity classes must be realised via a mapping table.

CR14 Abstract classes must be realised according to object-relational mapping strategy,
that is declared via an annotation [456].

There is a plethora of object-relational mapping tools available for most program-
ming languages which allow to derive a database schema from an annotated class
specification and handle almost all technical details of the database access. Nonethe-
less, it is often the case that all design documents are considered authoritative at the
same time, i.e. the database schema cannot always be automatically replaced when
changing the class model because the database administrator may have performed a
manual change on the schema which must not be overwritten. This situation is known
as round-trip engineering [19] and is still a fairly open issue in software engineering
research. Consistency issues, in general, have been investigated by SE researchers since
the mid-eighties [175, 433, 497] and there is a vast body of results, approaches and

22 Chapter 1

1.4 Research Project: Multi-model Consistency Management

tools, see e.g. [284, 433, 462, 469]. However, solutions are often limited to a certain
technology, modeling language (e.g. UML only) or tool. Interoperability between exist-
ing solutions is reported as insufficient [352, 462]. Also, support for a comprehensive
management of traceability relationship supporting heterogeneous software artefacts
is rather limited [87, 352, 462]. As a result, practitioners adhere to ad-hoc solutions and
the following tasks generally occur in settings, which are similar to the eReferral-case
discussed here:

• Detection and representation of overlaps and other types of traceability relation-
ships among multiple heterogeneous design documents,

• definition and execution of domain specific consistency rules among multiple
heterogeneous design documents,

• handling of detected inconsistencies, preferably via means of (semi-)automatic
consistency verification or synchronisation affecting multiple artefacts simultane-
ously.

1.4 Research Project: Multi-model Consistency Management

At first sight, the two scenarios described in Sec. 1.3.1 and Sec. 1.3.2 appear to be
quite distinct: In Sec. 1.3.1, one is working with several already existing systems,
while in Sec. 1.3.2, one is developing a single novel system. Yet, wh both scenarios
show structural similarities: In Sec. 1.3.1, database contents, syntactically described
by different schemas, are the primary artefacts, while in Sec. 1.3.2, design documents,
syntactically described by different specification languages, are the primary artefacts.
In Sec. 1.3.1, there is shared information (records) among the databases subject to
a condition (CR1), while in Sec. 1.3.2, there are traceability relationships subject to
various rules (CR2-CR14). In MDSE it is common to consider “everything as a model”
[76], i.e. an abstract representation19. Hence, the artefacts in both scenarios can
uniformly be treated as models. Moreover, the shared information and the traceability
relationships can abstractly considered as some sort of inter-model relationship. Note
the visual similarity in the presentation of the traceability relationships in Fig. 1.9 and
the mappings in Fig. 1.5 and Fig. 1.6. Additionally, the list of open practical issues in
Sec. 1.3.1 resembles the one in Sec. 1.3.1.

The scenarios described in Sec. 1.3 motivate the need for what I call “Multi-model
consistency management”:

19“One cannot know the thing-in-itself” (Kant)

Chapter 1 23

Introduction

Definition 1.5 Multi-model consistency management

Multi-model consistency management is the common term for all activities centred
around

• declaring,

• monitoring, and

• maintaining

the consistencywithin amulti-model, where a multi-model [126, 278] is understood
as

• a collection of (possibly heterogeneous) models, including

• a collection of inter-model relationships among these models.

The problem introduced before show that multi-model consistency management is
an open and relevant issue in software engineering, which I want to address within
this PhD project. For this, I formulate the following research questions to guide the
investigations:

Research Questions

RQ1 How to represent multi-models together with their consistency rules?

RQ2 How to detect consistency violations w.r.t. consistency rules within multi-models?

RQ3 How to resolve consistency violations w.r.t. consistency rules within multi-
models?

RQ4 How to organise these activities into a comprehensive workflow and solution
architecture ?

These four questions will be investigated on an abstract conceptual level (Chap. 3),
with regard to the state of the art (Chap. 4), on a purely formal level (Chap. 5), and on a
technically implementation-oriented level (Chap. 6).

Structure of this thesis This thesis is divided into three parts and an appendix.
This chapter gave an introduction into the research problem and stated the research
questions. Together with the following chapter, which will discuss the philosophical
and methodological foundation of this research project, it constitutes the first part of
the thesis.

The chapters 3 to 7 constitute the second and main part of the thesis, which contains
my scientific contributions. In Chap. 3, I develop a conceptualisation of the problem
domain, which is based on ideas from related research domains. In Chap. 4, I present
the result of a literature study about approaches related to multi-model consistency
management in the form of a feature model, which augments the conceptualisation
with an overview of the state of the art. In Chap. 5, I present a novel formalism called

24 Chapter 1

1.4 Research Project: Multi-model Consistency Management

comprehensive system, which forms a formal foundation for multi-model consistency
management. In Chap. 6, I present a prototypical implementation of the conceptual
and theoretical framework in form of a tool called CorrLang20, which addresses
multi-model consistency management problems on a practical level. In Chap. 7, I
conduct a validation of the aforementioned research artefacts.

Finally, Chap. 8 represents the third part of the thesis, which concludes this project
presentation with a summarising discussion about the research contributions and an
outlook towards future research directions.

The appendix is completely optional and may be viewed by the interested deader on
demand. It is divided into three sections: AppendixA contains technical details about
the literature study in Chap. 4, AppendixB contains complete proofs of the central
propositions and theorems in Chap. 5, and AppendixC contains background material
about the formalism (category theory) employed in Chap. 5 in order to make this thesis
self-contained.

Thesis related Publications This thesis is not organised as a paper collection but
as a manuscript. Still, major parts of my scientific contributions have been presented
in various publications [302, 445–448, 450, 451]. The relationship between these
publications and the content of this thesis is explicated in the list below:

[445] The article Multimodel correspondence through inter-model constraints, joint work
with all my supervisors presented at Seventh International Workshop on Bidirectional
Transformations (Bx 2018) addressesRQ1 andRQ2 (on a formal level). The content
of this publication is featured in Chap. 5.

[446] The articleTowardsMultipleModel Synchronizationwith Comprehensive Systems, joint
work all with my supervisors and presented at the 23rd International Conference
on Fundamental Approaches to Software Engineering (FASE 2020) addresses all four
research questions (on a formal level). The content of this publication is featured
in Chap. 5.

[302] The article Single Pushout Rewriting in Comprehensive Systems, joint work with
Harald König, and presented at the 13th International Conference on Graph Trans-
formation (ICGT 2021) covers an important aspect (rule rewriting) of the formal
framework and thus addresses RQ3 on a formal level. It is featured in Chap. 5.

[447] The article GraphQL Federation: A Model-Based Approach, joint work with two of
my supervisors and Ole van Bargen, presented at the 16th European Conference on
Modelling Foundations and Applications (ECFMA 2020) presents the predecessor
tool of CorrLang and addresses RQ1 and RQ4. It is featured in Chap. 6.

[451] The article Multi-Model Evolution through Model Repair, joint work with all my
supervisors and published in a special issue of the Journal of Object Technology on
Models and Evolution addresses RQ1-RQ3 on a conceptual level and investigates
the state of the art w.r.t. to these questions. It is featured in Chap. 3 and Chap. 4.

20https://github.com/webminz/corr-lang

Chapter 1 25

https://github.com/webminz/corr-lang

Introduction

[450] The article Single pushout rewriting in comprehensive systems of graph-like structures,
joint work with Harald König, published in a special issue of the journal “Theoret-
ical Computer Science” represents an extended version of [302]. Thus it is partly
featured in Chap. 5.

[448] The article Comprehensive Systems: A formal foundation for Multi-Model Consistency
Management, joint work with all my supervisors, published in a special issue of
the journal “Formal Aspects of Computing” represents an extended version of [446],
which adds more material conerning the conceptual aspects and addresses RQ3
even more. It is mostly featured in Chap. 5 and partly in Chap. 3.

26 Chapter 1

“What we know is a drop, what we don’t know is an ocean.”

—Isaac Newton CHAPTER 2
METHOD

2.1 Philosophy of Science

ADoctor of Philosophy, abbreviated Ph.D. (philosophiae doctor), is the highest obtainable
academic degree. Its etymology (“docere” (Latin): to teach, and “philosophia” (Greek):
love of wisdom) traces back to the universities of medieval Europe, which were
traditionally organised into the four faculties theology, medicine, arts and law. Anything
elsewas considered philosophy. Indeed, thehistoryofmodernday science andphilosophy
– more precisely the western tradition of philosophy1 – is tightly intertwined. The early
philosophical inquiries known as natural philosophy2 can be seen as the predecessor
of what is today called natural science. The study of objects and laws of the physical
reality became physics, which, with growing knowledge and the inherent growing
complexity, was further divided into specialised fields that focus on a specific part of
reality, e.g. chemistry (molecules), biology (organisms), sociology (human behaviour),
economy (human organisation).

Scrutinizing the own methodology is a trait of scientific work practice. The central
question “What qualifies as science?”, i.e. what delineates scientific investigation from
other non-conclusive investigations, is subject to a discipline called philosophy of science.
Hence, discussing themethodological background of this thesis requires to partly touch
upon philosophy. Let me thus recall the relevant philosophical ideas and positions.

2.1.1 Philosophy: A (short) historical account

Western philosophy is traced back to ancient Greece. Thales of Miletos (∼ 624–545 BC)
and Pythagoras of Samos (∼ 570—495 BC) are considered to be the first philosophers
who started to reason about the world around them and attempted to explain it.
Pythagoras3 and his followers believed in a deep relationship between the physical
world and numbers, more concretely, that the former can be completely described by
the latter. Their studies can be seen as the precursor to modern day mathematics.

1The intention is not to understate the epistemological, social and cultural value of Eastern, Middle
Eastern, African or Indigenous philosophy traditions. However, our contemporary scientific world is
based on the western tradition.

2Isaac Newtons theory about gravitation is actually titledMathematical Principles of Natural Philosophy.
3Pythagoras is credited for the geometric theorem bearing his name. However, the validity of the

former statement had allegedly already been known by Babylonians and Indians long before him.

Method

Following the Pythagoreans, there are Socrates4 (∼ 470—399 BC) and his student Plato (∼
423—348 BC), who founded the School of Athens, the first institution of higher education
in the modern sense. Plato had a major influence in several areas of philosophy such
as politics, ethics, as well as epistemology (i.e. the philosophical inquiry about the
nature of “knowledge”) and metaphysics (the philosophical inquiry about the relation
between “knowledge” and “reality”). His view on the nature of human knowledge is
captured by the Allegory of the Cave: Physical objects are just "shadows" of so-called
ideal forms, which can only be discovered by thought. Aristotle (∼ 384—322 BC), Platos
most famous student, is credited for the invention of the syllogism (logical deduction
a.k.a. inference), which is the foundation for mathematical study of logic (“modus
ponens”). In his epistemological philosophy, Aristotle questions the absolute role of
thought alone and argues that insights are born by experiences and observation. Thus,
establishing the empirical position within the metaphysical debate. Simultaneously,
Aristotle admitted the existence of abstract concepts, called categories, which exist
independently of experience.

The following times of the Roman Empire, the Migration Period, and the Middle
Ages mark an almost 2000 years long period of “stagnation” w.r.t. new philosophical
ideas, with a few notable exceptions such as the philosophical texts of Cicero or the
Scholastic, which was a return to the classical Greek philosophy from the angle of
Christianity. Eventually, the late 16th century saw new activity in the philosophical
debate in the form of the controversy between Empiricism and Rationalism. Francis
Bacon (1561–1626) is sometimes referred to as the father of the Empiricism, which
postulates that all human knowledge is the result of experience and observation. Two
other notable proponents of Empiricism are John Locke (1632–1704) and David Hume
(1711–1776). Hume, nonetheless, is also credited for discovering an important problem
of the empiricist standpoint, called the induction problem [242]. The latter acknowledges
the fallibility of knowledge generation by experience: To generalise the experience of a
range of subsequent events (e.g. “seeing white swans”) into a general rule of causality
(e.g. “all swans are white”) may be incorrect due limited capabilities of the human
perception5. Bacons contemporary René Descartes (1596–1650), also known for his
contributions to mathematics (the cartesian coordinate system bridging geometry and
algebra) and physics (reflection and refraction of light), took the opposing rationalist
standpoint where thought and reason is the only valid source of truth.

Arguably, one of the most important texts in philosophy is the Kritik der Reinen
Vernunft [266] (German: Critique of Pure Reason), written by the German philosopher
Immanuel Kant (1724-1804). This highly influential work reconciles Empiricism with
Rationalism: In Kant’s view, knowledge arises both from perception and reason. He
argues that experience without terms is “blind”, and terms without experience are
“empty”. The world consists of intractable things (noumena), which have properties
that can be observed (phenomena). Knowledge embodying sentences are classified
along two dimensions: A priori (before experience) vs. a posteriori (after experience)
as well as analytical (i.e. not enlarging the existing knowledge base) vs. synthetical (i.e.
enlarging the knowledge base). Kant claims that synthetical sentences a posteriori

4Socrates never wrote anything down and therefore his philosophy only exists in transcribed
conversations with him and his students.

5Think of the well-known anecdote associated with the sentence: “All swans are white”.

28 Chapter 2

2.1 Philosophy of Science

are problematic since they might be subject to misperception and therefore seeks for
synthetical sentences a priori. The latter is possible by applying a so-called transcendental
schema to perceptions resulting in abstract terms, which represent true knowledge. The
transcendental schema consists of terms, whose existence has to be taken as given and
he resorts to the Aristotle’s categories for this.

2.1.2 Science: The Demarcation Problem
At the beginning of the 20th century a group of scientists and philosophers around the
physicistMoritz Schlick (1882–1936) gathered regularly at the University of Vienna to
discuss philosophical issues related to scientific knowledge. They became known as
the Vienna Circle and their position is known as logical positivism. It was motivated6
by the work of Gottlob Frege (1848–1925) [188], Betrand Russel (1872–1970) [485], and
Ludwig Wittgenstein (1889–1951) [491], whose texts on the foundation of logic provided
a framework for the formulation of all areas of mathematics providing precise rules for
the inference of true mathematical propositions from given axioms. The goal of the
Vienna Circle was to create a similar foundation for the natural sciences and to leave
the non-conclusive mataphysical discussion of Kant’s idealism, i.e. demarcating science
from philosophy [82]. The fundamental principle of their logical positivism approach
is the verification principle: Just as true propositions in logic must be traceable to the
axioms of the theory, valid statements in natural science must be traceable to empirical
observations or logical implications of the former. This standpoint has been criticised
by several thinkers with a reference to Hume’s Induction Problem. In his book, the
Logic of Scientific Discovery [389], Karl Popper (1902–1994) analyses the problems of
logical positivism and proposes the falsification principle instead: Empirical observation
can only refute and never confirm a theory because perception is fallible. Thus, the
only way to gain knowledge is to propose a hypothesis (possibly motivated by former
experience), derive its consequences and test these against reality (experiment). If
the experiment does not refute the hypothesis, it can be accepted as “valid” until a
counter-example has been found. In this case, the hypothesis has to be replaced by a
refined version, which accommodates for the troubling example. This process is known
as the hypothetico-deductive method and is widely accepted as the scientific approach in
natural sciences.

As a response to Popper’s standpoint, a group of historians claimed that science,
as a human activity, is at its core a social phenomenon. In his book, The Structure of
Scientific Revolutions [300], Tomas Kuhn (1922–1996) claims that the way how science is
conducted in a certain field is always based on a paradigm, i.e. there is a given process or
framework that defines how issues are to be addressed or as he calls it: “how puzzles
are solved”. When the paradigm fails to guide the solution for an issue, a new paradigm
may arise. If the new paradigm gathers enough consensus, a revolution occurs and the
old paradigm is replaced by the new one. Hence, the truth of scientific knowledge is
not chiefly based on the congruence between theory and reality but based on consensus
in the scientific community. The social-relativist position has been put to its extreme by
Paul Feyerabend [170]. In his view, there is no difference between scientific knowledge

6Reportedly, Sigmund Freud’s emergingPsychoanalysis, whichwas in turn heavily inspired byNietzsche,
formed another motivation for the Vienna Circle: They wanted to refute it as “unscientific”.

Chapter 2 29

Method

(Things, Behaviour, Events, ...)
Reality Mind

(Terms, Propositions, Causation, ...)

Experience,
 Observation

Explanations,
Predictions

Fig. 2.1: Model: Philsophy of Science

and other forms of knowledge: “Anything goes” – a position seen critical by many
researchers.

Philosophy of Science is thus characterised by a conflict between realism and non-
realism. To its extremes, there are naive realism (“things are exactly as we seen them”)
and postmodernist relativism (“reality is an illusion”). Popper and Kuhn can be seen as
moderate representatives of either position and the constructive empiricism [471] of Bas
van Frasen resembles a compromise between realism and non-realism, which is agnostic
about the true nature of reality but acknowledges the utility of scientific theories to
explain phenomena of the real world. Indecently of where one positions himself in
this dispute, it is important to be aware of the fact that the question “What is Science?”
cannot be answered scientifically but only philosophically.

To summarize the central ideas of this section consider Fig. 2.1: There is a physical
reality to the left comprising events, things, their behaviour, etc. which is translated
into the artificial world of the mind to the right comprising propositions, terms and
laws. The latter makes predictions about reality. A theory, as considered in the
mathematical sense, is a set of propositions (axioms) together with all the propositions
that can be derived from the former [491]. Science is all about true propositions over
reality and thus a theory is admissible if all propositions in the theory correspond to a
respective observable state of affairs in realty (Popper). This meta-paradigm is also
widely accepted in the scientific community (Kuhn). Thus, I take these two aspects as
the indicators for scientific work.

2.1.3 Research Methodology

Each research domain has its set of scientific methods (paradigm). Scientific methods
are the means for creating theories. Standard textbooks [101] generally distinguish
between qualitative methods, quantitativemethods or a combination of both.

Qualitative research methods are mainly used in social sciences [97, 195] and are
based on collecting non-numerical data, i.e. texts, interviews, audio recordings etc. It
is often used in less-understood contexts to inductively generate hypotheses.

30 Chapter 2

2.2 Research Methodology in Constructive Sciences

Quantitative research methods are mainly used in natural sciences but are also
used in social sciences (e.g. hypothesis testing). They are based on mathematics, i.e.
based on theories that are formalised in the language of mathematics. Consequences of
the theory axioms are derived using the framework of logic and tested against reality
by gathering numerical data in a controlled environment. The usage of mathematics
for the formulation of natural theories goes back to Isaac Newton (1642–1726), who
proposed to use differential equations to describe the behaviour of physical objects
[359]. Phenomena in social sciences and many other empirical sciences are commonly
described using the mathematical language of statistics and probability theory.

Mathematics itself, i.e. the rigorous application of logic to confirm or refute a
proposition w.r.t. given axioms, is purely analytical and thus does not qualify as
science in Popper’s sense. Still, mathematics is an important supporting discipline for
(empirical) science.

Finally, there is another – secondary – type of scientific inquiry. While qualitative
and quantitative inquiries are seen as primary studies, i.e. they immediately generate
new hypotheses or support existing ones, literature study represents a secondary
study, which may provide new insights. Formalised examples of such literature studies
are systematic literature reviews (SLRs) and systematic mapping studies. This secondary
research method originated in medicine but has now found broad acceptance in other
disciplines such as software engineering (SE) [74, 139, 277].

2.2 Research Methodology in Constructive Sciences

Young software engineering researchers sometimes “struggle” to defend their work
against methodologists. This is due to the fact that the traditional notion of quantitative
and qualitative research methods does not exactly match the scientific work practice
in Computer Science, Software Engineering and other Engineering disciplines such
as Electrical Engineering or Mechanical Engineering because these disciplines are
constructive. Engines, Integrated Circuits, Computers, the internet, these are examples
of artificial things. None of these things existed 2000 years ago and one cannot consider
them as a “natural” phenomenon. They are, however, built via intelligent combination
of existing theories. Taking the computer as an example: Two concrete problems,
namely “counting” and “measuring land”, motivated the inception of “arithmetic” and
“geometry”, respectively, which later became mathematics. As the analytical discovery
in this discipline progressed, the idea of a “machine doing arbitrary computations”
(i.e. mechanical symbol manipulations) was born. Human ingenuity combined this
idea with vacuum tubes and later semi-conductors to create the first computers.
Semi-conductors, in turn, were made possible by theory about electricity and atoms
developed by physicists before. Yet, the final product was something that did not
exist before and its advent changed the physical reality, i.e.way people work and
communicate. Also, it created novel phenomena that had not been seen before. Thus,
theory can also be used to change reality and not only explain it. In the picture shown
in Fig. 2.1, the arrow going from right to left can be extended to capture this notion:
Empirical research is descriptive (reality is explained by means of theories), formal
research is analytical (the theory is analysed), and constructive research is prescriptive
(theories change reality). The reader interested in a comprehensive account on the

Chapter 2 31

Method

 Environment

People
Organisations
Technology
Problems &
Opportunities

Design Research

Knowledge Base

Scientific Theories &
Methods

Experience &
Expertise

Design Products &
Processes

Build
Artefacts

Evaluate

Relevance
Cycle Rigor Cycle

Design
Cycle

Fig. 2.2: Design Science Framework [231]

science of the artificial is referred to the seminal book by Simon [429].
Design Science is a (comparably new) research methodology [374], which originated

in the information systems research discipline [360, 477]. It provides a general frame-
work (paradigm) for constructive research such as Engineering [140] and Computer
Science [248] but has been applied to other domains as well, see [9, 374]. The underly-
ing paradigm behind Design Science is problem solving through the creation of artefacts.
The respective type of knowledge, called design theories, has been discussed by several
researchers [208, 232, 248, 299, 335, 336]. A design theory prescribes how an artefact
is created and should be grounded in existing kernel theories [208], i.e. the theories
created by the empirical sciences.

The Design Science framework is best explained along the three-cycle concept
from [231], which is shown in Fig. 2.2. There are three areas: Environment, Design
Research, and Knowledge Base. The Environment bears the motivation to perform design
research, i.e. it poses a concrete problem. Design Research is the central element in the
framework and comprises two activities: Building artefacts and evaluating them. Both
activities are iterated in a design cycle [336]. Here, evaluation means to demonstrate
the utility of the artefact w.r.t. the problem posed by the environment, e.g. by field
testing. This constitutes the relevance cycle. Simultaneously, the creation of artefacts is
grounded by an existing knowledge base. The knowledge base contains kernel theories,
which had been developed by (empirical) science, and design artefacts, which had
been produced by other instantiations of the Design Science framework. An important
aspect of Design Science is that the design process always contributes back to the
knowledge base, which distinguishes it from a routine design activity. It constitutes
the rigour cycle.

Finally, Hevner et al. [232] identified seven guidelines that characterise effective
Design Science research:

1. Design as an Artefact: Design Science must always produce a purposeful artefact.

2. Problem Relevance: The goal of Design Science is to solve an important and
relevant problem.

3. Design Evaluation: The utility, quality, and efficacy of a design artefact must be
demonstrated via evaluation methods.

4. Research Contributions: Design Science research must provide verifiable contri-
butions in the areas of the design artefact, design foundations, and/or design
methodologies.

32 Chapter 2

2.3 Research Methodology in Software Engineering

Fig. 2.3: Technology Research [430]

5. Research Rigour: Design Science research must apply rigorous methods in both
the construction and evaluation of the artefact.

6. Design as a Search Process: The search for an effective artefact requires utilizing
all available means of the possible solution space.

7. Communication of Research: The research must be effectively communicated.

2.3 Research Methodology in Software Engineering

To connect the methodological discussion above with the remainder of this thesis,
the research methodology in Software Engineering must be assessed. According to
[232], there are two, equally important, kinds of research in Software Engineering:
Behavioural Science and Design Science.

Behavioural Science is effectively social science and its focus are people and their
relation to software technology. This branch uses the same methods (quantitative and
qualitative) for theory building and validation as found in other empirical sciences. The
behavioural approach takes technology as given and investigates its socio-organisational
consequences by using data collection and respective analysis techniques. The results
are theories and explanations (description-driven), e.g. “How does the application
of object-oriented programming influence the productivity of developers” [29]? This
branch of SE research is also known as Empirical Software Engineering [139, 260].

On the other hand, there is the Design Science branch of software engineering
research. Here, technology is the goal (prescription-driven). The focus lies on creation
and evaluation of software artefacts intended to solve a given problem. Solheim and
Stølen describe the conceptual process, depicted in Fig. 2.3, for this particular way
of doing research [430]. This process starts with a concrete problem for which there
are no existing solutions or for which no existing solutions are adequate, see the
Relevance Cycle in Fig. 2.2. After a thorough analysis of the problem, a novel artefact is
created. This “innovation” activity is expected to be based on existing theories, see
the Rigour Cycle in Fig. 2.2. Finally, the artefact must be evaluated in terms of how it
addresses the initial problem and towhat extend it overcomes the limitations of existing
artefacts, i.e. whether it represents a “better” artefact. In general, Computational and

Chapter 2 33

Method

mathematical methods are used to evaluate the quality and effectiveness of the artefacts
[335]. The latter distinguishes SE research from “normal” SE work practice (building
software systems). March and Smith [335] distinguish four types of artefacts that
are produced in technology research: constructs, models, methods and instantiations.
Constructs provide a language to formulate and communicate problems and solutions.
Models are abstract representations of real world situations, using constructs, which
aid problem understanding and eventually solution conception. Methods provide
guidance on how to solve a problem. Instantiations are prototypes or final products
that demonstrate the solution feasibility.

Hevner et al. [232] emphasize that the Behavioural and Design Science part are
equally important. Too strong a focus on Behavioural Science would result in theories
based on outdated or ineffective technologies, while too strong a focus on Design
Science would result in a surplus of artefacts that are useless in practical scenarios due
to a lack of theoretical foundations.

2.4 Research Methodology in this PhD project

In the light of the above discussions, the work presented in this thesis clearly falls
into the Design Science category. Hence, I will position myself around the process
described in [430] and depicted in Fig. 2.3.

The problem that I am addressing (multi-model consistency management) is
presented in Sec. 1.4 andmotivated by two concrete problems from software engineering
work practice presented in Sec. 1.3. The problem scenarios will not be elucidated by
means of Behavioural Science as this would largely exceed the scope of this thesis. I
assume that these two problem are relevant issues that both software engineers and SE
researchers will relate to.

During the course of the PhD project, three artefacts were created that are present
in part II of this thesis:

A1 A conceptual model of multi-model consistency management (Chap. 3),

A2 a formalism, called comprehensive systems, suitable for representing problem and
solution domain (Chap. 5), and

A3 prototype tool implementations, called CorrLang (Chap. 6).

These artefacts can be associated with the three activities, understanding the problem,
representing it in an abstract way, and creating a concrete solution. Using the charac-
terisation of artefacts given in [335], A1 would be classified as a construct, A2 as a
model, and A3 as an instantiation. The creation of these artefacts was preceded by an
in depth-study of the state of the art, which is presented in Chap. 4. The scientific value
of the created artefacts, i.e. whether they represent a new or improved solution w.r.t.
the initial problem, is assured by a detailed validation, which is presented in Chap. 7.
Simultaneously, I adhered to the Design Science guidelines formulated in Sec. 2.2.

34 Chapter 2

Part II

CONTRIBUTIONS

“Wovon man nicht sprechen kann, darüber muss man
schweigen. (germ: Whereof one cannot speak, thereof one
must be silent.)”

—Ludwig Wittgenstein [491]
CHAPTER 3

CONCEPTUALISATION

The contribution part of this thesis starts with a conceptualisation of the problem
domain. The resulting conceptual framework facilitates a better understanding of
the concepts, activities and challenges within multi-model consistency management.
Further, it will allow to compare and integrate results from related research domains.
Another useful outcome is a unification of the diverse terminology. This chapter thus
paves the way for a comprehensive literature, presented in the following chapter, and
forms the foundation for the formalisation and tool development presented later.

In Sec. 3.1, I will begin with a short historical account of central concepts and
ideas that are related to multi-model consistency management. Sec. 3.2 presents these
concepts within a generic model management framework, which has originally been
developed by Diskin, Maibaum and their collaborators in the course of an industrial
collaboration project on model-based engineering in the automotive domain and
communicated in a series of publications: [119, 125, 128, 130]. Finally, Sec. 3.3 adapts
the generic model management framework to the more concrete setting of multi-model
consistency management. The latter marks mymain contribution of this chapter, which
was partly presented in [451].

3.1 Existing Concepts & Ideas

Multi-model consistency management is closely related to the following research
domains: View-based Software Development [175], (In)consistency management [433],
Traceability Management [352], Multi-view Modeling [87], Metamodeling [23], Model
Transformation [264], Model Management [45], Megamodeling [167], Model Repair
[331], Model Synchronisation/bidirectional transformations (BX) [103], and Coupled
Evolution [307]. These topics will be investigated in greater detail in Chap. 4. In this
chapter, I am mainly focusing on the most fundamental ideas.

3.1.1 View-based Software Development

The issue of maintaining the consistency among distributed parts of a system
specification is older than the MDSE discipline. It was first thoroughly inves-
tigated in the field of Requirements Engineering during the nineties [175, 497].
One well-known approach of that time is the ViewPoints framework [175, 362].
It considers a system specification as a collection of loosely coupled viewpoints.

Conceptualisation

A viewpoint, see Fig. 3.1, captures the perspective and knowledge of a stake-
holder on a particular part of the system specification, see the aspects in Fig. 1.7

Fig. 3.1: Viewpoint [175]

It comprises five so-called slots [175]: The
representation style denotes the description
language; The domaindescribes the area of
concern captured by this viewpoint; The
specification slot contains the current state
of the partial system specification; The
work plan describes the actions that can be
used for creation and verification of the
specification together with a guiding pro-
cess that states inwhat order these actions
should be invoked. The work plan con-
tains the complete development history.
The number of viewpoints is not fixed
and new viewpoints may be instantiated
during later stages of the development
process using a pre-defined template. The
ViewPoints framework emphasizes loose
coupling between viewpoints and hetero-
geneity of representation styles to delin-
eate itself from earlier approaches such
as [480, 497], which were based on com-
mon data models, uniform notation and
centralised databases. Those approaches
are considered more complex and hard to
extend in the long run, see [174].

3.1.2 (In)consistency Management
An important activity concerning viewpoints is consistency verification, which, in case of
the ViewPoints framework, is performed by invoking so-called check actions. There are
two types of check actions [174]:

in-viewpoint checks verify the consistency of the specification within the respective
viewpoint.

inter-viewpoint checks verify the consistency of the specification w.r.t. to a specifica-
tion developed by another viewpoint.

For implementing these checks, Finkelstein et al. propose a logic-based approach [174]:
A viewpoint specification can be interpreted as a set of sentences in a suitable logic
such as first order logic (FOL). Verifying consistency internally to a viewpoint means
to check whether the set of sentences, which results from translating the viewpoint
specification into a respective logical representation, is free of contradictions. Verifying
consistency between two viewpoints means to translate both viewpoints into a logical
representation and checking for the absence of contractions. This includes the necessity
to detect overlaps between the two specifications, i.e. both viewpoints may refer to

38 Chapter 3

3.1 Existing Concepts & Ideas

Fig. 3.2: Inconsistency Management Framework [361]

the same elements in the underlying system [176]. Spanoudakis et al. [432] identified
different types of overlaps that may exist in distributed system specifications:

null There are no overlaps between the specifications

partial Both specifications have a “shared part” but also contain elements unknown to
the respective other,

inclusive One specification is completely contained in the other (part-of relationship)

total Both specifications are isomorphic.

According to Finkelstein et al. [176], overlaps imply consistency rules, compare Sec. 1.3.1
(CR1). The violation of a consistency rule is called an inconsistency. Handling
inconsistencies is a major issue within software engineering. Nuseibeh et al. [361]
developed a comprehensive framework for inconsistency management, which is depicted
in Fig. 3.2.

At the centre of this framework, there is a set of global consistency rules. It is
important to note that the set of these rules is not immutable, i.e. new rules may
be introduced due to changed requirements while others may become obsolete over
time. The distributed system specification is constantly being monitored w.r.t. these
rules. When an inconsistency is detected, it is first diagnosed, i.e. additional metadata
(location, type of violation, affected elements, and impact) is collected. Afterwards,
the inconsistency is handled. Inconsistencies generally have a negative impact on the
quality of the final system, and thus it is desirable to resolve them. However, it may
not always be possible yet reasonable to try to resolve inconsistencies immediately
[361], e.g. due to fundamental conflicts concerning the set of consistency rules. Thus,
“tolerating inconsistency” [30] becomes a viable alternative and the stakeholder may
decide to [361]

defer the decision to later,

Chapter 3 39

Conceptualisation

circumvent the inconsistency by changing a consistency rule,

ameliorate the inconsistency (i.e. only resolving it partially), or

ignore the inconsistency.

The outcome of this decision may be codified in the form of a policy [176]. Policies
reside on top of consistency rules and stipulate how an inconsistency w.r.t. specific
consistency rules should be handled. Finkelstein et al. [176] distinguish the following
types of policies:

Preventive Policies prohibit any action that would cause an inconsistency,

Toleration Policies define when an inconsistency should be tolerated, and

Remedial Policies always trigger inconsistency resolution. They may also provide
extra information to the resolution about how the inconsistencies shall be resolved.

The early literature on view-based software development and (in)consistency
management has been surveyed by Spanoudakis and Zisman in their seminal paper
[433]. In this paper, the “inconsistency monitoring” step from [361] is refined further
into the activities overlap identification and inconsistency detection. These activities are
related to the notion of pre-traceability and post-traceabilitymentioned in [211], i.e. the
phases before and after traceability relationships have been established among the
various artefacts of the system specification.

3.1.3 Traceability Management
Overlaps are a special case of traceability relationships. Traceability is the common term
for any kind of relationship among software artefacts, see Def. 1.3 and the examples in
Sec. 1.3.2. Traceability is generally expressed through relationships between elements
of the same model (vertical) or through relationships between elements of disparate
models (horizontal) [316]. Spanoudakis and Zisman [434] identified eight different
types of traceability relationships:

Dependency One element depends on the existence of another element, e.g. because
it accesses a feature of the other element.

Generalisation/Refinement One element is broken down into smaller and more
detailed parts. Elements related by generalisation/refinement relationships
reside on different abstraction levels.

Evolution An element has evolved throughout the development process, think of a
version history.

Satisfiability One element meets the expectations imposed by another element.

Overlap Two elements share a common part or are identical.

Conflict Two elements are in conflict with each other, i.e. they make contradictory
assertions.

40 Chapter 3

3.1 Existing Concepts & Ideas

Rationalisation One element explains the rationale behind the creation, deletion or
evolution of another element.

Contribution An element shows which stakeholder has contributed to its current
state.

3.1.4 Consistency Management in UML
Since its inception, the Unified Modelling Language [405] has become the de-facto
standard for formulating software specifications. UML is organised as a “family” [96]
of 14 sub-languages (diagram types), which are divided into two categories: structural
and behavioural [37]. Each diagram type focuses on a specific system aspect. For
instance, class diagrams (structural category) define the system’s classes, i.e. building
blocks of object-oriented software systems representing data types or domain entities.
Sequence diagrams (behavioural category) define the interaction between two or more
class instances. UML-based system specification can thus be considered as an instance
of the view-based paradigm [175]: Every diagram type represents a viewpoint of
the same underlying system. Hence, there is a possibility of these views becoming
inconsistent [245]. For instance, deleting a method in a class might render a sequence
diagram, which refers to this method, as inconsistent.

Consistency management of UML models has been addressed by many researchers.
One notable mention is the pioneering work of Egyed [142] and his VIEWINTEGRA
approach. Consequentially, this research domain has been surveyed in several pub-
lications [37, 245, 284, 320, 460, 469], which developed further classifications of the
various approaches in this area. Aside from the obvious technical distinctions such as
UML-version or diagram type, Engels et al. [155] distinguish four types of consistency
problems along two orthogonal dimensions. On the first dimension, they distinguish
between vertical, i.e. consistency of one UML diagram w.r.t. its metamodel and horizon-
tal consistency, i.e. consistency among multiple diagrams. This distinction corresponds
closely to the notions of in-viewpoint and inter-viewpoint checks in [174]. On the sec-
ond dimension, Engels et al. distinguish between syntactical and semantic consistency.
Syntactic consistency verifies structural well-formedness, i.e. that the UML model con-
forms to the abstract syntax of the UMLmetamodel. Semantic consistency additionally
concerns the model’s behaviour. In the early days of UML, the semantic behaviour of
UML models was not formally specified, which opened up for various domain specific
interpretations. Nowadays, UML models are often augmented with OCL-invariants
[479] to express domain specific behaviour.

3.1.5 Multi-View Modeling
Views do not only play an important role in UML, but also for DSLs [209]. The research
domain that investigates the topic of distributed system specification using arbitrary
(general-purpose or domain specific) modeling languages is called multi-view modeling
[68, 87]. Studies in this domain often refer to the IEEE 1471|ISO/IEC 42010 standard
[246] as a conceptual basis. That standard defines a conceptual framework for software
architectures which comprises the concepts models, views and viewpoints: The model
is an abstract description of the system under development; The views represent

Chapter 3 41

Conceptualisation

specific parts of this model; and a viewpoint is a selection of views. Furthermore [246]
distinguishes between two approaches: projective and synthetic. In a projective approach,
the system model exists from the very beginning and every view is a projection of
it. UML is a representative of a projective approach. In a synthetic approach, views
are a priori independent. Thus, the system model exists only theoretically in the
beginning. Eventually, it has to be created by composing the views. This synthesis
generally necessitates the detection of overlaps among the views. The ViewPoints
framework [175] is a representative of a synthetic approach. Moreover, there is a
proposal (Orthographic software modeling) that seeks to combine projective and synthetic
approaches [25], which is based on the idea of a single underlying model (SUM). The
SUMmust be synthetically created from independent artefacts in the beginning and
can subsequentially be used for deriving projective views.

3.1.6 Metamodeling

Fig. 3.3: Four-level Meta-Hierarchy [23]

Models are denoted in amodeling language
(representation style in Fig. 3.1. Types
of modeling languages can be classified
along two dimensions: “style” and “do-
main”. On the “style”-dimension, one
generally1 distinguishes between graphical
and textual2 languages. On the “domain”-
dimension, one distinguishes between
general-purpose and domain specific lan-
guages. UML is an example of a graphi-
cal general-purpose modeling language
while the “state machine language” from
Fowler’s DSL-book [180] is an example of
a textual domain specific language.

A modeling language is described by a metamodel, i.e. an abstract description of
the modeling language itself. A metamodel can be seen as a generalisation of an
(E)BNF-grammar [28], which are used to define the syntaxes of textual languages.
A metamodel contains a definition of the abstract syntax of the language, i.e. the
concepts of the language, their relationships and well-formedness rules define over them.
The conceptual idea of a metamodel has been thoroughly scrutinized during the
early development stages of OMG’s MDA [23, 76, 162, 163], which resulted in the
four-level meta-hierarchy shown in Fig. 3.3. The bottommost level M0 contains abstract
representations of “things” in the real world. The types of representable objects are
defined by software models (e.g. UML diagrams) which reside on level M1. The
language for denoting these models is represented by a metamodel, which resides
on level M2. Finally, metamodels must themselves be denoted in a meta-modeling
language. In MDA, this meta-modeling language is called by MOF [368] (actually a

1There are also table-based and tree-based representations. Both can be considered as special cases
of a graphical notation and Sec. 5.1.1 will introduce a way to treat all kinds of styles uniformly.

2Therefore, the line between source code and model becomes blurry, which further corroborates the
stance that “everything is a model”

42 Chapter 3

3.1 Existing Concepts & Ideas

subset of the UML class diagram language), which resides on level M3. The relation
between a model and its metamodel is called instanceOf.

The four-level meta-hierarchy has been criticised from several researchers. The
main criticisms are that the instanceOf -relation mixes linguistic and ontological aspects
[23, 303] and that the restriction to exactly four sequential levels poses as an unnecessary
limitation. Therefore, Atkinson and Kühne [24] coin the concept of multi-level modeling,
which allows an arbitrary number of metalevels in addition to different dimensions,
which represent ontological and linguistic concepts separately.

3.1.7 Model Transformation
A key characteristic of MDSE is that models are used actively instead of being merely a
passive means of documentation. This feature is facilitated by the concept of model
transformations, which have been considered to be “the heart and soul of model-driven
engineering” [426]. In the most general sense, a model transformation is a program
that takes one or more models as input and produces one or more models as output
[61]. The idea originated from the MDA-vision [192], which envisaged a three-step
process starting with computation-independent models (CIMs), which are first transformed
into platform-independent models (PIMs) and then finally into platform-specific models
(PSMs), where each transformation steps refines the system specification by adding the
necessary technical details. However, the implementation of these model translations
was not explicated further. Thus, in 2002 theOMG released a request for proposals entitled
Queries / Views / Transformations (QVT) to address this issue. Several proposals from
academia and industry were made and eventually the OMG adopted a standard known
QVT [367], but which still has no official and complete functioning implementation due
to inherent semantic problems [439]. Neither MDA nor QVT gained a broad adoption
by software practitioners. Albeit, they influenced the plethora of model transformation
tools that exists toady, e.g. the well-known ATLAS Transformation Language (ATL)3
[263]. Kahani et al. [264] contains a comprehensive overview over existing model
transformation tools and approaches. A classification scheme for model transformation
approaches is given in [104] and [342]:

endogeneos vs. exogenous [342] In an endogenous model transformation, input and
output models are denoted in the same language (instances of the same meta-
model) while in an exogenous model transformation in- and output models are
denoted in different languages.

horizontal vs. vertical [342] In a horizontal model transformation, in- and output
models are on the same abstraction level (e.g. refactoring), while in a vertical
model transformation, abstraction levels differ (e.g. refinement).

unidirectional vs. bidirectional [342] In a unidirectional model transformation, there
is a strict distinction between input (source) and output (target) models. A
bidirectional model transformation allows to perform the transformation in the
other direction as well. The latter is associated with its own research domain,
which is explained further below.

3https://www.eclipse.org/atl/

Chapter 3 43

https://www.eclipse.org/atl/

Conceptualisation

Fig. 3.4: Model Management [46]

in-place vs. out-place [104] A model transformation may either update, i.e. in- and
output model coincide, a model (in-place) or create a new model (out-place).

imperative vs. declarative [104] The definition of the model transformation may fol-
low different paradigms: An imperative model transformation definition is given
in terms of a procedural or object-oriented program [291]. Declarative approaches
are generally based on relations [8] or graph-transformation rules [17]. They pro-
vide a high level of abstraction but may be less-expressive than their imperative
counterpart. Finally, there are hybrid approaches, which aim to combine benefits
from both imperative and declarative approaches.

Before a model transformation can be executed it must be defined, see the conceptual
picture in Fig. 3.5b. This definition is “located” on the level of metamodels, i.e. it
contains references to the source metamodels (which are queried) and the target
metamodels (which are instantiated). The execution of a model transformation creates
a so-called trace, i.e. a set of links that relate elements of the source models to elements
of the target models. The alignment of multiple models together with traces has been
referred to as model weaving [114]. The later is also closely related to model traceability,
see Sec. 3.1.3.

3.1.8 Model Management
Model transformations is one instance of a model management operation. Model
management was first introduced in the database domain [46]: With the growing
importance of web-related technology, developers had to manage increasingly more
heterogeneous artefact, i.e. database schemas and XML document type definitions.
Thus, Bernstein et al. [45, 46] proposed the concept of model management. The
conceptual idea is sketched in Fig. 3.4: Schemas are understood as models, which are
related by mappings and processed byoperations. The paradigmatic idea behind model
management is a transition from “element-at-a-time”-processing to “model-at-a-time”-
processing. The analogy in the database world is “record-at-a-time”-processing versus
“table-at-a-time”-processing, which was made possible with the advent of SQL, a
declarative language. Bernstein proposed a catalogue of essential model management
operations in [45]. This catalogue was introduced to the MDSE community and
extended by Brunet, Chechik and their collaborators in [70]. The composite list of
model management operations is given below:

44 Chapter 3

3.1 Existing Concepts & Ideas

match [45, 70] takes two models as input and produces a mapping between them, e.g.
by detecting overlaps.

merge [45, 70] takes two models and a mapping among them as input and produces
a single model, which provides an integrated view on both models wherein
mapped elements are identified.

diff [45, 70] takes two models as input and identifies the edit actions (i.e. syntactic
descriptions of model modifications), that were applied to transform one model
into the other containing only elements that satisfy the criterion.

slice [70] takes amodel and criterion as input to produce amodel, which is a projection
of the input model.

split [70] takes a model and a criterion as input to produce a partition. The partition
is given as a pair of models related by a mapping.

check_property [70] takes a model and a property (e.g. a consistency rule) as input
and verifies whether the model satisfies the property.

is_consistent [70] takes twomodels and amapping between them as input and verifies
whether they are consistent concerning overlaps.

patch [70] takes a model and a sequence of edit actions as input to produce an updated
model.

propagate [70] takes a source model, a target model and a sequence of edit actions on
the source model as input to produce a sequence of corresponding edit actions
for the target model.

model_gen [45] takes one model as input and produces a new model as output (see
out-place model transformations).

compose [45] takes two compatible mappings as input to produce a new composed
mapping.

Rondo[340] and Clio[216] are examples of the first fully-functional model manage-
ment tools, which have been applied in industrial contexts and inspired commercial
Extract-Transformation-Load (ETL) tools, which are heavily used in data warehousing
today. In the MDSE community, Epsilon [371] and the ecosystem around the ATL
transformation tool [47] are popular examples of academic model management tools.

3.1.9 Megamodeling
Researchers have made several attempts to combine the concepts from metamodeling,
model transformation and model management into one conceptual framework known
as megamodel. A megamodel is a model whose elements are models themselves [79].
Arguably, the most well-known attempt is the proposal by Favre [164–167], which is
depicted in Fig. 3.5. The building block of this framework are systems (Fig. 3.5a), which
are either real physical systems, digital systems (i.e. software systems) or abstract

Chapter 3 45

Conceptualisation

source
target

System

PhysicalSystem DigitalSystem AbstractSystem

elements

sets

elementOf▾

Language

◀RepresentationOf

model
systemUnderStudy

◀ConformantTo

metamodel
conformantModel

composite
part

◀DecomposedIn

IsTransformedIn

{incomplete}

{incomplete}

◀

(a) Megamodel Metamodel

SystemUnderDevelopment : DS

SourceModel : AS

SourceModelLanguage : L

SourceMetamodel : AS

TargetModel : AS

TargetModelLanguage : L

TargetMetamodel : ASTransformationDefinition : ITI

TransformationLanguage : L

TransformationTrace : ITI

TransformationLanguageMetamodel : AS

▼

▼ ▼

▼ ▼

▲

▲

▲
▲

▲
▲

▸

▸

(b) Megamodel Instance: Model Transformation

Fig. 3.5: Favre’s megamodel, adapted from [164–167]

systems (models). Systems are related by various types of relationships abbreviated
by Greek letters, see the associations in Fig. 3.5a. The representationOf relationship (µ)
expresses that one system is an abstract representation (model in the classical sense) of
the other. The elementOf relationship (ε) relates two systems where one system is a
(modeling) language. The conformsTo-relationship (χ) arises from µε-sequences and
captures the (purely) linguistic relation between a model and its metamodel. Finally
there are decomposedInto (δ) and transformedInto (τ) relationships , which express
refinement and evolution, respectively. In the spirit of MDA, the development process
is represented through a sequence of τ relationships. It is important to note that a
transformation is considered to a system as well which represents the transformation
trace or the transformation definition respectively. Fig. 3.5b contains an example
instance of the megamodel, which depicts a model transformation. This megamodel
was an influential idea in the MDSE community but posses, with few exceptions
(ATLAS MegaModel Management (AM3) [11]), almost no tool implementations.

3.1.10 Model Repair

The activity of (semi)-automatically resolving inconsistencies has several synonyms
such as restoration [442], fixing [143], or repairing [288]. In the following, I will mostly
stick to the terminology in [331] and call this activity model repair. One of the first
mentions ofmodel repairwaswithin theViewPoints framework [174], where consistency
rules are augmented with repair actions that are being executed when the respective
rule becomes violated. This idea of repair actions was continued in Xlinkit [357], which
applies a similar idea to collections of XML documents inter-linked via XLinks [113]. In
the context of UML, Egyed’sModel/Analyzer [395, 396] marks a major contribution. This
tool automatically calculates several possible consistency-restoring edit actions such
that the user can choose one of them There is a whole research domain centred around
this topic. Hence, there are many more proposed solutions based on various strategies,
such as searching [281, 488], model finding [328], logic programming [156], description logics
[341], graph grammars [194], or machine learning [35]. An up-to-date survey over model
repair approaches is the one by Macedo et al. [331].

46 Chapter 3

3.1 Existing Concepts & Ideas

3.1.11 Bidirectional Transformations
Model synchronisation [19] is a special case of model repair, which involves multiple
models, see Sec. 1.3.2. It is known as update propagation[105] investigated by the
cross-disciplinary research domain called bidirectional transformations (BX) [103]. The
theoretical origin of BX is traced back to the view-update problem in databases, which
was thoroughly investigated in [31]. A database view is a reduced instance, which is
derived from a source database. An update on the source can easily be translated to
an equivalent update on the view via projection. The translation from a view update
to a source update is more complicated. A general approach to this problem is the
so-called “constant complement”-approach [31]. This means that the source can clearly
divided into the view-part and a complement-part. The latter remains unchanged
under a view-update.

In general, the problem of keeping two representations of the same data synchro-
nised appears in many domains, e.g. user-interface development, (functional) programming
languages, and software engineering. In the programming language community, it was
investigated by Foster, Pierce and collaborators [32, 53, 54, 178, 238, 239]. The most
important outcome of their investigation is the notion of a lens [178]. The simplest form
of a lens is given by a asymmetric set-based lens (as-lens):

Definition 3.1 (Asymmetric set-based) lens [178]

A lens is a quadruple (S, V, get, put) comprising a set of sources S, a set of views
V , a unary function get : S→ V , and a binary function put : V × S→ S. The lens
is called well-behaved if and only if the following two conditions hold:

∀s ∈ S, v ∈ V : get(put(v, s)) = v (GetPut)
∀s ∈ S : put(get(s), s) = s (PutGet)

The lens is called very well-behaved, if and only if additionally the following holds:

∀s ∈ S, v, v ′ ∈ V : put(v ′, s) = put(v ′, put(v, s)) (PutPut)

Asymmetric set-based lenses are closely related to the view-update problem. The
round-tripping-laws (GetPut) and (PutGet) guarantee that the source and target remain
consistent. A view v is considered consistent with a source s if and only if v = get(s).
When a lens is very-well behaved, it means that the lens implements the constant-
complement approach, see [253, 256]. Lenses provide the formal foundation for several
functional programming libraries offering synchronisation primitives and have been
generalised into several directions, the most fundamental concepts are:

Delta-lenses [134] treat updates as a structural entity (= delta) of its own right, i.e. get
and put propagate deltas instead of states.

Edit-lenses [239] are similar to delta-lenses but instead of considering changes struc-
turally, they are treated operationally.

Symmetric-lenses [238] dissolve the division in source and view. There are two
different domains, where none is derived from the other. Thus, there are

Chapter 3 47

Conceptualisation

put-functions in both directions.

Johnson and Rosebrugh [255, 258] showed that, under certain conditions, the
different types of lenses can be translated into each other, e.g. set-based lenses are
a special (codiscrete) case of delta-lenses and symmetric-lenses can be expressed as
pairs of asymmetric lenses. Apart from that, there are proposals for even more general
lens-definitions regarding uncertainty [122], learning [120], and multi-ary situations [126].

In MDSE domain, model transformation, see Sec. 3.1.7, is seldom a “one-way”
process [123]. For example, code that is being generated from a more abstract
description will eventually contain modifications by the developers. When the abstract
description is now changed, re-generating the code must not overwrite the changes
that happened in the meantime. This situation is known as round-trip engineering
[19], see Sec. 1.3.2, and necessitates bidirectional [438] and incremental [194] model
transformations. A conceptual description for such model transformations is given by
Steven’s consistency maintainers, which were developed during her study of (the flaws
of) the QVT standard [439]:

Definition 3.2 Consistency Maintainers [439]

LetM,N be two sets, called model spaces. Consistency Maintainers betweenM and
N are given by a triple (R,

−→
R ,
←−
R) comprising a consistency relation R ⊆ M ×N,

a forward restorer function
−→
R : M × N → N and a backward restorer function

←−
R :M×N→M.
The consistency maintainers are called correct if the following laws hold:

∀m ′ ∈M,n ∈ N : (m ′,
−→
R (m ′, n)) ∈ R

∀m ∈M,n ′ ∈ N : (
←−
R (m,n ′), n ′) ∈ R

They are hippocratic (“do no harm”) if the following holds:

∀m ∈M,n ∈ N : (m,n) ∈ R =⇒
−→
R (m,n) = n∧

←−
R (m,n) = m

Finally, they are history ignorant if the following holds:

∀m,m ′ ∈M,n ∈ N :
−→
R (m,

−→
R (m ′, n)) =

−→
R (m ′, n)

∀m ∈M,n,n ′ ∈ N :
←−
R (
←−
R (m,n ′), n) =

←−
R (m,n ′)

Note the similarity between the conditions in Def. 3.2 and Def. 3.1. This is due to
the fact that consistency maintainers can interpreted as symmetric lenses [439].

Triple graph grammars (TGGs) introduced by Schürr in 1994 [422] are means for syn-
chronising two structures that are presented as graphs, which are a widely recognised
formalisation of model transformation and synchronisation [144, 194, 230]. Abstractly,
this approach is considered to be an instance of a symmetric delta-based lens [135], which
can be depicted by a tile pattern4 [121], see Fig. 3.6a (Dashed lines indicate elements

4Motived by the concept of double categories and historically going back to [71]

48 Chapter 3

3.1 Existing Concepts & Ideas

(a) Propagation-based (b) Restoration-based

Fig. 3.6: Tile Notation, adapted from [18]

that are created during the execution of the operation). This figure shows a forward
update propagation (fUP) operation that takes a correspondence relation (horizontal ar-
row) and an update (vertical arrow) as input to produce an update (the propagation)
and a new correspondence relation to the resulting model. This approach is called
propagation-based.

In their study of BX approaches, Anjorin et al.[18] identified how the propagation
operation can alternatively be conceived as special case of model repair, see Fig. 3.6b.
If the correspondence relation and update are not explicitly represented, they can be
created via horizontal and vertical alignment (hAln & vAln) operations. Vertical and
horizontal arrows can be combined via a compose-operation (∗) resulting in a diagonal
relation. The latter may be inconsistent, which is repaired by a forward Consistency
Restoration (fCR) operation. This approach is called restoration-based.

In 2008, researchers from the aforementioned domains acknowledged their com-
monalities and started the cross-disciplinary BX research domain. The results of their
first meeting are reported in [103]. This event was followed by a Dagstuhl seminar
[241] in 2011 and a summer school in 2016 [1].

3.1.12 Coupled Evolution

Yet another special case of model repair, which is similar to BX is called coupled
transformation/evolution [89, 307], short co-evolution [162, 224]. The conceptual difference
to BX is that a modifications happens to an artefact on another meta-level and the
co-evolution approach has to find a way to automatically adapt the artefacts on
the meta-level below. Well-known examples of this scenario are schema migration
in databases [402] or metamodel-instance adaptation in MDSE [89, 213, 334], i.e.a
metamodel (modeling language) is changed and the existing models and dependent
artefacts (model transformation definitions, editors) have to be migrated to the new
version of the modeling language. An important concept in this context are migration
rules [224, 373], i.e. updates are accompanied by a description how the dependent
artefacts must be adjusted to restore consistency.

Chapter 3 49

Conceptualisation

Model Relation

Artefact

Change

Conformance

Correspondence

Operation

Consistency

◀ produces
◀consumes

◀old

◀new

◀realisation
◀metamodel

◀relates

A
✔ ✗ ?

◀ on

0..* 0..*
0..*0..*

1..1
1..1

0..* 0..*

1..11..1

0..*
0..*

0..*

2..* 1..1 1..1

Fig. 3.7: Model-Management: Entities

3.2 Generic Model Management Framework

To put the various concepts introduced in Sec. 3.1 together, a comprehensive framework
is needed. A suitable starting point is the model management framework presented
by Diskin, Maibaum and others [119, 125, 128, 130], which is is partly influenced by
Favre’s megamodel [163–165]. I will adopt their framework here and apply someminor
simplifications5. A personal contribution w.r.t. this framework is a visual language,
which allows to depict model management operations intuitively.

3.2.1 Artefacts

Fig. 3.7 depicts an overview of the main entities of model management and their
relationships. Due to its abstract nature, associations in this model are undirected the
classes contain no further attributes nor methods.

Models are the essential building blocks of the framework. In the spirit of [76], almost
every artefact related to design, development or operation of a software system
is considered to be a model. There is no distinction between models and views
as in Sec. 3.1.5. The notion of “a model being a view of another” is expressed
through a correspondence relation. There are three different types of inter-model
relationships: change, conformance, and correspondence.

Change is a binary relation between two models A and A ′, which tells that model A
(old version) has been modified, resulting in the model A ′ (new version), see the
“evolution” traceability type (Sec. 3.1.3) and the vertical arrows in Fig. 3.6.

5E.g. The distinction between viewOf, replicaOf, and refinementOf is combined into the notion of
correspondence

50 Chapter 3

3.2 Generic Model Management Framework

Conformance is a binary relation between two models A andM at different meta-
levels, i.e. the second modelM is an abstract representation of the language in
which the former model A is expressed, see Sec. 3.1.9.

Correspondence is a relation among multiple models (A,B,C, . . .), which share
a common part (overlap) and/or are related by other kinds of traceability
relationships, see Def. 3.2 and the horizontal arrows in Fig. 3.6.

Consistency is a property, which is attached to an inter-model relation. This property
express whether the relation is currently deemed to be consistent (X), inconsistent
(×) or unknown (?).

Operations process models and relations to create newmodels and relations or update
existing ones. The most common model management operations are discussed
further below.

co
nf

or
m

an
ce

 c
ha

ng
e

correspondence

✔

✗

?

Fig. 3.8: 3D Model Management Space

The small cloud symbols in Fig. 3.7 in-
troduce a concrete syntax, which can be
used to depict model management sce-
narios. Models are denoted by black dots
and their names are capital latin letters.
The three relations are denoted by arrows,
each highlighted by a different colour and
arrow different arrow tip. In the spirit
of Favre [167], they are associated with
a Greek letter: δ stands for changes, τ
stands for conformance, and ρ stands for
correspondence. The three relations can simultaneously be associated with a dimension,
of 3D space, which is sketched in Fig. 3.8. In related works [15, 162], these dimensions
have been referred to as time (change), space/variability (correspondence) and language
(conformance). Consistency is, if relevant, visualised by small check-,cross- or question
marks. Operations are depicted by filled double arrows or chevrons.

Compared to Favre’s megamodel [164–167], only the conformance-relationship has
been inherited. The representationOf -relationship is not considered since all members
of the model management frameworks are abstractions. Similarly, elementOf is not
considered and will be expressed via conformance. The decomposedIn-relationship can
be expressed via correspondence but the latter is able to represent many more inter-
model relationships that are not directly expressible in Favre’s megamodel. Also, the
isTransformedIn-relationship does not exactly coincide with the change-relation since the
latter is not necessarily bound to model transformation and can also express manual
modifications through the user.

3.2.2 Operations
A model management tool has to offer means for representing and storing models
(editor functionality) and it must offer operations to work with these artefacts [45].
The execution of model management operation can be fully automatic, completely
manual or something in between. To discuss the most central operations, I will utilise

Chapter 3 51

Conceptualisation

the concrete syntax described above. Each operation, called design patterns in [125],
comprises various types of inter-model relations. I distinguish elementary operations
that only involve one relation at a time and complex operations that involve multiple
relations simultaneously.

(a)Model Instantiation (b)Model Modification (c)Model Matching

(d)Model Differencing

✔
✗?

(e) Intra-Model Consistency
Verification

✔

?

✗

(f) Inter-Model Consistency
Verification

Fig. 3.9: Elementary Model Management Operations

Elementary Operations

Model Instantiation (Fig. 3.9a) describes the creation of a new model. The models
considered in this thesis have a specific format, i.e. they are denoted in some
modeling language. Thus, the newly created model A implicitly comes with
a conformance relation τ towards the metamodel M, which represents this
language.

Model Modification (Fig. 3.9b) allows updating an existing model A, which will be
represented by a change δ. This operation can be performed fully manually or
fully automatically, see “endogenous in-place model transformation” in Sec. 3.1.7.

Model Matching (Fig. 3.9c) is the central activity in model and data integration. It
takes two or moremodels as input and produces a correspondence relation between
them. This means finding overlaps and other traceability relations among the
input models. This operation, called horizontal alignment in Fig. 3.6b, is also
contained in the catalogues in [45] and [70].

Model Differencing (Fig. 3.9d) is closely related to model matching. Indeed, imple-
mentation strategies for both operations turn out to be similar [290]: Model
differencing can be implemented via model matching by first identifying common

52 Chapter 3

3.2 Generic Model Management Framework

elements and then considering the remaining unmatched elements to be the up-
date. The conceptual difference is that this operation produces a change and not a
correspondence.

Intr-Model Consistency Verification (Fig. 3.9e) describes the activity of checking the
consistency of a single model (in-viewpoint check in Sec. 3.1.1). It is also known
as vertical consistency verification . This operation checks the model against
structural rules imposed by the metamodel. It is common, to augment the
syntactical rules with user-defined semantic rules, which assert a custom system
behaviour [155].

Inter-Model Consistency Verification (Fig. 3.9f) describes the activity of checking the
consistency among multiple models (inter-viewpoint check in Sec. 3.1.1). It is also
known as horizontal consistency verification [155]. It is a more complex variant of
internal verification since it additionally has to consider correspondence relations
between models.

(a)Model Translation

✗
✔

(b)Model Repair

✔

(c)Model Synchronisation

✔

(d) Coupled Evolution

Fig. 3.10: Complex Model Management Operations

Complex Operations

Model Translation (Fig. 3.10a) is better known under the name (out-place) model
transformation. I intentionally avoid calling this operation model transformation
to exclude in-place model transformations. In this framework, the latter are

Chapter 3 53

Conceptualisation

considered as a special case of model modification. Model translation takes an
instance of a sourcemetamodel (represented by τA) andproduces a corresponding
instance of a target metamodel (represented by τA). The translation (represented
by ρDef) is defined between the respective metamodelsMA andMB and produces
a trace (represented by ρExe). Note the similarity between Fig. 3.10a and Fig. 3.5b.
One of the most common examples of this operation is code generation. Also, the
model slicing operator mentioned in [70] can be considered as special case of this
operation, where the translation means projection

Model Repair (Fig. 3.10b) is another name for the restoration of consistency in the
aftermath of a detected inconsistency, see Sec. 3.1.10. An inconsistent model
(represented by τ) is repaired by a “fix” (represented by δ) resulting in a consistent
model (represented by τ ′)).

Model Synchronisation (Fig. 3.10c) is the topic of BX (Sec. 3.1.11), i.e.keeping two
related models (represented by ρ0) consistent with each other when they change.
This means that in the event of a modification in one of the models (represented
by δA), consistency is restored by propagating an update (represented by δB) to
the other model. Compare the visualisation in Fig. 3.6a to Fig. 3.6a.

Coupled Evolution (Fig. 3.10d) describes the problem of adapting a model A when
its language changes, i.e. its metamodelM is updated (represented by δM). The
result of this operation is a “migration” (δA) such that the resulting model A ′
conforms (represented by τA ′) to the new language version, see Sec. 3.1.12.

3.3 Multi-Model Consistency Management Framework

The generic model management framework in Sec. 3.2 covers the whole breadth of
topics in MDSE and beyond, which is too broad for the scope of this thesis. The focus of
this thesis is multi-model consistency management. Thus, the scope has to be narrowed
down to this particular domain and a more concrete conceptual framework has to be
created, which will also mark the main contribution in this chapter. I begin by stating
five principles, which characterise multi-model consistency management. Based on
these principles, a domain model (structure) and a process model (behaviour) is developed,
see Sec. 3.3.6.

3.3.1 Model Spaces

First, I adopt the notion of model spaces from BX:

Definition 3.3 Model Space

A model space is a homogeneous collection of models together with the network
of possible changes among them. A change between two models inside a model
space is also called an update.

54 Chapter 3

3.3 Multi-Model Consistency Management Framework

Remark 3.1 State-Based Model Spaces

Some researchers conceive model spaces in a state-based manner, i.e. without
updates [133]. Def. 3.3 can account for this notion by considering updates to be
given by the cartesian product of all member models with itself, i.e. every model
pair is a possible update.

...

Fig. 3.11: Model Space

The attribute homogenous implies that all members of
the model space conform to the same metamodel. Fig. 3.11
provides an intuitive depiction of a model space. Often, a
metamodel becomes tantamount to a model space because
it gives rise to a default model space (= all instance models).
The model space generated by a metamodel M will be
referred to as Mod(M).

The network of updates inside a model space may ex-
hibit the notion of update composition and idle updates. A
composed update, i.e. a sequence of atomic updates, can
be interpreted as a path in the update network. An idle
update, i.e. not changing anything, can be interpreted by
remaining at the same model (state).

Furthermore, the notion of model spaces induces the
type-instance pattern. Thus, I will be working with two meta-levels, see Fig. 3.3. The
lower level contains all members of models spaces. The upper level contains the
metamodels behind these model spaces. This also applies for the example scenarios in
Sec. 1.3. For instance, the model spaces in the system integration scenario in Sec. 1.3.1
are given by the possible database states of the various information systems and the
metamodels are their respective schemas. In the system design scenario in Sec. 1.3.2,
the model spaces are given by the possible revisions of the design documents and
the metamodels are the languages used for denoting these documents. Multi-level
modeling, which was shortly mentioned in Sec. 3.1.6, will remain outside the scope of
this thesis. Thus, there are exactly two linguistic meta-levels, which, throughout this
thesis, will be referred to as type or metamodel level and instance level.

The concrete nature of model spaces is investigated by RQ1.

3.3.2 Commonalities

The first principle stated how models, change, conformance are organised within multi-
model consistency management. The second principle concerns the remaining corre-
spondence relation, which induces multi-models. A multi-model is defined as collection
of inter-related models, see Def. 1.5. In the generic model management framework, a
multi-model is represented as tuple of the correspondence relation. However, it turns
out that a multi-model is more than just a tuple comprised of related models stemming
from disparate model spaces, i.e. there is additional data attached to a multi-model.
This data is represented by overlaps and other traceability links. In the literature, there
many names for this phenomenon, e.g. traces [77], correspondences [439], corrs [422],
commonalities [279], morphisms [340], mappings [45], cross-reference links [110]. In

Chapter 3 55

Conceptualisation

✔
✗

?

§
«def»

(a) Intra-Model Consistency Verification

✔

?

✗

§

(b) Inter-Model Consistency Verification

Fig. 3.12: Consistency Rules

this thesis, I will choose the term commonality, since correspondence is already in use.

Definition 3.4 Commonality

A structural relationship among elements spanning disparate models is called a
commonality

The concrete interpretation of a commonality and concrete representation is kept
abstract at this point and will be investigated in later chapters. Note that the commonal-
ities within a multi-model may not be known from the start. In this case,model matching
(Fig. 3.9c) has to be applied. All aspects related to the discovery and representation of
commonalities are investigated by RQ1.

3.3.3 Consistency Rules
Sec. 3.2.2 describes two types of consistency verification: intra-model and inter-model
verification. This third principle states that both operations are executed w.r.t. to
consistency rules.

A consistency rule provides the rationale for deeming the relation to be consistent
or inconsistent. Thus, the reasoning process becomes reproduceable and therefore also
automateable. Without explicit consistency rules, internal and external verification
would be completely manual processes.

Definition 3.5 Consistency Rule

A consistency rule is a syntactic definition that is defined over a metamodel or
corresponding metamodels (inter-model consistency rule), which is used by a
verification operation to decide whether a model or multi-model is consistent.

Hence, the presentation in Fig. 3.9e and Fig. 3.9f has to be updated. Fig. 3.12 shows
the respective visualisation, which accounts for consistency rules. Note, the bullet
in the middle of the correspondence ρM, which highlights the commonality data, see
Sec. 3.3.2.

One can distinguish two phases of a rule: definition and execution. The definition
happens at design-time and is based on metamodels, i.e. the rule definition refers to

56 Chapter 3

3.3 Multi-Model Consistency Management Framework

element types. Take as an example the following OCL-invariant, which requires that
the name of every Class in a UML class diagram must starts with a capital letter. This
definition mentions a type (Class) and a feature (name), which are both elements of
the UML-metamodel.
context Class inv: self.name->substring(0,1) = self.name->substring(1,0)->toUpper()

In case of consistency rules, which are used for inter-model verification, a rule refers to
elements from multiple metamodels including their commonalities.

The execution happens at run-time and is based on models (instances). In practice,
this can be implemented by a check function telling whether the model is valid or not.
To allow for further analysis, this function, instead of just saying true or false, may
mention all the elements violating the rule. I call the resulting artefact an inconsistency
report, which is empty when there are no inconsistencies. Hence, execution of a
consistency rule can be interpreted as a special kind of model transformation.

The classification in [155] distinguishes between syntactical and behavioural rules.
The former safeguard well-definedness w.r.t. the language definition, e.g. that the
inheritance relation in class diagrams must be free of cycles and so on. This type of
rule also marks the most commonly investigated case, see [460]. Semantic rules enforce
a specific system behaviour that should be embodied in the models. These rules are
domain-dependent and therefore commonly specified by a user while syntactical rules
are usually given a priori. At this point it is important to clarify that the main focus of
this thesis are structuralmodels. Thus, behavioural semantics associated with models
such as state machines or activity diagrams are outside of the scope of this thesis. When
talking about semantic consistency rules, I refer to user-defineable rules that make
assertions about statical properties of models.

All aspects of consistency rules and their verification are investigated by RQ2.

3.3.4 Model Repair

The fourth principle asserts the existence of primitives for performing model repair. The
concrete implementation is kept abstract, i.e. it can utilise searching, repair actions,
user interaction, learning and more. Also, means for model synchronisation, e.g. lenses
and consistency maintainers, are part of this category, see the discussion in Sec. 3.1.11.
The signature of a repair primitive takes as input an inconsistency report including
references to all relevant consistency rules and (multi-)model to produce one or more
updates (the fixes or propagations).

The means for model repair are investigates by RQ3.

3.3.5 Architectures

The fifth and final principle concerns the architecture of multi-model consistency
management solutions. This is especially relevant for situations where one is dealing
with more than just two model spaces, like the examples in Sec. 1.3.

I claim that there are, in principal, two approaches for orchestrating the existing
means for consistency verification and restoration. They arise from the two main
approaches to network design: client-server and peer-to-peer. In the context of multi-

Chapter 3 57

Conceptualisation

Global View Maintainer Network

Visualisation

Advantages
+ Control + Little Overhead
+ Scalability + Resilience
+ Multi-ary correspondences + Privacy

Disadvantages
- Big Overhead - Control
- Single Point of Failure - Scalability
- Privacy - Multi-ary correspondences

Table 3.1: Global Views vs. Consistency Networks

model consistency management, I call them the global view approach and the maintainer
network approach.

In the former approach, there is an auxiliary artefact: the global view. It provides an
integrated presentation of all models, correspondence relations and consistency rules.
Verification and restoration are performed based on the global view. This implies
a centralised and restoration-based approach, see Fig. 3.6b, and there is no need for
special propagation primitives such as lenses. An example is the concept of a SUM in
multi-view modeling, see Sec. 3.1.5.

The maintainer network approach realises verification and restoration in a decen-
tralised way. Every correspondence relation requires a respective inter-model verifica-
tion procedure and synchronisation primitive. This is usually facilitated in pairwise
manner. An example of this approach is described in [442].

Tab. 3.1 gives a summary of the advantages and disadvantages of each approach.
The global view approach offers the benefit of a central point of control, which allows
to resolve conflicts and to detect repair actions that would cause cyclic invocations,
see [197, 442]. Also, it is easy to scale up to more component models since adding
a new component simply means incorporating one more model in the global view
(grows linearly). This is different in case of the maintainer network, whose complexity
grows quadratically. On the other hand, the maintainer network approach avoids the
drawbacks of the global view approach, i.e. privacy issues (the global view exposes
data from all components), overhead (the global view artefact may become unwieldy),
and single-point-of-failure (when the global view cannot be constructed).

The main advantage of the global view approach is its ability to deal with general
multi-ary correspondence relations in a straightforward way. In general, not every
n-ary relation (n > 2) can be factorised into pairs of binary relations. This has
been investigated by the database community, see e.g. [458]. For an illustrative
example6 in the MDSE domain, consider Fig. 3.13: The figure comprises three UML
class diagram models A1, A2 and A3, which model the same system and therefore
Classeswith identical names are considered to be same. The models are consistent by
themselves and also when considering them pairwise they appear consistent. Only
when considering all three models at the same time, it is possible to spot that there is an

6Credit goes to Zinovy Diskin for the idea behind this example.

58 Chapter 3

3.3 Multi-Model Consistency Management Framework

C D

(a) Class Diagram A1
E

C

(b) Class Diagram A2

D

E

(c) Class Diagram A3

Fig. 3.13: Inconsistent Class Diagrams

acyclic inheritance hierarchy! Therefore, binary means synchronisation are generally
not sufficient. Adding n-ary synchronisation means in a maintainer network may
increase the complexity significantly and eventually result in a setting, which resembles
the global view approach again, see the discussion in [91].

This principle is associated with RQ4.

3.3.6 Summary: Conceptual Model

refersTo▲

AbstractModelChange

Conformance Correspondence Operation

Consistency

MultiModel MultiModel Consistency
Management Task

Matching

Verification

Repair

ConsistencyRule

Model

MetaModel

ModelSpace

Update Commonalities

AbstractSpecification

explicates▲

reifies▲

◀components

reifies▲
reifies▲

members▸

contains▾

old▸
new▸

encodes▾

basedOn▲

◀definedOver

conformsTo▲

◀operatesOn

model management

multi-model consistency management

inducedBy▲

◀identifies

◀produces

0..*
0..*

0..*

0..*
2..*

0..*

2..*

0..*

1..1 1..1
0..*

1..1

0..* 0..*
0..*

0..*

0..*
0..*

1..1

1..*

1..1

1..1

0..*

1..1 0..*

1..1

0..*

1..1

0..*

1..1

composedOf▲

2..*

0..*

◀idle1..1

0..1

InconsistencyReport

0..*

◀produces
0..*

1..1

1..*

0..*

Global
View

Architecture

Maintainer
Network

◀orchestrates

1..1

1..*

1..1

1..1

0..*

0..*

Fig. 3.14: Multi-Model Consistency Management: Data

Fig. 3.14 presents the domain model emerging from the aforementioned principles.
This model is related to the model in Fig. 3.7 via reification or specialization (The term
model in Fig. 3.7 has been renamed to AbstractModel here). A multi-model comprises (at
least two) components and has associated commonalities data. Components are models,
which are contained in amodel space. The latter is induced by ametamodel and comprises
a network of updates. Model spaces are induced by a metamodel.

Multi-model consistency management comprises three activities: matching, verifica-
tion and repair, which are orchestrated in an architecture and based on consistency rules.
The latter are defined over metamodels or a multi-model that reifies a correspondence
among metamodels. The coordination of these activities is depicted in BPMNmodel in

Chapter 3 59

Conceptualisation

Fig. 3.15. The process can be triggered in regular intervals, in an event-based manner
(e.g. when an observed model gets modified), or on a manual invocation. Depending
on whether commonalities are up to date or not, model matching (Fig. 3.9c) has to be per-
formed. Afterwards, verification is performed, which produces an inconsistency report.
The process may end here with reporting the discovered inconsistency or, depending
on project policies, a model repair phase may follow to resolve the discovered incon-
sistencies by producing updates (= fixes/propagations). The data objects in Fig. 3.15
depict the relationship between operations and artefacts, and the non-standard visual-
isation of the activity types in Fig. 3.14 shall indicate the various possible strategies
for implementing the respective operation. In the following chapter, I will analyse
how artefacts (model spaces, multi-models, commonalities, and consistency rules) and
operations (matching, verification, and repair) are actually implemented.

Trigger
Start

Matching

Verification Repair

Checkonly End

Restoration
End

//

// //

Models Commonalities

Consistency Rules

Inconsistency Report Updates

Fig. 3.15: Multi-Model Consistency Management: Process

60 Chapter 3

“Those who do not remember the past are condemned to
repeat it.”

—George Santayana CHAPTER 4
STATE OF THE ART

In this chapter, I will investigate the body of existing knowledge and identify how the
concepts of multi-model consistency management identified in the previous chapter
have been realised in manifold scientific approaches. The main contribution of this
chapter is the introduction of a feature model [265], which allows to categorise and
compare the various existing approaches. An earlier version of this feature model has
been published in [451]. The updated version presented in this thesis includes some
minor changes and extensions, a detailed list of differences is found in AppendixA.

This chapter begins with an explanation of the method in Sec. 4.1 explaining how
the literature study was conducted. Sec. 4.2 contains the main contribution of this
chapter, a feature model for multi-model consistency management. Sec. 4.3 presents a
list with general observations that were made during the literature study leading over
into Sec. 4.4, which presents three concrete tools that support multi-model consistency
management. Finally, Sec. 4.5 concludes this chapter with a summary of current
limitations with existing tools and approaches.

4.1 Method

The “gold standard” for literature studies in software engineering are systematic lit-
erature reviews or systematic mapping studies [139, 277], short SLRs and SMSs. Both
define a rigorous process [276, 379] for querying literature databases with selected
keywords and analysing the results w.r.t. a set of initially stated research questions.
These types of studies are called secondary studies since they aggregate the results
of primary studies. In general, systematic literature reviews and mapping studies
require a lot of effort and ideally involve a big group of researchers from different
institutions to assure an unbiased selection and analysis of primary studies. Luck-
ily, there already are several literature reviews and survey papers in the domains
related to multi-model consistency management see Sec. 3.1. Therefore, me and my
co-authors chose a slightly different approach in [451] and used these literature re-
views and survey papers as the basis for our investigations. Hence, the work in
[451] can be considered to be a tertiary study since it builds upon secondary stud-
ies. The secondary studies that represent the starting point of our investigation were
identified by the following search string that was fed into theGoogle Scholar1 andDBLP2:

1https://scholar.google.com.tw/
2https://dblp.org/

https://scholar.google.com.tw/
https://dblp.org/

State of the Art

Secondary Study Citation Domain # of Prim. Studies

Multi-view Consistency in UML: A Survey [284] Consistency
Management

86

Multi-view approaches for software and
system modelling: a systematic literature
review

[87] Multi-View
Modeling

40

A Feature-based Classification of Model
Repair Approaches

[331] Model Repair 54

Feature-based classification of bidirectional
transformation approaches

[234] bidirectional
transformations

13

Approaches toCo-EvolutionofMetamodels
and Models: A Survey

[224] Coupled
Evolution

56

Model Management Tools for Models of
Different Domains: A Systematic Literature
Review

[461] Model
Management

56

Survey of Traceability Approaches in
Model-Driven Engineering

[190] Traceability
Management

12

Systematic Review of Software Behavioral
Model Consistency Checking

[350] Consistency
Management

96

Model-Driven Engineering as a new land-
scape for traceability management: A sys-
tematic literature review

[416] Traceability
Management

29

Total 9 + 474 = 483

Table 4.1: Data base of multi-model consistency management-related studies

62 Chapter 4

4.2 Feature Model

Model
ManagementModels

ConsistencyChange

Operations

CorrespondenceConformance

Repair

Matching

✔
✗ ?

Verification

§

Fig. 4.1: Feature Model Overview

(“model repair” OR “consistency verification” OR “(in)consistency restoration” OR
“(in)consistency management” OR “bidirectional transformation” OR “model

synchronisation” OR “multi-view” OR “model management” OR “megamodel” OR
“model traceability” OR “traceability management”)

AND
(“survey” OR “literature review” OR “feature-based” OR “overview” OR

“taxonomy”)

This search was based on occurrences of these terms in the title only. The results
returned by Google Scholar and DBLP had to be filtered manually w.r.t. to the criterion
that a study must be categorised as a work within software engineering or Computer
Science, thus explicitly excluding studies within machine learning (sharing the terms
“multi-view” and “model”),CAD and 3D-modeling (sharing the terms “consistency” and
“model”), UI development (sharing the term “user model”), and decision support systems
(sharing the term “model management”). The final result of identified secondary
studies is shown in Tab. 4.1. Earlier survey studies [6, 37, 153, 245, 320, 433, 460, 469, 489]
in the respective areas are subsumed by the papers listed in 4.1 and therefore not
contained in this table.

I continued my literature study by reading each of those nine papers in detail.
Afterwards, I skimmed and categorised the contained primary studies and did a
“snowballing”-searchw.r.t. the papers mentioned in the relatedwork sections. This way,
I identified some more related survey and classification papers ([18, 68, 123, 157, 438])
that constitute the data base for my literature study.

4.2 Feature Model

Feature models [265] have become a kind of a de-facto standard for presenting the
result of literature studies, see e.g. [68, 87, 331]. It was pioneered for this purpose by
Czarnckecki and Helsen [104] in their survey of model transformation approaches. A
feature model provides a classification scheme in terms of hierarchically organised

Chapter 4 63

State of the Art

Models

Tech
Space

XML-
based

SQL

XML

XMI

RDF

PL

DSLJVM

.NET

Haskell

Prolog

Formalism

Set

Logic

Terms

Relations

Graphs

OO

Category
Theory

Other

Fig. 4.2: Model Feature

features. The root layer of my feature model is shown in Fig. 4.1. The “clouds” allude to
the concrete syntax introduced in Chap. 3.2, see Fig. 3.7.

The legend in Fig. 4.1 explains the visual syntax of feature models. A feature
can be abstract (light-blue background colour), which means that it is composed of
other (abstract or concrete) features. A concrete feature (dark-blue background colour)
represents a boolean variable, i.e. whether a study considers this feature or not. The
hierarchical relationship between two features indicates whether certain sub-features
are always present (mandatory) or only sometimes (optional). An abstract feature can
also represent a group of concrete features. Their enumeration is either inclusive
(or-group) or exclusive (xor-group).

To highlight features in the text, a sans-serif font is used for referring to them directly.
The figures in this chapter highlight show specific parts of the overarching feature
model and some of them contain expressions in propositional logic. These expressions
denote constellations of features that have been discovered to always appear together.
When referring to features across different figures, it is sometimes necessary to fully
qualify a feature because their names are not always globally unique. The parent-child
relationship between features is denoted as “::”, e.g. “Top Feature::Sub Feature”.

This literature study is concerned with approaches to multi-model consistency
management, which represents a special setting for model management. Thus, the root
feature is called Model Management. Below are the top-level features (“dimensions”)
Models, Change, Conformance, Correspondence, Consistency, as well as the three
Operations Matching, Verification, and Repair. The sub-tree of each of those features is
presented in the following sections.

4.2.1 Models
Models are the elementary artefacts in multi-model consistency management. This
feature distinguishes between Tech Space [78] (i.e. how models are concretely imple-
mented) and Formalism (i.e. how models are conceived in theory), see Fig. 4.2. An

64 Chapter 4

4.2 Feature Model

approach to multi-model consistency management must at least address one of these
features (see the formula “TechSpace ∨ Formalism” in Fig. 4.2).

Tech Space Model management in the database domain is based on SQL [31, 402].
Approaches are generally implemented in a specific programming language (PL). The
most common choices are Java Virtual Machine (JVM) languages [73, 313], the .NET
framework [235], Haskell [286] or Prolog [384]. A majority of approaches works with
models, whose representation is XML-based. XML Metadata Interchange (XMI) [366] is
an XML-dialect used for storing and exchanging UML-models [365]. It is also used for
model serialisation within the Eclipse Modeling Framework (EMF) [436], which is the
technical foundation of numerous MDSE tools. RDF is an XML-dialect for knowledge
representation mainly used in the context of semantic web [435]. Some approaches
work with general XML documents [357]. Alternatively, models are represented in a
textual DSL [283]. There are also mentions of other technologies, e.g. [233], but they
constitute only a small share and are therefore grouped as Other.

Formalism Arguably, the most simple modeling formalism is to consider a model
as a Set of its elements [439]. Research in the database domain [31] naturally utilises
Relations [92] as a formal underpinning. A formally equivalent approach is to consider
a model as a set of sentences in a Logic. This is the standard Formalism for approaches
based on solvers or theorem provers [88, 328]. Note that there are various kinds of
“logics”, e.g. description logic [470] or relational logic [249]. In functional programming
approaches [286], models are essentially Terms, i.e. “generalised trees”. Strictly more
general are Graphs [233], which allow for cyclic relationships between elements and are
considered a standardmeans for depicting structured information in Computer Science.
The Object Oriented (OO) formalism [288, 395] combines aspects of both graph and
relational formalisms and adds additional features such as inheritance and constraints.
The most abstract formalism [59, 235] represents models via concepts borrowed from
Category Theory [34], which generalise all of the above, see e.g. [132, 408]. Some of the
technologies mentioned above immediately a specific Formalism, e.g. RDF and Prolog
imply a respective formalisation through a Logic-based representation.

4.2.2 Change
Change is one of the three relationships types betweenmodels in themodelmanagement
framework from Sec. 3.2. This abstract feature is further analysed w.r.t. the three aspects
Representation, Allowed Updates and Meta Information, see Fig. 4.3.

Representation There are two ways for representing change: State-based [31, 178]
or Delta-based [44, 133]. The latter is further classified into Structural- and Operational-
Deltas. In State-based representation there are only (old and new) model states.
Structural Deltas [133, 230] represent change as an entity of its own right, which is
concretely represented by links that witness which elements are added, deleted, or
remain unchanged. Operational Deltas [239] represent actual method invocations.

Representation happens through Recording. This can happen Offline or Online [224].
The latter is either implemented in an Intrusive [287], i.e. the user has to use a special

Chapter 4 65

State of the Art

Change

Representation

Types
Recording Meta-

Information

State-
Based

Delta-
Based

Structural
Delta

Operational
Delta

Atomic

ComplexOffline Online

Intrusive Non-
Intrusive

Model
Differencing HistoryEnvironment

Data

Insert

Update

Delete

Rename

Move

Merge

SplitSequence Parallelism Contingency
Plans

Definition

Customisable

Builtin

CompletePrevious
State

Syntactic Semantic

Allowed
Updates

Explicit

Implicit

Fig. 4.3: Change Feature

interface, or Non-Intrusive [112] manner, i.e. the user remains unaware of the recording.
Offline recording in combination with a Delta-based representation necessitates Model
Differencing [10, 290, 399], which is further distinguished between Syntactic [67] and
Semantic [267] model differencing. The latter is required to Operational-Deltas [268].

Allowed Updates Another aspect that can be analysed concerning the Change-
relation is the set of Allowed Updates for a certain model. This Definition may be Builtin
[90] for a concrete approach or Customisable. The latter can happen in an Explicit way
(i.e. the user defines a set of available operations [328]) or in an Implicit way (i.e. the
allowed updates are derived from another description, e.g. a metamodel [271]).

Furthermore, one can distinguish the Types of allowed updates. I further distinguish
between Atomic and Complex changes. Common examples of atomic changes are Insert,
Update and Delete operations. It can be worthwhile to consider Rename separately and
also consider more elaborate atomic changes such as Move, Split and Merge, see [224].
Most Complex changes are defined in terms of a Sequence of atomic changes. However,
there are approaches that also consider changes happening in Parallel [501] or even
Contingency Plans [385], which account for different possible outcomes.

Meta-Information A common type of Meta-Information is a History over the changes
happening to a model. This history may only contain the Previous State [470, 500] or
even the Complete [141, 385] history. Another type is Environment Data [292] such as
user credentials, the current, or a reference to external documents.

4.2.3 Conformance
The majority of software models is denoted in a modeling language, which is repre-
sented by a special model called metamodel. The relationship between a model and its
metamodel is called Conformance, which expresses that a model is well-formed. Hence,
there are two aspects to this feature: Well-Formedness and Metamodels, see Fig. 4.4.

66 Chapter 4

4.2 Feature Model

Conformance

Representation

Well-Formedness

Typing

Constraints

Concrete
Syntax

Type
SystemGrammar

MOF
Type

Graph

Algebraic
Theory

Knowledge
Base

Definition

Fixed

Customisable

Append-
only

Freely

Metamodel

Tech
Space Formalism

UML

DSL

XSD

OWL DDL PL

Fig. 4.4: Conformance Feature

Well-Formedness Well-Formedness is generally expressed via rules [373], called
Constraints. In addition to this, there is the notion of Typing, i.e. every element is
correctly assigned to an abstract syntax element (language concept) [87]. Furthermore,
a metamodel may be equipped with a Concrete Syntax such that it can be verified
whether the concrete presentation of the model adheres to this definition [401].

Metamodel Under the Metamodel aspect, I distinguish between Definition and Repre-
sentation. An approach may work with a Fixed set of metamodels [142] or allow it may
open for a Customisable [372] set of metamodels. The latter may be limited to configur-
ing the set of metamodels in an Append-only [395] fashion or it may allow configuring
the set of metamodels Freely [371]. The Representation aspect is further analysed w.r.t.
TechSpace and Formalism, as in the Models feature, see Sec. 4.2.1. The UML metamodel
is fixed [365] but it allows extensions via profiles and OCL annotations [479]. MOF [368]
is the OMG standard for defining metamodels. A prevalent variant of this language is
Ecore, which is the metamodeling language in EMF [436]. In the context of XML, XSD
is the common language for the definition of metamodels [340]. In the context of the
semantic web (i.e. RDF models), OWL definitions can be interpreted as metamodels
[435]. In the context of databases, metamodels are expressed via expressions written
in the data definition language (DDL) [31]. Apart from that, there are various DSLs
for defining metamodels, e.g. [47, 372, 482]. Moreover, the definition of data types in
a programming language (PL), e.g. Java classes with annotations, can be interpreted
as a metamodel [225]. On the formal side, metamodels are interpreted via Grammars
[422], Knowledge Bases [385], Algebraic Theories [57], Type Systems [286] or Type Graphs

Chapter 4 67

State of the Art

Correspondence

Commonalities PropertiesComponents

HomogeneousHeterogeneous

MetamodelsTech
SpacesFormalisms

Fig. 4.5: Correspondence Feature - Overview

Commonalities

Trace-
based

Merging Weaving Decoration Transformation

Definition

PredefinedCustomisable

Formulas Structural
Properties

Element
Tuples

Complement-
based

Representation

Implicit

Fig. 4.6: Correspondence::Commonalities Feature

[48]. Some technologies are directly associated with a specific formalism (e.g. RD-
F/OWL⇒ Logic) and some formalisms only work together with a specific formal model
representation, see Fig. 4.4.

4.2.4 Correspondence

Multi-models (Def. 1.5) are based on the notion of Correspondence, see Sec. 3.2 Hence,
this feature takes a prominent role and I distinguish three aspects of it: Components,
Commonalities and Properties, see Fig. 4.5. The detailed structure of the sub-features
Commonalities and Properties is shown in Fig. 4.6 and Fig. 4.8, respectively.

Components The models that are related by a correspondence are called Components
(of a multi-model). Early model management approaches required a Homogeneous
setting [411] , i.e. all models share the same metamodel, formalism, and technical
representation. In general, multi-model consistency management shall allow for
Heterogeneous settings, i.e. Components may differ with regard to their underlying
Metamodels [134], Tech Spaces [78], and Formalisms [347].

Commonalities (Def. 3.4) are what distinguishes a multi-model from being a mere
tuple of Components. I distinguish two aspects of this feature: Definition (design-
time) and Representation (run-time). In the multi-model consistency management
process, Definition comes first. It can be Implicit, explicitly Predefined, and/or explicitly

68 Chapter 4

4.2 Feature Model

h

g h

g

f

g

A A B

AC

D

f

g

A Bf

C
g h

D

A A B

AC

f

g D

f

g

f

f

A B

C D

A B

C

D

BA B

C

Merging

WeavingDecoration

Transformation

A A B

AC D

im
pl
ic
it

ex
pl
ic
it

internal external

Fig. 4.7: Trace-based Commonality Representation

Customisable. Implicit means that the notion of commonalities is opaque to the
respective tools [382]. TheUMLmetamodel [365] providesmany examples ofPredefined
definitions, e.g. every occurrence of a Class in a UML model with the same name
represents the same Class. Concerning the variants of customisability, I distinguish
between Formulas, Structural Properties, and Element Tuples, see also [290]. These three
features can be ordered along decreasing abstraction levels. Element Tuples must be
provided by the user and are on the lowest abstraction level. Formulas are on the
highest abstraction level and also the most expressive variant. QVTr [328, 367, 439]
is an example of this, which allows matching elements based on (almost) arbitrary
expressions. Structural Properties [290], i.e. relating two or more elements based on
their values for a specific property, are located somewhere in between.

Commonalties can be represented either in a Trace-based or Complement-based way,
see also [234]. The latter are more predominant in programming-based BX approaches
[179] and always require an (at least implicit) Matching phase because complements
only mention the elements that are not related (negative) but never what elements are
actually related [32]. A Trace-based [70, 77, 124] presentation, on the other, hand tells
what elements are related (positive). I distinguish four primary ways of expressing
correspondences called Merging, Weaving, Decoration, and Transformation, which arise
from the combination possibilities of the dimensions implicit vs. explicit and internal vs.
external, see [234]. These four approaches are sketched in Fig. 4.7:

Merging [70, 84, 275] asserts the existence of an underlying comprehensive model.

Chapter 4 69

State of the Art

Privacy

ConcurrencyArity

BinaryMulti-ary

Information
Content

Asymmetric
(i.e. derived) Symmetric

Correspondence::
Properties

Serialisation Parallelism

Authority

Asymmetric
(i.e. subordinate)

Symmetric
(i.e. equitable)

Global
View

Preexisting
(i.e.projective)

Constructed
(i.e. synthetic)

Maintainer
Network

General
Architecture

Propagation
Coordination

Fig. 4.8: Correspondence::Properties Feature

All models are projections of this model. Commonalities arise when an element appears
in multiple of these projections. A well-known representative of this approach is the
architecture of UML and also every projective approach to multi-view modeling [246]
is an instance of this approach. It is important to note that underlying comprehensive
model does not always exist and thus has to be constructed beforehand [25, 412],

Weaving [77, 124, 138] asserts the existence of an externally stored collection of
links. These links represent relationships between elements from disparate models, i.e.
named tuples. The term “weaving” was first introduced in [77], where such links are
called traces and appear as a side-product of the execution of a model transformation.

Decoration [110, 154] augments existing models with the additional information
embodied in the Commonalities. This idea was pioneered in [154], where it was called
dynamic meta-modeling: More recently, multi-level modeling techniques such as facets
[110] have allowed implementing this approach in a lightweight and less-invasive
fashion comparable to aspect-oriented programming.

Transformation [142] considers only the abstract Definition of Commonalities among
the models, usually in terms of “transformation”-functions that translate the elements
from one element into another. Thus, the concrete Representation remains implicit
such that this approach always implies an internal Matching phase. The pioneering
approach is found in [142].

Properties One of the most important Properties of the Correspondence relation is
its Arity, i.e. the number of Components in the multi-model. The majority of approaches
is limited to Binary situations [91, 440]. There are only a few mentions of approaches
dealing with Multi-ary correspondences, e.g. [126, 279].

Note that binary multi-models not automatically mean that the respective approach
cannot be applied to use cases comprising more than two models: If the respective
approach considers a General Architecture for orchestrating the constituents of a multi-
model consistency management process. There are two design strategies for such
an architecture, which I termed Global View and Maintainer Network, Sec. 3.3.5. A
well-known example of Global Views are merged models [25, 275, 412]. The Global View
may either be Projective [69] (i.e. pre-existing) or Synthetic [412] (i.e. is constructed by
the designers/user). In the Maintainer Network [442] approach, Coordination Propagation

70 Chapter 4

4.2 Feature Model

Matching

Implementation

StorageInvocation

Ontologies Keys
Automated
Similarity
Analysis

Unification Human
Inspection

Once

Steady Transient

Persistent

In-Memory

Hard Drive

Fig. 4.9: Matching Feature

[197, 442] may be necessary, for instance, when Model Repair is applied within one
multi-model this can affect other multi-models sharing the same components. In this
case, central coordination is needed.

Information Content and Authority are features that have originally been introduced
in [123] (where they were called information and organisation “symmetries”). The
terminology in their sub-distinction, i.e. Asymmetric vs. Symmetric, stems from lenses
[255], see Def. 3.1. A correspondence classified as Asymmetric w.r.t. Information Content
describes a situation where all information in one (view) component is completely
derived from another component (source). In the Symmetric case, each component
contains information that is unique to it. Asymmetric w.r.t. Authority describes a similar
but different notion where some components are predominant compared to others,
e.g. a specification over its implementation. In the Symmetric case, all components
are equitable. Note that this notion is different from Information Content because
specification and implementation may contain data that is not stored in the respective
other.

Authority is related to Concurrency, an important and challenging aspect, i.e. changes
can happen to multiple components. Most approaches require them to happen in
Serialisation [126] (on at a time). Only recently, researchers investigated how Parallel
changes and thus conflicting updates can be supported [370]. Authority can play
an important role in coordinating conflicts, which, however, can lead to overwritten
changes and information loss.

The importance of Privacy [259] has been identified in BX recently and it was pointed
out that it so far has received less attention in the literature. In practice, it plays a
major role in many scenarios with strict legal privacy requirements, e.g. the health care
sector. Concretely, this means that not all elements contained in a component model
are accessible. It necessitates filtering/obfuscation and increases the degree of manual
activities due to approval processes.

Chapter 4 71

State of the Art

4.2.5 Matching

Matching [32, 70, 145] can be described as the procedure that turns a Commonalities::
Definition into a Commonalities::Representation. It is one of the three essential Operations
of multi-model consistency management and is depicted in Fig. 4.9.

In [433], Spanoudakis and Zisman identify for primary strategies for the Implemen-
tation of model matching. I adopt this classification and added Keys as to their list. An
implementation following that strategy utilises a circumstance where one can evaluate
a unique value for a given model element (e.g. the element name). If two or more
elements from separate models evaluate to the same key, they are matched [290]. This
can be implemented very efficiently utilising hash-based lookup data structures [338].

Unification [285] is used in combination with logic-based approaches: Two elements
are matched if their logical representation can be rewritten to the same term.

Ontologies require to semantically annotate model elements. Two or more elements
are matched if they are annotated with the same semantic concept. A special case are
thesauri (e.g. WordNet [169]) which contain synonyms and hypernyms of terms.

Automated Similarity Analysis is the common name for all implementations that
compare tuples of suitable elements with each other and establish a commonality
if they show a similarity, i.e. their distance w.r.t. a given metric is under a specified
threshold. This may involve optimisation algorithms [312]. In general, this is an
NP-complete problem [404] as it can be reduced to weighted bipartite graph matching.

Thus, Human Inspectionmay be required to identify commonalities among elements
[42]. This is necessary when the notion of commonalities is informal but executing
Matching this way is time consuming [433].

The Invocation of the Matching procedure happens either Once [211] or Steadily [311].
The Storage of the Commonalities is Transient or Persistent. If it is Transient, this means
thatMatching is essentially a step in a superordinate operation (i.e. Verification or Repair)
and the results of this operation are immediately passed on. Transient automatically
implies Steady. Persistent storage means that the results of the Matching can be reused
and Persistent in combinationwith Transient can be interpreted as incremental matching
[311]. In-Memory [292] storage means that these results are available only during the
execution time of the respective model management tool, while Hard Drive storage
means that the results are stored in a distinct file, which can be re-used by other external
tools.

4.2.6 Consistency

Global Consistency is the eventual goal of multi-model consistency management. For
this feature, I distinguish the two aspects Rules and Inconsistency Report, which is
shown in Fig. 4.10.

The classic characterisation [155, 284, 469] distinguishes between Structural and
Behavioural consistency rules (Nature) as well as Intra-Model and Inter-Model consistency
rules (Scope).

One may further consider different Severity Level of a consistency rule. An example
is a distinction between proper constraints and critiques [288]. These levels may be Fixed
by the tool or Customisable.

72 Chapter 4

4.2 Feature Model

RulesDefinition

Severity-
Levels

Builtin

Customisable

Informal

Combinator
Library

Grammar

Logical
Theory

OCL++

FixedCustomisable

Scope

Repair
Hints

Nature

Structural BehaviouralIntra-Model Inter-ModelOther
Formalisms

PL

Consistency

Inconsistency
Report

Boolean

Rules

Elements

Goals

Fig. 4.10: Consistency Feature Dimension

Consistency rule can be augmented with Repair Hints [235, 286, 413], i.e. indicate
a strategy how to resolve an inconsistency related to the rule. Repair Hints generally
imply a Rule-based repair approach, see Sec. 4.2.8.

The set of defined consistency rules is Builtin [396], Customisable [288] or Informal
[385]. There are various formalisms for defining the consistency rules. Combinator
Libraries [178, 235, 286] are primarily utilised in programming based synchronisation
tools, where the notion of consistency is implicitly derived from the semantics of a set of
predicates and composition operators. In Grammar-based consistency rule languages,
consistency arises as the set of (multi-)models that can be produced from production
rules [403, 422]. The implementation of the consistency check is thus based on pattern
matching [331]. A common way of defining consistency rules is by means of a Logical
Theory, e.g. FOL [244]. In MDSE, OCL [363] together with its variants [293, 367] are
widely used formal languages to define domain specific consistency rules. Another
way is to let users write a functioning in some PL [288] returning true or false, which
defines the semantics of a consistency rule and allows harnessing the features of the
respective language. Other Formalisms such as Petri-Nets or statemachines are generally
used for defining the semantics of behavioural consistency rules [155].

The form of the Inconsistency Report differs from approach to approach. The plainest
type is a Boolean [286] only saying if the model is consistent or not. More instructive
is to tell which Rules are violated. Even more insightful is to additionally report the
Elements [396] that are violating it. Another option is to directly point to the Goal for
the subsequent repair process [385].

4.2.7 Verification

Given a model or multi-model, Verification turns Consistency Rules into a (hopefully
empty) Inconsistency Report. This feature is one of the three essential Operations in
multi-model consistency management and is visualised in Fig. 4.11.

The Invocation of the Verification procedure may be Manual [156, 313] (i.e. the user
explicitly invokes it), Event-Based [235, 328] (e.g. the tool monitors the model files
and it is triggered upon a modification), or Policy-Based [173]. The Execution of the
Verification is either Interactive (involving a human) or Automatic.

Chapter 4 73

State of the Art

Verification

Execution Invocation

Interactive Automatic Manual Event-
Based

Implementation

Resolution
Procedure

Model
Checking

Specialised
Automated

Analysis

Human-
centred

Exploration
Logic-
based

Policy-
based

Fig. 4.11: Operations::Verification Feature

Concerning Implementation, Spanoudakis and Zisman [433] identified four ap-
proaches whereof two can be grouped as Logic-based. The first logic-based variant
encodes all models and consistency rules as logical axioms in a knowledge base and
utilises a Resolution Procedure (e.g. a theorem prover) to check that the knowledge base
is free of contradictions. Alternatively to this syntax-based approach, there is Model
Checking, i.e. enumerating all possible instances of a theory and looking for an instance
that satisfies it. The logic-based approaches have the advantage that they are very
generic and can be applied to a big range of domains as long as they admit the neces-
sary representation. The main issues are the possibility of non-decidability (depending
on the respective logic) and complexity (state explosion problem). Thus researchers
have developed Specialized Automated Analysis tools, which are based on a specific
formalism [502] or technology [357]. These solutions are more effective for certain
problems but less universal. Finally, a Human-centred exploration approach requires the
most effort, however, it is the only way to discover inconsistencies for informally given
models and consistency rules [433].

4.2.8 Repair

The restoration of detected inconsistencies is known as Model Repair, the third essential
Operation of themulti-model consistencymanagement framework. The topmost level of
this feature dimension is shown in Fig. 4.12. The complex sub-features Implementation,
Human Interaction and Formal Guarantees are depicted in greater detail in Fig. 4.13,
Fig. 4.14, and Fig. 4.14, respectively.

The Invocation of the Repair procedure can be Manual, Event-Based, and/or Policy-
based. Eventually, Repair produces a Result. Here, one can distinguish between
Presentation and Cardinality, see [331]. The Presentation is either given as a Change or as
a State. Note that this my be different compared to the presentation of Change used
otherwise. The Presentation can be abstract in a sense that it contains placeholders (e.g.
for attribute values of newly created elements). In the database jargon they are termed
Labelled Nulls [21] and indicate for the user to take further actions.

Secondly, one can analyse the Cardinality of the result set. Multiple results imply user
interaction in the form of Result Selection. The tool can leverage this activity via an
Ordered [331] presentation. This requires an underlying metric to compare results, e.g.

74 Chapter 4

4.2 Feature Model

Repair

Implementation Human
Interaction

Invocation

Manual Event-
based

Results

Policy-
based

Formal
Guarantees

CardinalityPresentation

SingleMulti

Unordered Ordered

Change Labelled
Nulls State

Fig. 4.12: Repair Feature - Overview

Implementation

Search-
based Rule-

based
Fixed

Strategy

Heuristics Engine

Atomic
Search CSP Solver

SAT SMT LP/CLP/ASP

Imperative Declarative

Syntactic Semantic Generative Analysis

Learning

Fig. 4.13: Repair::Implementation Feature

induced by costs, policies, or inconsistency levels. An interesting approach is taken in
JTL [88], which works with multiple results simultaneously over time.

Implementation In general, there are two strategies for implementing model repair:
Search-based and Rule-based, which can supplemented by a third minor supportive
approach (Fixed Strategy) and/or Learning, see Fig. 4.13.

Search-based This generic approach can intuitively be described as letting the
procedure figuring out a solution by “trial-and-error” via considering model repair as
a search problem. It comprises a state space given by the set of all (multi-)models. The
transitions are given by the set of all possible updates. The start state is the current
(inconsistent) model and goal states are all thosemodels which are considered consistent.

The strength of this approach is its domain independence and it can easily be
adapted to new or changed scenarios. The weakness and thus the biggest challenge
of this approach is its computational complexity. Already for a “small” state space,

Chapter 4 75

State of the Art

the naive Atomic Search [274, 428] quickly runs out of time or memory. It is well
known, that so called Heuristics can improve the efficiency of search algorithms to
make complex problems tractable [377]. However, finding a suitable heuristic function
remains tricky. One may think of generic heuristic function such as the number of
violations, however domain specific knowledge tends to provide even more effective
heuristics [281].

Thus, it is common to consider the problem as a constraint satisfaction problem (CSP)
[308]: In CSP search space states are not atomic but have an internal structure. This
structure is given by a set of variables, where each variable can take one value from a
given domain and every variable is subject to one or more constraints. This factored
presentation allows for a much more effective search because searching means to vary
the value of only those variables, which are affected by a constraint violation.

Yet another approach is satisfiability (SAT) solving [108]. It actually represents
a special case of a CSP where all variables are boolean and all consistency rules
must be formulated in propositional logic. SAT solvers represent its own research
domain, which has produced remarkable results and performance improvements that
can be exploited for implementing model repair [391]. The translation of a whole
problem domain into this formalism quickly leads to a proliferation of variables and
propositions. Thus, a more convenient and high-level way is to use a satisfiability modulo
theories (SMT) solver [346], which offers a more abstract interface by providing a set
of built-in theories, e.g. arithmetics on integers, manipulations of character-strings,
etc. These theories have their own highly optimized translation into the underlying
SAT-presentation. An example of an SMT-solver that is often used in the context of
object-oriented modeling is Alloy [249], which offers a built-in relational theory that in
turn resembles object-oriented design and notation. SMT-solvers are a popular choice
for model repair and used in a wide number of approaches, e.g. [281, 328, 443].

The technique used in SAT and SMT solving is called model checking, see Sec. 4.2.7.
Instead of using model checking, one can alternatively use syntactical reasoning: The
dynamics (i.e. allowed updates) of the domain are encoded in logical statements and the
repair is formulated as a query asking whether a consistent model state can be reached
by a sequence of changes. When the query can be fulfilled in the present knowledge
base, a repair is found. Implementations of this approach are Logic Programming (LP),
Constraint Logic Programming (CLP) and Answer Set Programming (ASP) [88, 156, 385].
Due to its nature there are certain restrictions on the type of logical sentences that can
be used, e.g. they must be quantifier free, do not contain negation (in case of LP), etc.

Rule-based Rule-based solutions explicitly tell the program how to fix a certain
inconsistency. These instructions are given as rules in the form:

IF condition THEN action.

A condition represents a specific consistency rule violation and action is a sequence of
edit operations fixing this inconsistency. Thus, in rule-based approaches the definition
of consistency and repair rules is often tightly connected. It heavily depends on the
domain expert to define the right set of rules. Thus, rule-based solutions are not
universal and cannot easily adapt to different scenarios. The strength of this approach,

76 Chapter 4

4.2 Feature Model

Human
Interaction

Upfront

Default
Values

Cost
Declaration

Interactive

Result
Selection

Enter
Values

Strategy
Selection

Policy
Declaration

Fig. 4.14: Repair::Human Interaction Feature

however, is its efficiency: After having identified the rule, which must be applied to
a given violation, repair is performed in constant time. This lookup may drastically
affect the efficiency of the whole procedure (think of it as a search-problem of its own).

Rule-based solutions can be classified into Operational [357, 413, 499] and Declarative
[230, 396]. Operational rules are procedures written in a programming language. In
general, operational rules provide no guarantee that they actually lead to the desired
result and it is up to the user to define the rule correctly. Thus, researchers came
up with Declarative rules [341], which can be statically analysed. Arguably, the most
popular declarative rule-based framework is given by th (Algebraic) graph transformation
(GT) framework [146], which offers powerful means to statically Analyse concurrency,
confluence, conflicting and termination properties of a set of rules. An example of a
rule-based approach combining graph transformation and user interaction is found
in [353, 354]. Another feature of the declarative approach is the ability to Generate
[144, 396] repair rules automatically, which significantly reduces the manual effort.
Such approaches are usually based on grammars, which can be classified into Syntactic
[396] or Semantic [230, 422]. The syntactic category exploits the fact that (modeling)
languages are generally defined in terms of a grammar, which can be used to derive
potential changes. The semantic category requires the consistency rules to be defined
in terms of a grammar as well.

Fixed Strategy & Learning One may consider a third category called Fixed Strategy.
It is generally combined with one the above strategies, usually rule-based ones
[235, 286]. It means that the to approach considers a built-in procedure for model
repair. A prominent example of a fixed strategies are constant complements [31], see
Sec. 3.1.11

Learning [406] is the ability of a program to improve its performance on a given
task over time. It appears to be a promising approach to improve the performance
of search-based approaches [36] and can help to identify hidden policies and user
preferences.

Human Interaction Some researchers [396] have argued that the user must play a
leading role in themodel repair process. I distinguish severalways of human interaction,

Chapter 4 77

State of the Art

Repair ::
Formal

Guarantees

Completeness Hippocraticness Compositionality

Artefacts

Least
Change

Least
Surprise

Complexity

Linear Polynomial Exponential Procedure Behaved Consistency
Improving Full

Incrementality Correctness

Optimality

Fig. 4.15: Repair::Formal Guarantees Feature

grouped intoUpfront (performed before the repair invocation) and Interactive (performed
during the repair) measures. A typical example of an upfront measure is the definition
of Default Values, which will be used when new elements are created during the repair.
An upfront measure with less obvious implications is Cost Definition [328], which
associate a cost with each update and thus influencing the repair results because the
tool will try to minimize these costs. Another sophisticated tool is given by Update
Policies [122], which prescribe the rationale for picking a certain solution among several
choices. The predestined example for an interactive measure is Result Selection, i.e. the
tool calculates all possibilities resulting in a consistent result and the user picks his
preferred choice. The interactive equivalent of default values is requesting the user to
Enter Values for missing attribute values on the way. Strategy Selection [385] is similar
to result selection with the difference that the outcome is unclear, i.e. the tool presents
the user with a choice of “abstract” edit sequences.

Formal Guarantees The analysis of the Formal Guarantees of a model repair ap-
proach has been popularised by the BX research domain. Correctness is the fundamental
property safeguarding that the repair produces a consistent result. The distinction be-
tween three stages of this feature: Behaved (the results do not add new inconsistencies)
vs. Improving (the results are less inconsistent than the input) vs. Full (the results are
completely consistent), was introduced in [331].

The repair procedure is called Complete [230] when it produces at least one result
for every input, i.e. there are no “unresolvable” inconsistencies.

Hippocraticness expresses the idea that the repair operation applied to a consistent
(multi-model) should not do anything (“does no harm”). Meertens [339] formulated
accentuation of this concept: A repair should not change more than necessary.

Incrementality [194] describes the ability of the repair procedure to reuse information
produced by previous invocations. This also means that, the complexity is must be
relative to the “size” of the update and not relative to the “size” of the model.

Compositionality plays a central role in many theoretical approaches, e.g. the lens
framework [133, 178, 258], and describes the ability of composing elemental repair

78 Chapter 4

4.3 Observations

“primitives” into bigger ones whilst preserving their (formal) properties.
Furthermore, one can analyse the Complexity (concerning the implementation) and

Optimality of the repair procedure. The latter can further be distinguished w.r.t. the
produced Artefacts or the Procedure itself. Concerning artefacts, there are two concepts:
Least Change is based on a metric on the model space and states that the repair always
prefers results with a minimal “distance” from the original model [328]. Others [86]
argued that the “least changed” repair option may not always be the preferred choice
and thus proposed the concept of Least Surprise, which is based on the notion of
continuity [86]. Analysing the optimality of the repair procedure was proposed in
[442], which considers a repair optimal if and only if it requires as few invocations of
elementary repair “primitives” as possible.

4.3 Observations

During the literature study and the development of the feature model, several observa-
tions were made that are collected in the list below:

Tool Quality A noteworthy share of tools, for instance, most of the ones mentioned in
[234], is no longer retrievable because of broken URLs, non existing source code
repositories, or dependencies on outdated Eclipse versions, which are no longer
supported by current operating systems. Thus, there is a need for stable tool
repositories [264] and benchmarks[18] to make tool evaluations reproducible.

Standards EMF has become a de-facto standard in the MDSE community. Thus, XMI
and Ecore are the common file formats for denoting models and metamodels.
The situation is more diverse when it comes to representing changes, consistency
rules and commonalities. The XMI standard [366] comprises a concept for
a change-based representation of models but its tool support seems limited
concerning the often mentioned necessity for model differencing [10, 270, 290]. In
an MDSE context, consistency rules are often encoded in OCL (or its variations)
[80]. However, its tool support is not as widespread compared to Ecore and XMI
[199]. Regarding the representation of commonalities, there is no consensus and
researchers utilise diverse approaches, see Sec. 4.2.4. Therefore interoperability
among tools is often limited [489].

Languages for Global Consistency Rules Related to the last statement of the previous
bullet point, is the fact that there is no real consensus on a “language” for denoting
consistency rules over multi-models. The QVT standard [367] can be seen as an
attempt in this direction, but suffers from semantic ambiguities and lacks practical
implementations [439]. Hence, researchers proposed heterogeneous approaches,
e.g. constraints over trace models [413] or grammars [422]. In my feature model,
I treat the definition of commonalities (i.e. match-rules) and consistency rules (i.e.
check-rules) separately while other approaches (e.g. QVTr and grammars) mix
both aspects. I conclude that there is a need for a better understanding about the
types and nature of global consistency rules and commonalities.

Chapter 4 79

State of the Art

Binary vs. Multi-ary The majority of inter-model consistency verification and model
synchronisation approaches only considers binary correspondence relations, see
e.g. [91, 126, 279, 441].

Repair Strategies There are clusters of features that are used in combination, which
is induced by the respective implementation strategies: Rule-based repair ap-
proaches are associated with a definition of consistency rules that is based on
a grammar or combinator libraries, e.g. [230, 235]. Approaches, which utilise
a more abstract logic-based formulation of consistency rules are more likely to
implement model repair in a search-based way, e.g.[156, 328]. Yet, it becomes
apparent that both strategies are not competing with each other but could be
combined in addition to supporting human interaction and learning into a com-
prehensive framework. In general, the repair problem remains NP-complete (=
the complexity of abstract search problems) and solving it once and for all with
a fully-automatic repair program is unfeasible. Hence, it may be worthwhile
to focus more on specific application domains where one can harness domain
dependent expert knowledge, which can help to find “the best” solution.

4.4 Demonstration of Selected Approaches

I will now have a closer look at three concrete MDSE tools and their ability to address
the multi-model consistency management problems scenarios in Sec. 1.3 in order to
uncover the conceptual limitations of existing solutions. This opinionated selection
of tools features three very distinct tools, which shall illustrate the broad spectrum of
approaches. The choice of these particular tools was based on (1) relative occurrences
in the literature and (2) availability and quality of the associated binaries, i.e. public
accessible download page or source code repository and the possibility to run the tool
on my machine. A classification of these tools w.r.t. the above feature model is given in
Tab. 4.2 and explained in greater detail below.

4.4.1 Echo

Echo3 [327, 328, 330] is an academic prototype developed by Macedo and collaborators
at the University of Minho. The tool was originally designed as an implementation of
QVTr [327] but afterwards it has been extended to offer general model verification
and repair operations supporting both regular (local) models and multi-models [328].
Thus, it addresses all aspects of multi-model consistency management. The tool is
available as a plugin for the Eclipse integrated development environment (IDE). The
plugin dependencies are somewhat outdated and the last commit on the source code
repository happened in 2018 but it is still possible to install it in the current version
of the Eclipse IDE. Echo has been chosen as a representative for th class of tools and
approaches, which follow a logic-based approach, e.g.USE4 [198, 200], JTL5 [88, 156] or
Badger [385]. It has been featured in multiple model repair tool comparisons [331, 383].

3http://haslab.github.io/echo/
4https://sourceforge.net/projects/useocl/
5https://jtl.univaq.it/

80 Chapter 4

http://haslab.github.io/echo/
https://sourceforge.net/projects/useocl/
https://jtl.univaq.it/

4.4 Demonstration of Selected Approaches

Echo Epsilon Emoflon

Models
Tech Space XMI XMI, XML, Other DSL, (XMI)
Formalism Logic OO Graphs

Change
Representation State-based State-based Structural Deltas

Recording - - Offline,
Model Differencing::Syntactic

Allowed Updates
Definition Customisable::Explicit Customisable::Explicit Customisable::Implicit
Types::Atomic Insert, Update, Delete, Move Insert, Update, Delete, Move Insert, Update, Delete, Move
Types::Complex Sequence, Parallelism Sequence Sequence, Parallelism

Meta-Information - Environment Data Previous State

Conformance
Well-Formedness Typing, Constraints Typing, Constraints Typing
Metamodels

Definition Customisable::Freely Customisable::Freely Customisable::Freely
Tech Space MOF MOF DSL, (MOF)
Formalism Knowledge Base - Type Graph

Correspondence
Components Heterogeneous::Metamodels Heterogeneous::(Metamodels,

Tech Spaces)
Heterogeneous::Metamodels

Commonalities
Representation Transformation Merging Weaving
Definition Customisable::Formulas Customisable::Formulas Customisable::Formulas

Properties - -
Arity Binary Binary Binary
General Architecture Maintainer Network Global View::Constructed Maintainer Network
Information Content Symmetric Symmetric Symmetric
Authority - - -
Concurrency Serialisation Serialisation Serialisation
Privacy - - -

Matching
Invocation Steady Once Steady
Storage Transient In-Memory Hard Drive
Implementation Unification Automated Similarity Analysis Automated Similarity Analysis

Consistency
Inconsistency Report Rules Elements Elements
Rules

Definition Builtin, Customisable: OCL++ Builtin, Customisable: OCL++ Customisable: Grammar
Nature Structural Structural Structural
Scope Inter-Model Inter-Model Inter-Model
Severity Levels - Customisable -
Repair Hints - yes yes (implicit)

Verification
Execution Automatic Automatic Automatic
Invocation Event-based Manual Manual
Implementation Model Checking Specialised Autom. Analysis Specialised Autom. Analysis

Repair
Invocation Manual Manual Manual
Implementation SMT Imperative Declarative (Semantic, Gener-

ative)
Human Interaction

Upfront Policy declaration - -
Interactive Result Selection Strategy Selection -

Results::Presentation State State Change
Results::Cardinality Multi::Ordered Single Single
Invocation Manual Manual Manual
Formal Guarantees Correctness::Full,

Least Change
- Correctness::Full, Hippocrat-

icness, Completeness, Incre-
mentality

Table 4.2: Feature Model Classification of selected Tools

Chapter 4 81

State of the Art

Echo builds on top of EMF. Hence, metamodels are defined using Ecore and models
are stored as XMI files. Local consistency rules are formulated as OCL invariants, which
are attached to the Ecore metamodels. Global consistency rules are defined using QVTr.
However, the semantic interpretation of this language differs from the official OMG
standard [329]. List. 4.1 shows how CR5 (“BusinessRuleActivities” have associated
“DecisionTables”) from the software modeling example in Sec. 1.3.2 is denoted.
transformation bpmn2dmn (bpmn : BPMN, dmn : DMN) {

top relation businessRule2decisionTable {
n : String
domain bpmn act : Activity {

type = ActivityType::BUSINESS_RULE
name = n

};
domain dmn tab : DecisionTable {

name = n
};

}
}

Listing 4.1: CR5 in QVTr

Fig. 4.16: Screenshot the Eclipse Echo plugin: (a) detected inconsistencies in the (b)
metric selection for repair (c) repair result presentation using Alloy

Internally, Echo translates (Ecore) metamodels, (XMI) models and (OCL and QVTr)
consistency rules into a logical representation. More concretely, it utilises the Alloy6
[249] model finder. Alloy is an SMT solver with a relational logic interface and facilitates
both consistency verification and model repair via (bounded) model finding, i.e.

6https://alloytools.org/

82 Chapter 4

https://alloytools.org/

4.4 Demonstration of Selected Approaches

searching for an instance that complies with the logical theory. A special feature of the
Echo approach is the built-in notion of least change [328], i.e. during model repair Echo
first looks for valid instances having a minimal distance to the original model. There are
two possible distance metrics: A graph-edit distance, or an operational edit distance,
which is configured by writing OCL pre- and post-conditions for the operations in the
metamodel.

Fig. 4.16 contains a screenshot of the Eclipse editor with the Echo plugin installed.
Echo actively monitors the consistency of single models w.r.t. their metamodel and
pairs of models w.r.t. a QVTr-transformation definition. Consistency is checked after
every modification to an observed resource and detected inconsistencies are reported
to the user through the IDE (a). The user can choose to fix the inconsistency and trigger
the model repair procedure they have to pick the preferred distance metric (b). The tool
then proposes possible fixes to the user utilising the Alloy visualisation mechanism (c).
The complete feature classification of the Echo approach is shown in the first column
of Tab. 4.2.

4.4.2 Epsilon

Fig. 4.17: Epsilon tool architecture

Epsilon7 [371] is, alongsideATL8 [47], one of the most mature and actively developed
academic MDSE tool ecosystems, which is also used in the industry. It is being
developed at theUniversity of York and started with an imperative model transformation
language called Epsilon Object Language [371]. The framework has subsequently been
extended by various DSLs, one for each model management task. The user writes a
program in one of these languages to configure the respective model management
operation. This program is executed on the Epsilon runtime, which is available both as

7https://www.eclipse.org/epsilon/
8https://www.eclipse.org/atl/

Chapter 4 83

https://www.eclipse.org/epsilon/
https://www.eclipse.org/atl/

State of the Art

a plugin for the Eclipse IDE and as a standalone Java application. Moreover, it offers
an abstraction over several popular model serialisation formats (including Ecore/XMI,
free form XML documents, Microsoft Excel sheets, Simulink models and more). Thus,
Epsilon programs can be executed on models stemming from various technological
spaces. Fig. 4.17 gives an overview of the Epsilon architecture.

Consistency Checking via Merging Epsilon is a generic model management frame-
work, which allows to implement different multi-model consistency management ap-
proaches on top of it. However, it comes with an “intended” strategy for implementing
global verification among multi-models via merging [412] utilising the Epsilon Merging
Language (EML) [292] and the Epsilon Verification Language (EVL) [288]. The latter is an
OCL-like language in which consistency rules – called constraints – are defined.

1 context BPMN!Activity {
2 constraint CR5 {
3 check : self.type = BPMN!ActivityType:BUSINESS_RULE implies
4 DMN!DecisionTable.allInstances().select(t|t.name = self.name).count() = 1
5 message : "The business rule activity " + self.name + " has no corresponding decision table"
6 fix {
7 title: "Add decision table"
8 do {
9 var tab : new DMN!DecisionTable
10 tab.name = self.name
11 }
12 }
13 }
14 }

Listing 4.2: Example of an EVL constraint

For example, consider List. 4.2, which exemplifies how CR5 is implemented in
Epsilon. The constraint (line 2) is attached to a model element type (line 1) and must
implement a check function (lines 3-4). Here, the user writes an EOL-statement that
implements the verification procedure. Similar to OCL, EVL offers an allInstances-
function returning a collection of all model elements with a particular type and it is
possible to query elements from multiple disparate models simultaneously (note the
BPMN! and DMN! prefixes in List. 4.2) such that inter- and intra-model consistency rules
can be implemented. Moreover, the user can configure the text of the error message
(line 5) that is shown if the constraint is violated, and can also define an imperative EOL
program to restore the inconsistency (lines 6-12). The verification is triggered manually
by executing the EVL program on a collection of models. The repair can be triggered
by applying it as a “hot fix” to a discovered inconsistency (requires Eclipse IDE).

The implementation of CR5 in List. 4.2 relied on BusinessRulesActivities and
corresponding DecisionTables having the same name. However, in practice it is not
always feasible to rely on unique identifiers such as names to relate elements from
disparate models. Thus, model matching (Fig. 3.9c) is required, which is offered via
the Epsilon Comparison Language (ECL) [289].

1 rule MatchBRActivityAndDecisionTable match l:BPMN!Activity with r:DMN!DecisionTable {
2 guard : l.type = ActivityType:BUSINESS_RULE
3 compare : l.name = r.name
4 }
5 rule MatchDataObjectAndColumn match l:BPMN!DataObject with r:DMN!Column {
6 guard: l.consumers.matches().inputSideColumns.includes(r) or
7 l.producers.matches().outputSideColumns.includes(r)
8 compare: l.name.isAlike(r.name)

84 Chapter 4

4.4 Demonstration of Selected Approaches

9 }
10 operation String isAlike(other: String): Boolean {
11 ... // Custom implementation (utilising Ontologies, etc.)
12 }

Listing 4.3: ECL matching rules

List. 4.3 gives an example comprising two ECL rules that match BusinessRule-
Activities with DecisionTables and DataObjects with Columns. A rule defines
what type of model element should be compared with each other (match and with),
when they should be matched (compare), and optionally a filter-criterion (guard).
Both, guard and comparemust return a boolean value and can contain arbitrary EOL
statements. This allows the user to apply arbitrary matching techniques, see the
function isAlike in line 10 in List. 4.3. Epsilon makes sure that there are no cyclic
invocations of match rules and that each element is matched at most once, i.e. it picks first
possible match (greedy). The execution of the ECL program produces a MatchTrace,
which has to be processed further to create a merged model. The construction of the
latter is configured via EML rules, see List. 4.4.

1 /∗ Merge rules ∗/
2 rule MergeBRActivityAndDecisionTable merge l:BPMN!Activity with r:DMNDecisionTable
3 into t : Merge!DecisionTableDef {
4 t.name = l.name;
5 t.isMatched = true;
6 }
7 rule MergeDataObjectAndColumn merge l : BPMN!DataObject with r : DMN!Column
8 into t : Merge!DataObjectCorrespondence {
9 t.name = l.name;
10 }
11 /∗ Copy rules ∗/
12 rule CopyUnmatchedBusinessRuleActivity transform s : BPMN!BusinessRuleActivity
13 to t : Merge!DecisionTableDef {
14 guard : s.type = ActivityType:BUSINESS_RULE
15 t.name = s.name;
16 t.isMatched = false;
17 }

Listing 4.4: EML merging rules

An EML program is comprised of merging (lines 8-10, keyword merge) and copying
(lines 11-17, keyword transform) rules. The merging rules are invoked for each
MatchTrace-object, which were identified by a preceding ECL-program, and produce
a new element in the merged model. The copying rules are invoked on all unmatched
elements and produce a respective element in the merged model. The body of these
rules contains arbitrary EOL statements, which can be used to set the attribute values of
the newly created elements in the merged model. The merged model is a new artefact
and serves as a global view, compare Sec. 3.3. It is important to note that the scenario in
Sec. 1.3.2 involves heterogeneous modeling languages. This means that in order to create
the merged model, one first requires a language comprising concepts from all involved
languages, i.e. a metamodel encompassing BPMN, DMN and UML modulo common
concepts. Note that this induces another instance of homogenousmodel matching and
merging on the level of MOF-models, which is usually done manually. For more details
about this issue, I refer to [134].

1 context Merge!DecisionTableDef {
2 constraint CR5 {
3 check : self.isMatched
4 fix { var table : new DMN!DecisionTable;

Chapter 4 85

State of the Art

5 table.name = self.name;
6 }
7 }
8 }

Listing 4.5: Global Constraints

Finally, the merged model allows verifying the global consistency rule CR5 in one
central place, see List. 4.5. Comparing the implementation in List. 4.5 with List. 4.2, the
former is much shorter since it is based on the value of a single attribute (isMatched).
This attribute has been introduced in the merging phase, see List. 4.4 line 5 and 16.
Depending on whether the DecisionTableDef-object has been created by a merging
or copying rule, this attribute is either true or false. Finally, note that the attached
repair action (lines 4-6) propagate their effect on the original model (DMN) and not the
merged model.

Consistency Checking via Weaving Due to its flexible architecture, Epsilon sup-
ports other multi-model consistency management approaches as well. Instead of
creating a merged model, one might have stopped after the matching phase and contin-
ued working with the identified MatchTraces. According to the terminology used in
this thesis, MatchTraces are rightly called commonalities. They represent an entity of
their own right [124] and therefore it is worthwhile to store them in their own model.
This particular type of a model is often called a trace model [114] and the general ap-
proach is known asWeaving. Systematic approaches that combine Epsilon with trace
models have been in reported in [168, 413].

In its most generic form, a trace model is nothing but a (hyper-) graph. Elements are
either TraceLinks (edges) or TraceLinkEnds (vertices). The latter represent proxies
[191] of elements in another model. The upper half of Fig. 4.18 depicts the metamodel
of generic trace models. Note the attribute represents of the TraceLinkEnd class.
The type of this attribute (ElementIdentifier) shall indicate that its value is a pointer
to some model element. This “trick” allows relating any two kinds of model elements
with one another, see also the idea of a linguistic extension in [109]. Due to its generic
nature, working with such trace models often becomes cumbersome because of the
additional complexity w.r.t. type checking that has to be included in the definition of
consistency rules, see e.g. List. 4.6

1 context BPMN!Activity {
2 constraint CR1 {
3 check : self.type = BPMN!ActivityType:BUSINESS_RULE implies
4 GenTrace!TraceLink
5 .allInstances().select(t|
6 t.connects.exists(e1|e1.represents = self) and
7 t.connects.exists(e2|e2.isTypeOf(DMN!DecisionTable) and e2 != self)
8).count() = 1
9 }
10 }

Listing 4.6: Global Constraints

In amulti-model, there are specific types of commonality relationships. For example,
between BusinessRuleActivities and DecisionTables. Therefore, it is worthwhile
to create a domain specific trace metamodel, see e.g. [168, 413]. This idea is sketched in
Fig. 4.18. This figure also shows the conformance-relationships between the involved

86 Chapter 4

4.4 Demonstration of Selected Approaches

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

GenericTraceMM

TraceLink

TraceModel

2..*
connects

TraceLinkEnd

represents: ModelElement

UML
DomainSpecificTraceMM

DecisionTableDef:
TraceLink

Activity:
TraceLinkEnd

DecisionTable:
TraceLinkEnd

DataObjectCorrespondence:
TraceLink

...

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»
«instanceOf»

ReferrerProcess.bpmn ProcessData.uml DecisionTables.dmncommonalities.ds-tracecommonalities.gen-trace

1 2

«instanceOf»

1..1

1..1

1..*

0..*0..*

links
ends

DMN
BPMN

MOF

subLinks

0..*

Fig. 4.18: Representing Trace Models

models and metamodels. Metamodels are depicted as packages and models as files
at the bottom. Notice the double nature of the generic trace-metamodel: It can either
be instantiated directly by a generic trace-model (1) or serve as the metamodel for
a domain specific trace-metamodel, which is instantiated by a domain specific trace
model (2). The domain specific trace metamodel is a suitable carrier for the definition
of consistency rules such that global consistency verification can be executed on a
domain specific trace model.

4.4.3 eMoflon
The third tool Emoflon 9 [482] is taken as a representative for the class of graph
transformation (GT) tools [146]. It is based on the concept of a Graph Grammar (GG)
[403]. The latter is given by a set of (production) rules together with a start graph,
which induces a language, i.e. the set of all graphs producible by applying a sequence of
production rules on the start graph. Hence, the definition of a graph grammar can be
interpreted as a consistency rule, see Sec. 4.2.6. There are several tool implementations
based on this formalism: eMoflon, MoTe 10 [193], AtoM11 [111], Henshin12 [48], Viatra13
[472], see also [452].

9https://emoflon.org/
10https://www.hpi.uni-potsdam.de/giese/public/mdelab/
11http://atom3.cs.mcgill.ca/index.html
12https://www.eclipse.org/henshin/
13https://www.eclipse.org/viatra/

Chapter 4 87

https://emoflon.org/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/
http://atom3.cs.mcgill.ca/index.html
https://www.eclipse.org/henshin/
https://www.eclipse.org/viatra/

State of the Art

BRA2DTN N

Input Output

++++++

(a)Business RuleActivities cor-
respond to Decision Tables

BRA2DTN

N

Input Output

I

I

DO2C
++

++

++

(b) Consumed data object cor-
respond to input side columns

BRA2DTN

N

Input Output

O

O

DO2C
++

++

++

(c) Produced data object corre-
spond to output side columns

Fig. 4.19: TGG production rules

I chose Emoflon in particular because it is, aside from MoTe, the only tool that fully
supports TGGs, see Sec. 3.1.11. They were introduced by Schürr [422] and combine the
concept of graph grammars with the notion of pair grammars [392]. A TGG can be
considered as a graph grammar, which trades ordinary graphs for triple graphs. A triple
graph is formally given by a pair of graphs14 (S, T) connected by a “correspondence
graph” C that relates S and T via “graph homomorphisms”, resulting in a “span”
S← C→ T . In a TGG, the production rules are generallymonotonic, i.e. they only “add”
elements to an existing context. In this way, a TGG describes how two graph structures
evolve together consistently.

Fig. 4.19 depicts three exemplary triple graph production rules in an integrated
manner using concrete syntax. These rules implement the semantics of CR5 and parts
of CR8. The Elements highlighted in green are meant to be added while the uncoloured
elements represent existing context. TGGs induce a binary consistency relation between
two domains of graph structures: A pair of graphs S and T is considered consistent
when the language generated by the TGG contains a triple graph with S and T as its
source and target (the middle part C is usually irrelevant)

The most important feature of TGGs is that they allow to “operationalise” the
declarative production rules of the grammar. This means that special programs for
(incremental) model transformation [144, 194], model matching [145], consistency
verification [312] and update synchronisation [229, 230] can automatically derived from
a TGG. The procedure has been described in [230].

Emoflon implements both GGs as well as TGGs, including the operationalisation
procedure. The tool has been developed in a collaboration project between the Technical
University Darmstadt and the University of Paderborn as a re-implementation of the
earlier meta-CASE and graph transformation tool MOFLON [14]. It builds on top of
the popular Eclipse Modeling Framework and is available as an Eclipse plugin.

Fig. 4.20 presents a screenshot of the Eclipse editorwith the Emoflon plugin installed.
The main feature is a textual editor in which TGG rules are defined in a respective
DSL, called eMoflon Specification Language (.msl). The plugin offers a generic read-only
visualisation for TGG rules utilising PlantUML15 (the screenshot depicts the rule
Fig. 4.19b). The tool generates Java programs for global consistency verification, model
translation and update propagation from the textual rule definitions. These programs
are based on the graph transformation concept and the graph database Neo4J16 is
utilised to perform pattern matching.

14Often named source and target due to historic reasons.
15https://plantuml.com/
16https://neo4j.com/

88 Chapter 4

https://plantuml.com/
https://neo4j.com/

4.5 Summary & Identified Limitations

Fig. 4.20: Screenshot the Eclipse Emoflon plugin: (a) textual editor (b) visualisation (c)
generated programs

4.5 Summary & Identified Limitations

In this chapter, I addressed all four research questions by summarising the state
of the art, i.e. (RQ1) analysing how models, multi-models and consistency rules
are represented both technically and formally (Sec. 4.2.1–Sec. 4.2.6), (RQ2) analysing
how consistency verification is implemented (Sec. 4.2.7), and (RQ3) how consistency
restoration is implemented (Sec. 4.2.8). By looking into three particular tools (Sec. 4.4)
that implement multi-model consistency management I analysed how the above
concepts are orchestrated in a comprehensive architecture (RQ4).

The latter identified one major limitation: All three tools consider binary correspon-
dence relations only. Echo only supports binary QVTr consistency rules, the match
and the merge operators in Epsilon have exactly two arguments, and the definition of
TGGs is binary by design.

Binary inter-model consistency rules alone are generally not sufficient to realise all
kinds of global consistency requirements, recalling the discussion in Sec. 3.3.5. I want
to illustrate this on the concrete example of the consistency rules in Fig. 1.9. Consider
Fig. 4.21 depicting a BPMNmodel (A1), an UML model (A2) and a DMNmodel (A3).
Looking a the pairs (A1, A2) and (A2, A3), the consistency rules CR6 and CR7 are
apparently satisfied. But when it comes to CR8, all pairings have to be considered
together and looking at the example in Fig. 4.21 there is in inconsistency, which cannot
be discovered by binary considerations.

Hence, Echo and Emoflon cannot realise CR8 without further ado. Admittedly,
Trollmann and Albayrak have proposed a generalisation of triple graphs [463, 464]
called graph diagrams to cope with multi-ary correspondence relations. These diagrams,

Chapter 4 89

State of the Art

T
Input Output

I O
string int

... ...

C

a : String

b : Integer

A B

P

Fig. 4.21: Insufficient Ternary Relation Representation

however, are fixed and require that all possible types of correspondences and consistency
rules are known beforehand. In Epsilon, the situation can be circumvented by iterated
applications of the match and merge operator, i.e. merging A3 with A12, where A12
results from merging A1 with A2. This, however, cause a new issue: The concrete
EML-programs have to ensure that the merge happens in an associative and commutative
manner [275], otherwise the order merging steps would affect the final result.

Another general limitation of contemporary multi-model consistency management
approaches is their often reported limited interoperability [138, 461, 489] . For instance,
the three tools presented in Sec. 4.4 have in common that they can read and write
metamodels and models in the XMI format. But, it is not possibly to interchange their
technical renditions of the consistency rules. Also commonalities are treated differently
by each tool such that matches identified by an Epsilon ECL program cannot be reused
in Emoflon or Echo. There are more reports about other multi-model consistency
management approaches, each providing their own domain specific or generic trace
models [168, 413].

Lack of interoperability is often associated with a lack of a common formal foun-
dation [127]. Hence, in the following chapters, I want to develop my own solution
which seeks to address the two limitations by developing a formal underpinning for
multi-model consistency management supporting multi-ary correspondence relations.

90 Chapter 4

“Mathematicians are like Frenchmen: whatever you say to
them they translate into their own language and forthwith
it is something entirely different.”

—Johann Wolfgang von Goethe
CHAPTER 5

FORMALISATION

Following the conceptualisation of the problem domain in Chap. 3 and a survey
of existing solutions and in Chap. 4, which identified a range of limitations with
current approaches , I will develop my own solution to the multi-model consistency
management problem. My goal is to address these limitations (support for multi-
ary relationships, lack of formal foundations, issues with merged artefacts, compare
Sec. 4.5). I will begin at the formal level, i.e. utilising in the language of mathematics.
This has the advantage that the solution is technology-independent and has a univocal
interpretation.

The structure of this chapter is aligned with the three research questions: Sec. 5.1
addresses RQ1 (multi-model representation), Sec. 5.2 addresses RQ2 (consistency
verification), and Sec. 5.3 addresses RQ3 (consistency restoration). The main scientific
contribution presented of this chapter are comprehensive systems, a novel formalism
for representing and reasoning about collections of inter-related software models.
Comprehensive Systems had recently been introduced in a series of publications at
various venues: [302, 446, 448, 449]. A precursor to comprehensive systems is the
“verification via merging”-approach, which is based on a slightly different idea (colimit)
and which was investigated in [134, 294, 295, 445].

My formalism builds on generalised sketches [117, 132] a.k.a. diagrammatic predicate
graphs [407, 409], which are formulated by means of category theory. Consequentially,
the presentation of this chapter employs category theory as well. Category theory
has been successfully applied in several domain of Computer Science and Software
Engineering [130, 171, 203]. Using category theory offers several benefits for my work
such as concise and abstract definitions, a graphical but formal syntax, means for
comparing heterogeneous mathematical structures and last but not least theorems
that support correctness proofs. At the same time, it is not as commonplace as set
theory and logic. For those readers, who are less familiar with this special branch of
mathematics, AppendixC contains a short introduction into the subject and further
references to literature.

A few words on notation By convention, variable names for categories use a double-
struck font C. The class of objects in a category C is denoted by |C| and the class of all
morphisms in C is denoted by C→. The hom-set for A,B ∈ |C| is denoted C(A,B). The
elements of a hom-set are called morphisms or arrows. For objects, usually, upper-case
letters (A,B,C, . . .) are used while morphisms are usually denoted by lower-case letters

Formalisation

(f, g, h, . . .). Morphisms together with their domain and codomain are denoted in a
“function-definition style” f : A→ B or “diagrammatic style” A f−→ B. Composition of
f : A→ B and g : B→ C is denoted g ◦ f. The category of sets and functions is denoted
by Set, the total order1 of natural numbers by Nat, the category of small categories
by Cat, and the “category of categories”2 by CAT. For C,D ∈ |Cat|, the category of
functors with domain D and codomain C and natural transformations between them is
denoted by CD. Should the terminology of this paragraph sound unfamiliar, a look
into AppendixC is advised.

5.1 Representation

In the first step all model management concepts from Chap. 3 require a formal inter-
pretation, namely models, conformance, change, and correspondence. Software models
represent (domain) knowledge abstractly and therefore formal software modeling is
closely related to mathematical logic. Traditionally, the main tools are set theory, propo-
sitional logic and universal algebra. More recently type theory and category theory have
become more important in this area and are able to formally represent the same con-
cepts. Fig. 4.2 summarises various approaches for formalising models and related
artefacts: Either by defining a set-theoretical system model interpretation of modeling
artefacts [65, 66, 214], by interpreting models as an algebraic specification [58, 59], by
translating models into sentences of a suitable logic [327, 328], by considering mod-
els as graphs [48, 398], or by investigating them on the abstract level of category theory
[118, 252, 254, 257].

5.1.1 Formalising Models
My approach follows in the footsteps of both graph- and category-based approaches.
Concretely, I am building my formalism on generalised sketches over graph-like structures.
The term “generalised” means that these sketches generalise the classic notion of
“Ehresmann sketches” [39]. A sketch can be seen as the categorical equivalent of a
theory, i.e. a syntactical description of a class of mathematical objects. Their utility for
data modeling has been recognised by several researchers [252, 314, 381]. Nonetheless,
regular sketches require to introduce multiple auxiliary objects in order to express the
desired properties. During the 90’s, Diskin and Makkai independently of each other
developed the same generalisation of Ehresmann sketches that avoids a proliferation of
auxiliary structures. Their discovery took place in different scientific contexts. While
Diskin was working on concrete (software) engineering problems [117], Makkai was
working on an abstract approach to logic [332]. Later, generalised sketches have been
presented to the Software Engineering community [132] and the MDSE community
[407–409]. In the latter case, sketches were “rebranded” under the name “Diagram
Predicate Framework (DPF)”.

The foundation of generalised sketches are graphs or more generally graph-like
structure. Every software model can formally be interpreted as a graph-like structure.

1Every total order is a (rather simple) codiscrete category.
2To avoid the typical logical paradox, I refer to the concept of Grothendieck universes. Note also the

usage of the word “class” instead of “set”.

92 Chapter 5

5.1 Representation

7:OptionalTypeReference

name : "Float"

type Query {
 observations: [Observation]
}
type Observation {
 id: ID!
 value: Float
}

:types

:types

:fields

:fields

:fields

:type

:type

:type

:ref

Concrete Syntax Abstract Syntax (+ Dereferencing)

0:SchemaDefinition

1:TypeDefinition

name : "Query"

2:TypeDefinition

name : "Observation"

3:FieldDefinition

name : "observations"

4:ListTypeReference

name : "Obervation"

7:MandatoryTypeReference

name : "ID"

5:FieldDefinition

name : "id"

6:FieldDefinition

name : "value"

(a) Textual Syntax
Concrete Syntax Abstract Syntax (+ Dereferencing)

:eClassifiers

:eClassifiers

:eStructuralFeatures

:eStructuralFeatures

:eStructuralFeatures

:eStructuralFeatures

:ref
:ref

0:EPackage

name : "UML"

1:EClass

name : "Class"

2:EClass

name : "Association"

3:EAttribute

name : "name"

eType : "EString"

4:EAttribute

name : "name"

eType : "EString"

5:EReference

name : "owner"

eType : "Class"

6:EReference

name : "target"

eType : "Class"

(b) Tree-based Syntax

Pr
oc
es
s Define

Consistency
 Rules

EndStart

Concrete Syntax Abstract Syntax

:src

:trg

:src

:trg

:pools :pool

:pool

:pool
:pool

0:BPMNDiagram 1:Pool
23:SequenceFlow

2:Event

name : "Start"

typ : "START"

3:Activity

name : "Start"

typ : "MANUAL"

4:Event

name : "End"

typ : "END"

34:SequenceFlow

:pool

(c) Graphical Syntax

Fig. 5.1: Syntax Abstraction

Chapter 5 93

Formalisation

Let me motivate this idea with some examples: Fig. 5.1 depicts three types of concrete
syntaxes: textual (e.g. the GraphQL schema definition language; Fig. 5.1a), tree-based
(e.g. Ecore and other XML-based formats; Fig. 5.1b), and graphical (e.g. BPMN; Fig. 5.1c).
When we apply another abstraction step and “forget” the concrete syntax, we get the
abstract syntax graph3 of these models (the right hand sides in Fig. 5.1).

Graphs are a “lingua franca” in Computer Science and Software Engineering
[403] for depicting structured information. Hence, there is a proliferation of “graph
languages”. Fig. 5.2 depicts instances of common graph languages:

Directed multigraphs (Fig. 5.2a) are one of the most simple form. They comprise
vertices (blue) and edges (red). Edges have an owner vertex and a target vertex
(highlighted by the arrow-tip), hence the adjective “directed”. Both vertices and edges
have an identity such that there can bemultiple parallel edges between a pair of vertices,
hence the adjective “multi-”. Directed multigraphs can be used to formally represent
flow charts, state charts and many more structures encountered in SE.

Bipartite place-transition nets (Fig. 5.2b) distinguish between two types of vertices
(places and transitions) and are the backbone of petri nets, which is a prevalent
formalism for the analysis of concurrent software systems [148].

E-graphs [151] (Fig. 5.2c) or property graphs [186], extend the notion of directed
graphs by distinguishing two types of vertices: graph nodes and data nodes, which
represent (complex) objects and (simple) values respectively. Therefore, there are three
types of edges: (1) those between graph nodes (called graph edges), (2) those between
graph nodes and data nodes (called node attribute edges), and (3) those between graph
edges and data nodes (called edge attribute edges). The latter two can be interpreted
as node and edge attributes and are depicted as compartments. Hence, the depiction
of E-graphs is very similar to those of UML class and object diagrams.

Finally, hypergraphs [55, 386] (Fig. 5.2d) allow edges to connect more than just
two vertices. In the figure, undirected hyperedges are depicted as coloured areas.
Hypergraphs have multiple applications in computer science, e.g. machine learning,
satisfiability problems etc. Moreover, terms can be represented with the help of
hypergraphs and an algebra can be considered as special kind of hypergraph.

All of these examples have in common that they behave essentially like sets.
Theoretically, this has been captured by the concepts of presheaf topoi [207].

Definition 5.1 Presheaf

Let B be a small category (Def. C.1). A functora G : B→ Set (Def. C.5) from B into
the category of sets and functions Set (Fact 20) is called a presheaf.

aHistorically, a presheaf is defined as a contravariant functor G : Bop → Set due to its
application in topological spaces. For my investigations, the covariant version is better suited.
Covariant and contravariant version provide the same properties.

A presheaf G “interprets” every (sort) object S ∈ |B| as a (carrier) set G(s) and every
morphism4 op : S→ S ′ ∈ B→ as a (operation) mapping G(op) : G(S)→ G(S ′). In the

3In most cases, abstract syntax trees actually turn out to be graphs as they contain cross-references
established via identifiers (blue-coloured elements in Fig. 5.1)

4 The abbreviation “op” for morphisms in B shall indicate that B-arrows are certain operations
constituting the structure of the base language, such as source and target operations of edges in directed

94 Chapter 5

5.1 Representation

(a) Directed Multigraph (b) Place-Transition Net

 :

 :

(c) E-graph / Property Graph (d) Undirected Hypergraph

Fig. 5.2: Instance of Graph Languages

following, I will often use the alternative compact notation SG for denoting carrier sets
and opG : SG → SG for denoting operations of a presheaf G. A small category B can
also be interpreted as a signature with unary operation symbols only by interpreting
every object as a sort and every non-identity morphism as a unary operation. As an
example, List. 5.1 shows the algebraic signature ΣDG for the schema category BDG of
directed multigraphs, shown in Fig. 5.3a.

ΣDG ::=
sorts: V(ertices), (E)dges
opns: s(ource), t(arget): E --> V

Listing 5.1: Signature ΣDG

Fig. 5.3 depicts four small categories, drawn as directed multigraphs (the identity
morphisms are omitted) which represent the respective schema categories of the graph
languages featured in Fig. 5.2. For each schema category, there is a respective functor
category, which has presheaves as objects. Such categories have been called graph-like
structure in [322].

multigraphs.

Chapter 5 95

Formalisation

V E

owner

aa

target
{{

(a) Directed Multigraph Schema

In
target

}}

owner

!!

T P

Out

owner

aa

target

==

(b) Place-Transition Net Schema

GN GE

owner

ii

target

uu

NAE

owner

OO

target ##

EAE

owner

OO

target{{

DN

(c) E-graph / Property Graph Schema

E1

(1,1)

,,

E2

(2,1)

��

(2,2)

��

E3
(3,1)

		

(3,2)

�� (3,3)zz

. . .

V

(d) Undirected Hypergraph Schema

Fig. 5.3: Graph Language Schemas

Definition 5.2 Base Language B and graph-like structures G

Let B be a small category called base language. The base language gives rise to a
category of graph-like structure G := SetB where

• Objects |G| are given by the class of all presheaves Def. 5.1 with domain B.

• The hom-set G(G,H) for two objects G,H ∈ |G| is given by the class of all
natural transformations f : G ⇒ H (Def. C.6), i.e. |B|-indexed families of
mappings (Set-morphisms) f := (fs : G(s) → H(s))s∈|B| ensuring that the
following diagram commutes

G(s)

G(op)

��

fs // H(s)

H(op)

��

G(s ′)
fs ′
// H(s)

(5.1)

for each op : s→ s ′ ∈ B→

• Composition is defined as component-wise function composition, i.e. for
two G-morphisms f : G → H and g : H → K, their composition g ◦ f :=
(gs ◦ fs)s∈|B| is defined via composition in Set.

• Identities are families of Set-identities, i.e. idG : G→ G := (idG(s))s∈|B|.

96 Chapter 5

5.1 Representation

For the remainder of this thesis, I will fix an adequate base language B. The choice
of this base language is arbitrary but for practical examples based on the scenarios in
Sec. 1.3, E-graphs are considered as a suitable base language because they are similar
to class and object diagrams. In the spirit of the terminology in [322], I will overload
the term graph and call objects in a category of graph-like structure G “graphs” and
morphisms in G “graph morphisms”, bearing in mind the more general setting. It is
important to note that objects ofG are sufficiently concrete such that one can talk about
elements: For a graph G ∈ |G|, saying x ∈ Gmeans that there is some object S ∈ |B| such
that x ∈ G(S). If the respective sort object s ∈ |B| has no other outgoing morphism
than the identity morphism, an element x ∈ G(S) is called a “node” otherwise it is
called a “(hyper-)edge”. Simultaneously, “∀x ∈ G” means “for all x of any sort S in the
carrier set of G”. This allows to consider “subgraphs” F ⊆ G, given by sort-wise subset
relations. Categorically this is represented by an inclusion morphism F ↪→ G, which is
a special monomorphism. In general, G objects behave as sets from an abstract point of
view. This is due to the fact that every category of presheaves is a topos:

Definition 5.3 Topos

A category C is called a topos if and only if

• C has all limits and colimits (Appendix C.3),

• C is cartesian-closed (Appendix C.3),

• and C has a subobject classifier (Appendix C.3).

Fact 1 Presheaf Topos [207]

Every category of presheaves SetB (i.e. G) a topos, see [207].

Remark 5.1 Simple Graphs

The reader may ask: “What about simple graphs?” The attribute “simple” refers to
those graphs, where the edges form a relation among the set of vertices, i.e. a
simple graphG is a tupleG := (V, E ⊆ V ×V)with V being the set of vertices and
E being the edge-relation among vertices. Thus, there cannot be any parallel edges
between a pair of vertices. Simple graphs cannot be expressed by a set-valued
functor alone (they require additional constraints) and do not form a topos [5].
Therefore, they are not considered further here.

Remark 5.2 Object Identifiers (OIDs) and “up to isomorphism”

Amajor difference between set theory and category theory is that “names” are
not important. Most definitions and constructions in category theory are only
determined “up to isomorphism”. In the context of object-oriented programming,
this notion is quite natural: Object instances in a running program are internally
identified via memory addresses. These addresses may vary between each

Chapter 5 97

Formalisation

execution of the program. Hence, their concrete names are also not important.

5.1.2 Formalising Conformance
The internal structure of a model is not arbitrary, it must conform to the metamodel of
a respective modeling language. The definition of the latter comprises the notions of
abstract syntax and structural integrity rules. These aspects are modelled by graph-like
structure and diagrammatic constraints, which will be explained below.

The example scenario in Sec. 1.3.2 features several modeling languages, e.g. BPMN,
UML, DMN etc. Most of these languages are defined using OMG’s MOF [368],
which is essentially a subset of the UML class diagram language comprising classes,
attributes and references. For instance, Fig. 5.4 depicts a simplified variant of the
metamodel of the BPMN language (ignore the blue colour for the moment). The clouds
allude to the concrete syntax presentation of model elements. Metamodels of the other
modeling languages from Sec. 1.3.2 can be represented in the same way and also the
schemas of the information systems from the integration scenario in Sec. 1.3.1 can be
expressed in this syntax, see Fig. 1.6.

<<enumeration>>
GatewayType

AND
XOR
EVENT_BASE

<<enumeration>>
ActivityType

MANUAL
SERVICE
BUSINESS_RULE
MESSAGE_SEND
MESSAGE_RECV

<<enumeration>>
EventType

START
END

Activity

type: ActivityType

FlowNode

name: String

Gateway

type: GatewayType

Event

type: EventType

SequenceFlowPool

name: String

DataObject

name: String

1..1

1..1

constraint
 control_flowproducesconsumes

src

dst
pool incoming

outgoing

consumers producers

0..1

control_flow scope

BPMNDiagram flows

nodespool

DataObjects

Fig. 5.4: Simplified BPMNmetamodel

The drawing in Fig. 5.4 effectively shows an (E-)graph decorated with additional
visual elements such as inheritance (arrows with an open triangle arrow tip),
composition-arrows () and multiplicity-labels (1..1 or 0..1). The underlying graph
represents the language concepts together with their structural relations, while the
new visual elements come with a special semantic interpretation.

First, there is inheritance: UML/MOF class diagrams and othermodeling languages
comprise this object-oriented concept. It is an important feature in object-oriented
design, which is used to “factor out” common features and behaviour of otherwise

98 Chapter 5

5.1 Representation

FlowNode SequenceFlowPool

Activity Event

srcpool
SequenceFlowPool

Activity Event

(Activity)
src(Activity)

pool
(Event)
src

(Event)
pool

FlowNodepool src

(Activity)
super

(Event)
super

(Event)src.(Event)super = src
(Activity)src.(Activity)super = src

(Event)super.(Event)pool = pool
(Activity)super.(Activity)pool = pool

Fig. 5.5: “Desugaring” inheritance arrows

conformance typing

BPMN model

Activity

FlowNode

name: String

Event

SequenceFlowsrc
dst

Patient
appeal

Patient
Consultation

1 : Event

name : "Patient appeal"

3 : Activity

name : "Patient consultation"
2 : SequenceFlow

Event

name : String

Activity

name : String
SequenceFlow

(Event)src

(Event)dst

(Activity)src

(Activity)dst

21 : src 23 : dst

BPMN metamodel

Fig. 5.6: Conformance via Typing

heterogeneous objects. Researchers have developed different approaches to formally
describe this phenomenon, e.g. clan-morphisms [228] or morphisms with inequality
[325]. For the scope of this thesis and all metamodel examples featured in it, it will be
sufficient to simply consider inheritance as a kind of “syntactic sugar”. This means
that abstract supertypes are used to group a shared set of in- or outgoing (graph or
attribute) edges, which are “multiplied out” for the concrete formal representation.
The original inheritance is retained as a regular edge (named “super”) such that it may
be used for the definition of consistency rules later. Furthermore, “commutativity”-
requirements subject to the new super-edges arise. Fig. 5.5 depicts an example of the
overall translation, where the above requirement is expressed via four equations that
are contained in the graphical “note” elements.

The latter equations together with the other visual elements (compositions and
multiplicities) encode constraints, i.e. concrete syntactical conditions that the instance
models must adhere to. I will present their formal interpretation shortly. But
first, let me analyse the “semantics” of the abstract syntax graph alone, i.e. without
further constraints attached to it. Each element of a model must be typed over
one of the concepts defined in this graph. The presentation in Fig. 5.1 implicitly
conveyed this notion already: Note that the edges and nodes follow the naming
scheme: “〈element id〉:〈type name〉”. Formally, this is expressed through aG-morphism
t : A→M where A is a graph representing the model elements andM is the graph
containing the concepts.

Fig. 5.6 demonstrates how the conformance of a BPMN-model w.r.t. the BPMN-

Chapter 5 99

Formalisation

metamodel (left hand side) is formally interpreted as a graph morphism t : A→M

(right hand side). The assignment performed by t is depicted via blue dotted arrows
in Fig. 5.6. A morphism in the category of graph-like structure G is a structure-
preserving mapping, compare homomorphism in algebra. In particular, it has to preserve
owner/target-incidences, see Def. 5.2. Note how this property acts as a syntactic
constraint: For instance, the element with id 21must be either mapped to (Event)src
or (Event)trg because the target node with id 1 has been mapped to Event while
the owner node has been mapped to SequenceFlow.

Therefore, the homomorphism property of the typing constrains the “allowed”
linkage constellations of elements in a model. Yet, this property alone is generally
not enough to formally represent all structural integrity rules of a modeling language.
This is why UML/MOF class diagrams comprise special graphical elements such
as multiplicity or composition, which further constrain the allowed constellations of
elements in the instance model. For example, every element typed over SequenceFlow
shall have exactly one src and exactly one trg FlowNode and all Pool, FlowNode,
SequenceFlow and DataObject elements must have a unique BPMNDiagram-container.

A natural formalisation of such constraints is given by the framework of generalised
sketches. Simply speaking a sketch is a (carrier) graph together with a set of diagrams
attached to it. The term diagram in Category Theory does not mean “a drawing” (as in
SE) but “a selection of elements” of the carrier graph. Each diagram has an associated
formal interpretation. In classical Ehresmann sketches, a diagram either specifies a
limit or a colimit. It can be shown that this formalism is just as expressive as first order
theories [4] but it generally requires the introduction of multiple auxiliary elements,
which makes it cumbersome to work with [494]. Generalised sketches abstract away
from the concrete meaning of a diagram, i.e. each diagram is indexed by a predicate
providing the abstract semantics. These predicates are organised in a signature.

Definition 5.4 Diagram Predicate Signatur

A diagram predicate signature Π = (|Π|, ar) is a pair, consisting of a set of predicate
symbols |Π| and a function ar : |Π| → |G| called arity, which assigns a graph to
each predicate symbol.

Thus, each predicate is identified by a name and comes with an arity graph, which
defines its shape5. For the running example of UML/MOF class diagrams, I further
add a graphical visualisation for each predicate symbol. This allows highlighting the
diagrams in a more natural way by re-using existing concrete syntax Fig. 5.4. Tab. 5.1
shows a suitable predicate signature for the running example.

Each of the predicate symbols in Tab. 5.1 embodies a specific constraint, e.g. that
an element typed over a concept with the respective feature always shall have an
outgoing link (mandatory). Semantics are defined (in a fibred way) by considering
suitable sub-classes of typed structures, which relates to the instanceOf-relationship
between models and metamodels in MOF. Categorically, it is given by the concept of

5In Set-based predicate logic, the arity of a predicate is simply a natural number. For instance, the
predicate lessOrEqual (modeling6) has the arity 2. In my case, I am working with graph-like structure.
But, the Set-based case can represented in this more general setting by interpreting each natural number
as a discrete graph.

100 Chapter 5

5.1 Representation

Name p Arity α(p) Visualization

composition 0
01 // 1 C D

optional 0
01 // 1 C D0..1

mandatory 0
01 // 1 C D1..1

inverse 0
01
((
1

10

hh C D

commute 0

02

&&

01
// 1

12
// 2

C D

E

a

b
c

c = a.b

Table 5.1: Predicate Signature for class diagrams

slice category:

Definition 5.5 Slice category C ↓ C

Let C be a category and C ∈ C be an object thereof. There is a slice category C ↓ C
over C where

• Objects |C ↓ C| are C-morphisms f : A→ C whose codomain is C,

• The hom-set C ↓ C(f, g) for f : A→ C, g : B→ C ∈ |C ↓ C| is given by those
C-morphisms hmaking the following diagram commute

C

A

f

??

h
// B

g
__ (5.2)

• Composition and Identities are inherited from C.

The semantics of a predicate “a chosen subclass of objects” taken from the slice
category over the respective arity graph.

Definition 5.6 Predicate Semantics

Given a predicate signature Π and p ∈ |Π| being a predicate, the semantics JpK
of this predicate is a chosen subclass JpK ⊆ |G ↓ ar(p)| of the objects of the slice
category over ar(p), closed under isomorphisms.

Fig. 5.7 provides an illustration of Def. 5.6 for the example of the optional-predicate.
The latter enforces that the edge it is imposed on shall represent a partial function. The
collection of all graphs which can be typed over ar(optional) is divided into two
classes, the valid and invalid ones. Note that these two classes are infinite and closed

Chapter 5 101

Formalisation

0 1
01

A : 0

A : 1

A : 0 B : 1

A : 0 B : 1
:01

X Y
i

...

A : 0 B : 1
:01

C : 1

...

A: 0 B: 1

C: 1

A: 0 B: 1

A: 0 B: 1

D: 1C: 0

x:01

y:01

x:01

y:01

x:01

y:01
...

✗

Fig. 5.7: Illustration: Predicate Semantics for optional

under isomorphisms, i.e. it does not matter how the instance elements are named. From
a practical point of view, enumerating an infinite set of instances for each predicate
is unfeasible. It is more practical to define predicate semantics via implementing a
boolean function checkp : |G ↓ ar(p)|→ {true, false} which is equivalent to a subset:
Given a model i : I→ ar(p) ∈ |G ↓ ar(p)| the check function applied on i returns true
if and only if i belongs to the semantics (checkp(i) = true ⇔ i ∈ JpK). We then say
that i satisfies p, written i |= p. Alternatively, one may describe a class of instances
syntactically by means of a logic theory. In the following equation, the semantics
of the optional-predicate are described syntactically utilising predicate logic and
assuming B being the schema category of E-graphs, see Fig. 5.3c. Semantics of the
other predicates in Tab. 5.1 can be defined analogously.

checkoptional(i) = true⇔ ∀e, e ′ ∈ GEI :ownerI(e) = n = ownerI(e ′) (5.3)
=⇒ e = e ′ (5.4)

Remark 5.3 Default Multiplicities: UML vs. Diagrammatic Predicates

Note that interpreting the instances of a metamodel in a fibered way, i.e. as the
slice category over the metamodel graph, induces a default multiplicity that
differs from UML, namely 0..* at both owner and target sides of an edge. In
UML, an attribute or association has implicitly the multiplicity 0..1 at the target
side and 0..* at the source side. In the class diagrams in the chapter and the
remainder of the thesis, the absence of an explicit multiplicity label means 0..*

102 Chapter 5

5.1 Representation

at both ends.

It is important to note that the concrete implementation of predicate semantics is kept
abstract. This allows designers to implement constraint semantics using the formalism
or tool of their choice, e.g. functional programming languages, first order logic, or
graph constraints [217]. Moreover, one can consider infinite predicate signatures,
which comprise implementations of all possible predicates that can be expressed in
languages such as EVL [288] or OCL [479]. For more references of the relationship
between constraint languages and the generalised sketch framework, I refer to [493].
Constraint languages allow a designer to define a wide range of custom constraints,
which exceed the expressive power of the built-in multiplicity and composition features.
Fig. 5.4 exemplifies such a constraintφ :=control_flow, which is expressed as an OCL
invariant defined in List. 5.2. This constraint requires that every start eventmust not
have any incoming SequenceFlow [364, p. 237], whereas end eventsmust not have
any outgoing SequenceFlow [364, p. 245]. The arity of this constraint is highlighted in
blue in Fig. 5.4.
context Event inv control_flow:

(self.type=EventType::START implies
self.incoming->count() = 0)

and (self.type=EventType::END implies
self.outgoing->count() = 0)

Listing 5.2: Constraint φ:=control_flow formulated in OCL

Hence, built-in (multiplicity, composition) and attached (OCL,EVL) constraints are
treated uniformly in this formalism. We now have collected all the ingredients to
define diagrammatic constraints, which are the diagrammatic counterpart of formulas
or sentences in classical (string-based) logic:

Definition 5.7 Diagrammatic Constraint

Given an graph G and a predicate signature Π, a diagrammatic constraint φΠG :=

(b, p) on G, is given by a predicate symbol p ∈ |Π| and a morphism b : α(p)→ G,
called binding.

To check whether an S-model satisfies a constraint φ = (p, b), one first has to
“pull” the respective typing homomorphism t : A → |S| “back” along the binding
homomorphism b (i.e. querying the scope) and then verify membership of the result
w.r.t the semantics of p (i.e. invoking the check-function), which is illustrated in
Fig. 5.8. When the binding homomorphism is injective, this “pulling-back” or querying
operation simply means forgetting all parts of A, which tmaps to an element outside
of the scope of φ.

Definition 5.8 Sketch

Given a predicate signature Π, a sketch S = (|S|,Constr(S)) is given by a carrier
graph |S| ∈ |G| and a set Constr(S) of diagrammatic constraints.

When predicate signature and the underlying graph are clear from the context, I
will omit indices. Note that every graph can be considered as a trivial sketch with an

Chapter 5 103

Formalisation

<<enumeration>>
GatewayType

AND
XOR
EVENT_BASE

<<enumeration>>
ActivityType

MANUAL
SERVICE
BUSINESS_RULE
MESSAGE_SEND
MESSAGE_RECV

<<enumeration>>
EventType

START
END

Activity

type: ActivityType

FlowNode

name: String

Gateway

type: GatewayType

Event

type: EventType

SequenceFlowPool

name: String

DataObject

name: String

1..1

1..1

producesconsumes

src

trg
pool

incoming

outgoing

consumers producers

0..1

control_flow scope

Start : Event

name : "Patient
type: START

Start : Event

Referral:Finishe
type: End

SequenceFlow
SequenceFlow

PC : Activity

name : "Patient Consult
type: MANUAL

App : Activity

name : "Approval"
type: MSG_RECV

...

<<enumeration>>
EventType

START
END

Event

type: EventType

SequenceFlow

1..11..1src trg

incomingoutgoing context Event inv control_flow:
 (self.type=EventType::START implies
 self.incoming->count() = 0)
 and (self.type=EventType::END implies
 self.outgoing->count() = 0)

«Query»

«induces»

«Evaluation»
true

false

Abstract Syntax Graph

Object Graph

ConstraintArity Graph

Queried Object Graph

«defines»typing

SequenceFlow

SequenceFlow

SequenceFlow

: Gateway

type: XOR

SequenceFlow

...
...

: Gateway

type: MSG

SequenceFlow

...

Start : Event

Referral:Finishe
type: End

SequenceFlow

Start : Event

name : "Patient
type: START

SequenceFlow

binding

Fig. 5.8: Diagrammatic Constraints in a Nutshell

empty set of diagrams. Sketches are the diagrammatic counterpart of a “conjunctive
theories” in classical (string-based) logic, i.e. they describe a set/collection of models
called instances.

Definition 5.9 Instance of Sketch

Given a sketch S. An object i ∈ G ↓ |S| of the slice category
over |S| is called an instance of |S| if and only if i∗ ∈ JpK
for all constraints (b, p) ∈ Constr(S), where i∗ : O → ar(p)

belongs to a chosen pullback (Def. C.13) diagram depicted
on the right.
I write i |= (b, p) if i∗ ∈ JpK and i |= S if i |= (b, p) for all
(b, p) ∈ Constr(S).

ar(p)
b // |S|

O

i∗

OO

b∗
// I

i

OO

P.B.

5.1.3 Formalising Change

So far, models are represented by means of graph-like structure G, metamodels by
means of (generalised) sketches and the conformance-relation via typing-morphisms
and membership in the instance class of a sketch. Thus, in order to completely describe
all aspects of a model space (Sec. 3.3.1), I am missing a formalisation of updates (i.e.
change-relation) so far. This is going to change in this section.

Sec. 4.2.2 identified three approaches for representing changes, which are depicted
schematically in Fig. 5.9. I will provide a formal interpretation of each approach in the
following.

5.1.3.1 State-based = Codiscrete Categories

The State-based simply stores the state of the model before and after the update. In
categorical jargon, this setting is also called codiscrete [258] or chaotic [126]. A codiscrete
category C is a category where every hom-set C(A,B) for each A,B ∈ |C| contains
exactly one element. Hence, every pairing of two models (states) represents a valid

104 Chapter 5

5.1 Representation

Role

Physician Patient

Person

ssn: ID

-- person

PullUpAssociation@(Patient.person,Role)

Operational-Delta

Structural-Delta

Role

Physician Patient

Person

ssn: ID
Role

Physician Patient

Person

ssn: ID

++ person

Role

Physician Patient

Person

ssn: ID
personRole

Physician Patient

Person

ssn: ID

person

Role

Physician Patient

Person

ssn: ID
personRole

Physician Patient

Person

ssn: ID

person

State

before after

old newupdate

Fig. 5.9: Types of Change Representation

change. This change representation approach conveys rather limited information and
provides limited opportunities for more insightful investigations.

5.1.3.2 Structural-Deltas = Span Categories

X
σ

~~

τ

ι

��

∼=A B

X ′
σ ′

``

τ ′

>>ι−1

SS

(a) Span relation

A X
σoo

τ

��

Q
λ ′oo

τ ′

��

x

B Y
λ
oo

ρ

��

C

(b) Span composition

Fig. 5.10: Arrows and Composition in Span(C)

Structural-deltas are strictly more expressive than the state-based variant and
witness whether elements are preserved, added (see the “++”-annotation in Fig. 5.9),
deleted (see the “-”-annotation in Fig. 5.9), moved, copied, merged or renamed. The
formal underpinning of structural-deltas are spans [135]. A span is a pair of morphisms
(σ : X→ A, τ : X→ B) sharing the same domain X. The latter object is called the apex
of the span and the morphisms σ, τ are called legs of the span. From a set-theoretic
point of view, a span can be interpreted as a multi-relation, i.e. a span can express
relationships between elements of A and B but there can be multiple witnesses for a
relationship between two elements a ∈ A and b ∈ B, i.e. there are two distinct elements
x, y ∈ X (x 6= y) such that σ(x) = a = σ(y)∧ τ(x) = b = τ(y). In set-based relations,
such a relationship is witnessed by exactly one element: the tuple (a, b). For every

Chapter 5 105

Formalisation

category C that possesses chosen pullbacks6 there is a span category Span(C)where
arrows are given by abstract spans7.

Definition 5.10 Concrete and Abstract Spans

LetC be an arbitrary category, which has all pullbacks. A concrete spanA σ←− X τ−→ B

between A and B (A,B ∈ |C|) is given by a pair of morphisms (σ, τ) with the
same domain.
An abstract span [σ, τ〉 between A and B is given by the equivalence class [σ, τ〉 :=
{A

σ ′←− X τ ′−→ B | (σ, τ) ≈ (σ ′, τ ′)} of all concrete spans between A and B that
are related by ≈. The latter relation is defined for two spans (σ, τ) and (σ ′, τ ′)

between the same pair of objects (A,B) if and only if there exists an isomorphism
ι : X→ X ′ such that σ = σ ′ ◦ ι and τ = τ ′ ◦ ι, see Fig. 5.10a.

Abstract spans can be composed via pullbacks, which can intuitively be described
as relation composition.

Definition 5.11 Span Composition

Let [σ, τ〉 be an abstract span between A and B, and [λ, ρ〉 be an abstract span
between B and C (A,B,C ∈ |C|). Their composition [λ, ρ〉 ◦ [σ, τ〉 := [σ ◦ λ ′, ρ ◦ τ ′〉
is given by the abstract span that contains (σ ◦ λ ′, ρ ◦ τ ′), where λ ′ and τ ′ arise
from constructing any chosen pullback of τ and λ, see Fig. 5.10b.

Thus, we yield the span category Span(C) over C. It shares the same objects with
C and arrows are given by abstract spans. The latter will be denoted as [σ, τ〉 : A 7→ B

to visually distinguish them from arrows in C.

Proposition 2 Span Category Span(C)

For each categoryCwhich has all pullbacks there is a span category, whose objects
coincide with C, i.e. |Span(C)| = |C|, and morphisms are given by all abstract
spans between these objects. The identity morphism for an object A ∈ |Span(C)|
is given by the abstract span [idA, idA〉 and composition is defined in Def. 5.11.

Proof. Follows immediately from the fact that pullbacks preserve identities and their
construction order is associative up to isomorphism. The fact that composition relies
on chosen pullbacks does not cause a problem here because I am working with abstract
spans that are closed under isomorphisms. �

The underlying categoryC can be embedded intoSpan(C). The functor that embeds
C into Span(C) is called the graphing functor Γ [226] due to historic reasons8.

6Pullbacks are only uniquely defined up-to isomorphism. In order to use pullbacks operationally,
one requires some pre-made choice that provides a concrete span for a given co-span that makes the
resulting square a pullback.

7Actually, the span-category Span(C) is a bicategory. To avoid working with 2-arrows and pseudo-
functors, I utilise equivalence classes of compatible spans.

8Recall that every function f : A→ B gives rise to a relation graph(f) = {(a, f(a)) | a ∈ A} ⊆ A× B,

106 Chapter 5

5.1 Representation

Definition 5.12 Graphing Functor Γ

The graphing functor Γ is an identity-on-object functor defined as follows

Γ :

{
C → Span(C)

f ∈ C(A,B) 7→ [idA, f〉 ∈ Span(C)(A,B)

The span category Span(C) has some notable subcategories. One example is
the category of partial morphisms Par(C) ⊆ Span(C), which imposes the restriction
that the left legs σ of abstract spans [σ, τ〉 must be a monomorphism, i.e. enforcing
a right-unique relation in a set-theoretical context. Composition in this category is
well-defined because pullbacks preserve monomorphisms. For a complete treatise
of arbitrary categories of partial morphisms I refer to the seminal work of Robinson
and Rosolini [400]. Partial morphisms will play an important role in the coming
sections, therefore I introduce a special notation for them using a half-arrow tip:
[σ, τ〉 : A⇀ B ∈ Par(C)→. Recall that forC := G, one can refer to elements x ∈ G inside
an objects G ∈ |G|. Therefore, there are monomorphic inclusion-arrows ⊆A,B : A ↪→ B –
highlighted by a hook-arrow – that do not “rename” elements, i.e. with G being the
underlying signature of G, for all s ∈ |B| there are inclusions A(s) ⊆ B(s) between
carrier sets. Since abstract spans are only determined up to isomorphism, I introduce
the convention to always choose the left legs of a representative for an abstract span
in Par(G) to be an inclusion-morphism. This allows me to introduce the shorthand
notation for partial morphisms f : A⇀ B ∈ Par(G)→, which is represented by the span
(⊆ : dom(f) ↪→ A, f : dom(f)→ B) where the object dom(f) ⊆ A is called the domain
of definition of f. The morphism f is called “total” if the inclusion is an identity. A span,
where both legs are monomorphisms (σ : X� A, τ : X� B) is able to model that an
element a

• has been deleted (a ∈ A∧ @x ∈ X : σ(x) = a),

• has been inserted (a ∈ B∧ @x ∈ X : τ(x) = a),

• has been renamed (∃x ∈ X : σ(x) = a∧ a 6= τ(x)), or

• stayed unchanged (∃x ∈ X : σ(x) = a = τ(x)).

, during the update from A to B. Moving a node is modelled by inserting and deleting
a context-edge in a category of graph-like structures. In Span(C), i.e. without the
monomorphism restriction on the span legs, one can further express splitting and
merging of elements.

5.1.3.3 Operational-Deltas = Graph Transformation Rules

Operational deltas are semantically even more rich than structural deltas by providing
a high-level description of “what” happened during a change. For example, the
operational delta depicted in Fig. 5.9 (topmost part) is able to express the fact that the

called the graph of the function. The function f : A→ B thus turns into the span (idA, f) of projections
from the graph to the domain and codomain of f.

Chapter 5 107

Formalisation

change is the result of applying the refactoring operation PullUpAssociation (see
[182]). Hence, it is worthwhile to investigate how operational deltas can be expressed
formally. Some researchersmodel operational deltas (edits) via amonoid acting on a set9,
see [13, 239, 258]. This notion, however, is rather abstract and since I already introduced
graph-like structures, there is a more concrete and suitable framework: Graph rewriting
also known as graph transformation [146] is a powerful and well-investigated formal tool
and research domain that generalises traditional string-grammar rewriting [403]. The
common de-facto standard of algebraic graph transformation – the so-called double pushout
(DPO) – was first introduced in 1973 by Ehrig et al. [149]. This approach considers
rules that can be applied at given matches, compare the binding of formal parameters to
actual parameters in a method invocation:

Definition 5.13 Graph Transformation Rule and Application (DPO)

Let C be a suitable ambient category with pushouts (Def. C.15). A graph trans-
formation rule r is a span ρ := L

l←− K r−→ R of C-morphisms. Given a morphism
m : L→ G, called match, the object G can be rewritten to H via rule r at matchm,

denoted G ρ@m
H, if and only if there exist morphisms l ′, r ′,m,m ′ such that

the squares (a) and (b) in (5.5) are pushouts in C. The morphismm ′ is called
the co-match, object C the context, and span (l ′, r ′) the trace of the derivation.

L

m

��

K
loo

(b)

p

(a)

q

m

��

r // R

m ′

��

G C
l ′

oo

r ′
// H

(5.5)

There are several extensions and generalisations of the DPO approach, namely
the Single-Pushout approach (SPO) [272, 318, 394], the Sesqui Pushout approach (SqPO)
[99] or Algebraic Graph Rewriting with Controlled Embedding (AGREE) [98], which add
various technical features (e.g. “deletion in unknown context”). Their theoretical
relationships have been subject to intensive study, see for example the work of Michael
Löwe [323, 324]. At the core, each graph transformation approach canmodel rule-based
addition and insertion. Hence, I can formalise operational deltas via means of graph
transformation rules. Fig. 5.11 shows an example of the PullUpAssociationRule and
its application.

According to Def. 5.13, a category must at least possess (chosen) pushouts to be
able to allow the definition and application of graph transformation rules. In fact,
the abstract categorical requirements for the applicability of the graph transformation
framework have been studied extensively (keyword: adhesive categories) [146, 304].
This topic will be revisited later. For now it suffices to consider the following fact:

9This idea goes back to expressing geometric transformations by group actions formulated by German
mathematician Felix Klein in the 19th century (keyword: Erlangen program)

108 Chapter 5

5.1 Representation

Role

Physician Patient

Person

ssn: ID

person

Role

Physician Patient

Person

ssn: ID

person
Role

Physician Patient

Person

ssn: ID

A

B

C

A

B

C

A

B

C
f

f

Fig. 5.11: Rule Application of a Graph Transformation Rule

Fact 3 Graph Transformation in G [304]

Any category of graph-like structures G admits DPO transformations.

5.1.4 Formalising Correspondence
Now that we are able to formalise all aspects of model spaces, it only remains to provide
a formalisation of the concept of correspondences to cover all entities of multi-model
consistency management. But first, let me define the setting in which multi-models are
considered.

First, I have to define a multi-model setting which demarcates the scope of model
spaces under consideration.

Definition 5.14 Multi-model setting

A multi-model setting (B, n, {M1, . . . ,Mn}) is given by a base language B, a natural
number n ∈ |Nat| called the arity of the multi-model setting, and an n-indexed
family of G-sketches (Mj)16j6n, representing the metamodels of the domains
(model spaces) under consideration. The carrierMj := |Mj| for 1 6 j 6 n is called
a metamodel graph. A G-morphism tj : Aj →Mj ∈ |G ↓Mj| for 1 6 j 6 n is called
a local model in the multi-model setting.

For the remainder, I will fix a multi-model setting with sufficiently large arity n
(the maximal number of domains under consideration). As a consequence, I will be
regularly working with indices. By convention, I use i and j as index variables, where i
runs between 0 6 i 6 n and j runs between 1 6 j 6 n, if not specified otherwise.

Amulti-model is a concrete representative for a correspondence relation. According
to the principle stated in in Sec. 3.3.2, a multi-model comprises a tuple of models
augmented with commonalities. Sec. 4.2.4 identified various concrete approaches to
represent this type of information (e.g. via complements, trace-links, etc.). In this
section, I am looking for a universal formal interpretation. Multi-models can be defined
among metamodels as well as (instance) models. Hence, commonalities represent
different kind of inter-model relation. Let us consider the situation depicted in Fig. 1.9

Chapter 5 109

Formalisation

as a concrete example. The multi-model setting has an arity n of 3. M1 representing the
graph of BPMN metamodel (Fig. 5.4),M2 being the graph if the UML metamodel, and
M3 being the graph of the DMNmetamodel. The respective local models t1 : A1 →M1,
t2 : A2 →M2, and t3 : A3 →M3 are shown in Fig. 1.9. The figure contains coloured
links, which represent different traceability relationships, i.e. the commonality data
among the instances. These relations are subject to global consistency rules (CR5–CR8).
In order to automate the verification process, these must be formulated in a formal
language. There are specialised languages for the definition of global consistency rules
such as ATL, QVTr or JTL. Sec. 4.5 uncovered that the majority these languages lack
support for multi-ary relationships. Notable exceptions are the QVTr-specification
(yet, there is no QVTr-implementation supporting multi-ary relations) and a language
presented by Klare and Gleitze in [279].

1 // Realises CR5
2 commonality DecisionTableDef {
3 // Projections
4 with BPMN:Activity whereat BPMN:Activity.type equals BUSINESS_RULE
5 with DMN:DecisionTable
6 //Features
7 has input referencing ColumnAttrImpl {
8 = BPMN:Activity:consumes
9 -> DMN:Table:inputSideColumns
10 }
11 has output referencing ColumnAttrImpl {
12 = BPMN:Activity:produces
13 -> DMN:Table:outputSideColumns
14 }
15 }
16 // Realises CR6
17 commonality DataObjectImpl {
18 with BPMN:DataObject
19 with UML:(Class or Attribute)
20 }
21 // Realises CR7 and CR8
22 commonality ColumnAttrImpl {
23 with DMN:Column
24 with UML:Attribute
25 with BPMN:DataObject?
26
27 has type referencing BaseType {
28 = UML:Attribute.type
29 = DMN.Column.type
30 }
31 has entails referencing DataObjectImpl {
32 = BPMN:DataObject
33 -> UML:Attribute
34 }
35 }
36 // Required to define the feature type in the commonality above
37 commonality BaseType {
38 with UML:DataType
39 with DMN:ColumnType
40
41 has name {
42 = UML:DataType.name
43 = DMN:ColumnType.name
44 }
45 }

Listing 5.3: Consistency Rules in Commonalities language [279]

List. 5.3 gives a concrete example featuring a formal definition of the consistency
rules CR5-CR8. Fittingly, the central keyword in this language is named commonality,

110 Chapter 5

5.1 Representation

which defines a so-called participation constraint among the referenced concepts
(keyword with). A participation constraint describes a rule of the form “for every
element of type X in model one there must be a corresponding element of type Y in
model two and vice versa”, compare the enforcement semantics of QVTr [327, 367].
The language comprises various additional, e.g. filter criteria (whereat in line 4),
optional participation or set to be optional (?-symbol in line 25), value comparisons
(=-symbol at multiple lines), or dependent participations (->-symbol at multiple
lines). Most interestingly, participation constraint can have “features” (keywords
has/referencing), which establish dependencies between the constraints.

I do not want to go much further into the intricate details of this language and its
not important to understand all its technical details (the interested reader may have a
look into Gleitze’s Bachelor thesis [196]). The example List. 5.3 is primarily intended
to serve as an illustration of a language for defining global consistency with support
for multi-ary inter-model correspondences. If we abstract away from the concrete
semantics and only consider the syntactical “skeleton”, the content of List. 5.3 is simply
a collection of relationships between elements (concepts) from different metamodels.
These relationships are also linked together, i.e. there is an internal structure. Graph-like
structures (Sec. 5.1.1) have been shown to capture internal structure. Therefore, it is
reasonable to use the same “language” to formally represent the content of List. 5.3.

The resulting graph M0 is shown in the centre of Fig. 5.12. Each participation
constraint represents a node10 while their features are represented as edges. The
elements ofM0 are depicted using dashed lines and I call them commonality witnesses.
Commonality witnesses reify a “tupling” of terms from disparate (meta-) models.
Fig. 5.12 visualises these references as dashed arrows (pM1 , pM2 , pM3). I call them
projections and they represent the “fundamental innovation” compared to considering
only tuples of local (meta-)models. For example, lines 22-35 specify a commonality
of the triple DataObject (M1), Attribute (M2), and Column (M3) reified under the
name ColumnAttrImpl in M0. Simultaneously, lines 28-29 specify a commonality
between the type features of Attribute and Column in M2 and in M3. Common
edges require that their respective owner and target nodes are also related, e.g. the
type-commonality depends on a commonality between Attribute and Column, which
is already given by the surrounding commonality-statement, as well as commonality
between ColumnType and DataType (lines 37-45). Formally, this can be expressed by
stating the requirement that commonality specifications must preserve edge-node-
incidences.

The formal result of the specification in List. 5.3 are 3 projection morphisms
pMj : M0 ⇀ Mj (j ∈ {1, 2, 3}), depicted by dotted arrows in Fig. 5.12. For exam-
ple, pMj (DecisionTableDef) = Activity ∈Mj.

The above required edge-node-incidence means that definedness ofMj(e) entails
definedness of pMj (v), where v is the owner of e in pMj , and

pMj (v) = ownerM
j

(pMj (e)) (5.6)

for all edges e inM0 and likewise for targets (and generally for all op : s→ s ′ ∈ B→).

10Note that the participation constraint realising CR6 references two elements inM2, thus there must
be two nodes for DataObjectImpl in Fig. 5.12

Chapter 5 111

Formalisation

Activity

name:String
type:ActivityType

DataObject

name: String

produces consumes

DecisionTableDef

ColumnAttrImpl

BaseType

name: String

Class

name:String

DataObjectImpl1

Attribute

name:String

DataType

name:String

ColumnType

name:String

Column

name:String

DecisionTable

name: String

1..1

1..1

owner

type

type... ...

...

...

...

...

type
producers consumers input

output

outputSide
Columns

attributes

inputSide
Columns

DataObjectImpl2
entails

Fig. 5.12: Commonality representative metamodelM0

Since the commonality tuples can be of arbitrary arity, the morphism may be partial
as exemplified by the following example : The named tuple

BaseType(UML:DataType,DMN:ColumnType)

is expressed by a node BaseType ∈M0 where the projection morphisms pM1 , pM2 , pM3
are defined as follows (a mapping that is undefined for a given element is expressed
via ⊥):

pM1 (BaseType) =⊥, pM2 (BaseType) = DataType, pM3 (BaseType) = Type

Therefore, the transition from binary spans (see Sec. 5.1.3.2) to multi-ary spans
simultaneously requires the transition from total to partial morphisms. An alternative
approach would be to define a collection of auxiliary graphsMij together with spans
Mi ←Mij →Mj for each pair (i, j) of indices between 1 and n. This setting, however,
is more complex, because of the rapidly growing number of auxiliary structures for
which, additionally, consistency requirements have to be considered11. But even more
problematic: This approach cannot express multi-ary relationships, which are, for
instance, required to formulate CR8, compare the discussion in Sec. 3.3.5. My goal
is to overcome current limitations (Sec. 4.5), especially offering support for multi-ary
situations. Therefore, I choose the centralised approach.

Categorically, a multi-ary span of partial graph morphisms can be expressed as a
special diagram functor M : In → G, i.e. a selection of objects and morphisms in G.
The schema category In has the star-shape defined in (5.7) (identity arrows of I are
omitted). These functors are subject to the condition that the inner edges (10, . . . , n0)

11 For instance, a commonality declaration in M1,2 of elements x1 ∈ M1 and x2 ∈ M2 and a
declaration inM2,3 specifying correspondence of x2 ∈M2 and x3 ∈M3 must necessarily (redundantly)
be considered inM1,3.

112 Chapter 5

5.1 Representation

are mapped to monomorphisms. This is due to the fact that partial morphisms in
a category of total morphisms can be modelled by spans where one of the legs is a
monomorphism, see Sec. 5.1.3.2.

2 1

−2

22
hh

20

((

−1
10

vv

11
77

· · · 0

−j

j0 77

jj

ww

−n

n0
gg

nn

''
j · · · n

(5.7)

I call these functorsMmulti-model spans.

Definition 5.15 Multi-model span

A functor M : In → G where the image of M(j0) for all 1 6 j 6 n is a
monomorphism is called a multi-model span.

When the arity n is clear from context, the index of I is omitted. Further, I
introduce notational conventions for denoting the constituents of a multi-model span:
A G-object M(i) (i.e. the image of i ∈ |I|) is denoted M(i) =: Mi. Moreover, the
names of the elements in M(−j) is of minor importance bearing in mind that this
object represents the domain of definition a the partial graph morphism, which is
the image of the span 0 j0←− −j

jj−→ j. Thus, whenever there is a choice of concrete
representatives, the image of the span 0 j0←− −j

jj−→ j under M is chosen as follows:

M(0
j0←− −j

jj−→ j) :=M0
⊆Mj←↩ dom(pMj)

pM
j−−→ pMj = pMj :M0 ⇀Mj. This notation aligns

the abstract definition of multi-model spans with the syntax used earlier in this section.
multi-model spans can be related aswell. Recall thatmulti-model spans are functors,

hence one can relate them via natural transformations (families of G-morphisms).

Definition 5.16 Multi-model span Morphism

LetM andN be twomulti-model spans. Amulti-model spanmorphism f : M→ N

is a family (fj : M(j)→ N(j))−n6i6n of G-morphisms, depicted in (5.8), with the
condition that squares (i) and (ii) commute.

M(0)
f0 //

(i)

N(0)

M(−j)
OO

M(j0)

OO

M(jj)

��

f−j
//

(ii)

N(−j)
OO

N(j0)

OO

N(jj)

��

M(j)
fj

// N(j)

(5.8)

The notion of multi-model span morphisms allows to express typing-relationships
among multi-model spans. This concept is needed to formally represent actual multi-
models, which comprises models, i.e. typed graph-like structures. Coming back to

Chapter 5 113

Formalisation

Fig. 1.9, it turns out that the coloured lines crossing the model boundaries can be
expressed as multi-model span A. Every line joint becomes a commonality witness
and the projections are given by ends of these lines. The only difference is that one
is additionally dealing with typing, i.e. there are typing morphisms tj : Aj → Mj.
Luckily, this typing extends to A0 as well because elements aj and ak (j 6= k) of model
components Aj and Ak are relatable only if their types tj(aj) and tk(ak) are related via
a commonality witness w ∈M0. The latter is prepared in List. 5.3.

A natural typing t0 of a commonality representative v of aj and ak is t0(v) := w,
such that

pMj (t0(v)) = pMj (w) = tj(aj) = t
j(pAj (v)), (5.9)

which shows that t0 integrates smoothly into a composed typing expressed by the
multi-model span morphism t : A→M.

Proposition 4 Multi-model span category M

Multi-model spans together with their morphisms establish a categoryM.

Proof. Follows immediately from the fact that M ⊆ GI is a full subcategory of the
functor category GI. �

The fact that multi-model spans form a category immediately yields the notion
of slice categories M ↓ M. This means that one can consider instances for a given
multi-model span, which immediately yields a formal interpretation of domain specific
trace-models: An alignment of metamodel graphs (e.g.M1,M2,M3) augmented with
type-commonalities (e.g. List. 5.3) forms a type-multi-model span (i.e. the domain
specific trace metamodel). The respective instance (i.e. the domain specific trace model)
t : A → M is given by the models (e.g. t1 : A1 → M1, t2 : A2 → M2, t3 : A3 → M3)
augmented with typed trace links (e.g. the links in Fig. 1.9).

Conditions (5.6) (compatibility of projections with owner/target) and (5.9) (compat-
ibility of typing and projections) are encoded into Def. 5.15 (I-arrows are interpreted as
graph morphisms) and Def. 5.16 (commutativity of (i) and (ii)) respectively. Fig. 5.13
shows an excerpt of t : A→M to illustrate both conditions at the running example.

5.2 Verification

Consistency verification is based on consistency rules, compare Sec. 3.3.3. Sec. 4.2.6
showed that there is a plethora of ways for representing consistency rules and imple-
menting consistency verification. The goal in this chapter is to remain as “technology
independent” as possible. Institutions are a formal framework invented by Goguen
and Burstall [205] with the aim to integrate the logic systems used in various formal
verification approaches.

114 Chapter 5

5.2 Verification

Activity

name: String
type: ActivityType

DecisionTableDef

name: String

DecisionTable

name: String

3 : DecisionTableDef

name: "Select Consultant"

SelectConsultant: Activity

name:"Select Consultant"
type:ActivityType::BUSINESS_RULE

SelectConsultant: DecisionTable

name:"Select Consultant"

...

DataObject

name:String

PostalCode : DataObject

name: "PostalCode"

DataObjectCorrespondence

consumes

consumers

: consumes

1a: DataObjectCorrespondence

input

: input

Column

name: String

PostalCode : Column

name: "PostalCode"

inputSideColumns

: inputSideColumns

...

...

...

...
...

...

Fig. 5.13: Compatibility of typing

Definition 5.17 Institution [205]

An institution I := (ΣI ,SenI ,ModI , |=I) is given by

• A category ΣI , whose objects are called signatures,

• A functor SenI : ΣI → Set, assigning to each signature a set whose
elements are called sentences,

• A contravariant functor ModI : ΣI op → CAT assigning to each signature a
category of models, and

• A family of relations |=I := (|=I
S ⊆ |ModI (S)|× SenI (S))S∈|ΣI | called satis-

faction

which is subject to the following equivalence:

M |=I
S ′ Sen

I (σ)(φ)⇔ ModI (σ)(M) |=I
S φ (5.10)

for each σ : S→ S ′ ∈ ΣI→,M ∈ |ModI (S ′)| and φ ∈ SenI (S).

As long as a formal approach forms an institution, it can be integrated with and
re-used by other approaches via the concepts of institution (co-)morphisms [204]. There
is tool support for this idea in the form of the heterogeneous toolset (Hets) [347]. Due
to its high acceptance in the formal verification community, it is reasonable to adopt
institutions as an overarching framework to realise consistency verification: Consistency
rules are given by sentences and the verification operation is “implemented” by the
satisfaction relation.

It is important to note that generalised sketches, which have been introduced in
Sec. 5.1.2 to model the (syntactical) relationship betweenmodels and their meta-models,
can be embedded into this framework. They do not form a “proper” institution, only a
pseudo-institution (due to the model-functor being a pseudo-functor). Yet, this can be
considered a mere technicality for the time being as it does not cause further problems

Chapter 5 115

Formalisation

for my approach. The general idea of how generalised sketches form an institution is
described below, see [493] for a more detailed treatment.

Theorem 5 Generalised Sketches induce Pseudo-Institution [493]

Each category C with chosen pullbacks and a predicate signature Π forms a
pseudo-institution I (C|Π) := (C,SenI (C|Π),C ↓ _, |=I (C|Π)) where

• Signatures are given by the underlying category C,

• The sentence-functorSenI (C|Π) maps eachG ∈ |C| to the set of allΠ-sketches
whose carrier is G and each morphism f : G→ H is mapped to a function
that translates between sets of sketches, i.e. a sketch C ∈ SenI (C|Π) (|C| = G)
is mapped to (H, {(f ◦ b, p) | (b, p) ∈ Constr(C)}), see (5.11).

ar(p)

G H
f

b f◦b (5.11)

• The model-functor is C ↓ _ : Cop → Cat, which maps each G ∈ |C| to the
slice category C ↓ G and the contravariant morphism mapping is defined
via the chosen pullback-functor, i.e. a morphism f : G → H is mapped to
the following functor

f∗ :=

C ↓ H → C ↓ G

i : I→ J ∈ |C ↓ H| 7→ i∗ : O→ G ∈ |C ↓ G|
k : j→ i ∈ C ↓ H→ 7→ k∗ : j∗ → i∗ ∈ C ↓ G→

where i∗ and j∗ are defined via chosen pullbacks and k∗ arises from the
universal pullback property, see (5.12).

Q J

O I

G H
f

ii∗

f∗

y
j

k

f•

j∗

k∗
y

(5.12)

• The satisfaction relation |=I (C|Π) is defined in Def. 5.9.

This construction is a pseudo-institution since the model-functor is only a pseudo-
functor, i.e. pullback-functors compose only up to isomorphism [75].

Proof. The proof that (5.10) holds is given Appendix B.3. �

Hence, diagrammatic constraints cannot only be used to capture syntactic well-
formedness rules but also for arbitrary consistency rules. Yet, we are still missing a

116 Chapter 5

5.2 Verification

§ «def»

§
«def»

Fig. 5.14: Global View approach schematically

possibility to impose consistency rules on correspondence relations: Diagrammatic
constraints are attached to single carrier graphs but correspondence relations are
expressed by means of multi-model spans, i.e. a network of graphs and (partial) graph
morphisms. To address this issue I will utilise the idea of “global views” and decided to
use a centralised approach, compare Tab. 3.1, because, in Sec. 5.1.4, I already decided to
represent all commonalities together in one commonality model.

This idea behind global views is schematically depicted in Fig. 5.14. The left hand
side shows three model spaces where there are correspondences among their members
and also their metamodels. The correspondence on the metamodel has a consistency
rule attached to it. The right hand side of Fig. 5.14 depicts the same information but
through the lens of the global view (GView). There, a multi-model M comprising three
metamodels is combined into a single metamodel that gives rise to a model space
hosting a model that reifies a multi-model A among three instance models on the left
hand side. The integrated presentation offered by the global view has the advantage
that the multi-models on the left hand side are turned into “regular” models. Hence,
the global consistency rule can be treated as any other local consistency rule and global
verification (Fig. 3.9f) can be implemented in terms of internal verification (Fig. 3.9e).

In the following I am seeking for a formal construction that realises this conceptual
idea. During the course of this PhD project, I pursued two different approaches for
realizing global views: merging and weaving (= comprehensive systems).

5.2.1 Verification via Merging: Colimit
The most well-known example of a global view approach is the “consistency-checking-
via-merging” [70, 134, 390, 412] approach, which has been referred to as the “standard”
approach for verifying the consistency of multiple inter-related structural models
[275, 284], see Sec. 4.4.2 for a practical example. A formal definition of this approach is
based on the categorical concept of a colimit (Def. C.17). The latter can intuitively been
described as a coordinated merge where all elements from the individual models are
collected into a new model wherein elements related by commonalities are identified.
The idea of describing a merge of different system by means of colimits was first
proposed by Goguen in the 70’s [202]. The idea was introduced to the software

Chapter 5 117

Formalisation

engineering community bv Sabetzedah and Easterbrook [410] and subsequently
extended by several researchers regarding heterogeneous models [134], localisation
possibilities [294, 294], and applications for bidirectional model synchronisation [445].

Note that everyM-object is a diagram inG and thatG posses all colimits since it is a
topos (Fact 1). Thus, one can construct a colimit (M+, (mj :Mj →M+)16j6n) for every
multi-model spanM = (pMj :M0 ⇀Mj). For the category of graph-like structure G,
the definition of the colimit can be given constructively.

Definition 5.18 Merge of Multi-model span (Colimit in G)

Let a multi-model span M = (pMj :M0 ⇀ Mj)16j6n be given and
⊔
M denote

the coproduct of all involved graphs including the commonality graph M0:⊔
M =

⊔
06i6nM

j. We now define a relation ∼ on
⊔
M.

x ∼ x ′ iff ∃j ∈ {1, . . . , n} : pMj (x) = x ′

Let ≡ be the least equivalence relation on
⊔
M comprising ∼a.

I then define

M+ :=

(⊔
06i6n

Mi

)/
≡

as the merge of the multi-model span M.
For each i ∈ {0, 1, . . . , n} letmj :Mi →M+ be the graph morphism which maps
each x to its equivalence class [x]≡.

aActually this is a family of equivalence relations, one for each s ∈ |B|.

The following statements about Def. 5.18 hold:

Proposition 6 Soundness

1. ≡ is a congruence relation, i.e. it is compatible with the operational structure
(the morphisms) in B

2. M+ is a graph.

3. (mi :Mi →M+)06i6n is the colimiting cocone of the diagramM in G.

4. If A is another multi-model span and A+ is its merge, and there is a
multi-model span morphism t : A→M, then there is a unique morphism
t+ : A+ →M+ such that for all 0 6 i 6 n it holds that t+ ◦ ai = mi ◦ ti.

Proof. The proof of (1) follows from the definition of ∼, (2) from the fact that colimits
in graphs can be computed sortwise, i.e. for each object s ∈ |B| [207] and (3) from
standard text books on category theory, e.g. [20], [326]. (4) follows immediately from
the universal property of colimits. �

The final statement (4) in Proposition 6 guarantees that the merge is able to reflect
multi-model span-morphisms as well, i.e. the colimit construction _+ extends to a

118 Chapter 5

5.2 Verification

functor from M to G. Thus, typing relationships between multi-model spans can be
translated to typing relationships between merges. Moreover, Def. 5.18 can directly be
translated into an algorithm that is applicable for all kinds of graph-like structure.

Algorithm 1 Merge Computation

Let initiallyM+ = ∅ and ki :Mi ⇀M+ be totally undefined.
For all i ∈ {1, . . . , n} do:

For all x ∈Mi do:

• If ki is defined on x, then next x.

• If ki is undefined for x, then

1. Determine all elements x0 ∈ M0 with x0 ∼ x and further for all
j ∈ {1, . . . , n} all xj ∈ Mj with x0 ∼ xj. Repeat this procedure with
x := xj for all j until the set of collected elements is constant.a

2. x together with the set of these xj make up equivalence class [x]≡. Add
[x]≡ toM+.

3. Extend the definitions of ki by ki(x) = [x]≡ and the definitions of all
kj by kj(xj) = [x]≡ , if some xj ∈Mj was detected in (1).

a For this, it is necessary to limit considerations to finitegraphs,which is no loss of expressiveness
for practical scenarios.

Remark 5.4 “Naming”-Strategy

Colimit objects are only uniquely defined up to isomorphism, i.e. the names of
the resulting elements (congruence classes) can be chosen arbitrarily. Therefore, a
practical implementation of Algorithm1 for a concrete data structure representing
graph-like structures requires a strategy for naming elements that represent non-
empty congruence classes (singleton classes take over the name of their only
element). One could, for instance, use the name of the commonality element in
M0 as the name of the class so that multi-model spans also serve as a specification
for the resulting merge (this idea will be revisited in Sec. 6.1.4).

The colimit objectM+ for a multi-model span M is a graph and represents a global
view over all elements in the involved models. Hence, one can impose diagrammatic
constrains representing global consistency rules onM+, which results in a sketch M+.
A multi-model instance t : A→M can be represented as aG-morphism t+ : A+ →M+.
Verifying global consistency means verifying whether t+ is an instance w.r.t. M+ or
not, i.e. t+ : Inst(M+)?

Example 5.1 Inconsistent Class Diagrams revisited

The drawing below depicts the Example from Fig. 3.13, which comprises three
class diagrams violating the acyclicity of the inheritance relationship. The left
hand side shows the metamodel sketchM, which is the same for each of the three

Chapter 5 119

Formalisation

models A1, A2 and A3. The annotation [acyclic] indicates a diagram, whose
predicate semantics require the absence of cycles in the network of inheritance
edges. The topmost model on the right-hand side represents the colimit object
A+, which allows to detect the global inconsistency.

Class

extends

[acyclic]

C D

D

EE

C

C D E

C D

E

...

However, themerge approach has some issues, whichmademe question its aptitude
for realising global views in multi-model consistency management and instead pursue
the alternative comprehensive system approach

Problem 5.1 Colimit “looses” information [minor issue]

The first (debatable) shortcoming refers to the fact that the merge (colimit object)
looses the origin information of the individual elements. For example, the drawing
below shows two multi-model spans M (metamodel) and A (model) of arity 2
and their respective mergesM+ and A+. In A+ all elements have been retyped
to AB and it is not possible to see where these elements originally came from in
order to verify a constraint a la “Every A-element there must exist a B-element”.

AB

A B

0

2:AB

1:A 1:B

1:0

2:A 3:B

3:AB1:AB
? ? ?

Every A must be
related to a B

This issue, however, can easily be overcome in practice by adding the respective
origin information during the construction of the merge programmatically.
Theoretically, one retains the origin information by considering the complete
colimit (M+,mi :Mi →M+)06i6n and not only the colimit object.

120 Chapter 5

5.2 Verification

Problem 5.2 Local Consistency is not reflected

The first major drawback of the merge approach is that it has problems to
reflect the local consistency state in a multi-model. The left-hand side of the
drawing below contains the metamodels of the models shown on the right-
hand side. The two multiplicity constraints in M1 (at least one) and M2 (at
most one) are merged into “exactly one” in M+. The instance multi-model
contains two models t1 : A1 →M1 and t2 : A2 →M2 that are both inconsistent
w.r.t. their respective metamodels. However, by defining commonalities as
shown in A0, the resulting merged model t∗ : A+ → M+ becomes consistent.

A B

A B A B

A B

0..11..*

1..1 3:A 4:B

1:A 1:A
2:B

1:A

1:A 2:B

3:A 4:B 3:A
41:B

42:B

f

f

f

f

X

X

3:A
41:B

42:B

12:f

34:f

34:f
341:f

342:f

12:f

341:f

342:f

Problem 5.3 Backpropagation is unclear

The second major drawback is that retaining local model states from a merged
model is not always clear, i.e. the “colimit-map” that assigns a merged model
M+ ∈ |G| to each multi-model span M ∈ |M| is generally not injective. The
drawing below exemplifies this: There is an inclusion morphism δ : A+ ↪→ A ′

that shall represent an update (Sec. 5.1.3) on the merged model A+ (attaching
a newly added B-object to the existing A-object). Now, there are multiple
choices in translating this G-morphisms into a respective M-morphism whose
codomain’s colimit is A ′. These choices are indicated through the bold arrows.

1:A

1:A

1:A 2:B1:f

1:A 2:B1:f 1:A 2:B1:f

1:A

1:A

...

...

? ? ?

5.2.2 Verification via Weaving: Comprehensive System
The aforementioned shortcomings motivated me and my supervisors to pursue a
different approach for global views. The result of this endeavour is a formal construction

Chapter 5 121

Formalisation

called comprehensive system. This construction was first introduced in [446] and was
subsequently further investigated further in [302, 448, 450] Comprehensive Systems are
motivated by the fact that commonalities, i.e. structural relationships between elements
from disparate models, are the essential information distinguishing a multi-model from
“normal” (local) models. Comprehensive Systems internalise this information into their
structure and provide a global view. The build-up of a comprehensive system is similar
to graph-like structure (Def. 5.2). It encompasses local models (called components)
together with their commonalities (called witnesses + projections):

Definition 5.19 Comprehensive Systems, Components, Commonalities

A comprehensive system C comprises

1. For every s ∈ |B| and 0 6 i 6 n, there is a set Ci(s)

2. For every op : s → s ′ ∈ B→ and 0 6 i 6 n, there is a total function
Ci(op) : Ci(s)→ Ci(s

′).

3. For every s ∈ |B| and 1 6 j 6 n, there is a partial functionpCj,s : C0(s) ⇀ Cj(s)

such that for all op : s→ s ′ ∈ B and 1 6 j 6 n the following statement holds:

If pCj,s(x) is defined, then pCj,s ′(C0(op)(x)) is defined (5.13)
and pCj,s ′(C0(op)(x)) = Cj(op)(pCj,s(x)). (5.14)

The sets Cj(s) together with the total maps Cj(op) constitute the components, the
sets C0(s) and total maps C0(op) constitute the commonality witnesses, and the partial
functions pCj,s represent the projections. Note that (5.13) and (5.14) correspond to the
edge-node-incidence requirements fro multi-model spans, compare (5.6).

Comprehensive Systems can be related by respective structure-preserving map-
pings.

Definition 5.20 Morphism between Comprehensive Systems

Let C,D be comprehensive systems as defined in Def. 5.19. A morphism between
comprehensive systems is a family

(fi,s : Ci(s)→ Di(s))s∈|B|,06i6n

of mappings compatible with (operation) arrows, i.e. ∀i ∈ {0, . . . , n}, ∀op : s→
s ′ ∈ B→:

fi,s ′ ◦ Ci(op) = Di(op) ◦ fi,s (5.15)

and compatible with partial (projection) mappings: For all j ∈ {1, . . . , n}, s ∈ |B|
and x ∈ C0(s):

pCj,s(x) is defined =⇒ pDj,s(f0,s(x)) is defined and (5.16)
pDj,s(f0,s(x)) = fj,s(p

C
j,s(x)) (5.17)

Alternatively, one can visualize Def. 5.20 by a family of commutative cubes in Set,

122 Chapter 5

5.2 Verification

shown in (5.18) and indexed by all op : s→ s ′ ∈ B and 1 6 j 6 n. Commutativity of the
top and bottom faces encode that the projections in the comprehensive systems C and
D fulfil (5.13)+(5.14), while left and right faces encode compatibility of fwith operation
arrows (5.15), and back and front faces encode compatibility of f with projections
(5.16)+(5.17). Compare also (5.18) with the example in Fig. 5.13.

Dj(s)
Dj(op)

zz

D0(s)
pDj,s

?

D0(op)

zz

Dj(s
′) D0(s

′)
pD
j,s ′

?

Cj(s)

fj,s

OO

Cj(op)

zz

C0(s)

f0,s

OO

pC0,s?

C0(op)

zz

Cj(s
′)

fj,s ′

OO

C0(s
′)

f0(s
′)

OO

pC
j,s ′

?

(5.18)

Equations (5.16) and (5.17) (f substituted by t) reflect the demanded property (5.9),
i.e. compatibility of commonalities and typing discussed in Sec. 5.1.4.

Proposition 7 Category of Comprehensive Systems CS

Comprehensive Systems together with their homomorphisms constitute a cate-
gory CS.

Proof. An identity is a family of identities, composition is composition of mappings fi,s.
This yields neutrality and associativity. Moreover, composed homomorphisms are still
compatible with the inner structure (Ci(op),pCj,s). Whereas this follows in the usual
way for op : s → s ′, transitivity of the definedness implication in (5.16) also yields
compatibility with partial functions. �

Note that Def. 5.19 is actually parametrised by the base language G and the arity n
of the multi-model setting and so is the definition of multi-model spans Def. 5.15. Thus,
CS and M must rightfully be written as CS(n,B) and M(n,B), respectively. But since I
fixed an arbitrary multi-model setting in the beginning of Sec. 5.1.4, I will continue to
omit these parameters when referring to CS and M.

Comparing the definitions of multi-model spans and multi-model span morphisms
with comprehensive systems and comprehensive system morphisms, there is a strong
resemblance between both constructs. The multi-model span-based definition depicts
commonalities externally while comprehensive systems internalise them. In fact, the
respective categories turn out to be equivalent, which is captured in the following
Theorem:
Theorem 8 Equivalence of Categories

CS ∼= M.

Proof. See Appendix B.1. �

Chapter 5 123

Formalisation

It is important to note that Theorem8 is not just a technical detail: Note that an
object ofM is a diagram, i.e. a selection of graphs and graph morphisms together. A
CS-object represents a single integrated structure comprising model elements and
commonality relations, whose definition resembles those of graph-like structures. Thus,
the equivalence in Theorem8 guarantees that the external notionM and the internal
notion CS are fully interchangeably and the two functors hidden in that equivalence
allow to convert between the two representations on demand.

The proof of Theorem8 relies on the fact that the functor M = GI = (SetB)I can be
“uncurried” to SetB×I (Fact 40) and thatM and CS are subcategories of those functor
categories. The product category B × I represents a “flattening” of the operational
structure of a graph language and the star shape in (5.7). Example 5.2 gives an
impression of such a product category on the example of B := BDG being the base
language of directed multigraphs (Fig. 5.3a) and I having the arity 2.

Example 5.2 Product of Categories: BDG × I2

The objects and morphisms of BDG × I2 are depicted by the graph in (5.19)

(V, 1)

(idV ,id1)

��

(V,−1)

(idV ,id−1)

��(idV ,11)
oo

(idV ,10)
// (V, 0)

(idV ,id0)

��

(V,−2)

(idV ,id−2)

�� (idV ,22)
//

(idV ,20)
oo (V, 2)

(idV ,id2)

��

(E, 1)

(idE,id1)

II

(s,id1)

LL

(t,id1)

RR

(E,−1)

(idE,id−1)

II

(t,11)

cc

(s,11)

cc

(idE,11)
oo

(idE,10)
//

(s,id−1)

LL

(t,id−1)

RR

(s,10)

;;

(t,10)

;;

(E, 0)

(idE,id0)

II

(s,id0)

LL

(t,id0)

RR

(E,−2)

(idE,id−2)

II

(t,20)

cc

(s,20)

cc

(s,id−2)

LL

(t,id−2)

RR

(idE,22)
//

(idE,20)
oo

(s,22)

;;

(t,22)

;;

(E, 2)

(idE,id2)

II

(s,id2)

LL

(t,id2)

RR

(5.19)
Identities are pairs of identity morphisms from BDG and I2. The compositions
for the non-identity morphisms are defined as follows:

(s, id1) ◦ (idE, 11) = (s, 11) (t, id1) ◦ (idE, 11) = (t, 11)

(s, id1) ◦ (idE, 10) = (s, 10) (t, id1) ◦ (idE, 10) = (t, 10)

(s, id1) ◦ (idE, 22) = (s, 22) (t, id1) ◦ (idE, 22) = (t, 22)

(s, id1) ◦ (idE, 20) = (s, 20) (t, id1) ◦ (idE, 20) = (t, 20)

It turns out that CS-objects not only look similar to graph-like structures, they can
also act as carriers for diagrammatic constraints, which was the original goal with
global views.

Theorem 9 Pullbacks in CS

CS possesses chosen pullbacks.

Proof. The complete proof is given in Appendix B.2. �

Comprehensive Systems are not graph-like structures since they contain additional
constraints. Still, they are sufficiently concrete that one can consider their elements and

124 Chapter 5

5.2 Verification

Theorem9 guarantees that we (theoretically) can apply existing means for consistency
verification on local models. From Fact 5 and Theorem9 the following Corollary
follows, which allows us to re-use all existing means for consistency verification as
long as they form an institution.

Corollary 10

Let Π be predicate signature comprising a set of predicate symbols |Π| and
α : |Π|→ |CS| a function that assigns a comprehensive system to each predicate
symbol. Then there is a pseudo-institution I (CS|Π) of Π-constraints over
comprehensive systems CS.

Example 5.3 Synchronisation Predicate Signature

Let B be the language of E-graphs and n = 2. Then the following ta-
ble defines a predicate signature for multi-model synchronisation, i.e. to
verify whether the information contained in two systems is up to date.
Name p Arity systemM Visualization

forall
CA B

«sync»

integrity C
A

x = v1

B

b = v2
=

The semantics for both constraints are defined below

i : I→M ∈ JforallK⇔(∀a ∈ I1(GN)∃c ∈ I0(GN), b ∈ I2(GN) :

pI1,GN(c) = a∧ pI2,GN(c) = b)

∧

(∀b ∈ I2(GN)∃c ∈ I0(GN), a ∈ I1(GN) :

pI1,GN(c) = a∧ pI2,GN(c) = b)

i : I→M ∈ JintegrityK⇔(∀f1 ∈ I1(NAE), f2 ∈ I2(NAE) : ∃c ∈ I0(GN) :

pI1,GN(c) = I1(owner)(f1)∧ p
I
2,GN(c) = I2(owner)(f2))

=⇒
∃id ∈ I0(DN) : pI1,DN(id) = I1(target)(f1)∧

pI2,DN(id) = I2(target)(f2)

Intuitively, forall yields the same set of objects for a pair of classes in different
components, while integrity checks that all features of a related pair of objects
is assigned to the same values.

Chapter 5 125

Formalisation

5.3 Restoration

Sec. 5.2 motivated how the consistency verification of multi-models can be understood
as regular (local) verification performed on a global view. I want to apply the same idea
to multi-model consistency restoration. The schematic workflow is shown in Fig. 5.15
for a multi-model setting with arity n = 3: First, a family of updates comprising δ1,
δ3 and a idle update in Mod(M2) is translated into a global view of this family of
updates represented by an update called d. Thus, the global view must not only be
able to produce an integrated representation of a multi-model (object) but also be able
to produce an integrated representation of a family of updates on the components
of the multi-model. This may also include updates to the commonalities contained
inside a multi-model(Note that the GView-operation has four parameters). Afterwards,
the global view representation is used to perform consistency verification and model
repair, relying on the assumption hat there are established means that can be reused.
The repair will produce another (global) update r (the fix). In the final step, this update
will be interpreted as a family of updates on the multi-model by using the global
view operation in the opposite direction. Note that this approach has two implicit
features : First, the propagated fixes can affect the models, which were causing the
synchronisation in the first place. This type of update has been called amendment [126]
and is not considered in traditional BX, e.g. see the extra update δ ′1 that is propagated
back to Mod(M1). Secondly, concurrency is implicitly embodied because the global
view always considers families of “instantaneous” updates. In practice, amendments
and concurrency will require further attention (e.g. policies) during the repair process,
see the recent studies [189, 370, 483].

5.3.1 Back- and Forth-propagation

Sec. 5.2 discusses two distinct implementation approaches for global views: colimits
and comprehensive systems. Problem5.3 showed that back-propagation in the colimit
approach is unclear. Hence, I will analyse the back- and forth-propagation capabilities
with regard to comprehensive systems. Comprehensive Systems embed local models
faithfully and it is possible to retain each of them via component projection functors.

Proposition 11 Component Projection Functor

There are n + 1 component projection functors (_)i : CS → G that return the
respective component in a comprehensive system(on objects) and the local effect
of a CS-morphism respectively (on morphisms).

Proof. Using Theorem8, for each comprehensive system C there is a respective multi-
model span M : I → SetB and M(i) : B → Set is the sought graph, for 0 6 i 6 n.
Likewise for every comprehensive systemmorphism f : C→ D there is an multi-model
span morphism µ : M→ N, and µ(i) : M(i)→ N(i) is the sought G-morphism. �

A family of n+ 1 such projection functors yields the back-propagation. Likewise, a
tuple of n G-morphisms representing a family of updates on local models can always

126 Chapter 5

5.3 Restoration

§ «def»

§
«def»

Verification

§
«def»

?
✗

Repair

§
«def»

✗
✔

§ «def»

§
«def»

Global View

Global View

Fig. 5.15: Restoration through Global View Model Repair

Chapter 5 127

Formalisation

a : Activity

type : BUSINESS_RULE
 t :DecisionTableDef

d : DecisionTable

name: n

p_1a : Activity

type : BUSINESS_RULE
name : n

p_3(()),
Fig. 5.16: Graph Condition Example

be interpreted as one CS-morphism, where G-morphisms are the image under the
respective projection functor (leaving the commonalities untouched).

5.3.2 Adhesivity

In order to investigate the model repair in greater detail, I have to leave the abstract level
of institutions and generalised sketches to analyse repair possibilities of concrete rules.
Sec. 4.2.8 identified two general implementation strategies for model repair: rule-based
and search-based. Luckily, the framework of algebraic graph transformations that was
shortly mentioned in Sec. 5.1.3 provides formal concepts to pursue either approach.

Rule-based repair approaches consider a set of rules that are going to be applied
when an inconsistency is detected. A rule-based approach based on graph transforma-
tion rules and implemented in the context of EMF has been presented in [297, 354]. The
repair rules in this approach are tailored towards concrete syntactic consistency rules
in the EMF domain. A more general approach is given in [269, 453], which defines the
notion of so-called consistency preserving rules. A consistency preserving rule rule can
be split into an edit and a repair part. Whenever, one detects the application of an edit
rule alone, a respective repair rule w.r.t. the definition of the consistency preserving
rules can be found such that consistency is restored [453]. This idea generalises the the
synchronisation mechanism, which is implemented by TGGs [230], see Sec. 4.4.3 The
production rules of a TGG can be interpreted as consistency preserving rules, which
can be split into edit rules, which only act on the source or target of a triple graph, and
repair rules, which perform the “propagation” in accordance with original production
rule. The theory of the graph transformation framework guarantees that a sequence
of split rule applications yields the same result as one consistency preserving rule
application [144].

A big share of search-based approaches are implemented via solvers, i.e. based
on translation of models and consistency rules into a logic representation. In his
seminal paper Courcelle [100] demonstrated how graph grammars can be conceived as
a logic theory and that their formal expressiveness is equal to that of First Order Logic
or Monadic Second Order Logic respectively. This idea has been developed further
in the form of graph constraints [397] and nested graph conditions [217]. Nested graph
conditions are basically first-order sentences build over graph patterns. Fig. 5.16 shows
an example, which implements the semantics of CR5. Pennemann [378] demonstrated
that one can construct solvers based on graph conditions that outperform classical
solvers working on set-based first order theories. Nested graph conditions have recently
been used for developing a theory on search-based model repair in [218, 418, 419].

In order to apply either approach, it is required that the underlying category (CS)
represents a so-called weak adhesive high level replacement (HLR) category. Originally,
graph transformationsweredefinedover labelleddirectedgraphs [149]. This settingwas

128 Chapter 5

5.3 Restoration

later abstracted to HLR structures [147] and since the discovery of adhesive categories
in [304], the ambient category C is generally assumed to be an arbitrary (weak) adhesive
(HLR) category [150], which guarantees the validity of various theorems (parallelism,
concurrency, embedding, confluence, termination) about graph transformation systems
[146]. Such a category is required to have pushout diagrams that have the so-called
(weak) van Kampen property, which asserts a certain interplay of pushouts and pullbacks
and was originally discovered in [304]. Such pushouts are not necessarily required to
exist for all spans but only those where at least on of the legs is a monomorphism or a
special monomorphism. The class of such special monomorphisms is denoted by M
and must fulfil the so-called “admissibility” requirements.

Definition 5.21 Admissable Class of Monomorphisms M

A subclass M of all monomorphisms in a category with pullbacks C is called
admissible, if an only if

• M contains the class of all isomorphisms.

• M is closed under composition, i.e. form : A� B,n : B� C ∈M it holds
that n ◦m ∈M .

• M is stable under pullback, i.e. for A m ′←− D n ′−→ C being the pullback of
A

n−→ C
m←− B and n ∈M (m ∈M) then n ′ ∈M (m ′ ∈M).

Definition 5.22 Van Kampen square [304]

A pushout square (f,m,n, g) as shown in the bottom of (5.20)

A ′
m ′ //

f ′

}}

a

��

B ′

g ′}}

b

��

C ′
n ′ //

c

��

D ′

d

��

A
m //

f

}}

B

g
}}

C n
// D

(5.20)

is called a Van Kampen square if and only if

back faces are pullbacks ⇒ (front faces are pullbacks⇔ top face is pushout)
(5.21)

Chapter 5 129

Formalisation

Definition 5.23 Weak Adhesive HLR Category w.r.t. M

Let C be a category and M an admissible class of monomorphisms in C. A
category C is called a weak adhesive HLR (High Level Replacement) category if and
only if

• C has pushouts and pullbacks along M -morphisms and

• pushouts along M -morphisms have the weak Van Kampen property, i.e.
(5.21) is required to hold for commutative situations with m ∈ M and
(f ∈M or {b, c, d} ⊆M), cf. the diagram in (5.20).

Hence, in order to reuse existing means for rule-based or search-based model repair
based on graph transformations, the following theorem has to be proven.

Theorem 12

CS is a weak adhesive HLR category w.r.t. some admissible class of monomor-
phisms M .

First, I have to define the class of admissible monomorphisms for CS and M
respectively. It turns out that one cannot choose all monomorphisms: For example,
let (m : A → B, f : A → C) be a span of M-morphisms. If there is an incomplete
commonality specification in A containing a commonality representative which relates
not as many elements as its images in B and C, the pushout construction may produce
a multi-model span D, in which the projection is no longer well-defined. This effect
has been studied in [296, Ex.6.] as well.

Example 5.4

Consider a category of multi-model spansM(n,B) with n = 1 and B := 1 being
a terminal object in Cat (i.e. G ≈ Set).

B0 = {•} A0 = {•} C0 = {•}

dom(pB1) = {•} dom(pA1) = {} dom(pC1) = {•}

B1 = {•} A1 = {•} C1 = {•}

⊆B1

pB
1

⊆C1

pC
1

⊆A1

pA
1

m0 f0

m−1

m1

f−1

f1

(5.22)

(5.22) gives an example of the situationmentioned above. Constructing a pushout
of the span (m−1 : dom(pA1)→ dom(pB1), f−1 : dom(pA1)→ dom(pC1))will result
in a two element set, while the pushout of (m0 : A0 → B0, f0 : A0 → C0) will
result in a one element set. Therefore, the morphism ⊆D1 : dom(pD1)→ D0 cannot
be a monomorphism and the projection in D is not well-defined.

Thus, I cannot expect the existence of pushouts in general. However, I claim that
for M being the class of reflective monomorphisms, CS becomes a weak adhesive HLR

130 Chapter 5

5.3 Restoration

category, in particular pushouts along M -morphisms exist.

Definition 5.24 Reflective CS-Monomorphisms

Let C,D be two comprehensive systems, a reflective CS-monomorphismm : C� D

is a family
(mi,s : Ci(s)→ Di(s))s∈|B|,06i6n

as defined in Def. 5.20 where everymi,s is injective and, additionally, the implica-
tion in (5.16) is turned into an equivalence. Thus, definedness of a projection is
not only preserved but also reflected.

Remark 5.5 Reflective Monomorphisms in M

As a consequence of Theorem8, there must be a corresponding notion to Def. 5.24
in M. For this, let us investigate the consequences of strengthening the definition
ofM-morphisms (Def. 5.16) by requiring

pNj ◦ [idM0 ,m0〉 = [idMj,mj〉 ◦ pMj (5.23)

to be a commutative square in Par(G) instead of requiring the two diagrams in
(5.8) to commute. Recall that the definition of composition of partial morphisms
involves pullbacks and consider the G-diagram in (5.24):

M0 M0
id
M0 //

m0 // N0

dom(pMj)
?�

⊆Mj

OO

pM
j
��

dom(pMj)
?�

⊆Mj

OO

pM
j
��

id
dom(pM

j
) m−j

//
q

x
dom(pNj)

?�

⊆Nj

OO

pN
j
��

Mj Mj

id
Mj

//
mj

// Nj

(5.24)

The bottom left and top right squares are pullbacks, which are needed for the
composition of [idMj ,mj〉 ◦ pMj and pNj ◦ [idM0 ,m0〉, respectively, see Fig. 5.10b.
Condition (5.23) requires the apexes of these pullbacks to be equal and since the
bottom left pullback is constructed along an identity, this apex can be chosen
as dom(pMj). Hence, we may define a morphism in comprehensive systems
as a family (m−n, . . . ,m−j, . . . ,m0, . . . ,mj, . . . ,mn) of G-morphisms defined
on domains of definitions of projection morphisms dom(pMj), onM0, as well
as on components Mj, as shown in the right-hand side of (5.24), such that
the upper squares m0 ◦ ⊆Mj = ⊆Nj ◦m−j are pullbacks and the lower squares
mj ◦ pMj = pN

j
◦m−j commute. Comparing this notion with Def. 5.20, the upper

pullback corresponds to turning the implication in (5.16) into an equivalence
(while commutativity of the lower right square corresponds to (5.17)). In such a
way, definedness of a projection is not only preserved but also reflected.

To provide an intuition of the consequences of Def. 5.24, think of monomorphisms
m as models of insertion: An element x ∈ D that is not in the image ofm is thought

Chapter 5 131

Formalisation

of as being “inserted”, the other elements are thought of as “already existing”. Then,
a reflective monomorphism is not allowed to “touch” the projections of already
existing witnesses. Example 5.5 provides a concrete example of a non-reflective
CS-monomorphism.

Example 5.5 Non-reflective CS-Monomorphisms

Consider a category of comprehensive systems CS(n,B)with n = 2 and B := 1

being a terminal object in Cat. Further let L and R be two comprehensive systems
with L1 = R1 = {a}, L2 = R2 = {b}, and L0 = R0 = {c}. The projections are
defined as follows: pR1 (c) = a, pL2(c) = pR2 (c) = b, and pL1(c) is undefined. Now
letm : A→ B be a comprehensive system morphism that is component-wise the
identity. This morphism is monic but not reflective since definedness of pR1 is not
reflected.

Next, I have to show that M is admissible.

Proposition 13

The class of all reflective monomorphisms M is admissible.

Proof. The complete proof is given in Appendix B.4. �

Proving Theorem12 requires to verify the existence of pushouts (where some
morphisms of the pushout diagram belong to the special class M) in our category
CS (orM equivalently) and to check whether pushouts have the so-called (weak) van
Kampen property, see Def. 5.23. The latter enforces a well-behaved interplay between
pushouts and pullbacks.

Tobias Heindel, in his PhD thesis [226], showed that it equivalently suffices to show
the existence of (i) pushouts along M -morphisms, (ii) M -partial-arrow classifiers, and
that (iii) pushouts are preserved by pullbacks. This is the strategy I am going to use to
prove Theorem12.

Now, one can show the existence of pushouts along M -morphisms, i.e. for spans
where one of the legs is a reflective CS-monomorphism.

Theorem 14 Pushouts in CS

CS has pushouts along M morphisms.

Proof. The complete proof is given Appendix B.5. �

The next part of the proof, following Heindel’s approach, concerns partial arrow
classifiers. Intuitively, a partial arrow classifier adds a substructure to a given object
that represents “error” (failed computations or unmappable elements), similar to the
java.util.Optional data type in Java or the Maybe-monad inHaskell. In the category
Set, the partial arrow-classifier LA applied to a set A adds the new element ⊥ to the
contents of A. More details on partial arrow classifiers can be found in AppendixC.3.

132 Chapter 5

5.3 Restoration

Theorem 15

CS has M -partial arrow classifiers.

Proof. The complete proof is given in Appendix B.6. �

In the context of weak adhesive HLR categories, this construction becomes relevant
because it turns out to represent a right-adjoint to the graphing functor Γ (Def. 5.12).
This guarantees that pushouts are hereditary, a property closely related to the weak van
Kampen (Def. 5.22) property [227], which was originally introduced in [272].

The final ingredient is stability of pushouts under pullbacks, which corresponds to
the “⇐”-direction in the definition of van Kampen squares (Def. 5.22).

Theorem 16

Pushouts along M -morphisms in CS are stable under pullbacks, i.e. when (n, g)

is the pushout of (f,m) in (5.25) and all vertical faces (front, back, left, right) are
pullbacks then also (n ′, g ′) is the pushout of (f ′,m ′).

A ′
m ′ //

f ′

}}

a

��

B ′

g ′}}

b

��

C ′
n ′ //

c

��

D ′

d

��

A
m //

f

}}

B

g
}}

C n
// D

(5.25)

Proof. Using Theorem8 the proof can be performed inM. Next, recall that pullbacks
and pushouts inM are constructed component-wise inG as demonstrated in the proofs
of the Theorems 9 and 14, see Appendices B.2 and B.5. Hence, the picture in (5.25) can
be disassembled into a |I|-indexed family of instances (5.25)-diagrams in G. Using the
fact that pushouts are stable under pullbacks in G [304], stability of pushouts under
pullbacks holds for each component. The resulting family of pullbacks/pushouts in G
can the re-assembled into pullbacks/pushouts in M/CS. �

5.3.3 Triple Graph Grammars and Graph Diagrams
TGGs [422] represent a powerful and well-established rule-based approach to multi-
model repair, see Sec. 4.4.3. Triple graphs are closely related to comprehensive systems;
both of these concepts are based on graph-like structure and their formulation is given
in categorical terms. Triple graphs can be defined as a functor category CDTGG , with C
being a suitable weak adhesive HLR category and DTGG being the small shape category,
depicted in (5.26) (identities are omitted):

1 0
01oo 02 // 2 (5.26)

Chapter 5 133

Formalisation

Thus, the solution space is limited to binary scenarios. Trollmann and Albayrak
[463, 464] generalised the TGG framework to cope with multiple models within a graph
diagram (GD) framework. The idea is to allow for different shapes D, which must
satisfy the condition that the set of objects can be divided into two disjoint sets of
models N and relations R, i.e. |D| = R tN. All non-identity morphisms are required to
have a domain in R (relations) and codomain in N (models). Further, there is at most
one arrow in D(r,m) for fixed r ∈ R andm ∈ N. In such a way, graph diagrams, i.e.
functors D : D → C, can specify relations of different arities. Graph diagrams (GD)
subsume TGGs, with R = {0} and N = {1, 2}.

They are, however, static: If r ∈ R has k outgoing morphisms with targets
m1, ...,mk ∈ N, D(r) is a k-ary correspondence relation with representatives which re-
late to exactly one element in each of the kmodels D(mj). Thus, one must distinguish
relations of different arity in the underlying shape for graph diagrams. In larger system
landscapes (n > 3), there may be many more commonality relations of arbitrary arity
k 6 n, which would cause a considerable amount of heterogeneity in the underlying
shape for graph diagrams. Moreover, the graph diagram shape and hence the basic
setting for implementations must be altered, each time new commonality relations are
added.

I will show that my framework is more general than graph diagrams GD for the
case that C is a category of graph-like structures (C = G = SetB) in that there is an
embedding functor T : GD → CS. The latter further preserves pushouts, which model
derivations in Graph Diagram Grammars (GDG). Hence we are able to replay all
TGG/GDG-computations in comprehensive systems, yet being able to cope with new
relations without changing the schema category if the parameter n in Def. 5.19 is large
enough. The construction is based on coproducts and thus I first prove a another result
for comprehensive systems.

Proposition 17 Coproducts and Initial Object in CS

The category CS posses all binary coproducts (Def. C.11) and an initial object
(Def. C.10).

Proof. The complete proof is given in Appendix B.7. �

In the following, I write
∐
i∈IDi to denote the coproduct of a collection (Di)i∈I

of G-objects. Note that a collection (fi : Di → D)i∈I of morphisms yields the
morphism

∐
i∈I fi :

∐
i∈IDi → D by the universal property of coproducts, i.e. the

morphism, which acts as fi on each Di. Further, we introduce a shorthand notation:
C→(_, B) := {f ∈ C→ | codom(f) = B}, i.e. the objects of the slice category C ↓ B.

By Theorem8, it suffices to define a functor from GI toM. The composition of this
functor with the equivalence yields the desired result. This functor will also be called
T .

134 Chapter 5

5.3 Restoration

do:DataObject

name = n

ac:Activity
type = BUSINESS_RULE

t:DecisionTable

bt:A2DT

a:Attribute

name = n

cl:Column

name = n

dt:DataType

ct:Type

c:Class dc:DT2T

dca:DO2C2A

:consumes

:inputSideColumns

:type

:type:owner

++

++

++ ++

++

++ ++
++

++

bt:A2DT dca:DO2C2A

dc:DT2Tdca:DO2C2Abt:A2DT

ac:Activity
type = BUSINESS_RULE

do:DataObject

name = n
:consumes

dca:DO2C2A

dc:DT2T

a:Attribute

name = n dt:DataType

c:Class

dc:DT2T dca:DO2C2A bc:A2DT

t:DecisionTablecl:Column

name = n

ct:Type
:owner

:type

:type
:inputSideColumns

Fig. 5.17: Graph Diagram production rule

Definition 5.25 Translation Functor T

Let a schema category D for graph diagrams be given with |D| = R tN and let n
be the cardinality of N. Without loss of generality, I assumeN = {1, . . . , n}. Let
D be a graph diagram, then I define a multi-model spanM := T(D) intuitively as
follows (recall the schema in (5.7)): The model components of M(j) (j ∈ N) are
the same as those of D, the commonality specification M(0) is the disjoint union
of all relations in D, the middle objects M(−j) are the union of those relations,
the model D(j) participates in:

M(j) := D(j) (Models are untouched)
M(0) :=

∐
r∈RD(r) (Coproduct of all relations)

M(−j) :=
∐
f∈I→(_,j)D(dom(f)) (Participating Relations of D(j))

for all j ∈ {1, . . . , n}. Furthermore,

M(jj) =
∐
f∈I→(_,j)D(f) (Projections)

M(j0) :
∐
f∈I→(_,j)D(dom(f)) ↪→

∐
r∈RD(r) (Domains)

MorphismsM(jj) are the unions of the domains of those morphisms that have
target D(j) and inclusions arise from the fact that coproducts in the above
definition of M(−j) (taken over some relations) are always subgraphs of the
complete coproductM(0) (which is taken over all relations).
The definition of T on arrows is straightforward and we give it only informally: If
n : D⇒ D ′ is an arrow (natural transformation) between graph diagrams, then
(1) T(n)i is a morphism which acts in the same way as ni on D(i), if i > 0, (2) it
amalgamates the actions of n on relations, if i = 0, which (3) naturally restricts
to the respective actions, if i < 0. It is then easy to see, that T(n) is a natural
transformation.

I illustrate the construction inDef. 5.25 at the example of a graph diagramproduction
rule depicted in the left side half of Fig. 5.17. The figure shows a production rule
r : B ↪→ A in an integrated way, where B (before) and A (after) are graph diagrams
(A,B ∈ GD). A contains all elements shown in Fig. 5.17 and B contains only those
elements, which are not shaded and missing the ++-annotation, compare Fig. 4.19 in
Sec. 4.4.3. The set of models in D is a three element set: N = {1, 2, 3} representing the
three model spaces for BPMN, UML and DMN. The relation set in D contains four

Chapter 5 135

Formalisation

elements: R = {(1, 2), (2, 3), (1, 3), (1, 2, 3), representing all binary relations between
the three model spaces and the ternary relation between all of them. Elements of R are
tuples and morphisms in D are projections πRN : R→ N. This schema is visualized by
compartments in Fig. 5.17, where each compartment depicts a graph (object in G), i.e.
the image of A(x) (B(x)) for an x ∈ |D|. I introduce the notation: Gx := G(x) and if x is
a tuple we may omit parentheses. The application of the translation functor T onAwill
produce a multi-model span M with degree n = 3, which is depicted in the right side
half of Fig. 5.17. The graphs M(j) are identical to Aj (1 6 j 6 3). The commonalities
graph M(0) is the coproduct (disjoint union) of A1,2, A2,3, A2,3 and A1,2,3, i.e. the
nodes {bt, dca, dc}. The domain of definitionM(−1) for the projection on component 1
is the coproduct of A1,3, A1,2 and A1,2,3, i.e. the nodes {bt, dca}. The other domains of
definition are constructed accordingly. The mappingsM(j0) are simply the inclusion
between coproducts, andM(jj) are given by universal coproduct property (j ∈ {1, 2, 3}):
Taking the union of all arrows from all relations into component j, see Fig. 5.17. Since
M is equivalent to CS, there is a respective representation in terms of a comprehensive
system. This system is presented in a similar way as in the right hand side of Fig. 5.17
with the only difference that the middle components (M(−j)) are replaced by partial
projection mappings.

Theorem 18

Functor T : GD → CS is an embedding and preserves pushouts.

Proof. See Appendix B.8. �

Thus, as a consequence:

Corollary 19

Every sequence of rule applications in GD has a unique representation of cor-
responding rule applications in CS and hence can be replayed in the general
framework of comprehensive systems.

As a conclusion, this section showed that “everything” which is possible with to
do with graph grammars and the framework of algebraic graph transformation is
possible to do with comprehensive systems as well. In particular, search-based (graph
constraints) and rule-based (consistency preserving rules) repair.

5.4 Summary & Future Directions

Le me summarise the content and contributions of this chapter: First, presheaves –
rebranded under the name graph-like structures (Def. 5.2) – were (re)discovered as a
suitable formal interpretation for software models. Secondly, multi-ary “star-shaped”
spans of partial morphisms (Def. 5.15) were identified to capture the essence of multi-
models. The latter further admit an “integrated representation” (Theorem8) in the form
of comprehensive systems whose build up is similar to graph-like structures. Finally, it
was shown that the resulting formalism can be embedded into abstract frameworks

136 Chapter 5

5.4 Summary & Future Directions

for consistency verification (i.e. institutions, Corollary 10) and model repair (i.e. weak
adhesive HLR categories, Theorem12). Hence, the research questions RQ1–RQ3 are
addressed on a formal level and also the limitations from Sec. 4.5 are addressed since
comprehensive systems support general n-ary (n > 2) correspondence relations and
simultaneously provide a formal foundation for multi-model consistency management.
Nonetheless, the theory on comprehensive systems is still in its infancy and there are
several directions for extending this theory, which are sketched below.

Derivation of Repair Rules The validity of Theorem12 guarantees that we can
employ the framework of algebraic graph transformation for the implementation of
model repair. A promising concrete strategy for utilising this framework is based
on the idea of decomposing consistency-preserving rules into edit and repair rules [453].
The latter is based on the rule-decomposition theorem [206] and is simultaneously
the underlying idea behind the operationalisation of TGGs [144]. I have also shown
that comprehensive system grammars represent a generalisation of graph diagram
grammars and TGGs (Corollary 19). Hence, the operationalisation procedure that
splits a production rules into rules acting only on a single component (edit) and rules
that propagate to the remaining components including commonalities and projections
(repair) can seamlessly applied. In addition, the schema of comprehensive systems
allows for even more possibilities of rule splitting, e.g. parallel edits on multiple
components.

However, themanual definitionof comprehensive systemgrammars canbe laborious
because they may have to consider comprehensive systems with many components.
It will be interesting to investigate whether rules can, under certain conditions, be
defined for single graph-like structure (G) and then lifted to the level of comprehensive
systems (CS), possibly exploiting a colimit construction, see Sec. 5.2.1. Hence, further
research on the definition of consistency rules and derivation of repair rules in the
category of comprehensive systems is necessary.

Data Type Algebras Structural modeling languages generally distinguish between
objects (dynamic; arise during run-time) and values (static; completely known at
design-time) and thus also between references/links (connecting objects) and attributes
(connecting objects and values). This provided the rationale for introducing E-graphs,
see Fig. 5.2c. Technically, E-graphs alone do not suffice to model attributes and values
faithfully. The first reason is that the names of value nodes are important while names
of object nodes are not, see Remark 5.2. Pushouts, which are used to model changes on
comprehensive systems, are only defined up to isomorphisms and therefore they are
theoretically allowed to rename the value 23 to 42, which is undesired in practice. The
second reason is that one wants to do computations on attributes, e.g. a transformation
rule that increments the age value of a Person-object. Both aspects can formally
represented by algebras [415] via constants and multi-ary operations specified by an
equational theory. This has been well-investigated in the research domain of algebraic
specification. The representation discrepancy between the graph part (objects and links)
versus the data/algebra part (values and attributes) of a model was discussed by the
authors in [319], who propose to represent models rather by means of partial algebras.
A popular approach in the graph transformation community is to consider attributed

Chapter 5 137

Formalisation

graphs [151], which combine (E-)graphs with algebras, i.e. the set of data nodesDN (see
Fig. 5.3c) is required to be the disjoint union of carriers sets of a respective data type
algebra. Attributed graphs were actually one of the main reasons for the introduction
of weak adhesive HLR categories [150] because categories of algebras are generally
not adhesive12, i.e. one has to restrict themselves by considering the special class of
attributed graph morphisms that are isomorphisms on the data part.

For the examples of thesis, it will be enough to simply pose the convention the
pushouts and other universal constructions are not changing the names of elements
in the carrier set of DNwhen working with E-graph representations since I will not
consider rules with calculations on attributes. But for the future it will be important to
also include a proper treatment of values and attributes into the picture. My conjecture
is that all the propositions and theorems in this chapter still hold when replacing
the base category G with attributed graphs. Another, slightly different approach
that will be interesting to look at more closely was proposed by Schultz et al. [420],
who formalise instances of database schemas via (algebraic) profunctors connecting a
graph-schema with a data type algebra. Hence, treatment of (base type) values and
attributes poses another important future research domain.

Diagrammatic Operations The structural commonalities relationships inside com-
prehensive systems relate elements with each other. In order to relate a feature (node,
edge, . . .) with a feature in another model, there must be a corresponding element
of the same type in that model. In practice, the definition of correspondence rela-
tionship involves intermediate computations. A classical example is that one model
represents the name of a person with two fields firstname and lastname whereas
another model stores the same information in a single field fullname. A Person-object
in the former model is related to a Person-object in the latter model if the result of
the string-concatenation of firstname and lastname equals the value of fullname.
This cannot immediately be expressed via a multi-model span since the definition of
the respective projection morphism will refer to a derived element. Diskin et al.[129]
presented an approach for formally representing such relationships with the help of
“Kleisli-categories”. The latter is based on the concept of diagrammatic operations, i.e. the
operation-counterpart to the diagrammatic predicated introduced in Sec. 5.1.2. The
general topic of diagrammatic operations requires more theoretical work before it
can be applied to comprehensive systems. First attempts in this directions have been
started in [495] in the form of graph operations and the technical report [131].

Generalisation of Comprehensive Systems Note that the definition ofmulti-model
spans and thus also the definition of comprehensive systems is indexed by a natu-
ral number n (= the maximal number of domains under consideration). Hence,
comprehensive systems can be expressed by a functor13 (in CAT)

Nat CS // Cat

12[322] contains some elucidating examples on this matter
13Recall that the total order of natural numbers Nat is a category as well.

138 Chapter 5

5.4 Summary & Future Directions

In practice, this technical detail has minor significance since the number of domains
under consideration is finite number and therefore one simply chooses an n that is
sufficiently big. From the theoretical stance it will be elegant to generalise compre-
hensive systems by considering CS the directed colimit (in CAT) of all categories of
comprehensive systems for n = 1, n = 2, n = 3, . . . and so on.

Symmetric Monoidal Categories The latest “hot topic” in the applied category
theory community [177] are symmetric monoidal categories (SMCs), which comprise
the notations of sequential (◦) and parallel composition (⊗). The big benefit of these
categories is that they offer an intuitive but fully formal visual representation in the form
of string diagrams [425], which resemble block diagrams known in other Engineering
disciplines. It is important to note that the category of comprehensive systems possess
coproducts and initial objects. Further, initial objects and coproducts always induce
a symmetric monoial structure on the underlying category. Hence, comprehensive
systems give rise to a SMC. But further work around alternative constructions and the
concrete implications is required.

Chapter 5 139

“Es gibt nichts Gutes, außer man tut es. (germ. lit.:
Actions speak louder than words.)”

—Erich Kästner CHAPTER 6

IMPLEMENTATION

This chapter presents my practical contribution towards the issue of multi-model
consistency management i.e. a prototypical tool called CorrLang. This tool is based
on the theoretical framework from Chap. 5, and embodies an approach of multi-model
consistencymanagement based on global views, see Sec. 3.3.5. The technical foundation
for this tool had been laid in the context of a Master Thesis [475] written by Ole von
Bargen, a student that I supervised in Fall 2019. The result of his thesis was a tool
called GraphQLIntegrator1, which generates a federated GraphQL web service on
top of other GraphQL web services. This work was based on the colimit-based model
merging framework presented in Sec. 5.2.1 and has been presented in an article [447],
which is part of the proceedings of the ECMFA2020 conference.

GraphQLIntegrator provided the technical foundation for CorrLang, which
arose from a merger of the code bases of the former and a Xtext2-based prototype
implementation3 of comprehensive systems, mentioned in [446] and [451]. Compared
to GraphQLIntegrator,CorrLang represents a substantial extension that adds support
for MDSE frameworks (i.e. EMF), alternative model alignment possibilities and basic
consistency management functionality. It is publicly available under and open-source
licence4 but has not been presented in other publications yet. Therefore, this thesis
represents the first scientific presentation of CorrLang. The structure of this chapter
follows the historical development of the tool in the form of iterations. I begin
with the first iteration (i.e. GraphQLIntegrator) before adding model management
functionality in the second iteration, and finally consistency management functionality
in the third iteration. Speaking of research questions, the first iteration (Sec. 6.1) deals
with multi-model representation (RQ1), the second iteration (Sec. 6.2) focuses on the
underlying architecture (RQ4), and the third iteration (Sec. 6.3) deals with verification
(RQ2). Consistency restoration (RQ3) is mostly left for future work (Sec. 6.4).

1https://gitlab.com/olevonbargen/graphqlintegrator
2https://www.eclipse.org/Xtext/
3https://github.com/webminz/comprehensivesystems-emf-prototype
4https://github.com/webminz/corr-lang

https://gitlab.com/olevonbargen/graphqlintegrator
https://www.eclipse.org/Xtext/
https://github.com/webminz/comprehensivesystems-emf-prototype
https://github.com/webminz/corr-lang

Implementation

6.1 First Iteration: GraphQL Federation

6.1.1 Background: Web Services & GraphQL

Web services (WSs) have been introduced in Sec. 1.3.1 as one of the main approaches to
facilitate system integration (as instance of Remote Procedure Calls) and are essential
for designing microservice architectures [183] or service-oriented architectures [262]. Each
system is abstractly conceived as set of operations, which clients can call through
HTTP requests. In general, there are have two ways for implementing a WS: Simple
Object Access Protocol (SOAP) [498] and REpresentational State Transfer (REST) [172]. The
SOAP-approach requires that all operations and associated data types are defined in a
schema beforehand. This has the advantages of “type-safety” and “discoverability”
during design- and runtime. The main disadvantage of SOAP is seen in its complexity
because this protocol comprises various concepts (e.g. sessions, transactionality, and
authorisation) such that constructing SOAP-messages is accompanied with a significant
overhead, which often necessitates code generation. REST on the other hand abstains
from a concrete schema definition and instead encodes operations via conventions,
i.e. the combination of HTTP-method and URL-path identifies an operation. For
example, “GET /customers” identifies a query-method retrieving customer-objects
whereas “PUT /customers/23” identifies a method that updates the customer-object
with id=23. The type of the input and output parameters is not explicitly defined.
Thus, the main advantage of the REST-approach is less-overhead and higher flexibility.
The lack of an explicit schema is the main disadvantage of this approach since it is a
potential source for runtime errors so that REST relies solely on “developer discipline”.
An analogy for the relationship between SOAP and REST can be seen in the dichotomy
between statically and dynamically typed programming languages.

GraphQL [161] is a novel approach for developingWS, which is designed tomitigate
the disadvantages of SOAP and REST. It was originally developed by Facebook for their
own applications before it was eventually open sourced in 2015. Since then, it has been
adopted by other companies such as Twitter, Airbnb, and Github, also there are first
use cases in academia, see e.g. [349, 466]. GraphQL seeks to combine the advantage
of an explicit schema (without the overhead found in SOAP) with the flexibility of
REST by allowing clients to perform arbitrary queries over the schema. The schema is
defined in terms of entity types, which represent the underlying domain model and
abstractly form a graph, compare Sec. 5.1.1. This definition is given in a textual Schema
Definition Language (SDL). To illustrate this, Fig. 6.1 depicts a GraphQL schema for an
information system storing sales data of a hypothetical retail company.

The keyword type initiates the declaration of a so-called object type (think class
in UML, and see Fig. 6.3). An object type has a name and comprises multiple fields,
which again have a name and a type, which is either a scalar type (think data type in
UML) such as String, Int or another object type. Each field must be implemented by
a so-called resolver-function in the system behind the schema. Given a context object
(which represents an instance of the object type container for the field), this function
must return a value or a list of values. This enables the system developers to apply
intermediate domain specific logic and to implement an arbitrary persistence layer of
their choice. The type of a field can be marked as

142 Chapter 6

6.1 First Iteration: GraphQL Federation

type Query {
customer(customer: ID!): Customer
allCustomers: [Customer]
store(store: ID!): Store
allStores: [Store]

}
type Mutation {

createCustomer(name: String!, email: String): Customer!
updateCustomer(customer: ID!, name: String, email: String): Customer
deleteCustomer(customer: ID!): Customer
setAddress(customer: ID!, street: String, city: String, postalCode: String, state: String,
country: String): Customer
createPurchase(customer: ID!, date: String!, store: ID!): Purchase
addItemToPurchase(purchase: ID!, product: ID!, quantity: Int): PurchaseItem

}

(a) Facade Part

type Customer {
id: ID!
name: String!
email: String
address: Address
purchases: [Purchase]

}
type Purchase {

id: ID!
date: String!
customer: Customer!
store: Store!
items: [PurchaseItem]

}

(b) Types (Part 1)

type PurchaseItem {
productID: ID!
quantity: Int

}
type Store {
id: ID!
manager: ID!
purchases: [Purchase]
location: Address!

}
type Address {
street: String
city: String
postalCode: String
state: String
country: String

}

(c) Types (Part 2)

Fig. 6.1: Sales System GraphQL Schema

Chapter 6 143

Implementation

Query Schema Graph

Resolver FunctionResponse

type Query {
purchases: [Purchase]!

}
type Customer {

id: ID!
name: String

}
type Purchase {

id: ID!
customer: Customer!

}

query {
purchases {

customer {
name

}
id

}
}

@Component
public class Query implements
GraphQLQueryResolver {
public List<Purchase> getPurchases() {

return this.findAllPurchases();
}

{
"data": {

"purchases": [
{

"customer": {
"name": "Ole von Bargen"

},
"id": "1"

}
]

}
}

Fig. 6.2: GraphQL Query Mechanism explained

i mandatory (denoted by an exclamation mark !), i.e. the resolver will provide
exactly one value,

ii list-valued (denoted by brackets [], i.e. the resolver will provide a list of values,
and

iii optional (default), i.e. the resolver will provide one value or null.

Furthermore, a field may have a list of arguments, which are passed on to the respective
resolver. An argument has a name and a scalar type. Every schema may contain
the special entity types Query and/or Mutation, see Fig. 6.1a. These types represent
singletons [191] and act as facades [191], i.e. their fields represent the operations offered
by the WS. The fields of the Query type are intended to be side-effect-free functions
(retrieval), whereas fields of the Mutation type are meant to change the state of
the underlying database (modification). In a typical architecture, the facade-level
functions are implemented via retrieval from a persistence backend (see the Repository
design pattern in [160]) while the resolvers for the fields of the remaining object
types are implemented as simple “property-getters”. A schema together with a set of
resolver-functions (one for each field) constitutes an endpoint.

A client interacts with an endpoint by sending a query to it. A query represents
a tree of field names, optionally containing value assignments for the arguments of
the field. The root of this tree is a reference to either Query or Mutation. Recall that
these types are singletons such that there is always an instance of these types forming
an “entry point” to system’s data. Compared to other query languages such as SQL,
GraphQL only features “projection”. Filtering and aggregation has to be implemented
in a respective resolver implementation.

The GraphQL-engine takes care of parsing the query, calling the resolvers accordingly,
and assembling the individual results into a single document. Usually, this document
is technically represented as JSON. A schematic picture of the query-mechanism is
shown in Fig. 6.2.

144 Chapter 6

6.1 First Iteration: GraphQL Federation

Endpoint

address : URL

QueryDocument

InformationSystem

Schema

Type

name : String

Field

name : String

isMandatory : Boolean

isListValued : Boolean

Argument

name : String

implementedBy

refersTo
sendTo

returns
types

type fields

type

args

implementsrepresents

querymutation

1..1

1..1

0..*

0..*

1..1

1..1

0..*

1..1

0..* 0..1 0..1
0..1

ObjectTypeScalarType

Resolver

resolve(parent: Object[0..1], params: SimpleValue[0..*]): Value[0..*]

schema

resolvers

GraphQL SDL
Metamodel

Selection

Parameter

Value

Object

List
SimpleValue

IntegerValue

value : Integer

StringValue

value : String

FloatValue

value : Float

BoolValue

value : Boolean

key:String

1..1root root
1..1 selections0..*

0..*

1..1

1..1

argument

value

params
0..*

0..1value

values

refersTo

field
1..1

1..1

GraphQL SDL Metamodel

GraphQL Query Metamodel

Document Metamodel

0..*
0..*

0..*

GraphQL Engine Metamodel

Fig. 6.3: Metamodel of GraphQL concepts

Fig. 6.3 depicts a metamodel, which summarises the GraphQL concepts. The
highlighted fragment represents the metamodel of the GraphQL SDL, which can be seen
as textual DSL. There is a strong resemblance between this DSL and class diagrams or
MOF-models. Therefore, in the following, I will use the graphical syntax of the latter
for depicting GraphQL-schemas in a more compact and visual way. Every (meta-)class
corresponds to an object type, every attribute to a field with a scalar type, and every
directed reference to a field with an object type. The multiplicity 1..1 indicates the
respective field being mandatory (!), and 0..* indicates the field being list-valued ([
]). From the conceptual viewpoint, each schema can be interpreted as a metamodel.
Its model space are all possible documents resulting from query executions, which is
technically induced by the resolver implementations.

6.1.2 Problem Statement: Federation

GraphQL facilitates a decoupling between the frontend and the backend, i.e. when
developers on both ends have agreed on the common schema, they can can develop
queries and resolvers independently of each other. However, system landscapes in
organisations comprise multiple systems (endpoints). This is reinforced by contempo-
rary software architecture approaches such as microservices. Heterogeneous system
landscapes imply a higher level of complexity.

Let me illustrate this with a small example of a hypothetical retail company, which
operates three information systems. Fig. 6.4 depicts this system landscape comprising
the three systems Sales (introduced in the previous section), Invoice, and HR, which are
accessible through the GraphQL endpoints EP1, EP2 and EP3. Let us assume that this
company faces several challenges: First, there is a growing problemof redundant data and
thus possibly inconsistent data, e.g. in the past there had been issues where customers
relocated to a new address but the records had not been updated consistently such
that invoices were not delivered to the right customers. Secondly, there is a difficulty

Chapter 6 145

Implementation

Sales
System

Invoice
System

HR
System

Network

Networkinternal
Clients external

Clients

Backoffice
System

Fig. 6.4: GraphQL Federation: an overview

in implementing new use cases, e.g. the company wants to implement a policy, which
gives their employees discounts on purchases in the company’s stores. The latter
requires to align the data set of the HR system with the two other systems. Thirdly, the
company’s CEO is interested in the reporting and analysis of the data contained in the
information systems. These three issues are examples of the most common reasons for
data integration, see [136].

Physically integrating all systems behind a single endpoint would require a lot
of manual effort and it is not always possible either, especially if a system has been
bought from an external vendor. Thus, another possibility is to integrate the systems
logically, i.e. they remain independent but there is an additional logical integration
layer on top of them. In the database domain, this idea is called federation. Applied
to the situation in Fig. 6.4, a federation of the three systems results in a new virtual
GraphQL endpoint EP+ referred to as the virtual “Backoffice” system. For the outside
it will appear as any other GraphQL endpoint and internally it is implemented by
delegating the respective queries to the individual systems. The latter requires to align
the heterogeneous schemas and consolidate records representing the same information.

The federated endpoint addresses the practical issues mentioned above: A unified
data set allows to detect address duplicates, to identify persons who are both customers
and employees, and to facilitate global reporting. The implementation of federated
systems, in practice, often happens in an ad-hoc manner [136]. In the following, I
want to look into more rigorous and declarative approaches for developing federated
endpoints for GraphQL.

146 Chapter 6

6.1 First Iteration: GraphQL Federation

6.1.3 Existing Tool: Apollo Federation

The most popular JavaScript implementation of GraphQL is Apollo GraphQL5. This
framework is accompanied by several custom extensions of the GraphQL specification
[161]. One of them is a tool called Apollo Federation [343], which enables organizations
to split the definition of a single endpoint into smaller definitions and develop them
independently of each other in order to support Separation of Concerns (SoC).

Apollo Federation is based on a language extension of the GraphQL SDL. The new
language features are a new keyword (extend) and directives (@key, @external, and
@provides). Directives are the GraphQL equivalent of annotations in programming
language; i.e. they have no further meaning but can be used by a concrete GraphQL-
implementation to add proprietary features. The keyword extend can be put in front
of an object type definition. This means that the respective type represents an extension
of an object type defined elsewhere. As an example, consider the types Customer
in Sales and Client in Invoices (see Fig. 6.4). Both types refer to the same real-world
concept and therefore we want to align both type definitions with each other. Apollo’s
type-extension concept allows to realise this by declaring one definition as the original
type definition and the other one as an extension (the extension inherits all fields
of the original definition and possibly adds additional fields). Thus, there is single
responsibility requirement, i.e. for every object type (except Query and Mutation) there
must be one responsible origin schema. For the example, let us assume that the
Invoice-system provides the original definition and the Sales-system is extending this
definition, which is shown in the Listings in Fig. 6.5. Type extension is established via
equality of type names and therefore I renamed Customer and Client to the more
neutral term Partner.

A type-extension-relationships means that there may be pairs of instances (records)
of the related types, which are considered “equal”. Apollo Federation enables to
consolidate such replicas via a key concept. Keys are defined by placing the @key
directive on the original type definition. There can be multiple @key-directives, which
represent key alternatives. The @key-directive refers to one or multiple fields of the
respective object type. Thus, allowing to define composite keys. Take Fig. 6.5a as an
example: Partners can be globally identified either by their id or their name while
Addresses posses only a single key: the combination all of all fields, i.e. two Address
objects are identified when the value of all their fields match. The existence of keys
requires the responsible endpoint to provide a special resolver, which retrieves the
object for given key values. A different endpoint, e.g. Sales, can extend the original
type definition by placing the extend-keyword in front of the definition of an object
type with the same name and by choosing one of the key alternatives, e.g. the Partner
type extension in Fig. 6.5b chooses the key id. A type extension may include fields
from the original type definition into its own definition by annotating them with the
@external-directive. Values for the fieldsmarked as @external are retrieved by asking
the original endpoint, which is possible due to the global identification mechanism.

After having augmented the endpoints with the Apollo Federation features, the
endpoints are automatically integrated into a federated endpoint, which aggregates
the type definitions from all local endpoints. For our example, this federated endpoint

5https://www.apollographql.com/

Chapter 6 147

https://www.apollographql.com/

Implementation

extend type Query {
clients: [Client]

...
}
type Partner
@key(fields: "id")
@key(fields: "name") {

id: ID!
name: String
address: Address
invoices: [Invoice]

}
type Address
@key(fields: "street city postalCode state

country") {
street: String
city: String
postalCode: String
state: String
country: String

}
...

(a) Schema Extension: Invoices

extend type Query {
customers: [Partner]!
...

}
extend type Partner
@key(fields:"id") {
id: ID!
name: String @external()
address: Address @external()
email: String
purchases: [Purchase]

}
extend type Address
@key(fields: "street city postalCode state

country") {
street: String
city: String
postalCode: String
state: String
country: String

}
...

(b) Schema Extension: Sales

Fig. 6.5: Apollo Federation Syntax Extension

comprising Sales and Invoices will contain a single Address type, a single Partner
comprising the fields id, name, email, address, invoices, and purchases, and there
will be a single Query type aggregating the query methods from all endpoints. The
motivating issue of “inconsistent address updates” is addressed by defining Invoices
to be authoritative on this matter. Apollo Federation provides a powerful framework
to realize SoC by breaking down a single Endpoint into multiple ones but there are a
some general limitations with this approach:

Lim#1 The Single Responsibility requirement implicitly requires that there is a global
underlying conceptualmodel that every system schema agreeswith. Thus, Apollo
Federation presumes standardisation (see Sec. 1.3.1) or a canonical data model.
There is no way to reconcile “conflicting” schema definitions, i.e. not having
declared name and address in Figure 6.5 as @external would have caused an
error because it would violate the single responsibility requirement.

Lim#2 Type Extension is a binary relation. This has implications on the amount of data
that can be aggregated within a single query. A query against a field, whose
type is an extended type will aggregate data from the current endpoint and the
endpoint, which contains the original type definition. But it is not possible to
retrieve data from more than two endpoints at the same time. Considering the
example, if we want to include the HR-system into the federation shown in Fig. 6.5
and treat the Employee type as a type extension of Partner as well, it will not be
possible to retrieve Partner-objects from the Sales-system, the Invoices-system
the HR-system at the same time, only data from EP1 and EP2 or EP2 and EP3 can
be retrieved at the same time.

Lim#3 Identification Capabilities are limited; Apollo Federation allows to identify
elements by key alternatives and composite keys but it is limited to field-references.

148 Chapter 6

6.1 First Iteration: GraphQL Federation

Store

id : ID

manager : ID

Address

street : String[0..1]

city : String[0..1]

postalCode : String[0.1]

state : String[0..1]

country : String[0..1]

Purchase

id : ID

date : String

PurchaseItem

productID : ID

quantity : Int[0..1]

Customer

id : ID

name : String

email : String[0..1]

address
location

at
customer

items

1..1

0..1
1..1

1..1

0..*

0..*

Invoice

id : ID

createdAt : String

dueAt : String

payedAt : String[0..1]

total : Integer

Client

id : ID

name : String

Address

street : String[0..1]

city : String[0..1]

postalCode : String[0..1]

state : String[0..1]

country : String[0..1]

PaymentDetails

iban : String[0..1]

bic : String[0..1]

cardNumber : String[0..1]

validUntil : String[0..1]

Employee

id : ID

firstname : String

lastname : String

hiredAt : String

email : String

phone : String

Department

id : ID

name : String

BankDetails

iban : String

bic : String

client
invoices

address paymentDetails

bankAccount

worksAt
workingAt

manager

1..1

1..1
0..*

1..1

0..1

1..1

0..*

0..1

purchases
0..*

Sales

Invoices

HR

◀

purchases

<<equals>>

<<corresponds>>

<<corresponds>> <<extends>>

Fig. 6.6: Domain Models of the Systems

There are no possibilities to perform intermediate computations. As an example,
imagine identifying a Client/Customer-object with an Employee-object if the
name of the Client/Customer is equal to the concatenation of firstname and
lastname of the Employee.

Lim#4 Apollo Federation is intrusive, i.e. existing systems must be changed in order to
participate in the federation: Their schemas must be modified and they must
implement special resolver functions.

Lim#5 Apollo Federation is technology dependent by requiring every endpoint to follow
and implement a specific protocol. Thus, it only works with a chosen selection of
GraphQL implementations, see [343]

6.1.4 Solution Design: Declarative Schema Merging

The goal of this section is to design a general solution for the federation of GraphQL
endpoints while addressing the limitations of Apollo Federation.

First, in order to address the main limitations Lim#1 and Lim#2, binary type-
extension will be replaced by multi-ary type-merging. Merging is understood as
described in Sec. 5.2.1, i.e. formally described as a colimit-object in a suitable category.
This relationship generalises type-extension and other types of type-relationships such
as sameness, see [116, 134]

Chapter 6 149

Implementation

Store

id : ID

manager : ID

Address

street : String

city : String

postalCode : String

state : String

country : String

Purchase

id : ID

date : String

PurchaseItem

productID : ID

quantity : Int[0..1]

address

location

at

purchases
customer

items

1..1

0..*

1..1

1..1

0..*
0..*

Invoice

id : ID

createdAt : String

dueAt : String

payedAt : String

total : Integer

FinancialDetails

iban : String

bic : String

cardNumber : String[0..1]

validUntil : String[0..1]

Partner

id : ID

name : String

email : String

firstname : String

lastname : String

hiredAt : String

email : String

phone : String

Department

id : ID

name : String

client
invoices

financialDetails

worksAt

workingAt
manager

0..*

0..1
0..*

1..1

1..1

0..*

purchases 0..*

[1..*]

[0..*]

[0..*]

[0..*]

[0..*]

[0..*]

[0..*]

[0..*]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..*]

[0..*]

Fig. 6.7: Merged Domain Models for the Federation

For this consider Fig. 6.6, which depicts the schemas of the three systems from
Fig. 6.4 in UML class diagram notation. Ovals and different shading indicate the
systems’ boundaries. Query and Mutation types are not shown but let us assume that
there are Create, Read, Update, and Delete (CRUD)methods for each object type. There
are several relationships among these schemas, which are shown in red: The same type
Address appears in Sales and Invoices, the type PaymentDetails in Invoices extends the
type BankDetails in HR, and there is the relationship between Customer, Client and
Employee, which was discussed before. Merging these types along these relationships
means that for each of them, the federated schema will contain one merged type, which
contains all fields (field with the same name and type are identified) from the types
in this relationship. All other types are included in the federated schema without
further modifications. The resulting merge is shown in Fig. 6.7. Note that this merge
construction changes multiplicities for fields that are identified (highlighted in red) in
a liberal manner because a merged type may contain more or less data.

Instances w.r.t. merged object types may be identified as well. Here, the key-concept
from Apollo is adopted. Additionally, in order to address Lim#3, a concept for key
calculations is introduced, i.e. keys may not only contain references to fields but also
simple operations that are applied to field-values or constants. As a first operation, I
will consider “concatenation” as a useful and common operation.

Finally, to address Lim#4 and Lim#5, a declarative approach based on a custom DSL
is chosen. The endpoints are treated as black-boxes and will remain totally unaware
that they participate in a federation. The custom DSL is used to define the relationships
based on which the merge will be conducted and to define the identification rules
for instances of such merged elements. Hence, this DSL must offer two features: On
the one hand it must allow the definition of multi-ary type and field relationships
(Lim#2). On the other hand it must allow the definitions of element identification rules
supporting composite keys, key alternatives and key computations (Lim#3).

150 Chapter 6

6.1 First Iteration: GraphQL Federation

1 endpoints {
2 "http://localhost:4011/" as sales
3 "http://localhost:4012/" as invoices
4 "http://localhost:4013/" as hr
5 }
6 correspondences {
7 relate {sales.Query, invoices.Query, hr.Query} as Query with {
8 relate { sales.Query.customers, invoices.Query.clients, hr.Quey.employees} as partners
9 }

10 relate { sales.Customer, invoices.Client, hr.Employee }
11 as Partner
12 with {
13 relate { sales.Customer.id, invoices.Client.id, hr.Employee.id } as id
14 relate { sales.Customer.name, invoices.Client.name } as fullName
15 relate { sales.Customer.address, invoices.Client.address } as address
16 relate { invoices.Client.paymentDetails, hr.Employee.bankAccount } as financialDetails
17 identify where {
18 or {
19 equals { sales.Customer.id, invoices.Client.id }
20 equals {
21 invoices.client.Name,
22 concat {hr.Employee.firstname," ",hr.Employee.lastname}
23 }
24 }
25 }
26 }
27 relate { invoices.PaymentDetails, hr.BankDetails } as FinancialDetails
28 with {
29 relate { invoices.PaymentDetails.iban, hr.BankDetails.iban } as iban
30 relate { invoices.PaymentDetails.bic, hr.BankDetails.bic } as bic
31 identify where {
32 and {
33 equals { invoices.PaymentDetails.iban, hr.BankDetails.iban }
34 equals { invoices.PaymentDetails.bic, hr.BankDetails.bic }
35 }
36 }
37 }
38 relate { sales.Address, invoices.Address } as Address
39 with {
40 relate all
41 identify where all equals
42 }
43 }

Listing 6.1: Correspondence DSL example

List. 6.1 represents a first proposal of what such a language might look like. It
encodes the relationships shown in Fig. 6.6. First, the endpoints participating in the
federation have to be specified (lines 2-4). They are identified via their respective URL
and for the remainder identified by a symbolic name (keyword as) Afterwards, type-
relationship (initiated by the keyword relate) are defined. There are relationships
among Client, Customer and Employee (lines 10-26), among PaymentDetails and
BankDetails (lines 27-37), and the Address types (lines 38-42). A type-relationship
further contains field-relationships, which are initiated by the keyword with and follow
a similar structure as type-relationships. Furthermore, relationships can receive a
symbolic name (keyword as), which defined the name of the resulting type or field in
the resulting federated schema. A type correspondence may introduce an identification
rule (lines 17-25, 31-36, and 41). An identification is a boolean expression in disjunctive
normal form, with literals being equalities among field references or expressions
built from operations (e.g. concat), constants (e.g. " "), and field references (e.g.
sales.Customer.id). The idea is that a disjunction translates to key alternatives and

Chapter 6 151

Implementation

CorrSpec Generator Federated Endpoint

Local Endpoints

<<reads>> <<generates>>

<<refersTo>>
<<readsSchema>> <<queryForwarding>>

Fig. 6.8: Workflow of the Prototype

a conjunction translates to a composite key. The ability to use arbitrary expressions
addresses Lim#3. In List. 6.1 Clients can be identified with Customers via their id
and Clients can be identified with Employees by comparing their name with the
concatenation of first- and lastname. Finally, I introduce some syntactic sugar (line
40-41) to identify types, which are structurally identical.

Eventually, the declarative specification in List. 6.1 has to be transformed into a
running endpoint, i.e. a schema and resolvers for every field in that schema. The
technical details of this transformation are described in the following section.

6.1.5 Solution Implementation: GraphQLIntegrator
The conceptual solution described in the preceding section has been implemented
in a proof-of-concept implementation6. Technical details about this implementation
are found in the master thesis [475]. An abstract overview of how this tool works
is sketched in Fig. 6.8. First, a textual specification (List. 6.1) is parsed. Such a
declarative specification is called a CorrSpec. Parsing is facilitated via ANTLR [376].
The GraphQLIntegrator follows a code generation approach. Thus, every CorrSpec
is translated into a Java Web application, which acts as the comprehensive endpoint.
The generated application utilises Spring Boot and graphql-java to leverage the technical
implementation details and could be easily exchanged with another technology stack.

The domain model of the generator is shown in Fig. 6.9, where the concepts of the
DSL from List. 6.1 are shaded with a blue colour. This DSL refers to the GraphQL
schema elements and therefore the relevant part of that metamodel, see Fig. 6.3, is
contained in Fig. 6.9 as well (the distinction between object and scalar types and also
Arguments have been left out for the first iteration due to simplicity reasons). Every
CorrSpec refers to at least two Endpoints and defines arbitrary many TypeRelations
and FieldRelations (the “relate”-statements in List. 6.1), which control how the
merge is conducted. The latter procedure has been defined in Alg. 1 in Sec. 5.2.1 and can
be implemented as a endogenous model transformation over the metamodel in Fig. 6.9.
Note the elements shaded in red, which are added to the GraphQL SDL metamodel in
order to perform themerging: Every schema element stemming from one of the existing
local endpoints is considered a LocalType or LocalField respectively. When creating

6https://gitlab.com/olevonbargen/graphqlintegrator/.

152 Chapter 6

https://gitlab.com/olevonbargen/graphqlintegrator/

6.1 First Iteration: GraphQL Federation

Type

name : String

LocalType GlobalType

Field

name : String

isListValued : Boolean

isMandatory : Boolean

LocalField GlobalField

TypeRelation

alias : String

FieldRelation

alias : String

Schema

CorrSpec typeRels

types

relates
relates

fieldRels

contains contains

owner fields
type

2..*

2..*

2..*

0..* 0..*

0..*

1..*
1..*

0..*

1..1

IdentificationRule

produceKey(o: Object): SimpleValue[0..*]

Disjunction Conjunction Literal

Operation

FieldReference

0..1
identification

1..1

ref

1..* 2..*

ands literals

0..*

endpoints

1..1

Endpoint

name : String

address : URL
0..*

0..*

0..*

Concat

StringConstant

value : String

0..1

basedOn
0..1

basedOn

GraphQL SDL

Integrator DSL

schema

Merge Algorithm

Fig. 6.9: Metamodel of GraphQLIntegrator-concepts

the Schema of the resulting federated Endpoint, every LocalType and LocalField
is copied into the result Schema as a GlobalType and GlobalField respectively. If
there are TypeRelations or FieldRelations defined on the respective types, they
are combined into one. Each GlobalType and GlobalField witnesses this via the
basedOn-reference.

As described in Sec. 6.1.4, elements w.r.t. these types are merged based on keys
during runtime The latter are defined via IdentificationRules, which are attached
to TypeRelations. An IdentificationRule is an expression in disjunctive normal
form where the Literals are equalities between FieldReferences and/or simple
Operations (for the first iteration limited to StringConstants and Concatenation).
In the generated endpoint, the IdentificationRules are used to produce a key for a
given Object. When two objects typed over the same GlobalType produce the same
key, they are merged in the resulting Document response. The latter is explained in
greater detail in Alg.2.

The generated endpoint acts as a proxy, i.e. it resolves incoming queries by delegating
them to the existing endpoints and aggregating the local results into a single global
response document. An abstract definition of this procedure is given in Alg. 2: For
an incoming query, the procedure Split creates a local query for each Endpoint.
Afterwards, Merge consolidates the results of these queries into a single response
Document. The latter procedure checks whether the local results contains a value for the
respective selection (TraverseToField). If there is no IdentificationRule defined on
the respective type, these results are simply concatenated (ConcatResults), otherwise
result objects have to be merged (MergeViaKeys). This is performed, by first calculating

Chapter 6 153

Implementation

the key values, identifying the objects that should be merged (e.g. utilising a HashMap),
and then invoking Merge recursively on the merge-clusters.

Algorithm 2 Query Resolving (“Divide & Conquer”)

function Resolve(query, corrSpec)
localResults← new List
for all ep in corrSpec.endpoints do

localQueryRoot← new Selection
Split(query.root, localQueryRoot, ep)
localQuery← new Query with root = localQueryRoot
response← SendRequest(localQuery, ep)
append response to localResults

responseDocRoot← new Object
Merge(localResults, query.root, responseDocRoot)
response← new Document with name = responseDocRoot
return response

procedure Split(globalSelectionParent, localSelectionParent, ep)
for all localField in globalSelectionParent.field.contains where

localField.owner.endpoint = ep do
localSelectionChild← new Selection with field = localField
for all globalSelectionChild in globalSelectionParent.selection do

Split(globalSelectionChild, localSelectionChild, ep)
append localSelectionChild to localSelectionParent.selections

procedure Merge(localResults, selection, responseDocParent)
resultsForField← TraverseToField(localResults, selection)
if selection.field.basedOn.identification is null then

subtree← ConcatResults(resultsForField, querySelection)
else

subtree←MergeViaKeys(resultsForField, querySelection)
append subtree to responseDocParent with key = selection.field.name

6.2 Second Iteration: Model Management Functionality

Simultaneously to the development of GraphQLIntegrator, a prototype7 implemen-
tation of comprehensive systems had been started in the context of [446]. This
implementation was based on Xtext8 and EMF. Quickly, it turned out that both de-
velopment branches shared several similarities: The underlying structures (schemas
and metamodels), the DSLs for defining merged types and commonalities, as well as
federated endpoints and comprehensive models are conceptually close to each other.
Thus, I began to consolidate both implementations and created a unified code base,

7https://github.com/webminz/comprehensivesystems-emf-prototype
8https://www.eclipse.org/Xtext/

154 Chapter 6

https://github.com/webminz/comprehensivesystems-emf-prototype
https://www.eclipse.org/Xtext/

6.2 Second Iteration: Model Management Functionality

EMF GraphQL Internal Representation

.ecore file GraphQL schema DiagrammaticGraph

.xmi file Documents
(returned by resolvers)

GraphMorphism

EClass ObjectType Element (vertex)
EDataType ScalarType Element (vertex) with Diagram
EReference Field (object type) Element (edge)
EAttribute Field (scalar type) Element (edge)
Multiplicities
(lowerBound & upperBound)

Modifiers
(isListValued & isMandatory)

Diagram

- Argument Element (2-edge)
eContainment - Diagram
eOpposite - Diagram

Table 6.1: Representation of modeling concepts

which eventually became CorrLang.
In the beginning, two conceptual differences between the two development branches

had to be mediated. Firstly, both tools address different technical solution domains (i.e.
GraphQL web services vs. EMF models). Secondly, both tools were based on different
alignment strategies (i.e. colimit vs. comprehensive system), see Sec. 5.2.

6.2.1 Tech Spaces: Integrating EMF

The Eclipse Modeling Framework (EMF) [436] was mentioned in Chap. 4. It was
originally developed by IBM as a code generation framework. Since its inception, it has
evolved into a de-facto standard in the MDSE community. In essence, EMF defines
an XML-based format for serialising metamodels called Ecore. There is a plethora of
academic and industrial Ecore metamodels available on the internet. Hence, reading
and writing .ecore-files can be seen as a mandatory feature of every MDSE tool. The
Ecore metamodel is a subset of MOF comprising the central concepts EClasses (i.e.
entity types), EDataTypes (i.e. value types), EAttributes (i.e. relationships between
entities and values), and EReferences (i.e. relationships between entities) together
with other well-known concepts such as multiplicities, inheritance, and composition. In
Sec. 5.1.2, it was analysed how these concepts can be interpreted via (generalised)
sketches. An instance of an Ecore-model is stored as an XMI-file and can formally be
interpreted as a graph morphism (typing). The concepts of the GraphQL SDL (object
types, scalar types, fields) are very similar to Ecore, see Sec. 6.1.1. Therefore, one may
interpret them analogously. A summary of the univocal formal interpretation of the
various EMF and GraphQL concepts is given in Tab. 6.1. Element represents a generic
graphical element. This can be a node, an edge, or an edge between edges (“2-edge”).

In [301], Kurtev et al. introduce the concept of a technological space, which defines
a context of concepts, tools, a body of knowledge and a representation format. A
common example is “XMLware”, which describes the ecosystem of tools and methods
that evolved around the XML format. Likewise, EMF and GraphQL can be considered
to form technological spaces. Therefore, I will adopt this idea for CorrLangĊoncretely,
a technological space (short TechSpace) is identified by a unique identifier and
must implement a respective interface, see Fig. 6.10. The latter perform a translation
between the concrete technology-specific representation and the general mathematical
representation in terms of graph, morphisms and sketches.

Chapter 6 155

Implementation

Moreover, the concept of endpoints, see Sec. 6.1.1, has to be generalised. In terms
my conceptual framework, a CorrLangendpoint corresponds to a model space. In
GraphQLIntegrator, an endpoint is merely a URL behind which one finds set of
callable operations and a schema for them. This type of endpoint can be seen as a
“blackbox”, i.e. there is a priori no way to inspect the internal structure of the system. In
EMF, one is working with a set of metamodels and models, which are stored as files,
i.e. one can inspect the their actual content. Hence, this type of endpoints can be seen
as a “whitebox”. To work with both types, the syntax for declaring endpoints has to be
extended accordingly.

In the following, I will present the concrete syntax of CorrLang step by step in the
form of BNF grammar rules while explaining the respective language constructs. The
syntax used for denoting these grammar rules follows common conventions: Terminal
symbols are enclosed in ticks and non-terminal symbols are enclosed in angle brackets.
The pipe symbol denotes an alternative, the questions mark symbol denotes an optional
part, a star symbol denotes zero or arbitrary many repetitions, and a plus denotes one
to arbitrary many repetitions.

〈endpoint〉 ::= ‘endpoint’ 〈identifer〉 ‘{’
‘type’ (‘FILE’ | ‘SERVER’)
‘at’ 〈url〉
‘technology’ 〈identifer〉
(‘schema’ 〈url〉)?
‘}’

The definition of an endpoint comprises an identifier, a location (given by a URL),
and a TechSpace. An endpoint of type FILE is a “whitebox”, whereas a SERVER-
endpoint is a “blackbox”. Some technologies (e.g. GraphQL) allow to retrieve the
metamodel/schema from the URL alone using inspection. Alternatively, the location
of the metamodel can be specified explicitly. List. 6.2 and List. 6.3 provide concrete
examples for this syntax.

1 endpoint sales {
2 type SERVER
3 at http://localhost:4011/
4 technology GRAPH_QL
5 }

Listing 6.2: GraphQL
“blackbox” endpoint

1 endpoint BPMN {
2 type FILE
3 at file:/~/models/patient-referral.simple-bpmn
4 technology EMF
5 schema file:/~/metamodels/simple-bpmn.ecore
6 }

Listing 6.3: EMF “whitebox” endpoint

Fig. 6.10 summarises the relevant concepts discussed above. Note the resemblance
between the contents of the graphlib package and the formalism presented in Sec. 5.1.
The kind of supported Graphs is generic because Element allows to represent various
“graphical” features. An Element can represent a node, which means that src and
trg references are loops and degree()=0. Otherwise, the Element represents an
edge, which means that the object at the other end of src or trg reference must
have a lower degree(), i.e. an Elementwith degree()=1 represents an regular edge
(connecting nodes), an Element with degree()=2 represents a 2-edge (connecting
edges with nodes or edges) and so on. In this way, not only directed multigraphs can be
represented but also more complex structure such as E-graphs, see Fig. 5.2c. The latter

156 Chapter 6

6.2 Second Iteration: Model Management Functionality

Element

name: Identifier

isNode(): Bool
degree(): int

Graph

name: Identifier

GraphMorphism

name: Identifier

map(e: Element): Element

Diagram

DiagrammaticGraph

name: Identifier

domain

codomain

predicate

src trg
1..1 1..1

1..1

1..1

1..1

1..1
carrier

diagrams

0..*
scope

0..*

0..*0..*

0..*

0..*

0..*

0..*

<<Interface>>
TechSpace

deserializeMetamodel(location: URL): DiagrammaticGraph
deserializeInstance(binaryRepresentation: byte[0..*], mm: DiagrammaticGraph): GraphMorphism
serializeMetamodel(mm: DiagrammaticGraph): byte[0..*]
serializeInstance(inst: GraphMorphism): byte[0..*]

Endpoint

symbolicName: Identifier

location: URL

metamodelLocation: URL[0..1]

FileEndpoint

contents(): byte [0..*]

ServerEndpoint

resolve(reqest: byte[0..*]): byte[0..*]

technology

1..1

graphlib

0..*

0..*

elements

endpoint ...

type SERVERtype FILE <<Interface>>
Predicate

name(): Identifier
arity(): Graph

 isValid(instance:GraphMorphism): Bool
((self.isNode() = true) = (self.src = self = self.trg) and self->degree() = 0)

((self.src->degree() < self->degree()) and (self.trg->degree() < self->degree()))
or

Fig. 6.10: TechSpace-Abstraction and generic Graph library

are, for instance, necessary to model Arguments in GraphQL. The map() operation of a
GraphMorphismmust ensure that src- and trg-references are preserved in accordance
with the generalised homomorphism property, see Def. 5.2.

6.2.2 Comprehensive Systems: Generalising the Federation
Both, the GraphQLIntegrator and the comprehensive system implementation com-
prise a textual syntax for defining relationships among elements from disparate
metamodels. The “only” difference between these languages lies in their intents. The
GraphQLIntegrator language is used to specify merging of multiple types, while the
comprehensive system DSL is used to establish structural relationships between ele-
ments across disparate metamodels. The latter can be presented in an integrated way
(see Theorem8) so that they will appear to the user as “regular” nodes (commonality
witnesses) and edges (projections) in the final federated system (global view). This
situation is sometimes referred to as “linguistic extension” [109, 393]. Sec. 5.2 showed
that the comprehensive system construction is more general than the colimit-based
merge. Still, in practice, merging turn out to be useful. Therefore, I decided to support
both merging and weaving in CorrLang. The user can steer this behaviour by using
different keywords.

For this, I introduce the language construct Commonality, see Def. 3.4. It generalises
the TypeRelation and FieldRelation from Fig. 6.9 since these twoGraphQL concepts
are treated uniformly as Elements. The resulting class diagram is shown in Fig. 6.11
and the respective grammar rules are given below.

〈fullyQualifiedIdentifier〉 ::= 〈identifier〉 (‘.’ 〈identifier〉)+

〈commonality〉 ::= (‘relate’ | ‘identify’) ‘(’ 〈projection〉 (‘,’ 〈projection〉)+ ‘)’
(‘as’ 〈identifier〉)?
(‘with’ (‘{’ (〈commonality〉)* ‘}’ | ‘FIELDS’)?

Chapter 6 157

Implementation

(‘when’ ‘[’ 〈identificationRule〉 ‘]’)?
‘;’

〈projection〉 ::= 〈fullyQualifiedIdentifier〉 (‘as’ 〈identifier〉)?

〈identificationRule〉 ::= 〈clause〉 (‘||’ 〈clause〉)*

〈clause〉 ::= 〈equation〉 (‘&&’ 〈equation〉)*

〈equation〉 ::= 〈equationLiteral〉 (‘==’ 〈equationLiteral〉)+

〈equationLiteral〉 ::= 〈fullyQualifiedIdentifier〉 | 〈stringExpression〉

The keyword “relate” declares a “weaving” Commonality (comprehensive system)
and “identify” declares a “merge” Commonality (colimit). A Commonality has at least
two Projections, which refer to Elements. The optional alias of a Commonality
is used to give a name for the commonality witness respectively merged element in
the resulting global metamodel. The definition of Commonalities can be nested with
the keyword “with” in order to relate nested features such as fields (GraphQL) or
attributes (Ecore). There is a syntactic sugar (“with FIELDS”), which automatically
declares commonalities for all outgoing edges (features) with the same name, compare
line 40 in List. 6.1. Moreover, the IdentificationRule concept is inherited from
GraphQLIntegrator, i.e. Commonalities can be augmented with such rules acting in
the same way as in Sec. 6.1.5.

Commonality

alias: String

isMerge: Bool

commonalities

/carrier.elements

projections

2..* 1..1

0..*

0..*

IdentificationRule

produceKey(o: Element): Value[0..*]

0..*
identification

endpoints

0..*

0..*

DiagrammaticGraph Element

Correspondence

subCommonalities
0..*

0..1

0..1

reification

when [... == ...]

with { ... }

Projection

alias: String

identify (...,...)
relate (...,...)

/

elementRef

correspondence (...,...)

Fig. 6.11: Domain model excerpt for Commonalities

Finally, List. 6.4 contains an example demonstrating how the relationships among
BPMN, DMN and UML elements are declared. Note that this is only the the syntactical
part, i.e. there are no implicit checks yet.

158 Chapter 6

6.3 Third Iteration: Consistency Management Functionality

1 relate (BPMN.Activity as act, DMN.DecisionTable as tab)
2 as DecisionTableDef
3 with {
4 relate (BPMN.Activity.consumes,DMN.DecisionTable.inputSideColumns) as input;
5 relate (BPMN.Activity.produces,DMN.DecisionTable.outputSideColumns) as output;
6 };
7
8 relate (BPMN.DataObject as do,
9 UML.Class as cls,
10 UML.Attribute as att,
11 DMN.Column as clmn)
12 as DataObjectClassAttrColumnImpl
13 with {
14 relate (UML.Attribute.type,DMN.Column.type) as type;
15 }
16
17 identify (UML.DataType,DMN.ColumnType) as BaseType
18 with FIELDS
19 when [UML.DataType.name == DMN.ColumnType.name];

Listing 6.4: Commonalities syntax example

6.3 Third Iteration: Consistency Management Functionality

6.3.1 Integration of existing verification tools
Chap. 4 showed that there are several formalisms, tools and languages for expressing
consistency rules. One of the central assumptions in Chap. 5 was that existing technical
solutions for “local” consistency verification can be reused and therefore the first
development goal is to establish an integration with those tools.

The formal framework from Chap. 5 treats consistency rules abstractly as dia-
grams labelled with a predicate, which defines the semantics. Technically, this is
realised as an interface, see Predicate in Fig. 6.10, which allows to implement
arbitrary predicate semantics. For bridging the gap between a concrete technol-
ogy and the generic Predicate-representation, I will employ the TechSpace-concept
again, see Sec. 6.2.1. Concretely, the respective interface will receive a new method
parseConsistencyRule(), which translates a technology-specific textual formula-
tion into a Predicate-implementation. For the time being CorrLang implements an
Epsilon-integration, which parses EVL-constraints.

To support the definition of rules in the CorrLang-syntax, a new grammar rule is
needed, which is specified below. A Rule has a name, a reference to the TechSpace that
is used and the concrete implementation of the Rule, which can either be provided
as a file-reference (URL) or written directly in the specification.

〈rule〉 ::= ‘rule’ 〈identifier〉 ‘{’
‘technology’ 〈identifier〉
‘impl’ (〈url〉 | 〈externalCode〉)
‘}’

〈externalCode〉 ::= ‘"""’ 〈char〉* ‘"""’

A Rule is attached to a Commonality (via the newkeyword “check”). Per default the
scope of the respective Predicate will span the complete comprehensive metamodel,

Chapter 6 159

Implementation

which allows to define arbitrary consistency rules exploiting all features of the local
metamodels as well as the “linguistic extension” provided by the comprehensive
system.

1 relate (BPMN.Activity as act, DMN.DecisionTable as tab)
2 as DecisionTableDef
3 with {
4 relate (BPMN.Activity.consumes,DMN.DecisionTable.inputSideColumns) as input;
5 relate (BPMN.Activity.produces,DMN.DecisionTable.outputSideColumns) as output;
6 } check BusinessRuleIsDefined;
7
8 rule BusinessRuleIsDefined {
9 technology EVL
10 impl """
11 context BPMN!Activity {
12 constraint {
13 check : self.type = ActivityType::BUSINESS_RULE implies
14 DecisionTableDef.allInstances.exists(trace|trace.act = self)
15 }
16 }
17 """
18 }

Listing 6.5: CorrLang Consistency Rule via EVL

List. 6.5 gives an example of the Rule-syntax: Here, CR5 is implemented as an
EVL-constraint. DecisionTableDef acts as a type for commonality witnesses that can
be accessed by Epsilons allInstances()method. The named projection “act” (see
line 1) is rendered as a regular edge and can thus be used like a regular metamodel
feature in the formulation of the EVL-constraint (see line 12).

6.3.2 Common Constraints: INTEGRITY & FORALL

The mechanism described in the previous section is very flexible and allows to
define most kinds of consistency rules since it is as expressive as the underlying
technology – EVL in this case. However, the translation between the different technical
representation causes some runtime overhead. Therefore, it will be worthwhile to offer
built-in support for the most common forms of consistency rules. They are realised as
concrete Predicate-implementations called INTEGRITY and FORALL, see Example 5.3
in Sec. 5.2.2.

The INTEGRITY-constraint implements rules of the form of CR1, i.e. the values
for all attributes of a distributed element must be equal everywhere this element
occurs. List. 6.6 demonstrates how this constraint can be used to check that name and
address-fields of identified Customer- and Client-objects from Sec. 6.1 are consistent.

1 identify (sales.Customer,invoices.Client)
2 as Partner
3 with FIELDS
4 when [sales.Customer.id == invoices.Client.id]
5 check INTEGRITY;

Listing 6.6: INTEGRITY-constraint of Partner

The FORALL-constraint is known under many different names. Klare and Gleitze
[279] call it “Participation” and in [331] it is called “pattern-matching”. It is a core
part of QVTr’s execution semantics [327] and it is effectively the type of rule that is
(indirectly) specified by a TGG rule [422]. In its most simple form, it appears as “For
every A there must be a B and vice versa”.

160 Chapter 6

6.3 Third Iteration: Consistency Management Functionality

RuleCommonality
0..*

check

FORALL

degree: int

INTEGRITY

<<Interface>>
TechSpace

parseMetamodel(location: URL): DiagrammaticGraph
parseInstance(binaryRepresentation: byte[0..*], mm: DiagrammaticGraph): GraphMorphism
serializeMetamodel(mm: DiagrammaticGraph): byte[0..*]
serializeInstance(inst: GraphMorphism): byte[0..*]
translateRule(impl:String, commonality:Element, mm: DiagrammaticGraph): Predicate

GeneralRule

impl: String

PropagationRuleElement

0..1
semantics

1..1

technology

1..1 if

sync (...,...)
rule ... { ... }

check INTEGRITY

check ...

IdentificationRule

PropagationCondition

LiteralCondition AND OR

0..*

identification

0..*

clauses

0..*

literals

PropagationCheck

comarisonValue: Value

isSatisfied(e:Element): Bool

1..1then

1..1

element

0..1condition

<<Interface>>
Predicate

Fig. 6.12: Domain model excerpt for Rules

Since, FORALL type constraints are so common, I will offer a built-in support and
special syntax9 for it: The new keyword “sync” can be used instead of “relate”
or “identify”. A Commonality defined this way behaves basically as a “relate”
Commonality but it implicitly has the FORALL constraint attached to it. CorrLang
verifies this constraint by looking for tuples of Elementsw.r.t. the typesmentioned in the
Projections of this Commonality. By default, this check is performed in a symmetric-
manner (“if and only if”) and invoked for all node-type Elements (degree() = 0). For
edge-type Elements (degree() > 0), it is only invoked when src- and trg-Elements
are already related by a Commonality.

Sometimes, the FORALL-constraint is only required to hold in one direction and
under certain preconditions. For example, the relation between an Activity in
BPMN and DecisionTable is required to exist only for one direction (Activity
implies DecisionTable but not vice versa) and only if the Activity is of type
“BUSINESS_RULE”. To specify this kind of conditions, the the syntax that was origi-
nally used for IdentificationRules will be slightly abused: I introduce the new
language construct PropagationCondition, which is effectively a superset of the
IdentificationRule construct. PropagationConditions can only be attached to
“sync” Commonalities and allow to specify the direction of the FORALL check in the
form of a hierarchy, see the class diagram in Fig. 6.12 and the extended grammar rules
below:

〈commonality〉 ::= (‘relate’ | ‘identify’ | ‘sync’)
‘(’ 〈projection〉 (‘,’ 〈projection〉)+ ‘)’
(‘as’ 〈identifier〉)?
(‘with’ (‘{’ (〈commonality〉)* ‘}’ | ‘FIELDS’)?
(‘when’ ‘[’ 〈identificationRule〉 |
〈propagationCondition〉 // only if sync

9Arguably, this constraint could have been realised in a similar way as INTEGRITY (e.g. “check
FORALL”). But, due to the PropagationRule language construct, I decided to introduce a new keyword.

Chapter 6 161

Implementation

‘]’)?
(‘check’ (‘INTEGRITY’ | 〈identifier〉) (‘,’ 〈identifier〉)*
‘;’

〈propagationRule〉 ::= 〈propClause〉 (‘||’ 〈propClause〉)*

〈propClause〉 ::= 〈propClauseLiteral〉 (‘&&’ 〈propClauseLiteral〉)*

〈propClauseLiteral〉 ::= 〈equation〉 | 〈propagationRule〉

〈propagationRule〉 ::= 〈fullyQualifiedIdentifier〉 ‘~~>’ 〈fullyQualifiedIdentifier〉

To give an example, let us revisit the well known scenario featuring BPMN,
UML, and DMN (Fig. 1.9) and the consistency rules CR5-CR8. List. 6.7 shows a
technical realisation of these rules utilising the FORALL constraint. Comparing this
Listing to List. 6.4, the relate-statements have been replaced by sync-statements
and propagation-conditions have been added. For instance, line 8 encodes the rule
that every Activity of type BUSINESS_RULEmust have an associated DecisionTable
(CR5). The built-in “sync”-notation makes the EVL-constraint from List. 6.5 obsolete.
Also note that the FORALL-constraints on the nested Commonalities in lines 4-5, 6-7,
and 16 contain Projections onto edge-type Elements and are thus only invoked
when there is Commonality instance among the respective container Elements, i.e.
Activity/DecisionTable and Attribute/Column respectively.

1 sync (BPMN.Activity as act, DMN.DecisionTable as tab)
2 as DecisionTableDef
3 with {
4 sync (BPMN.Activity.consumes, DMN.DecisionTable.inputSideColumns) as input
5 when [DMN.DecisionTable.inputSideColumns ~~> BPMN.Activity.consumes];
6 sync (BPMN.Activity.produces, DMN.DecisionTable.outputSideColumns) as output
7 when [DMN.DecisionTable.outputSideColumns ~~> BPMN.Activity.produces];
8 } when [act.type == "ActivityType::BUSINESS_RULE" && act ~~> tab];
9
10 sync (BPMN.DataObject as do,
11 UML.Class as cls,
12 UML.Attribute as att,
13 DMN.Column as clmn)
14 as DataObjectClassAttrColumnImpl
15 with {
16 sync (UML.Attribute.type,DMN.Column.type) as type;
17 } when [do ~~> cls && clm ~~> att
18 ||
19 do ~~> att && clm ~~> att];

Listing 6.7: Implementing CR5-CR8 with the FORALL-constraint

6.3.3 Model Management via Goals

Finally, in order to execute consistency verification, CorrLang must be extended to
support several execution modes. The CorrLang version after the second iteration
supported only one execution mode: FEDERATION, which varies based on the type of
the underlying Endpoints. If all of them are ServerEndpoints, CorrLang emulates
a federated server interface. If all10 of them are FileEndpoints, CorrLang creates

10Mixing both types is currently not possible.

162 Chapter 6

6.3 Third Iteration: Consistency Management Functionality

Perse
Correspondence

Specification

Correspondence
Specification

Analyse
Endpoints

Whitebox
Endpoints

(Model files)

Blackbox
Endpoints
(Servers)

Calculate
Comprehensive

Metamodel

Comprehensive
Metamodel

Calculate
Comprehensive

Instance

Emulate
Federated

System

Virtual
Endpoint

Matches
Virtual

Comprehensive
Instance

Perform
Consistency
Verification

Write
File

Comprehensive
Instance

Consistency
Report

End

.corr

.csv

.txt

Start

All
Whitebox

All
Blackbox

Terminate

...

...

...

SCHEMA FEDERATION VERIFYPARSE

Fig. 6.13: CorrLang execution process

a file representing a global view of all models. In addition to that, a comprehensive
schema/metamodel is created beforehand. The execution process is visualised in
Fig. 6.13, which also illustrates how I am going to build consistency verification on top
of the existing FEDERATION concept.

A user should be able to decide “what” he wants to do with CorrLang, i.e. if she
or he wants to perform consistency verification, create a comprehensive model, or
simply calculate the comprehensive metamodel alone. Thus, I introduce the language
construct of Goals, which allow to specify how far the process in Fig. 6.13 shall be
executed (note the vertical bars) and to configure technical details. In this context, the
possibility to import external matcheswhen working with FileEndpoints is introduced
as well. CorrLang supports matching of instance-elements via keys. But, when
working with design models, this is not always possible since elements may be named
differently. Thus, in order to support a more flexible approach, a CSV file can be
imported during the creation of a global view. The CSV file contains an arbitrary
number of tuples. The first field has to be the name of a Commonality (type), and
the remaining fields are Element identifiers that constitute the concrete Commonality
tuple on the instance level. This file can be created manually or may be produced by
an existing model matching solution, see Sec. 4.2.5.

When working with ServerEndoints, a distinct verification cannot be executed
since it is a priori not possible to inspect the current database state. However, CorrLang
has a possibility to do “local”-checks in the FEDERATION-execution mode. This means
that consistency rules are checked on the response documents returned by a request.
The user can retrieve the result of this check by reading newly synthetic field that is
introduced in the global schema by CorrLang. The grammar-rules for defining Goals
is given below and their class diagram is shown in Fig. 6.14.

〈goal〉 ::= ‘goal’ 〈identifier〉 ‘{’
‘correspondence’ 〈identifier〉
‘action’ (‘PARSE’ | ‘SCHEMA’ | ‘FEDERATION’ (‘with check’)? | ‘VERIFY’)
(‘matches’ 〈url〉)?
(‘technology’ 〈identifier〉)?
(‘target’ (‘FILE’ ‘{’ ‘at’ 〈url〉 ‘}’ | ‘SERVER’ ‘{’ ‘port’ 〈number〉 ‘path’ 〈string〉 ‘}’
))? ‘}’

Chapter 6 163

Implementation

Goal

name: String

execute() : void

Correspondence
1..1

correspondence

SchemaGoal

Endpoint

symbolicName: Identifier

location: URL

<<Interface>>
TechSpace

Metamodel

location: URL

ConsistencyReport

location: URL

FederationGoal

performChecks: Bool

CheckGoal

1..1

target

1..1

target
1..1

target

1..1
technology

1..1
technology

Violation

Element

ConsistencyRule
0..*

violations rule

1..1

elements

1..*

goal ...

action SCHEMA

action FEDERATION
action VERIFY

Commonality

ExistingMatches

file: URL
Match

0..*

comm's

0..*

contents

1..1
type

0..1

matches

1..1

elementRef

ParseGoal

SyntaxError

message: String

lineLoc: int

columnLoc: int

0..*
error

action PARSE

Fig. 6.14: Domain model excerpt for Goals

6.4 Summary & Future Directions

The result of third iteration corresponds to the current version of CorrLang which is
found on github. It supports calculating comprehensive metamodels, comprehensive
models (federation) and performing consistency verification with support for the
technologies GraphQL, EMF, and Epsilon EVL. Thus, allowing to mediate between
heterogeneous technologies and metamodels. Hence, the research questions RQ1,
RQ2, and RQ4 are addressed while safeguarding support for general multi-ary
correspondence relationships among models.

An obvious direction for future work is to extend the list of supported technolo-
gies. Promising first candidates are the “XMLware” ecosystem (i.e. XML-schema for
metamodel-definition and WSDL for server interface description), the semantic web
ecosystem (i.e. OWL schemas and RDF instances), OpenAPI (i.e. schemas for REST-
interfaces), or a programming language such as Java because annotated Java-classes
cab act as metamodels as well, see Fig. 1.10. Programming these integrations is ex-
pected to be more or less straightforward. Beyond that, there are open issues, which
require additional conceptual work:

More flexible Model Matching Currently, elements of an instance can be matched
via keys (IdentificationRule) or by using already identified matches that are given
from the outside (CSV-file). For the future, it will be useful to support more flexible
matching. This is necessary in situations where elements cannot be identified by
“hard”-criteria such as keys but instead are matched based on “soft”-criteria such as
(structural) similarity, metrics, ontologies or thesauri. Thus, the result of the matching
procedure may become ambiguous. This and the fact that model matching is a vast
research domain on its own, compare Sec. 4.2.5, requires more conceptual work before
this feature can implemented.

Mixing ServerEndpoints and FileEnpoints Currently, CorrLang can work with
model files and server interfaces. However, it is not yet supported to mix both types

164 Chapter 6

6.4 Summary & Future Directions

in one Correspondence. The central idea to address this limitation in the future is
that a FileEndpoint can always be considered as a ServerEndpoint by adding a
CRUD-interface for each type in the metamodel. Still, there are some open questions on
how consistency verification and repair can be performed on top of ServerEndpoints.
Interestingly, a large portion of the literature on model repair considers the “whitebox”-
situation only and does not consider access methods explicitly.

Model Repair Goal In terms of the conceptual multi-model consistencymanagement
framework, CorrLang only supports 2 out of the 3 central operations, i.e. matching
and verification. Consistency restoration could be performed by exporting the com-
prehensive instance into a specific TechSpace and utilise existing model repair tools
for this technology. But, to support all aspects of multi-model consistency manage-
ment CorrLang must support model repair by adding a respective REPAIR Goal. This
requires further work on the conceptual and also the formal side, see Sec. 5.4. Further-
more, it would be interesting to investigate whether and how existing rule-based (e.g.
Henshin [48] or emoflon [482]) and search-based (e.g. PARMOREL [35]) solutions can be
integrated internally.

Information Hiding and a more powerful Projection-Language At present, the
Projections of a Commonality are given by fully qualified element references. In
some scenarios, this may not suffice. For example, if there is no relationship between
elements of separate model immediately, but only after additional computation of
derived elements. Another aspect is privacy, i.e. there is some information that must not
be shared, hence requiring additional steps of filtering and/or obfuscation. The formal
underpinning of this feature are the diagrammatic operationsmentioned in Sec. 5.4.

Chapter 6 165

“If you tell the truth you don’t have to remember anything.”

—Mark Twain CHAPTER 7
VALIDATION

An important characteristic of constructive technology research such as software
engineering (see Sec. 2.3) is a final evaluation of the results, i.e. to check whether the
constructed artefacts address the initial problem and to what extend these artefacts
represent an improvement compared to existing solutions. In [379], Petersen et al.
distinguish between evaluation and validation studies. The difference between them is
that evaluation happens in an (uncontrolled) industrial environmentwhereas validation
happens in a (controllable) academic environment. In my case, the latter category
applies. In this chapter, I will present a validation of my three research artefacts
(scientific contributions): A1 the conceptual framework (Sec. 7.1), (A2) the comprehensive
system formalism (7.2), and A3 the tool (Sec. 7.3).

7.1 Validation of the Conceptual Framework

The utility of the conceptualisation in Chap. 3 must be evaluated in terms of its ability
to abstractly capture the two motivating scenarios presented in Sec. 1.3.

Semantic Interoperability of Software Systems Fig. 7.1 depicts the situation de-
scribed in Sec. 1.3.1 (Fig. 1.3) employing the visual language of the conceptual framework
from Chap. 3. Every system forms a model space, see Sec. 3.3.1. The “models” in these
model spaces represent database states of the respective systems. The change-relation
models database updates. Each model space is defined by a metamodel, i.e. the public
schema describing the system interface. Systems may have identical schemas. For in-
stance, the GP journal system, the hospital journal system, and the scheduling system
are all based on the FHIR metamodel. Still, they are represented by different model
spaces because their databases’ contents will differ at various points in time. Among the
models in this scenario there are many possible correspondences, which are induced by
shared data. For example, Patient-records shared among the GP journal system, the
hospital journal system, and the scheduling system or Observation-records shared
among the hospital journal system, the laboratory system and the imaging system.
This information represents the commonality data, see Sec. 3.3.2. This data is subject to
CR1. This rule can be rendered as a technical rule definition based on the concepts of
the FHIR Metamodel, the Laboratory System Schema, the Imaging System Schema,
and the Payment System Schema, see Sec. 3.3.3. Because records are shared across
more than two systems, verifying this global consistency rule is best performed utilis-

Validation

FHIR
Metamodel

Laboratory System
Schema

Imaging System
Schema

Payment System
Schema

GPDB@tn

LabDB@tn ImageDB@tn

ScheDB@tnJourDB
@tn

GP Journal
Model Space

JourDB
@tn+1

PayDB@
tn+2

Hospital Journal
Model Space

Scheduling
Model Space

Laboratory
Model Space

Imaging
Model Space

Payment
Model Space

"Database
Update"

"Shared Data
(Patients)"

"Shared Data
(Observations)"

§ CR1

Fig. 7.1: Semantic Interoperability of Software Systems: Conceptual Picture

ing the global view architecture, see Sec. 3.3.5. Thus, a tuple of database states together
with information about shared records is turned into a single global database state,
which contains all records and highlights shared ones, which will enable consistency
verification. Model repair, see Sec. 3.3.4, in this scenario allows to implement automatic
synchronisation of inconsistent records. It is important to note that this conceptu-
alisation assumes that the relevant part of the current state of a system database is
accessible at any given time. Also the technical aspects of inter-system communication
are abstracted away.

Consistency of Software Design Documents Fig. 7.2 depicts the conceptual pic-
ture of the design artefact scenario from Sec. 1.3.2 (Fig. 1.7). Each stakeholder shown in
Fig. 1.7 is turned into a model space, which is defined by a metamodel that represents
the respective modeling language, see Sec. 3.3.1. The models in this case are the ver-
sions of the individual design documents while the change relation traces the evolution
of these documents. The correspondences are given by the traceability relationships
which are subject to the consistency rules CR2-CR14. They are divided into three
groups called “Refinement”, “Dependency”, and “Implementation”, which correspond
to the three aspects of this scenario discussed alongside Fig. 1.8, Fig. 1.9, and Fig. 1.10
respectively. One can interpret them as three multi-models or consider them altogether.
The commonality data in these multi-models are links between model elements that
are required for the consistency rules, see Sec. 3.3.2. Some of the consistency rules only
involve binary relationships, e.g. CR2 or CR3, and could therefore be represented as a
consistency network. Other rules, CR8, however, require proper multi-ary relationships
for their representation and must therefore be realised with the help of global views,
see Sec. 3.3.5. The latter can be interpreted as one global design model, which contains
the contents of every model including the traceability relationships in order to perform
multi-model consistency management with the help of a single artefact.

168 Chapter 7

7.2 Validation of the Formalism

ReqIf
Metamodel

SQL
Metamodel

Java Language
Specification

DMN Metamodel

referral_data.uml

create_schema.sql com.example.referral

process_v0.bpmn
SysReqs.reqif

System Structure
Model Space

rules.dmn

Requirements
Model Space

Architecture
Model Space

Database Schema
Model Space

Reference Implementation
Model Space

Business Rules
Model Space

UML

Metamodel

Process
Model Space

ArchiMate
Metamodel

BPMN
Metamodel

process_v1.bpmn

SysArch.archimate

"Refinement-
Traceability"

"Implementation-
Traceability"

"Dependency-
Traceability"

"Document
Evolution"

§ CRs 2-4
§ CRs 5-8

§ CRs 11-14

Fig. 7.2: Consistency of Software Design Models: Conceptual Picture

7.2 Validation of the Formalism

The central contribution of Chap. 5 is a novel formalism called comprehensive systems.
The latter describes a formal representation of a collection of software models and
structural relationships among their elements in terms of a single integrated artefact
(global view). Internal validity was assured by the proofs of the respective propositions
and theorems, where the majority of these proofs are found in Appendix B. Regarding
the external validity, I want to illustrate the concrete significance of the theoretical
results in practice.

First, it is important to mention that comprehensive systems represent a straightfor-
ward formalisation of what many practitioners are already doing intuitively: Drawing
connections (trace-links) between formerly unconnected elements. Thus, comprehen-
sive systems provide the formal underpinning for generic and domain specific trace
models. The latter represents one of the two main limitations identified in Sec. 4.5.

Theorem9 states that comprehensive systems are a suitable carrier structure for diagram-
matic constraints. The latter have been shown to capture model constraints in software
engineering [408, 409]. Moreover, it could be shown that the resulting framework of
diagrammatic constraints over comprehensive systems forms a semi-institution, see
Corr. 10. Institutions are heavily used by researchers, who investigate the integration
of heterogeneous formal verification approaches [347, 348]. Thus, opening the door for
integrating my formalism with established formal means for consistency verification in
the future.

Theorem12 states that comprehensive systems form a weak adhesive HLR category with
respect to a special class of “reflective” monomorphisms. Weak adhesive HLR categories are

Chapter 7 169

Validation

the foundation of algebraic graph transformation, a mature formalism for investigating
rule-based rewriting of graph-based structures. Most of the results in this extensive
research domain are formulated for this kind of categories and hence all the major
results discovered in this research domain apply for comprehensive systems as well
[146]. Moreover, this allows comprehensive systems to be implemented in proven
graph transformation tools such as Henshin [48] or eMoflon [482].

Theorem18 shows that comprehensive systems generalise the underlying categories of
graph diagrams (which include triple graphs). This means that every consistency rule that
can be represented via triple graphs and graph diagrams can also be represented using
comprehensive systems. However, comprehensive systems are more general and can
express situations that cannot be captured with triple graphs or graph diagrams, e.g.
general multi-ary model relationships where the final arities of these relationships
are unknown in the beginning or may change over time (assuming an arbitrary but
fixed maximal number of models under consideration). The ability to represent multi-
ary correspondence relationships directly addresses a main limitation with current
approaches, see Sec. 4.5.

7.3 Validation of the Tool

Finally, I will assess the capabilities of CorrLang, which represents the practical contri-
bution of this PhD project. Concretely, I will demonstrate its ability to address practical
multi-model consistency management problems (feasibility), analyse its current features,
and evaluate its performance when dealing with large models and big collections of
elements (scalability).

7.3.1 Feasibility

I am investigating two use cases, which are based on the practical scenarios introduced
in Sec. 1.3 and modelled on an abstract level in Sec. 7.1. Both use cases are (for the
sake of presentation) slightly simplified compared to their real-world pendants. The
respective software artefacts are publicly available in a source code repository1. This
section contains several code snippets and the complete code is found in the repository.

Semantic Interoperability of Software Systems The first case features three sys-
tems: the journal system of the general practitioner, the journal system of the hospital
and the laboratory system storing blood test results. I will refer to themby GP, HOSPITAL,
and LAB. GP and HOSPITAL are based on the FHIR data model whereas LAB is based a
custom-made schema. The goal, in accordance with the technical challenges mentioned
in Sec. 1.3.1, is (i) to make the data of all systems accessible behind a homogenous
interface, (ii) to identify and represent shared data, and (iii) check shared data for incon-
sistencies, see CR1. CorrLang currently supports the technologies GraphQL and EMF.
Let us therefore assume that all three systems have a GraphQL interface2. The first

1https://github.com/webminz/corrlang-scenarios
2This is only a minor technical limitation. Support for more technologies is planned in the future.

Moreover, GraphQL support for FHIR is actually under development, see [236, 349]

170 Chapter 7

https://github.com/webminz/corrlang-scenarios

7.3 Validation of the Tool

step when developing a solution with CorrLang is to define the relevant Endpoints
(model spaces), see lines 1–15 in List. 7.1.

1 endpoint GP {
2 type SERVER
3 at https://... /∗ URL of the GP journal GraphQL endpoint ∗/
4 technology GRAPH_QL
5 }
6 endpoint HOSPITAL {
7 type SERVER
8 at https://... /∗ URL of the Hospital journal GraphQL endpoint ∗/
9 technology GRAPH_QL
10 }
11 endpoint LAB {
12 type SERVER
13 at https://... /∗ URL of the Laboratory GraphQL endpoint ∗/
14 technology GRAPH_QL
15 }
16
17 correspondence DataInteg (GP,HOSPITAL,LAB) {
18 /∗ Commonalities ∗/
19 [...]
20 }
21
22 /∗ Creates a federated GraphQL endpoint at http://localhost:8080/graphql ∗/
23 goal GraphQLEndpoint {
24 correspondence DataInteg
25 action FEDERATION with check
26 technology GRAPH_QL
27 target SERVER {
28 port 8080
29 path /graphql
30 }
31 }

Listing 7.1: First step: Identifying the involved model spaces

Lines 23–31 in List. 7.1 declare a Goal, which emulates a federated GraphQL
endpoint accessible under the following URL: http://localhost:8080/graphql.
This address provides a uniform interface to access the three systems. Without further
ado, this declaration will result in a “parallel composition” of the three GraphQL
endpoints GP, HOSPITAL, and LAB, i.e. one can interact with the individual systems but
there is no further coordination concerning shareddata. Thus, concrete Commonalities
have to be defined, see line 19 in List. 7.1. First, let us have a look at the data models
behind the three systems.

Fig. 7.3 depicts (a simplified3 extract of) the schema of the FHIR data model and
Fig. 7.4 depicts the custom-made schema of the laboratory system. I am using class
diagrams as a visual syntax for GraphQL schemas, see Sec. 6.1.1. Note also that
excerpts of these models were already shown in Chap. 1 (Fig. 1.6). GP and HOSPITAL
are both using FHIR and therefore they have identical schemas. CorrLang cannot
detect this fact a priori and treats them as they would be completely different. The
user has to manually define their entity types as identical, see lines 2–5 in List. 7.2. The
syntactical sugar “with FIELDS” alleviates writing these statements as it automatically
also identifies all related fields with same name and target type.

1 /∗ Identification of identical entity types ∗/
2 identify (GP.Encounter,HOSPITAL.Encounter) as Encounter with FIELDS;
3 identify (GP.Observation,HOSPITAL.Observation) as Period with FIELDS;

3Compared to the official definition, some fields and resource types are left out and some hierarchical
content is collapsed to ease presentation.

Chapter 7 171

Validation

Observation

 effectiveDateTime: DateTime [0..1]

Coding

 system: URI

 code: String

 text: String

Encounter

status: EncounterStatus

Patient

 name: HumanName

 gender : GenderCode

 birthDate : Date

Resource

 id: Identifier [1..1]

 resourceType: String [1..1]

 text: HTML [0..1]

Quantity

 value: Decimal[1..1]

 unit: String[0..1]
encounter

0..1 subject
0..1

coding

1..1

0..1

Identifier

 value: String[1..1]

 system: URI[0..*]

valueQuantity DiagnosticReport

status: ReportStatus[1..1]

 issued: DateTime[1..1]

Period

start: DateTime[1..1]

 end: DateTime[0..1]

subject

0..*

encounter

0..1

subject
0..1

result
0..*identifier

1..1 contact
0..*

type

0..1
coding0..1

<<Query>>
FHIRResourceService

patients(): Patient[0..*]
patient(id: Identifier): Patient[0..1]
observations(): Observation[0..*]
observation(id: Identifier): Observation[0..1]
diagnosticReports(): DiagnosticReport[0..*]
diagnosticReports(id: Identifier): DiagnosticReport[0..1]
encounters(): Encounter[0..*]
encounter(id: Identifier): Encounter[0..1]

Address

 text : String

Fig. 7.3: FHIR schema (simplified)

<<Query>>
BloodTestService

all(): BloodProbe[0..*]
forPatient(patientId: Identifier): BloodProbe[0..*]
forPhysican(physicanId: Identifier): BloodProbe[0..*]
forDate(date: DateTime): BloodProbe[0..*]

BloodProbe

patientId: Identifier[1..1]

physicianId: Identifier[1..1]

issued: DateTime[1..1]

Result

analyzed: DateTime[0..1]

comment: String[0..1]

CRP
0..1
0..1Erythorocytes
0..1Leucocytes
0..1Thrombocytes
0..1Glucose

0..1HDLCholesterol 0..1
LDLCholesterol

0..1

Triglycerides

Quantity

 value: Decimal[1..1]

 unit: String[0..1]

1..1

quantity

Fig. 7.4: Laboratory schema

172 Chapter 7

7.3 Validation of the Tool

4 identify (GP.Quantity,HOSPITAL.Quantity) as Period with FIELDS;
5 ... /∗ analogous for the other types in Fig. 7.3 ∗/
6
7 /∗ Identification of the Patient entity type and declaring a rule that matched Patient records based on their national ids ∗/
8 identify (GP.Patient,HOSPITAL.Patient) as Patient with FIELDS
9 when [GP.Patient.identifier.system == "https://www.skatteetaten.no"
10 HOSPITAL.Patient.identifier.system == "https://www.skatteetaten.no" &&
11 GP.Patient.identifier.value == HOSPITAL.Patient.identifier.value]
12 check INTEGRITY; /∗ Ensuring CR1 ∗/

Listing 7.2: Second step: Aligning FHIR schemas

Special attention goes to the identify statement concerning the Patient en-
tity (lines 8–12), where I define a domain specific IdentificationRule. In this
use case, patients are “globally” identified through a national id (= the Norwe-
gian “personnummer” assigned by th “Folkeregisteret”, which has the top-level URI
https://www.skatteetaten.no). The “check INTEGRITY” statement will allow us
to verify the structural integrity of Patient-records in the end, see Sec. 6.3.2.

In the next step, the custom-made schema of LAB has to be integrated. In practice,
thiswill require to consult the domain experts responsible for the individual systems. In
our case, let us assume that this consultation uncovered that the BloodProbe type can be
mapped to a FHIR DiagnosticReport, the Result-type maps to an Observation and
the Quantity-types are already identically designed. The definition of the respective
Commonalities is shown in List. 7.3.

1 /∗ Integrating the Laboratory schema types∗/
2 identify (HOSPITAL.Observation,LAB.Result) as Observation with {
3 identify (HOSPITAL.Observation.effectiveDateTime,LAB.Result.analyzed) as effectiveDateTime;
4 identify (HOSPITAL.Observation.valueQuantity,LAB.Result.quantity) as valueQuantity;
5 } check INTEGRITY;
6 identify (GP.Quantity,HOSPITAL.Quantity,LAB.Quantity) as Quantity with fields;
7 identify (HOSPITAL.DiagnosticReport,LAB.BloodProbe) as DiagnosticReport with {
8 /∗ the specific blood test values are treated as Observation results with respective LOINC codes ∗/
9 identify (HOSPITAL.DiagnosticReport.result,LAB.BloodProbe.CRP) as result
10 when [HOSPITAL.DiagnosticReport.result.coding.system == "https://loinc.org/" &&
11 HOSPITAL.DiagnosticReport.result.coding.code == "1988-5"];
12 identify (HOSPITAL.DiagnosticReport.result,LAB.BloodProbe.Erythrocytes) as result
13 when [HOSPITAL.DiagnosticReport.result.coding.system == "https://loinc.org/" &&
14 HOSPITAL.DiagnosticReport.result.coding.code == "5161-5"];
15 ... /∗ analogous for the other fields in Fig. 7.4 such as Leucocytes etc. ∗/
16 /∗ identification rule treating BloodProbe as a FHIR Diagnostic Report with the respective SNOMED−CT term
17 and matching records if they refer to the same patient ∗/
18 } when [HOSPITAL.DiagnosticReport.coding.system == "http://snomed.info/sct" &&
19 HOSPITAL.DiagnosticReport.coding.code == "396550006" &&
20 HOSPITAL.DiagnosticReport.subject.identifier.system = "https://www.skatteetaten.no"
21 HOSPITAL.DiagnosticReport.subject.identifier.value == LAB.BloodProbe.patientId];

Listing 7.3: Third step: Integrating the Laboratory schema

Note that identify statements are “additive”, see Sec. 6.2.2: Since line 3 in List. 7.2
already identified the Observation types from GP and HOSPITAL, the identify state-
ment in line 2 in List. 7.3 adds up to the same Commonality such that GP Observation,
HOSPITAL Observation and LAB Result are merged into the same type. The same
applies for the respective fields effectiveDateTime and valueQuantity. The special
IdentificationRules that are applied to fields of BloodProbe (lines 10–11, 13–14,
. . .) make sure that the outgoing references of BloodProbe-instances are mapped to
Observation-instances with the correct coding. The FHIR data model is much more
generic than the LAB schema. Thus, in order to represent the concrete type of an obser-
vation or a medical procedure it employs semantic coding systems such as LOINC or

Chapter 7 173

https://www.skatteetaten.no

Validation

Fig. 7.5: Resulting GraphQL Endpoint

SNOMED-CT.
1 identify (GP.FHIRResourceService,HOSPITAL.FHIRResourceService, LAB.BloodTestService) as

FHIRResourceService with {
2 identify (GP.FHIRResourceService.diagnosticReports,HOSPITAL.FHIRResourceService.diagnosticReports,

LAB.BloodTestService.all) as diagnosticReports;
3 };

Listing 7.4: Final step: Coordinating Queries

Finally, in order to access the shared records, one has to identify the Query opera-
tions, which is shown in List. 7.4. By identifying the query fields diagnosticReports
(GP/HOSPITAL) and all (LAB) under the new name allDiagnosticReports, there
will be a new Query operation, which calls all systems simultaneously and af-
terwards consolidates the results according to the IdentificationRules defined
in List. 7.2 and List. 7.3. Moreover, due to the “check INTEGRITY” statements,
the Patient and Observation types will be augmented with the Boolean field
“CORRLANG_isStructurrallyConsistent”, whose value shows whether the record is
structurally consistent.

Fig. 7.5 shows how resulting GraphQL endpoint appears to clients in the end. The
query shown on the left hand side retrieves the Patient and Observation data from all
DiagnosticReports. The result shows a report for apatient that has aCRPBloodProbe
result. The latter information stems from the LAB system. Moreover, this patient has two

174 Chapter 7

7.3 Validation of the Tool

different Addresses stemming from the aggregation of the data in GP and HOSPITAL.
Thus, the structural consistency check (CORRLANG_isStructurrallyConsistent) is
violated. As a conclusion, all of the initially stated goals (i-iii) have been addressed.

Consistency of Software Design Documents The second example comprises five
design documents named REQS, ARCH, BPMN, UML, and DMN. They have been introduced
by Fig. 1.7, excluding the database schema and the reference implementation because
the latter is yet another instance of the well-known object-relational mapping problem.
Discussing it here again would not yield new insights. Therefore, I will only discuss
the consistency rules CR2–CR8 here. The final goal of this use case is to perform global
consistency verification. This requires to translate CR2-CR8 into the CorrLangDSL
and to invoke a VERIFY-type GOAL.

Each document is stored as a file on disk and is denoted in a different modeling
language. Thus, I am working with FileEndpoints. Further, I am assuming that each
modeling language is defined by an Ecore-model. Hence, the EMF TechSpace is used.
Lines 1–34 in List. 7.5 shows the respective Endpoints.

1 endpoint REQS {
2 type FILE
3 at models/requirements.xmi
4 technology EMF
5 schema metamodels/reqIf.ecore
6 }
7
8 endpoint ARCH {
9 type FILE
10 at models/businessArchitecture.xmi
11 technology EMF
12 schema metamodels/archimate.ecore
13 }
14
15 endpoint BPMN {
16 type FILE
17 at models/process.xmi
18 technology EMF
19 schema metamodels/bpmn.ecore
20 }
21
22 endpoint UML {
23 type FILE
24 at models/dataModel.xmi
25 technology EMF
26 schema metamodels/uml.ecore
27 }
28
29 endpoint DMN {
30 type FILE
31 at models/decisionModel.xmi
32 technology EMF
33 schema metamodels/dmn.ecore
34 }
35
36 correspondence PatientReferralDesign (REQS,ARCH,BPMN,UML,DMN) {
37
38 }

Listing 7.5: First step: Endpoint definition

In the next step, Commonalities have to be defined, which represent the types
of the possible traceability-links among the design model element. I begin with the
presentation of the CorrLangportrayal of CR5–CR8, which is shown in List. 7.6. The

Chapter 7 175

Validation

solution utilises the built-in FORALL-constraint and has already been discussed in
Sec. 6.3.2, see List. 6.7.

1 /∗ Realises CR5 ∗/
2 sync (BPMN.Activity as act, DMN.DecisionTable as tab)
3 as DecisionTableDef
4 with {
5 /∗ Realises parts of CR8 ∗/
6 sync (BPMN.Activity.consumes, DMN.DecisionTable.inputSideColumns) as input
7 when [DMN.DecisionTable.inputSideColumns ~~> BPMN.Activity.consumes];
8 sync (BPMN.Activity.produces, DMN.DecisionTable.outputSideColumns) as output
9 when [DMN.DecisionTable.outputSideColumns ~~> BPMN.Activity.produces];
10 } when [act.type == "ActivityType::BUSINESS_RULE" && act ~~> tab];
11
12 /∗ Needed for CR7 ∗/
13 identify (UML.DataType,DMN.ColumnType) as BaseType
14 with FIELDS
15 when [UML.DataType.name == DMN.ColumnType.name];
16
17
18 /∗ Realises CR5, CR6, CR7, and CR8 together ∗/
19 sync (BPMN.DataObject as do,
20 UML.Class as cls,
21 UML.Attribute as att,
22 DMN.Column as clmn)
23 as DataObjectClassAttrColumnImpl
24 with {
25 sync (UML.Attribute.type,DMN.Column.type) as type;
26 } when [do ~~> cls && clm ~~> att
27 ||
28 do ~~> att && clm ~~> att];

Listing 7.6: Second step: Translating CR5–CR8

Secondly, CR2–CR5 are implemented in a similar fashion. However, some of these
rules are slightly more complicated and require traversal over the object graph such
that they cannot immediately be realised with FORALL constraints. Thus, I employ
Epsilon’s EVL, see Sec. 6.3.1, to implement the rules, which is shown in List. 7.7. The
formulation of these rules demonstrates how the linguistic extension (see features
ProcessImpl,role and pool in line 33), produced by the relate/sync statements,
can be used.

1 /∗ Realises CR2 ∗/
2 identify (REQS.SpecObject,ARCH.Requirement) as Requirement
3 when [REQS.SpecObject.identifier,ARCH.Requirement.name]
4 check FunctionalRequirementIsImplemented;
5
6 rule FunctionalRequirementIsImplemented {
7 technology EVL
8 impl """
9 context Requirement {
10 constraint C1 {
11 guard : self.type = "Functional Requirement"
12 check : self.attributes.exists(a|a.type="Status" and a.value="accepted") implies
13 ARCH!Association.allInstances.exists(i|i.label= "implements" and i.target = self)
14 }
15 """
16 }
17 /∗ Realises CR3 ∗/
18 sync (ARCH.DataEntity, UML.Class) when [ARCH.DataEntity ~~> UML.Class];
19
20 /∗ Realises CR5 ∗/
21 sync (ARCH.Process as proc, BPMN.BPMNDiagram as diag) as ProcessImpl when [ARCH.Process ~~> BPMN.

BPMNDiagram] check RolesParticpateAsPools;
22
23 relate (ARCH.Role as role,BPMN.Pool as pool) as Party;
24

176 Chapter 7

7.3 Validation of the Tool

25 rule RolesParticpateAsPools {
26 technology EVL
27 impl """
28 context ARCH!Process {
29 constraint C2 {
30 check : ARCH!Association
31 .select(a|a.source = self and a.label = "participation" and a.target.isTypeOf(ARCH!

Role))
32 .forall(a|Party.allInstances.exists(p|
33 p.role = a.target and self.ProcessImpl.diag.pool.contains(p.pool)))
34 }
35 }
36 """
37 }

Listing 7.7: Third step: Translating CR2–CR5

Finally, the verification VERIFY-type GOAL has to be defined (lines 20–27 in List. 7.8).
List. 7.8 also comprises two other Goals, which produce the global metamodel (lines
1–8) and the global instance (10–18) using the EMF TechSpace. The latter may be fed
into other tools based on EMF, e.g. in order to do model repair.

1 goal CreateGlobalMetamodel {
2 correspondence PatientReferralDesign
3 action SCHEMA
4 technology ECORE
5 target FILE {
6 at globalMetamodel.ecore
7 }
8 }
9
10 goal CreateGlobalInstance {
11 correspondence PatientReferralDesign
12 action FEDERATION
13 matches traces.csv
14 technology ECORE
15 target FILE {
16 at output/globalInstance.xmi
17 }
18 }
19
20 goal CheckGlobalConsistency {
21 correspondence PatientReferralDesign
22 action VERIFY
23 matches traces.csv
24 target FILE {
25 at output/checkResult.txt
26 }
27 }

Listing 7.8: Final step: Goal definition

List. 7.6 andList. 7.7 only comprise twoIdentificationRules (one forRequirements
and one for BaseTypes). This is because that in this scenario elements cannot easily
be identified via their names or properties. Instead, this information has to be pro-
vided from the outside, e.g. by the domain experts. Therefore, the Goals in List. 7.8
are provided with a CSV file containing element matches, see Sec. 6.3.3. List. 7.9 shows
the contents of this file. Every line represents an instance of a Commonality. The first
slot mentions the name of the Commonality and the remaining slots contain element
identifiers (i.e. Projections). The concrete format of the element identifiers depend
on the respective TechSpace. In case of EMF, elements within an XMI-file (model) are
be identified via XQuery expressions.

Chapter 7 177

Validation

"DecisionTableDef";"//@activites.2";"//@tables.0"
"DataObjectClassAttrColumnImpl";"//@dataObjects.0";"//@packages.0/@classes.2";;
"DataObjectClassAttrColumnImpl";"//@dataObjects.1";;"//@packages.0/@classes.5/@attributes.1";"//@tables

.0/@column.0"
"DataObjectClassAttrColumnImpl";"//@dataObjects.2";;"//@packages.0/@classes.4/@attributes.0";"//@tables

.0/@column.2"
"DataObjectClassAttrColumnImpl";;;"//@packages.0/@classes.1/@attributes.0";"//@tables.0/@column.1"
"DataObjectClassAttrColumnImpl";;;"//@packages.0/@classes.4/@attributes.0";"//@tables.0/@column.3"
"ProcessImpl";"//@elements.2";"/@bpmnDiagram"
"Party";"//@elements.1";"//@pools.0"

Listing 7.9: traces.csv

Comparing the content of List. 7.9 with the links (dotted lines) in Fig. 1.8 and
Fig. 1.9, it turns out that the file is missing a link between the Referrer-Role and the
Referrer-Pool (link with number 5 in Fig. 1.8). Therefore, the consistency verification
will result in an error. List. 7.10 shows how the output on the command line after
invoking CorrLang looks like. Adding the missing link to the CSV file would fix the
inconsistency.
$> java -jar corrlang.jar patientReferralCase.corrlang g:CheckGlobalConsistency
Executing Goal "CheckGlobalConsistency":

Rule "RolesParticpateAsPools" is violated! Detailed message: "Role(s) not implemented as pools:
Sequence {Referrer}"

Total: 1 Inconsistencies

Listing 7.10: Command Line Output

As a conclusion, the initially stated goal of performing consistency verification over
heterogeneous design documents has been achieved.

7.3.2 Features

To summarise the current features and limitations of CorrLang, I will apply the feature
model from Chap. 4. The result of this classification is shown in Tab. 7.1.

Currently, the implementation supports two concrete technologies GraphQL and
EMF, which are implemented by respective technology adapters that translate meta-
models (GraphQL schema definition language files or Ecore files) and their instances
(JSON files or XMI files) into the formal representation used by the tool. The latter is
given by generalised sketches, a formalism based on Category Theory. It is important to
note that more Tech Spaces can be integrated by implementing a respective adapter,
see Sec. 6.2.1.

CorrLang considers Changes in a State-Based way and does not consider specific
types of Allowed Updates. This is because, CorrLangcurrently does not support Repair.
For the next iteration it may be worthwhile to reconsider this aspect.

The number and structure of metamodels is Freely Customisable. Internally, the
metamodels are interpreted as Type Graphs and the models are typed over them.
CorrLang is able to check Well-Formedness by validating Typing and local Constraints.

Extensive support for Multi-ary Correspondences was the central design goal behind
the tool. The architecture is based onGlobal Views, which are constructed automatically.
Commonalities are represented using a Weaving approach but CorrLang also supports
aspects of a Merging approach. The Definition of Commonalities is based on Structural

178 Chapter 7

7.3 Validation of the Tool

CorrLang

Models
Tech Space XMI, Other
Formalism Category Theory

Change
Representation State-based
Recording -
Allowed Updates not considered

Conformance
Well-Formedness Typing, Constraints
Metamodels

Definition Customisable::Freely
Tech Space MOF, DSL
Formalism Type “Graph”

Correspondence
Components Heterogeneous::(Metamodels, Tech Spaces)
Commonalities

Representation Weaving
Definition Customisable::(Structural Properties, Element Tuples)

Properties -
Arity Multi-ary
General Architecture Global View::Constructed
Information Content Symmetric
Authority -
Concurrency -
Privacy -

Matching
Invocation Steady
Storage In-Memory
Implementation Keys

Consistency
Inconsistency Report Elements
Rules

Definition Builtin, Customisable: OCL++, . . .
Nature Structural
Scope Inter-Model
Severity Levels -
Repair Hints -

Verification
Execution Automatic
Invocation Manual
Implementation Specialised Automated Analysis
Repair not considered

Table 7.1: Feature Model Classification of CorrLang

Chapter 7 179

Validation

Fig. 7.6: Families2Persons [18]

Features (Key-based matching) or Element Tuples that are directly provided. Identified
Commonalities are stored persistently on the Hard Drive.

The notion ofConsistency is induced by consistency rules. There isBuilt-in support for
FORALL and INTEGRITY constraints. Beyond that, consistency rules can be implemented
Externally by utilising existing tools. Currently, Epsilon’s OCL-like EVL language is
supported but others can be included by implementing a respective adapter for the tool.
The scope of these rules is Inter-Model and the focus lies on Structural rules. Verification is
invoked Manually by calling a respective Goal and performed Automatically (i.e. without
user interaction), and is executed On-Demand . The Implementation of the built-in
constraints is based on a Specialised Automated Analysis, in case of the external rules it
depends on the respective tool. The inconsistency report contains references to the
Elements that violate a consistency rule.

The Repair feature is currently not supported directly and therefore has to be
performed externally by exporting the global view on the multi-model instance into a
specific TechSpace. The immediate next goal for the future is to support model repair
more seamlessly.

7.3.3 Scalability

To test whether CorrLang is able to scale up to real-world use-cases comprising models
with several hundreds or thousands of elements, I will run a benchmark analysis and
compare the run time of several model management tools and CorrLang in a sample
consistency verification scenario. This benchmark, including all related artefacts and
instructions for reproducing it, is publicly available in a source code repository4. The
scenario is based on the well-known Families2Persons case, which was first introduced
as a showcase for ATL tool and has recently been used as a benchmark of BX tools [18].
It comprises two model spaces called FAMILIES and PERSONS, whose metamodels are
depicted in Fig. 7.6.

The idea is that FamilyMember-elements in FAMILIES correspond to Person-

4https://github.com/webminz/corrlang-performance

180 Chapter 7

https://github.com/webminz/corrlang-performance

7.3 Validation of the Tool

elements in PERSONS and vice versa. Hence, a tuple consisting of a FAMILIES-model
and a PERSONS-model is considered consistent if and only if for every FamilyMember
exists a Male or Female with a matching name (Person.name is the concatena-
tion of FamilyMember.name and Family.name) and sex (father/sons ⇔ Male and
mother/daughters⇔ Female respectively). The benchmark comprises a generator,
which creates a pair of instances w.r.t. the metamodels in Fig. 7.6 and takes two pa-
rameters. The first parameter specifies how many (FamilyMember, Person) element
pairs it should create. The second parameter specifies an “inconsistency percent-
age”, i.e. normally the generator populates the FAMILIES-model and a PERSONS-model
with consistent pairs of FamilyMember and Person elements. The parameter specifies
the probability for creating inconsistent elements. There are the following types of
inconsistencies, which can be introduced.

• There exists no corresponding Person for a FamilyMember.

• There exists no corresponding FamilyMember for a Person.

• There exists the corresponding element but the sex does not match.

• There exists the corresponding element but the names do not match.

The choice of participants for this benchmark follows the selection of tools in Sec. 4.4.
Hence, I am comparing CorrLang with two solutions based on Epsilon and a fourth
solution implemented with eMoflon::Neo. It was not possible to develop a solution
with Echo since the Families2Persons case requires string concatenation, which is not
supported by Echo. The principal ideas behind each solution are sketched below.

Epsilon Solution (Merge) The first Epsilon solution is based on the “consistency
checking via merging” idea, compare Sec. 4.4.2. The workflow comprises three steps:
First, the elements in the FAMILIES and PERSONSmodels are compared to identify the
MatchTraces. Afterwards, the MatchTraces are used to create a merged model before,
finally, constraints are verified on the merged models. Thus, one has to write an ECL
program (matching), an EML program (merging) and EVL constraints (validation).
This further necessitates to create a metamodel for the merge result (manually), which
comprises all features shown in Fig. 7.6 and wherein the types FamilyMember and
Person have been identified.

1 rule MatchRegistries
2 match l : FAMILIES!FamilyRegister
3 with r : PERSONS!PersonRegister {
4 compare : true
5 }
6
7 rule MatchMales
8 match l : Fam!FamilyMember
9 with r : Pers!Male {
10 guard : l.isMale()
11 compare : r.name = l.name + " " + l.getFamily().name
12 }
13
14 ...

Listing 7.11: ECL Matching Rules

Chapter 7 181

Validation

List. 7.11 shows an excerpt of the ECL program, which shows the rule that matches
male FamilyMembers (fathers or sons) with Males. The check tests whether the
names match. The operations isMale() and getFamily() are helper methods (not
shown) that retrieve the respective information from the containing Family element.
The respective rule for Females looks similar and the rule that compares the two root
objects (FamilyRegistry and PersonRegistry) always returns true since there will
always be one instance of each type that always should be identified.

1 rule MergeRegistries
2 merge l : FAMILIES!FamilyRegister
3 with r : PERSONS!PersonRegister
4 into m : MERGE!Register {
5 m.families = l.families.equivalent();
6 m.persons = r.persons.equivalent();
7 }
8
9 rule MergeFemales
10 merge l : FAMILIES!FamilyMember
11 with r : PERSONS!Female
12 into m : MERGE!Female {
13 m.isMatched = true;
14 m.birthday = r.birthday;
15 m.fullname = r.name;
16 m.firstname = l.name;
17 m.motherInverse = l.motherInverse;
18 m.daughtersInverse = l.daughtersInverse;
19 }
20
21 ...
22
23 rule CopyUnmatchedFemaleFamilyMember
24 transform l : FAMILIES!FamilyMember
25 to m : Merge!Male {
26 guard : l.isFemale()
27 m.isMatched = false;
28 m.firstname = l.name;
29 m.motherInverse = l.motherInverse;
30 m.daughtersInverse = l.daughtersInverse;
31 }
32
33 rule CopyUnmatchedFemalePerson
34 transform r : Pers!Female
35 to m : Merge!Female {
36 m.isMatched = false;
37 m.birthday = r.birthday;
38 m.fullname = r.name;
39 }
40
41 ...

Listing 7.12: EML merge rules

List. 7.12 presents an excerpt of the EML program showing both merge and
transform (copy) rules. The merge-rule is invoked for each found match. The
rule creates a new Female element in the merged model. By default, EML does not
transfer any feature values automatically. This must be defined manually within the
body of the respective rule, which gives the designer full flexibility. In this case, the
information present from FAMILIES and PERSONS simply gets copied. Additionally,
a new attribute, called isMatched, is set to true, which will be used later in EVL
program. Besides the merge rules, there are transform rules, which are invoked on
all unmatched elements. These rules simply copy the available information into the
merged model but set isMatched to “false”.

182 Chapter 7

7.3 Validation of the Tool

1 context MERGE!Person {
2 constraint isConsistent {
3 check : self.isMatched;
4 }
5 }

Listing 7.13: EVL constraint

Finally, List. 7.13 shows the EVL constraint, which is defined on the merged
metamodel and checks that all elements in that model are the result of a correct match.

Epsilon Solution (No Merge) Epsilon is not strictly tied to the “consistency verifica-
tion via merging” workflow [134]. Since it is more a library comprising various DSLs
supporting different model management task, various approaches can be implemented,
see e.g. [168, 215, 413]. The second solution that I am presenting uses EVL alone. EVL
can be used to define local and global consistency rules because the implementation of
constraints allows arbitrary EOL statements querying multiple models simultaneously
[288].

1 context PERSONS!Person {
2 constraint hasFamilyMember {
3 check : FAMILIES!FamilyMember.all()
4 .exists(fm|fm.name + " " + fm.getFamily().name = self.name and self.isTypeOf(Pers!Male) = fm.

isMale())
5 message : self.name + ’ has no matching Family Member’
6 }
7 }
8
9 context FAMILIES!FamilyMember {
10 constraint hasPerson {
11 check : PERSONS!Person.all()
12 .exists(p|p.name = self.name + " " + self.getFamily().name and self.isMale() = p.isTypeOf(

Pers!Male))
13 message : self.name + ’ has no matching Person’
14 }
15 }

Listing 7.14: EVL rules (No Merge)

List. 7.14 shows the respective solution (the helper-functions isMale(), isFemale(),
getFamily() are now shown). It comprises two constraints attached to FamilyMember
and Person respectively, which search for the matching partner element. For this, all
elements of the other model are iterated, see FamilyMember.all()/Person.all().
This solution is simpler in design compare to the merge-based attempt. However, it
does not store the matches persistently, which means that it operates in an incremental
way.

Emoflon Solution The eMoflon solution is directly taken from the BX benchmark
[18]. The consistency rules in this case are defined in a more indirect way, i.e. the
developer has to define a triple graph grammar whose language corresponds to the
semantic extension of the consistency rules of the Families2Persons case. The grammar
is specified in a DSL (file ending .msl), see Sec. 4.4.3.

1 tripleGrammar FamiliesToPersons {
2 source {
3 Families
4 }

Chapter 7 183

Validation

5
6 target {
7 Persons
8 }
9
10 correspondence {
11 FamilyRegister <-FamiliesToPersons->PersonRegister
12 FamilyMember<-FamilyMemberToPerson->Person
13 }
14
15 rules {
16 Families2Persons
17 MotherToFemale
18 MotherOfExistingFamilyToFemale
19 FatherToMale
20 FatherOfExistingFamilyToMale
21 DaughterToFemale
22 DaughterOfExistingFamilyToFemale
23 SonToMale
24 SonOfExistingFamilyToMale
25 }
26 }

Listing 7.15: eMoflon Schema.msl

List. 7.15 shows the content of the root definition file Schema.msl, which declares
the source and target metamodels, the “corr”-types, and the rules that are part of
the grammar. The listing shows that there are multiple rules to cover the various
constellations of fathers, mothers, sons, anddaughters. Emoflon avoids redundancy
case via (multiple) rule-inheritance.

1 abstract tripleRule FamilyMember2Person : FamiliesToPersons {
2 source {
3 families : FamilyRegister {
4 ++ -families->f
5 }
6 ++ f : Family {
7 .name := <familyName>
8 }
9 ++ fm : FamilyMember {
10 .name := <memberName>
11 }
12 }
13
14 target {
15 persons : PersonRegister {
16 ++ -persons->p
17 }
18 ++ p : Person {
19 .name := <personName>
20 }
21 }
22
23 correspondence {
24 families <- :FamiliesToPersons -> persons
25 ++ fm <- :FamilyMemberToPerson -> p
26 }
27
28 attributeConstraints {
29 concat(
30 separator=" ",
31 left=<memberName>,
32 right=<familyName>,
33 combined=<personName>
34)
35 }
36 }

184 Chapter 7

7.3 Validation of the Tool

Listing 7.16: Abstract FamilyMember2Person-rule

List. 7.16 shows the definition of the most important rule: FamilyMember2Person.
This rule is marked as abstract and the other rules such as MotherOfExis-
tingFamilyToFemale or Father2Male are concretisations of this rule.

CorrLang Solution

1 correspondence Fam2Pers (FAMLIIES,PERSONS) {
2 sync (FAMLIIES.FamilyMember as fm , PERSONS.Male as m) as syncMale
3 when [fm.name ++ " " ++ fm.fatherInverse.name == m.name ||
4 fm.name ++ " " ++ fm.sonsInverse.name == m.name];
5 sync (FAMLIIES.FamilyMember as fm, PERSONS.Female as f) as syncFemale
6 when [fm.name ++ " " ++ fm.motherInverse.name == f.name ||
7 fm.name ++ " " ++ fm.daughtersInverse.name == f.name];
8 }

Listing 7.17: CorrLang solution

The “heart” of the CorrLang-solution, i.e. the Commonality-declaration, is shown
in List. 7.17. This solution utilises the FORALL-constraint, see Sec. 6.3.2, which makes
sure that every FamilyMember has a matching Person of the correct subtype. The
matching is facilitated via IdentificationRules.

Comparison Before running the benchmark, one may compare the “complexity” of
the four solution attempts. Tab. 7.2 summarises the number of files, lines, words, and
characters. Tab. 7.2 gives a superficial view on the complexity of each approach and
experts that are more proficient with one tool would assess the complexity differently.

Files # Lines # Words # Chars

Epsilon (Merge) 3 116 367 2759
Epsilon (No Merge) 1 40 119 995
Emoflon 13 268 532 6535
CorrLang 1 33 102 773

Table 7.2: Families2Persons: “Solution Complexity”

The result of running the benchmark for various model’ sizes and three different
inconsistency-probabilities is shown in Fig. 7.7. The results are averaged over running
the benchmark 10 times on a 2017 model of a MacBook Pro 2,3 GHz Dual-Core Intel Core
i5 with 8GB RAM. The X-axis shows the number of model elements (FamilyMember,
Person) and the Y-axis shows the runtime in seconds. Note that both axis have a
logarithmic (log10) scale in order to better visualise the results for small and very large
model sizes. Moreover, it is important to note that not all tools could be fed with
equally big models: During my experiments, I experienced deadlock in theNeo4J graph
database when running emoflon::Neo with models containing more than 400 elements.
The Epsilon solutions showed very long run times at a certain point. Thus, in order to
finish the benchmark in a reasonable time, I set the cut-off for the merge-based Epsilon
solution to 1000 and for the other Epsilon solution to 20000.

Chapter 7 185

Validation

1

10

100

1000

100 10000 1000000
No of Elements

R
un

tim
e

in
 s

Tool

CorrLang

Epsilon (Merging)

Epsilon (No Merging)

eMoflon

Runtime Comparison (10% inconsistencies)

(a) 10% inconsistencies

1

10

100

1000

100 10000 1000000
No of Elements

R
un

tim
e

in
 s

Tool

CorrLang

Epsilon (Merging)

Epsilon (No Merging)

eMoflon

Runtime Comparison (30% inconsistencies)

(b) 30% inconsistencies

1

10

100

1000

100 10000 1000000
No of Elements

R
un

tim
e

in
 s

Tool

CorrLang

Epsilon (Merging)

Epsilon (No Merging)

eMoflon

Runtime Comparison (90% inconsistencies)

(c) 90% inconsistencies

Fig. 7.7: Runtime comparison

186 Chapter 7

7.3 Validation of the Tool

All three graphs show a similar (quadratic) trend. The slightly shorter execution
times for a high probability of inconsistencies may be due to the possibility to abort the
execution of the concrete “check”-function after the first inconsistency has been found.
The data points show a quadratic growth for each tool, which makes sense concerning
that an ad-hoc implementation of the Families2Persons consistency rules will involve
two nested loops for the comparison in both directions. This benchmark gives a first
impression of the scalability capabilities of CorrLang. Yet, further experiments with
more realistic examples remain to be executed in the future. The main takeaway is that
CorrLang is able to compete with established tools.

Chapter 7 187

Part III

OUTRO

“We seldom think of what we have, but always of what we
lack.”

—Arthur Schopenhauer CHAPTER 8
CONCLUSION

8.1 Summary

The starting point of this whole research endeavour was given by four research
questions, see Sec. 1.4: The first research question RQ1 asked how multi-models and
consistency rules among them can be represented. The second research question RQ2
asked how consistency verification can be performed. The third research question RQ3
asked how the consistency restoration can be performed. The forth research question
RQ4 asked for an overarching architecture and workflow for coordinating these three
aspects. Each question refers to specific sub-problems of multi-model consistency
management. Their formulation embodies the constructive nature of SE research, i.e.
asking for a problem solution (artefact) and not an explanation of reality (empirical
theory). Three such artefacts have been developed throughout this thesis, see Sec. 2.4:
A1 provides a solution on the most abstract conceptual level, A2 provides a solution an
a formal theoretical level, and A3 provides a concrete technical solution.

The grid in Tab. 8.1 provides an abstract overview over the artefacts, research
questions, and the extent to which an artefact answers a research question, which is
expressed through the symbolism “0, (X), X” representing a three-element total order.
The value n/a indicates that the respective research question is not applicable to that
particular artefact.

The conceptual model (A1) addresses all aspects of multi-model consistency man-
agement on a high level. It provides a language for talking about problem scenarios
and a feature list for comparing tools and approaches. Thus, the results of the liter-
ature study in Chap. 4 must be counted towards the contributions of this artefact. It
may serve as a decision support for engineers developing multi-model consistency
management tools as it offers a condensed overview of the various implementation
strategies and available solutions. An accompanying literature study, which is pre-

A1 (Conceptualisation) A2 (Formalism) A3 (Tool)
RQ1 (Representation) X X X
RQ2 (Verification) X (X) (X)
RQ3 (Restoration) X (X) 0

RQ4 (Architecture) X n/a X

Table 8.1: Contributions and Research Questions

Conclusion

sented in Chap. 4, identified several limitations of those existing solutions, which are
summarised in Sec. 4.5. The most serious limitation is the lack of support for multi-ary
multi-model correspondence relationships and rules over them. My other two more
concrete artefact contributions have been created to address this and other limitations
stated in Sec. 4.5.

Comprehensive System (A2) present a formalism for representing multi-models.
The aspects of verification and restoration are addressed by proving that comprehensive
systems show all the formal properties that are necessary to re-use and apply existing
formal approaches for verification and restoration. However, I did not develop a custom
formal verification or restoration procedure, therefore the symbol “(X)”.

The design of CorrLang (A3) is based on the conceptual framework and the
comprehensive system formalism. It implements all features necessary for representing
multi-model consistency management including rudimentary support for model
matching using keys, the possibility to integrate existing (formal) verification tools,
and built-in support for the most common constraints concerning the consistency of
multi-models. Consistency restoration is not supported yet. However, CorrLang
allows to export the global view of a multi-model as a single artefact to one of the
supported technologies, which allows to apply model repair tools for that technology
on the exported artefact. The latter represents a more general feature of CorrLang
namely to translate among heterogeneous technological spaces utilising the formalism
of Chap. 5 (generalised sketches over graph-like structures).

In conclusion, this thesis provides a self-contained framework to “attack” multi-
model consistency management problems, where the focus certainly lies on the formal
theoretical side. Nonetheless, a demonstration of an (efficient) implementability of
these theoretical ideas is given in form of a purposeful tool, see Chap. 7.

8.2 Threats to Validity

One of the final steps of each scientific inquiry is a reflection over the threats to the
validity of the obtained results. The literature on research methodology [333, 492]
distinguishes four aspects of validity: Construct validity, internal validity, external
validity, and conclusion validity. Yet, their definition is based on the classical under-
standing of empirical research methods and must therefore be adjusted for my concrete
case of constructive research.

Internal validity looks into the application of the research methods itself, e.g. in
empirical research: “Has the experiment been conducted as described or are there
outside factors that could have influenced the results?”. In the case of this thesis, this
aspect can be interpreted as follows: “Has the process always followed the respective
state-of-the-art and is it reproducible?” Regarding the development of the conceptual
model, this question is actually difficult to answer as this is mainly a creative process.
However, the conceptual model must be linked to the literature study. The latter
followed the best practices identified by systematic literature reviews and systematic
mapping studies, even though it did not follow those processes in all rigour. There is
one threat to consider here. The selection of the initial survey papers that were used
to aggregate the total list of studies resulted from search queries on Google Scholar
and DBLP using terms I introduced in the conceptual framework. There is a chance

192 Chapter 8

8.3 Related Work

that I miss a study, which addresses multi-model consistency management. The
formal investigation in Chap. 5 was conducted with mathematical rigour and all proofs
have been reviewed by experts in theoretical computer science and category theory.
The development of the prototype was conducted following state-of-the-art software
engineering practices utilising unit tests (Test Driven Development) and code quality
metrics. The implementation followed the formal foundation closely and all source
code is publicly available for further assessment.

Construct validity looks into the correspondence between theory and the real problem
domain. The construction of each of the three artefacts always started with a practical
problem or requirement.

Conclusion validity looks into the actual effect of the scientific procedure. In quan-
titative studies, this is usually validated by ensuring statistical significance. In my
case, it is of interest whether the created artefacts actually represent novel or improved
solutions. This particular discussion is the content of Chap. 7.

Finally, external validity refers to the ability to generalise the results. The conceptual
framework and the formalism are able to describe many specific approaches. The
prototype tool was designed in a modular way and comprises a plug-in mechanism,
which shall make it extendable in the future,

8.3 Related Work

The introductory section of Chap. 3 mentions all research domains related to multi-
model consistency management and Chap. 4 provides a high-level summary about
them. Furthermore, Chap. 4 contains an in-depth analysis of three tools, which
act as representatives for the “primary” approaches to the multi-model consistency
management problem, i.e. Echo as a representative for approaches based on formal
logic, Epsilon as a representative for (language) engineering-based approaches, and
Emoflon as a representative for formal graph-based approaches. The current limitations
of these tools served as themotivation for my solution and have been discussed in detail.
In the following, I want to mention industrial solutions and academic approaches that
have received less attention in this thesis but also classify as related work and would
be worthwhile to investigate more closely in the future.

8.3.1 Industrial Solutions
Enterprise Development Frameworks Contemporary software libraries and frame-
works that facilitate developing enterprise software applications comprise an ab-
straction layer for data access. This abstraction layer generalises the concept of
object-relational mappings in a way that it mediates the representation based on classes
in an object-oriented programming language with heterogeneous data sources such as
SQL databases or XML documents. Examples are given by Spring Data or Microsoft’s
Language Integrated Queries (LINQ) embedded in the .NET-platform. The mapping
between the classes in the application and the data types of the respective schema is
declaratively specified by annotations that are placed in the program code. Moreover,
the aforementioned frameworks feature an SQL-like query language for accessing data
in a uniform way. Thus, there are conceptual similarities between these enterprise

Chapter 8 193

Conclusion

frameworks and CorrLang. The main difference is that enterprise application frame-
works operate on a lower abstraction level than CorrLang. It would be worthwhile to
elucidate whether CorrLang and enterprise frameworks can be applied in combina-
tion. For example, CorrLang could be used to check the annotation-definitions, which
are scattered across multiple fields, against high-level design documents.

Extract Transformation Load Enterprise data warehouses have to collect the
data stored across various information systems of an organisation in order to enable
decision makers to create reports about their business. This requires to extract the
heterogeneous data from the individual information systems and to copy it into a single
database, which is optimised for aggregating queries. The respective workflow is called
Extract-Transform-Load (ETL) and is commonly facilitated by commercial tools such
as Informatica and Talend. These tools offer adapters for a wide range of technologies
(e.g. SQL databases, XML, Excel sheets, web services, . . .) and graphical editors for
defining mappings between the source schemas and the data warehouse schema.
Those mappings are similar to the definition of commonalities in the CorrLangDSL.
However, the primary use cases for ETL tools and CorrLang differ: The data-flow
direction in ETL goes one way from multiple sources to a single target. CorrLang
considers multi-ary and multi-directional relationships among data elements.

8.3.2 Academic Approaches
Vitruvius Vitruvius [280] is an approach to view-based system development utilising
the idea of orthographic software modeling [25]. The latter is centred around the
idea of a single underlying model (SUM) representing the system, which is synthetically
assembled from several artefacts and modified solely through (projective) views. In
Vitruvius, the SUM exists only virtually, i.e. it is derived from so-called consistency
preservation rules, which are established between the metamodels of the concrete
artefacts that make up the SUM. CorrLang and Vitruvius address the same problem
domain and there are several conceptual similarities. The concept of a federation
can be compared to a virtual SUM and the consistency preservation rules are closely
related to the commonalities that make up a CorrLang specification. Vitruvius features
automatic consistency restoration, with the possibility to define views on top of the
SUM, it comprises an extra layer, and also appearsmoremature since it has been around
for longer. However, the consistency preservation rules that synchronise the concrete
artefacts at the bottom are limited to binary relations. A more detailed comparison of
both approaches in the future is desirable.

Categorical Databases (CQL) In [420, 421], Schultz et al. present an approach for
data representation and integration which is based on concepts from category theory
and implemented in a tool called Categorical Query Language (CQL). Database schemas
are formally interpreted as a category and database instances are interpreted as functors.
Thus, the tool can be seen as the conceptual successor of the Easik1 tool. The main
application domain are SQL databases but integration for other technologies also
exist. CQL supports automatic data-migration, which is formally underpinned by the

1https://www.mta.ca/~rrosebru/project/Easik/index.html

194 Chapter 8

https://www.mta.ca/~rrosebru/project/Easik/index.html

8.4 Future Work

change-of-base functor and its left and right adjoints. These theoretical constructions
give rise to an SQL-like query language. Similarly, CorrLang addresses data integration
and is conceptually based on comprehensive systems, which are formulated with the
help of category theory as well. However, CQL only considers binary relationships.
Moreover, it relies on the existence of left- and right-adjoints to the change-of-base
functor, which is not generally given in the category that I am considering in my
framework.

The heterogeneous Tool Set (Hets) The heterogeneous toolset (Hets) [347]was shortly
mentioned in Chap. 5. It is a “meta-tool” for formal verification, which allows to
combine solvers and theorem provers that are based heterogeneous formalisms.
Theoretically, it is based on the formal concept of institutions where various logic-
systems such as propositional logic, first-order logic, temporal logic etc. can be related
via institution co-morphisms. It is further integrated with the Distributed Ontology,
Model and Specification Language (DOL), which is standardised by the OMG and targeted
especially towards semantic web technologies. Comprehensive systems, which are the
formal underpinning for CorrLang, can be embedded into the abstract framework of
institutions. In the future, it is worthwhile to work towards an integration with Hets,
such that complex consistency rules can be checked utilising various formal tools.

8.4 Future Work

The contributions of thesis are only one “small step” into the direction of “solving” the
multi-model consistency management problem once and for all. There are several open
issues and unfinished ideas that arise immediately from the presentation in this thesis,
e.g. the open questions in the theoretical framework (Sec. 5.4) and the missing features
for CorrLang (Sec. 6.4). Here, I want to mention the most important topics for future
work.

Empirical Evaluation The practical validation of the artefacts was conducted in an
academic setting only, see Chap. 7. In the future it will be important to evaluate the
conceptual, formal, and practical contributions of this thesis in an industrial setting.
This usually requires substantial additional effort, but the insights from a bigger case
study will provide important evidence of my contributions and uncover open issues.
Ideally, the practical evaluation would be performed in a cross-disciplinary project
(e.g. including social scientists) to collect qualitative data from the end users (software
engineers).

Multi-Model Repair The topic of multi-model repair was dealt with on an abstract
level and under the assumption that tools for the “classic” model repair problem exist
which can be reused. In particular, I put a focus on the algebraic graph transformation
framework in Chap. 5. In general, model repair is a vast topic and an ideal universal
solution is unlikely to exist, such that for each concrete case, domain specific expertise is
required to build efficient model repair solutions that fulfil given quality requirements
such as least change or least surprise. Multi-model repair is an interesting special case of

Chapter 8 195

Conclusion

model repair since it often comprises a special kind of consistency rules, e.g. FORALL
or INTEGRITY, see Sec. 6.3.2. For these constraints, general repair strategies can be
formulated. It will be worthwhile to pursue this topic further both on the formal level
(comprehensive systems) and the implementation level (CorrLang).

Behavioural Semantics The software models encountered throughout the thesis
were all structural. Thus, I formally conceived them as some sort of graph-like structure
(category G). The semantics of a given (meta-)model were interpreted by the set of all
possible instances, i.e. graph-like structures that can be typed over the given model
(formally given by a slice category). This conception of semantics is called static. In
the future, it will be interesting to also consider models with behavioural semantics
such as state charts. Their semantics is usually expressed differently (e.g. via Kripke
structures), the rules are formulated in a temporalway and their composition is based
on a different concept (limit-based instead of colimit-based).

Networks of Global Views Comprehensive systems and their practical reification
in the CorrLang-tool are able to model an integration of multiple models (systems).
This architecture is centralised, i.e. each comprehensive system induces a single global
view that is used for coordination. Now, assuming that multiple organisations apply
this idea and afterwards decide to integrate their models or systems with each other,
forcing them to integrate their system landscapes via a single hub is is certainly
unfeasible. Thus, it will be important to investigate how comprehensive systems can
be integrated themselves such that one can create a layered architecture, similar to the
architecture of the internet, i.e. mediating the network and the centralised approach
with each other. In this context, approaches for information hidingmust be investigated
as well.

8.5 Conclusion

This thesis just presented a framework (= concepts, theory, and tool) for multi-model
consistency management that embeds itself into the existing body of knowledge.
Notwithstanding, challenging theoretical and practical questions remain. Hence, “the
contents of this thesis should rather be considered a starting point . . . than the final
document of this research issue”2.

2This is a direct citation of the final sentence in [318]

196 Chapter 8

BIBLIOGRAPHY

[1] F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, and P. Stevens. Introduction to
Bidirectional Transformations. In J. Gibbons and P. Stevens, editors, Bidirectional
Transformations: International Summer School, 2016, LNCS, pages 1–28. Springer
International Publishing, 2018.

[2] J.-R. Abrial. Formal methods in industry: achievements, problems, future. In
Proceedings of the 28th international conference on Software engineering, ICSE ’06,
pages 761–768, New York, NY, USA, May 2006. Association for Computing
Machinery.

[3] J. Adámek, H. Herrlich, and G. Strecker. Abstract and concrete categories: the joy of
cats. Pure and applied mathematics. Wiley, 1990.

[4] J. Adamek and J. Rosicky. Locally Presentable and Accessible Categories. Lon-
don Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, 1994.

[5] J. Adámek and H. Herrlich. Cartesian closed categories, quasitopoi and topologi-
cal universes. Commentationes Mathematicae Universitatis Carolinae, 27(2):235–257,
1986. Publisher: Charles University in Prague, Faculty of Mathematics and
Physics.

[6] M. A. Ahmad and A. Nadeem. Consistency checking of UML models using
Description Logics: A critical review. In 2010 6th International Conference on
Emerging Technologies (ICET), pages 310–315, Oct. 2010.

[7] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model trace-
ability. IBM Systems Journal, 45(3):515–526, 2006.

[8] D. H. Akehurst and S. Kent. A Relational Approach to Defining Transformations
in a Metamodel. In Proceedings of the 5th International Conference on The Unified
Modeling Language, UML ’02, pages 243–258, Berlin, Heidelberg, Sept. 2002.
Springer-Verlag.

[9] J. E. v. Aken. Management Research Based on the Paradigm of the Design
Sciences: The Quest for Field-Tested and Grounded Technological Rules. Journal
of Management Studies, 41(2):219–246, 2004.

[10] M. Alanen and I. Porres. Difference and union of models. In P. Stevens, J. Whittle,
and G. Booch, editors, UML 2003 - The Unified Modeling Language, Modeling
Languages and Applications, 6th International Conference, volume 2863 of LNCS,
pages 2–17. Springer, 2003.

[11] F. Allilaire, J. Bézivin, H. Bruneliere, and F. Jouault. Global Model Management
in Eclipse GMT/AM3. In Eclipse Technology eXchange Workshop (eTX) - a ECOOP
2006 Satellite Event, Nantes, France, July 2006.

BIBLIOGRAPHY

[12] N. Alshuqayran, N. Ali, and R. Evans. A Systematic Mapping Study in Microser-
vice Architecture. In SOCA 2016, pages 44–51, Nov. 2016.

[13] M. Alvarez-Picallo and C.-H. L. Ong. Change Actions: Models of Generalised
Differentiation. In M. Bojańczyk and A. Simpson, editors, Foundations of Software
Science and Computation Structures, Lecture Notes in Computer Science, pages
45–61. Springer International Publishing, 2019.

[14] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON: A Standard-
CompliantMetamodeling FrameworkwithGraphTransformations. InA. Rensink
and J. Warmer, editors,Model Driven Architecture – Foundations and Applications,
Lecture Notes in Computer Science, pages 361–375, Berlin, Heidelberg, 2006.
Springer.

[15] S. Ananieva, S. Greiner, T. Kühn, J. Krüger, L. Linsbauer, S. Grüner, T. Kehrer,
H. Klare, A. Koziolek, H. Lönn, S. Krieter, C. Seidl, S. Ramesh, R. Reussner, and
B. Westfechtel. A conceptual model for unifying variability in space and time. In
Proceedings of the 24th ACMConference on Systems and Software Product Line: Volume
A - Volume A, SPLC ’20, pages 1–12, New York, NY, USA, Oct. 2020. Association
for Computing Machinery.

[16] M. Andreessen. Why Software Is Eating The World. Wall Street Journal, Aug.
2011.

[17] M.Andries, G. Engels, A.Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D. Plump,
A. Schürr, and G. Taentzer. Graph transformation for specification and program-
ming. Science of Computer Programming, 34(1):1–54, Apr. 1999.

[18] A. Anjorin, T. Buchmann, B. Westfechtel, Z. Diskin, H.-S. Ko, R. Eramo, G. Hinkel,
L. Samimi-Dehkordi, and A. Zündorf. Benchmarking bidirectional transforma-
tions: theory, implementation, application, and assessment. Software and Systems
Modeling, Sept. 2019.

[19] M. Antkiewicz and K. Czarnecki. Design Space of Heterogeneous Synchroniza-
tion. In R. Lämmel, J. Visser, and J. Saraiva, editors, GTTSE 2007, Lecture Notes
in Computer Science, pages 3–46. Springer, Berlin, Heidelberg, 2008.

[20] M. A. Arbib and E. G. Manes. Arrows, Structures, and Functors: The Categorical
Imperative. Academic Pr., New York, 1st edition, Feb. 1975.

[21] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data Exchange.
Cambridge University Press, Cambridge, 2014.

[22] C. H. Asuncion and M. J. van Sinderen. Pragmatic Interoperability: A Systematic
Review of Published Definitions. In P. Bernus, G. Doumeingts, and M. Fox,
editors, Enterprise Architecture, Integration and Interoperability, IFIP Advances in
Information and Communication Technology, pages 164–175, Berlin, Heidelberg,
2010. Springer.

198 Bibliography

BIBLIOGRAPHY

[23] C. Atkinson and T. Kuhne. Model-driven development: a metamodeling founda-
tion. IEEE Software, 20(5):36–41, Sept. 2003. Conference Name: IEEE Software.

[24] C.Atkinson andT.Kühne. TheEssence ofMultilevelMetamodeling. InM.Gogolla
and C. Kobryn, editors, UML 2001, LNCS, pages 19–33, Berlin, Heidelberg, 2001.
Springer.

[25] C. Atkinson, D. Stoll, and P. Bostan. Orthographic SoftwareModeling: A Practical
Approach to View-Based Development. In L. A. Maciaszek, C. González-Pérez,
and S. Jablonski, editors, ENASE 2009, Communications in Computer and
Information Science, pages 206–219. Springer Berlin Heidelberg, 2010.

[26] U. Aßmann, S. Zschaler, and G. Wagner. Ontologies, Meta-models, and the
Model-Driven Paradigm. In C. Calero, F. Ruiz, and M. Piattini, editors, Ontologies
for Software Engineering and Software Technology, pages 249–273. Springer, Berlin,
Heidelberg, 2006.

[27] J. Backus. The history of Fortran I, II, and III. IEEE Annals of the History of
Computing, 20(4):68–78, Oct. 1998. Conference Name: IEEE Annals of the History
of Computing.

[28] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wĳngaarden, M. Woodger, and
P. Naur. Report on the algorithmic language ALGOL 60. Communications of the
ACM, 3(5):299–314, May 1960.

[29] J. Bailey, D. Budgen, and M. Turner. Evidence relating to Object-Oriented
software design: A survey. In Empirical Software Engineering and Measurement,
2007. ESEM 2007. First International Symposium on Empirical Software Engineering
and Measurement. IEEE, 2007.

[30] R. Balzer. Tolerating inconsistency. In Proceedings of the 13th international conference
on Software engineering, ICSE ’91, pages 158–165, Washington, DC, USA, May
1991. IEEE Computer Society Press.

[31] F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. ACM Trans.
Database Syst., 6(4):557–575, 1981.

[32] D. M. Barbosa, J. Cretin, N. Foster, M. Greenberg, and B. C. Pierce. Matching
Lenses: Alignment and View Update. In ICFP ’10, pages 193–204, New York, NY,
USA, 2010. ACM.

[33] N. Barnickel andM. Fluegge. Towards a conceptual framework for semantic inter-
operability in service oriented architectures. In Proceedings of the 1st International
Conference on Intelligent Semantic Web-Services and Applications, ISWSA ’10, pages
1–7, New York, NY, USA, June 2010. Association for Computing Machinery.

[34] M. Barr and C. Wells. Category theory for computing science. Prentice Hall, 1990.

Bibliography 199

BIBLIOGRAPHY

[35] A. Barriga, R. Heldal, L. Iovino, M. Marthinsen, and A. Rutle. An extensible
framework for customizable model repair. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems, MOD-
ELS ’20, pages 24–34, New York, NY, USA, Oct. 2020. Association for Computing
Machinery.

[36] A. Barriga, A. Rutle, and R. Heldal. Automatic model repair using reinforcement
learning. In Proceedings of MODELS 2018 Workshops: ModComp, MRT, OCL,
FlexMDE, EXE, COMMitMDE, MDETools, GEMOC, MORSE, MDE4IoT, MDEbug,
MoDeVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS co-located with ACM/IEEE
21st International Conference on Model Driven Engineering Languages and Systems
(MODELS 2018), Copenhagen, Denmark, October, 14, 2018., pages 781–786, 2018.

[37] R. S. Bashir, S. P. Lee, S. U. R. Khan, V. Chang, and S. Farid. UML models
consistency management: Guidelines for software quality manager. International
Journal of Information Management, 36(6, Part A):883–899, Dec. 2016.

[38] V. Basili, L. Briand, D. Bianculli, S. Nejati, F. Pastore, andM. Sabetzadeh. Software
Engineering Research and Industry: A Symbiotic Relationship to Foster Impact.
IEEE Software, 35(5):44–49, Sept. 2018. Conference Name: IEEE Software.

[39] A. Bastiani and C. Ehresmann. Categories of sketched structures. Cahiers de
Topologie et Géométrie Différentielle Catégoriques, 13(2):104–214, 1972.

[40] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, 2000.

[41] S. Becker, H. Koziolek, and R. Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82(1):3–22,
Jan. 2009.

[42] S. Bennani, S. Ebersold, M. El Hamlaoui, B. Coulette, and M. Nassar. A Collabo-
rative Decision Approach for Alignment of Heterogeneous Models. In 2019 IEEE
28th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), pages 112–117, June 2019. ISSN: 2641-8169.

[43] J. Bentley. Programming pearls: little languages. Communications of the ACM,
29(8):711–721, Aug. 1986.

[44] G. Bergmann, I. Ráth, G. Varró, and D. Varró. Change-driven model transforma-
tions. Software & Systems Modeling, 11(3):431–461, July 2012.

[45] P. A. Bernstein. Applying Model Management to Classical Meta Data Problems.
In CIDR, 2003.

[46] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A vision for management of
complex models. ACM SIGMOD Record, 29(4):55–63, Dec. 2000.

[47] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the Large
and Modeling in the Small. In U. Aßmann, M. Aksit, and A. Rensink, editors,

200 Bibliography

BIBLIOGRAPHY

Model Driven Architecture: European MDAWorkshops: Foundations and Applications,
MDAFA 2003 and MDAFA 2004, pages 33–46, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[48] E. Biermann, C. Ermel, and G. Taentzer. Precise Semantics of EMF Model
Transformations by Graph Transformation. In K. Czarnecki, I. Ober, J.-M. Bruel,
A. Uhl, and M. Völter, editors, MODEL 2008, pages 53–67, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[49] N. Bikakis, C. Tsinaraki, N. Gioldasis, I. Stavrakantonakis, and S. Christodoulakis.
The XML and Semantic Web Worlds: Technologies, Interoperability and Integra-
tion: A Survey of the State of the Art. In I. E. Anagnostopoulos, M. Bieliková,
P. Mylonas, and N. Tsapatsoulis, editors, Semantic Hyper/Multimedia Adaptation:
Schemes and Applications, Studies in Computational Intelligence, pages 319–360.
Springer, Berlin, Heidelberg, 2013.

[50] D. Bjørner and K. Havelund. 40 Years of Formal Methods. In C. Jones, P. Pihla-
jasaari, and J. Sun, editors, FM 2014: Formal Methods, Lecture Notes in Computer
Science, pages 42–61. Springer International Publishing, 2014.

[51] J. Boardman and B. Sauser. System of Systems - the meaning of of. In 2006
IEEE/SMC International Conference on System of Systems Engineering, pages 6 pp.–,
Apr. 2006.

[52] B. W. Boehm. Software Engineering. IEEE Trans. Comput., 25(12):1226–1241, Dec.
1976.

[53] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt. Boomerang:
resourceful lenses for string data. ACM SIGPLAN Notices, 43(1):407–419, Jan.
2008.

[54] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a language for
updatable views. In Proceedings of the twenty-fifth ACMSIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS ’06, pages 338–347, New York,
NY, USA, June 2006. Association for Computing Machinery.

[55] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. Confluence of
Graph Rewriting with Interfaces. In H. Yang, editor, Programming Languages and
Systems, Lecture Notes in Computer Science, pages 141–169, Berlin, Heidelberg,
2017. Springer.

[56] G. Booch. The History of Software Engineering. IEEE Software, 35(5):108–114,
Sept. 2018. Conference Name: IEEE Software.

[57] A. Boronat, A. Knapp, J. Meseguer, and M. Wirsing. What Is a Multi-modeling
Language? InWADT 2008, pages 71–87, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[58] A. Boronat and J.Meseguer. Algebraic Semantics of OCL-ConstrainedMetamodel
Specifications. In M. Oriol and B. Meyer, editors, Objects, Components, Models and

Bibliography 201

BIBLIOGRAPHY

Patterns, Lecture Notes in Business Information Processing, pages 96–115, Berlin,
Heidelberg, 2009. Springer.

[59] A. Boronat and J. Meseguer. An algebraic semantics for MOF. Formal Aspects of
Computing, 22(3):269–296, May 2010.

[60] P. Bourque, R. E. Fairley, and I. C. Society. Guide to the Software Engineering Body of
Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society Press, Washington,
DC, USA, 3rd edition, 2014.

[61] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers, 2nd edition, 2017.

[62] Brooks. NoSilver Bullet Essence andAccidents of SoftwareEngineering. Computer,
20(4):10–19, Apr. 1987. Conference Name: Computer.

[63] F. P. Brooks Jr. TheMythicalMan-Month: Essays on Software Engineering, Anniversary
Edition. Addison-Wesley Professional, Reading, Mass, 2 edition edition, Aug.
1995.

[64] M. Broy. Yesterday, Today, and Tomorrow: 50 Years of Software Engineering.
IEEE Software, 35(5):38–43, Sept. 2018. Conference Name: IEEE Software.

[65] M. Broy, M. V. Cengarle, H. Grönniger, and B. Rumpe. Considerations and
Rationale for a UML System Model. In UML 2 Semantics and Applications, pages
43–60. John Wiley & Sons, Ltd, 2009.

[66] M. Broy, M. V. Cengarle, H. Grönniger, and B. Rumpe. Definition of the System
Model. In K. Lano, editor, UML 2 Semantics and Applications, pages 63–91. John
Wiley & Sons, Ltd, 2009.

[67] C. Brun andA. Pierantonio. Model differences in the eclipsemodeling framework.
UPGRADE, The European Journal for the Informatics Professional, 9(2):29–34, 2008.

[68] H. Bruneliere, E. Burger, J. Cabot, and M. Wimmer. A feature-based survey of
model view approaches. Software & Systems Modeling, 18(3):1931–1952, June 2019.

[69] H. Bruneliere, J. G. Perez, M. Wimmer, and J. Cabot. EMF Views: A View
Mechanism for Integrating Heterogeneous Models. In P. Johannesson, M. L. Lee,
S. W. Liddle, A. L. Opdahl, and O. Pastor López, editors, Conceptual Modeling,
Lecture Notes in Computer Science, pages 317–325, Cham, 2015. Springer
International Publishing.

[70] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh. A
Manifesto for Model Merging. In GaMMa ’06, pages 5–12, New York, NY, USA,
2006. ACM.

[71] R. Bruni, J. Meseguer, and U. Montanari. Symmetric monoidal and cartesian
double categories as a semantic framework for tile logic. Mathematical Structures
in Computer Science, 12(1):53–90, Feb. 2002.

202 Bibliography

BIBLIOGRAPHY

[72] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio. Grand challenges in
model-driven engineering: an analysis of the state of the research. Software and
Systems Modeling, 19(1):5–13, Jan. 2020.

[73] T. Buchmann. BXtend - A Framework for (Bidirectional) Incremental Model
Transformations. In MODELSWARD 2019 Proceedings, pages 336–345, Oct. 2019.

[74] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham. Using Mapping Studies
in Software Engineering. In Proceedings of PPIG, volume 8, 2008.

[75] J. Bénabou. Introduction to bicategories. In J. Bénabou, R. Davis, A. Dold, J. Isbell,
S. MacLane, U. Oberst, and J. E. Roos, editors, Reports of the Midwest Category
Seminar, Lecture Notes in Mathematics, pages 1–77, Berlin, Heidelberg, 1967.
Springer.

[76] J. Bézivin. In search of a Basic Principle for Model-Driven Engineering. Novatica
– Special Issue on UML (Unified Modeling Language), 5(2):21–24, 2004.

[77] J. Bézivin, S. Bouzitouna, M. D. Del Fabro, M.-P. Gervais, F. Jouault, D. Kolovos,
I. Kurtev, and R. F. Paige. A Canonical Scheme for Model Composition. In
A. Rensink and J. Warmer, editors, Model Driven Architecture – Foundations and
Applications, Lecture Notes in Computer Science, pages 346–360. Springer Berlin
Heidelberg, 2006.

[78] J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J. E. Rougui. First experiments
with the ATL model transformation language: Transforming XSLT into XQuery.
In 2nd OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture, 2003.

[79] J. Bézivin, F. Jouault, and P. Valduriez. On the Need for Megamodels. In Proceed-
ings of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development
workshop, 19th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications,(2004), Vancouver, Canada, Oct. 2004.

[80] J. Cabot and M. Gogolla. Object Constraint Language (OCL): A Definitive Guide.
In M. Bernardo, V. Cortellessa, and A. Pierantonio, editors, Formal Methods for
Model-Driven Engineering: 12th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM 2012, Bertinoro, Italy, June
18-23, 2012. Advanced Lectures, Lecture Notes in Computer Science, pages 58–90.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[81] A. Carboni, S. Lack, andR. F. C.Walters. Introduction to extensive anddistributive
categories. Journal of Pure and Applied Algebra, 84(2):145–158, Feb. 1993.

[82] R. Carnap. The elimination of metaphysics through logical analysis of language.
Erkenntnis, pages 60–81, 1932.

[83] M. Castells. The Information Age, Volumes 1-3: Economy, Society and Culture. Wiley,
July 1999.

Bibliography 203

BIBLIOGRAPHY

[84] M. Chechik, S. Nejati, and M. Sabetzadeh. A relationship-based approach to
model integration. Innovations in Systems and Software Engineering, 8(1):3–18, Mar.
2012.

[85] P. P.-S. Chen. The Entity-relationship Model—Toward a Unified View of Data.
ACM Trans. Database Syst., 1(1):9–36, Mar. 1976.

[86] J. Cheney, J. Gibbons, J. McKinna, and P. Stevens. Towards a Principle of Least
Surprise for Bidirectional Transformations. Proceedings of the 4th International
Workshop on Bidirectional Transformations co-located with Software Technologies:
Applications and Foundations (STAF 2015), 1396:66–80, 2015.

[87] A. Cicchetti, F. Ciccozzi, and A. Pierantonio. Multi-view approaches for software
and system modelling: a systematic literature review. Software and Systems
Modeling, 18(6):3207–3233, Dec. 2019.

[88] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. JTL: A Bidirectional
and Change Propagating Transformation Language. In B. Malloy, S. Staab, and
M. van den Brand, editors, SLE 2011, Lecture Notes in Computer Science, pages
183–202. Springer Berlin Heidelberg, 2011.

[89] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing Dependent Changes in
Coupled Evolution. In R. F. Paige, editor, Theory and Practice of Model Transforma-
tions, Lecture Notes in Computer Science, pages 35–51, Berlin, Heidelberg, 2009.
Springer.

[90] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio. Automating Co-
evolution in Model-Driven Engineering. In 2008 12th International IEEE Enterprise
Distributed Object Computing Conference, pages 222–231, Sept. 2008.

[91] A. Cleve, E. Kindler, P. Stevens, and V. Zaytsev. Multidirectional Transformations
and Synchronisations (Dagstuhl Seminar 18491). Dagstuhl Reports, 8(12):1–48,
2019.

[92] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun.
ACM, 13(6):377–387, June 1970.

[93] B. Coecke and A. Kissinger. Picturing Quantum Processes. Cambridge University
Press, Mar. 2017.

[94] E. Commission. The New European Interoperability Framework, Feb. 2017.

[95] I. C. S. S. C. Committee. IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries, 610. ANSI / IEEE Std. IEEE, 1990.

[96] S. Cook. The UML Family: Profiles, Prefaces and Packages. In A. Evans, S. Kent,
and B. Selic, editors, UML 2000 — The Unified Modeling Language, Lecture Notes
in Computer Science, pages 255–264, Berlin, Heidelberg, 2000. Springer.

[97] J. M. Corbin and A. Strauss. Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative Sociology, 13(1):3–21, Mar. 1990.

204 Bibliography

BIBLIOGRAPHY

[98] A. Corradini, D. Duval, R. Echahed, F. Prost, and L. Ribeiro. AGREE – Algebraic
Graph Rewriting with Controlled Embedding. In F. Parisi-Presicce and B. West-
fechtel, editors, Graph Transformation, Lecture Notes in Computer Science, pages
35–51. Springer International Publishing, 2015.

[99] A. Corradini, T. Heindel, F. Hermann, and B. König. Sesqui-pushout rewriting.
In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors,
Graph Transformations, pages 30–45, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[100] B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of graph grammars
and computing by graph transformation, pages 313–400. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1997.

[101] J. W. Creswell and J. D. Creswell. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. SAGE Publications, Nov. 2017.

[102] K. Czarnecki. Overview of Generative Software Development. In J.-P. Banâtre,
P. Fradet, J.-L. Giavitto, and O. Michel, editors, Unconventional Programming
Paradigms, Lecture Notes in Computer Science, pages 326–341, Berlin, Heidelberg,
2005. Springer.

[103] K. Czarnecki, N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Terwilliger.
Bidirectional Transformations: A Cross-Discipline Perspective. In ICMT 2009,
pages 193–204, 2009.

[104] K. Czarnecki and S. Helsen. Classification of model transformation approaches.
In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context
of the Model Driven Architecture, 2003.

[105] H. K. Dam and M. Winikoff. Supporting change propagation in UML models. In
2010 IEEE International Conference on Software Maintenance, pages 1–10, Sept. 2010.
ISSN: 1063-6773.

[106] S. Damodaran. B2B integration over the Internet with XML: RosettaNet successes
and challenges. In Proceedings of the 13th international World Wide Web conference
on Alternate track papers & posters, WWWAlt. ’04, pages 188–195, New York, NY,
USA, May 2004. Association for Computing Machinery.

[107] J. Davies, J. Gibbons, S. Harris, and C. Crichton. The CancerGrid experience:
Metadata-based model-driven engineering for clinical trials. Science of Computer
Programming, 89:126–143, Sept. 2014.

[108] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-
proving. Commun. ACM, 5(7):394–397, July 1962.

[109] J. de Lara and E. Guerra. Deep Meta-modelling with MetaDepth. In J. Vitek,
editor, Objects, Models, Components, Patterns, Lecture Notes in Computer Science,
pages 1–20, Berlin, Heidelberg, 2010. Springer.

Bibliography 205

BIBLIOGRAPHY

[110] J. de Lara, E. Guerra, J. Kienzle, and Y. Hattab. Facet-oriented modelling: open
objects for model-driven engineering. In SLE 2018, pages 147–159, Boston, MA,
USA, Oct. 2018. Association for Computing Machinery.

[111] J. De Lara and H. Vangheluwe. Atom 3: A tool for multi-formalism and meta-
modelling. In International Conference on Fundamental Approaches to Software
Engineering, pages 174–188. Springer, 2002.

[112] A. Demuth, M. Riedl-Ehrenleitner, R. E. Lopez-Herrejon, and A. Egyed. Co-
evolution of metamodels and models through consistent change propagation.
Journal of Systems and Software, 111:281–297, Jan. 2016.

[113] S. DeRose, E. Maler, D. Orchard, and N. Walsh. XML Linking Language (XLink)
Version 1.1, May 2010.

[114] M. Didonet Del Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas. AMW:
a generic model weaver. In 1 ere Journées sur l’Ingénierie Dirigée par les Modèles
(IDM05), pages 105–114, France, 2005.

[115] E. W. Dĳkstra. On the cruelty of really teaching computing science. Comm. ACM,
32(12):1398–1404, 1989.

[116] J. Dingel, Z. Diskin, and A. Zito. Understanding and improving UML package
merge. Software & Systems Modeling, 7(4):443–467, Oct. 2008.

[117] Z. Diskin. Towards Algebraic Graph-Based Model Theory for Computer Science.
Bulletin of Symbolic Logic, 3:144–145, 1997.

[118] Z. Diskin. Mathematics of UML. In Practical Foundations of Business System
Specifications, pages 145–178. Springer Netherlands, Dordrecht, 2003.

[119] Z. Diskin. Model Synchronization: Mappings, Tiles, and Categories. In J. M.
Fernandes, R. Lämmel, J. Visser, and J. Saraiva, editors, GTTSE 2009, Lecture
Notes in Computer Science, pages 92–165. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[120] Z. Diskin. General Supervised Learning as Change Propagation with Delta
Lenses. In Foundations of Software Science and Computation Structures, pages
177–197. Springer, Cham, Apr. 2020.

[121] Z. Diskin, K. Czarnecki, and M. Antkiewicz. Model-versioning-in-the-large:
Algebraic foundations and the tile notation. In 2009 ICSE Workshop on Comparison
and Versioning of Software Models, pages 7–12, May 2009. ISSN: null.

[122] Z. Diskin, R. Eramo, A. Pierantonio, and K. Czarnecki. Incorporating Uncertainty
into Bidirectional Model Transformations and their Delta-Lens Formalization.
In Proceedings of the 5th International Workshop on Bidirectional Transformations,
Bx 2016, co-located with The European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 8, 2016, pages 15–31, 2016.

206 Bibliography

BIBLIOGRAPHY

[123] Z. Diskin, H. Gholizadeh, A. Wider, and K. Czarnecki. A three-dimensional
taxonomy for bidirectional model synchronization. J. Syst. Softw, 111:298–322,
Jan. 2016.

[124] Z. Diskin, A. Gómez, and J. Cabot. Traceability Mappings as a Fundamental
Instrument in Model Transformations. In M. Huisman and J. Rubin, editors,
Fundamental Approaches to Software Engineering, Lecture Notes in Computer
Science, pages 247–263, Berlin, Heidelberg, 2017. Springer.

[125] Z. Diskin, S. Kokaly, and T. Maibaum. Mapping-aware megamodeling: Design
patterns and laws. LNCS, 8225:322–343, 2013.

[126] Z. Diskin, H. König, and M. Lawford. Multiple model synchronization with
multiary delta lenses with amendment andK-Putput. Formal Aspects of Computing,
31(5):611–640, Nov. 2019.

[127] Z. Diskin, H. König, M. Lawford, and T. Maibaum. Toward Product Lines
of Mathematical Models for Software Model Management. In M. Seidl and
S. Zschaler, editors, Software Technologies: Applications and Foundations, Lecture
Notes in Computer Science, pages 200–216, Cham, 2018. Springer International
Publishing.

[128] Z. Diskin, T. Maibaum, and K. Czarnecki. Intermodeling, Queries, and Kleisli
Categories. In J. de Lara and A. Zisman, editors, Fundamental Approaches to
Software Engineering, Lecture Notes in Computer Science, pages 163–177, Berlin,
Heidelberg, 2012. Springer.

[129] Z. Diskin, T. Maibaum, and K. Czarnecki. Intermodeling, Queries, and Kleisli
Categories. In J. de Lara and A. Zisman, editors, Fundamental Approaches to
Software Engineering, LNCS, pages 163–177. Springer Berlin Heidelberg, 2012.

[130] Z. Diskin, T. Maibaum, and K. Czarnecki. A Model Management Imperative:
Being Graphical Is Not Sufficient, You Have to Be Categorical. In G. Taentzer and
F. Bordeleau, editors, Modelling Foundations and Applications, Lecture Notes in
Computer Science, pages 154–170, Cham, 2015. Springer International Publishing.

[131] Z. Diskin and P. Stünkel. Sketches, Queries, and Views: From Term-Graphs
to Diagrammatic Term-Sketches (Revision of TR 2020-33). Technical Report 34,
McMaster Centre for Software Certification, May 2021.

[132] Z.Diskin andU.Wolter. Adiagrammatic logic for object-oriented visualmodeling.
In ACCAT ’07, pages 19–41, 2007.

[133] Z. Diskin, Y. Xiong, and K. Czarnecki. From State- to Delta-Based Bidirectional
Model Transformations. In L. Tratt and M. Gogolla, editors, Theory and Practice of
Model Transformations, Lecture Notes in Computer Science, pages 61–76. Springer
Berlin Heidelberg, 2010.

[134] Z. Diskin, Y. Xiong, and K. Czarnecki. Specifying Overlaps of Heterogeneous
Models for Global Consistency Checking. InMDI@MODELS 2010, pages 165–179,
2011.

Bibliography 207

BIBLIOGRAPHY

[135] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and F. Orejas. From
State- to Delta-based Bidirectional Model Transformations: The Symmetric Case.
In Proceedings of the 14th International Conference on Model Driven Engineering
Languages and Systems, MODELS’11, pages 304–318, Berlin, Heidelberg, 2011.
Springer-Verlag. event-place: Wellington, New Zealand.

[136] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Elsevier, June 2012.

[137] M. Dowson. The Ariane 5 Software Failure. SIGSOFT Softw. Eng. Notes, 22(2):84–,
Mar. 1997.

[138] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes. Engineering a DSL
for Software Traceability. In D. Gašević, R. Lämmel, and E. Van Wyk, editors,
Software Language Engineering, Lecture Notes in Computer Science, pages 151–167,
Berlin, Heidelberg, 2009. Springer.

[139] T. Dyba, B. A. Kitchenham, andM. Jorgensen. Evidence-based software engineer-
ing for practitioners. IEEE Software, 22(1):58–65, Jan. 2005. Conference Name:
IEEE Software.

[140] C. L. Dym. Engineering Design: A Project-Based Introduction. Wiley, 2013.

[141] S. Easterbrook and B.Nuseibeh. Using ViewPoints for inconsistencymanagement.
Software Engineering Journal, 11(1):31–43, Jan. 1996.

[142] A. Egyed. Scalable consistency checking between diagrams - the VIEWINTEGRA
approach. In Proceedings 16th Annual International Conference on Automated Software
Engineering (ASE 2001), pages 387–390, Nov. 2001. ISSN: 1938-4300.

[143] A. Egyed, E. Letier, and A. Finkelstein. Generating and Evaluating Choices
for Fixing Inconsistencies in UML Design Models. In 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, pages 99–108, Sept.
2008.

[144] H. Ehrig, K. Ehrig, C. Ermel, F.Hermann, andG. Taentzer. Information Preserving
Bidirectional Model Transformations. In M. B. Dwyer and A. Lopes, editors,
Fundamental Approaches to Software Engineering, Lecture Notes in Computer
Science, pages 72–86. Springer Berlin Heidelberg, 2007.

[145] H. Ehrig, K. Ehrig, and F. Hermann. From Model Transformation to Model Inte-
gration based on the Algebraic Approach to Triple Graph Grammars. Electronic
Communications of the EASST, 10(0), June 2008.

[146] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of algebraic graph
transformation. Springer-Verlag Berlin Heidelberg, 1 edition, 2006.

[147] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. From graph grammars
to high level replacement systems. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg,
editors, Graph Grammars and Their Application to Computer Science, Lecture Notes
in Computer Science, pages 269–291, Berlin, Heidelberg, 1991. Springer.

208 Bibliography

BIBLIOGRAPHY

[148] H. Ehrig and M. Löwe. Categorical principles, techniques and results for high-
level-replacement systems in computer science. Applied Categorical Structures,
1(1):21–50, Mar. 1993.

[149] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An algebraic
approach. In 14th Annual Symposium on Switching and Automata Theory (swat
1973), pages 167–180, Oct. 1973.

[150] H. Ehrig and U. Prange. Weak Adhesive High-Level Replacement Categories
and Systems: A Unifying Framework for Graph and Petri Net Transformations.
In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Algebra, Meaning,
and Computation: Essays dedicated to Joseph A. Goguen on the Occasion of His 65th
Birthday, Lecture Notes in Computer Science, pages 235–251. Springer, Berlin,
Heidelberg, 2006.

[151] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed
graph transformation. InH. Ehrig, G. Engels, F. Parisi-Presicce, andG. Rozenberg,
editors, Graph Transformations, pages 161–177, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[152] S. Eilenberg andS.MacLane. General TheoryofNatural Equivalences. Transactions
of the American Mathematical Society, 58(2):231–294, 1945.

[153] M. Elaasar and L. Briand. An overview of UML consistency management.
Technical Report SCE-04-18, Carleton University, 2004.

[154] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic Meta Modeling:
A Graphical Approach to the Operational Semantics of Behavioral Diagrams
in UML. In A. Evans, S. Kent, and B. Selic, editors, UML 2000 — The Unified
Modeling Language, Lecture Notes in Computer Science, pages 323–337, Berlin,
Heidelberg, 2000. Springer.

[155] G. Engels, J. M. Küster, R. Heckel, and L. Groenewegen. A methodology for
specifying and analyzing consistency of object-oriented behavioral models. ACM
SIGSOFT Software Engineering Notes, 26(5):186–195, Sept. 2001.

[156] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio. A model-
driven approach to automate the propagation of changes among Architecture
Description Languages. Software & Systems Modeling, 11(1):29–53, Feb. 2012.

[157] R. Eramo, R. Marinelli, and A. Pierantonio. Towards a Taxonomy for Bidirectional
Transformation. In SATToSE, 2014.

[158] H. Erdogmus, N. Medvidović, and F. Paulisch. 50 Years of Software Engineering.
IEEE Software, 35(5):20–24, Sept. 2018. Conference Name: IEEE Software.

[159] EU Comission. Horizon 2020 calls for eHealth projects.
http://ec.europa.eu/digital-single-market/en/news/
first-horizon-2020-calls-ehealth-projects-launched, Last Accessed:
08.11.2017, 2015.

Bibliography 209

http://ec.europa.eu/digital-single-market/en/news/first-horizon-2020-calls-ehealth-projects-launched
http://ec.europa.eu/digital-single-market/en/news/first-horizon-2020-calls-ehealth-projects-launched

BIBLIOGRAPHY

[160] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston, first edition edition, Aug. 2003.

[161] Facebook Inc. GraphQL Specification, June 2018.

[162] J.-M. Favre. Meta-Model and Model Co-evolution within the 3D Software Space.
In International Workshop on Evolution of Large-scale Industrial Software Applications,
ELISA 2003, Amsterdam, pages 98–109, 2003.

[163] J.-m. Favre. Towards a basic theory to model model driven engineering. In In
Workshop on Software Model Engineering, WISME 2004, joint event with UML2004,
2004.

[164] J.-M. Favre. Foundations ofMeta-Pyramids: Languages vs.Metamodels – Episode
II: Story of Thotus the Baboon1. In J. Bezivin and R. Heckel, editors, Language
Engineering for Model-Driven Software Development, number 04101 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[165] J.-M. Favre. Foundations of Model (Driven) (Reverse) Engineering : Models –
Episode I: Stories of The Fidus Papyrus and of The Solarus. In J. Bezivin and
R. Heckel, editors, Language Engineering for Model-Driven Software Development,
number 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany.

[166] J.-M. Favre. Megamodelling and Etymology. In J. R. Cordy, R. Lämmel, and
A. Winter, editors, Transformation Techniques in Software Engineering, Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2006. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany. ISSN:
1862-4405 Issue: 05161.

[167] J.-M. Favre and T. NGuyen. Towards a Megamodel to Model Software Evolu-
tion Through Transformations. Electronic Notes in Theoretical Computer Science,
127(3):59–74, 2005.

[168] S. Feldmann, K. Kernschmidt, M. Wimmer, and B. Vogel-Heuser. Managing
inter-model inconsistencies in model-based systems engineering: Application
in automated production systems engineering. Journal of Systems and Software,
153:105–134, July 2019.

[169] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[170] P. Feyerabend. Against Method. Verso, 1993.

[171] J. L. Fiadeiro. Categories for Software Engineering. Springer, 2005.

[172] R. T. Fielding and R. N. Taylor. Principled design of the modernWeb architecture.
In ICSE ’00, pages 407–416, Limerick, Ireland, June 2000. ACM.

210 Bibliography

BIBLIOGRAPHY

[173] A. Finkelsteiin, G. Spanoudakis, and D. Till. Managing Interference. In ISAW
’96 and Viewpoints ’96 on SIGSOFT ’96 Workshops, pages 172–174, New York, NY,
USA, 1996. ACM.

[174] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency
handling in multi-perspective specifications. In I. Sommerville and M. Paul,
editors, Software Engineering — ESEC ’93, Lecture Notes in Computer Science,
pages 84–99, Berlin, Heidelberg, 1993. Springer.

[175] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-
points: a framework for integratingmultiple perspectives in system development.
International Journal of Software Engineering and Knowledge Engineering, 02(01):31–
57, Mar. 1992. Publisher: World Scientific Publishing Co.

[176] A. Finkelstein, G. Spanoudakis, and D. Till. Managing Interference. In Joint
Proceedings of the Second International Software Architecture Workshop (ISAW-2) and
International Workshop on Multiple Perspectives in Software Development (Viewpoints
’96) on SIGSOFT ’96 Workshops, ISAW ’96, pages 172–174, New York, NY, USA,
1996. ACM.

[177] B. Fong and D. I. Spivak. An Invitation to Applied Category Theory: Seven Sketches
in Compositionality. Cambridge University Press, 1 edition edition, Aug. 2019.

[178] J.N. Foster,M. B.Greenwald, J. T.Moore, B.C. Pierce, andA. Schmitt. Combinators
for Bidirectional TreeTransformations: ALinguisticApproach to theView-update
Problem. ACM Trans. Program. Lang. Syst., 29(3), may 2007.

[179] N. Foster, K. Matsuda, and J. Voigtländer. Three Complementary Approaches
to Bidirectional Programming. In J. Gibbons, editor, Generic and Indexed Pro-
gramming: International Spring School, SSGIP 2010, Oxford, UK, March 22-26, 2010,
Revised Lectures, Lecture Notes in Computer Science, pages 1–46. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[180] M. Fowler. Domain-Specific Languages. Pearson Education, Sept. 2010.

[181] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Signa-
ture Series (Fowler). Pearson Education, 2012.

[182] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley, Mar. 2012.

[183] M. Fowler and J. Lewis. Microservices: a definition of this new architectural term.
https://martinfowler.com/articles/microservices.html, Last Accessed:
07.02.2020, Mar. 2014.

[184] J. R. Frade, D. Di Giacomo, S. Goedertier, N. Loutas, and V. Peristeras. Building
semantic interoperability through the federation of semantic asset repositories. In
Proceedings of the 8th International Conference on Semantic Systems, I-SEMANTICS
’12, pages 185–188, New York, NY, USA, Sept. 2012. Association for Computing
Machinery.

Bibliography 211

https://martinfowler.com/articles/microservices.html

BIBLIOGRAPHY

[185] P. D. Francesco, I. Malavolta, and P. Lago. Research onArchitectingMicroservices:
Trends, Focus, and Potential for Industrial Adoption. In ICSA 2017, pages 21–30,
Apr. 2017.

[186] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-
tikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher: An Evolving Query
Language for Property Graphs. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, pages 1433–1445, New York, NY, USA, May
2018. Association for Computing Machinery.

[187] M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini. Collaborative Model-
Driven Software Engineering: A Classification Framework and a Research Map.
IEEE Transactions on Software Engineering, 44(12):1146–1175, Dec. 2018. Conference
Name: IEEE Transactions on Software Engineering.

[188] G. Frege. Begriffsschrift. 1879.

[189] L. Fritsche, J. Kosiol, A. Möller, A. Schürr, and G. Taentzer. A precedence-driven
approach for concurrent model synchronization scenarios using triple graph
grammars. InProceedings of the 13th ACMSIGPLAN International Conference on Soft-
ware Language Engineering, pages 39–55. Association for Computing Machinery,
New York, NY, USA, Nov. 2020.

[190] I. Galvao and A. Goknil. Survey of Traceability Approaches in Model-Driven
Engineering. In 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2007), pages 313–313, Oct. 2007. ISSN: 1541-7719.

[191] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[192] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation:
The Missing Link of MDA. In A. Corradini, H. Ehrig, H. J. Kreowski, and
G. Rozenberg, editors, Graph Transformation, Lecture Notes in Computer Science,
pages 90–105, Berlin, Heidelberg, 2002. Springer.

[193] H. Giese, S. Hildebrandt, and L. Lambers. Toward Bridging the Gap between
Formal Semantics and Implementation of Triple Graph Grammars. In and
Validation 2010 Workshop on Model-Driven Engineering, Verification, pages 19–24,
Oct. 2010. ISSN: null.

[194] H. Giese and R. Wagner. Frommodel transformation to incremental bidirectional
model synchronization. Software & Systems Modeling, 8(1):21–43, Feb. 2009.

[195] B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory: Strategies for
Qualitative Research. Transaction Publishers, 1967.

[196] J. Gleitze. A Declarative Language for Preserving Consistency of Multiple Models.
Bachelor Thesis, Karlsruhe Institue of Technology, 2017.

212 Bibliography

BIBLIOGRAPHY

[197] J. Gleitze, H. Klare, and E. Burger. Finding a Universal Execution Strategy
for Model Transformation Networks. In E. Guerra and M. Stoelinga, editors,
Fundamental Approaches to Software Engineering, Lecture Notes in Computer
Science, pages 87–107, Cham, 2021. Springer International Publishing.

[198] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based specification
environment for validating UML and OCL. Science of Computer Programming,
69(1):27–34, Dec. 2007.

[199] M. Gogolla and J. Cabot. Continuing a Benchmark for UML and OCL Design
and Analysis Tools. In P. Milazzo, D. Varró, and M. Wimmer, editors, Software
Technologies: Applications and Foundations, Lecture Notes in Computer Science,
pages 289–302, Cham, 2016. Springer International Publishing.

[200] M.Gogolla, L.Hamann, F.Hilken,M.Kuhlmann, andR. France. FromApplication
Models to Filmstrip Models: An Approach to Automatic Validation of Model
Dynamics. InModellierung, pages 273–288. Gesellschaft für Informatik e.V., Bonn,
2014. Accepted: 2019-03-19T14:06:56Z ISSN: 1617-5468.

[201] J. Goguen. Tossing algebraic flowers down the great divide. In In People and Ideas
in Theoretical Computer Science, pages 93–129. Springer, 1999.

[202] J. A. Goguen. Categorical foundations for general systems theory. In F. Pichler
and R. Trappl, editors,Advances in Cybernetics and Systems Research, pages 121–130.
Transcripta Books, 1973.

[203] J. A. Goguen. A categorical manifesto. Mathematical Structures in Computer Science,
1(1):49–67, Mar. 1991. Publisher: Cambridge University Press.

[204] J. A. Goguen. Sheaf Semantics for Concurrent Interacting Objects. InMathematical
Structures in Computer Science, pages 159–191, 1992.

[205] J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specifica-
tion and programming. Journal of the ACM, 39(1):95–146, Jan. 1992.

[206] U. Golas, A. Habel, and H. Ehrig. Multi-amalgamation of rules with application
conditions in -adhesive categories. Mathematical Structures in Computer Science,
24(4), Aug. 2014. Publisher: Cambridge University Press.

[207] R. Goldblatt. Topoi: The Categorial Analysis of Logic. Dover Publications, revised
edition, Apr. 2006.

[208] G. Goldkuhl. Design Theories in Information Systems - A Need for Multi-
Grounding. Journal of Information Technology Theory and Application (JITTA), 6(2),
July 2004.

[209] T. Goldschmidt, S. Becker, and E. Burger. Towards a tool-oriented taxonomy of
view-based modelling. In E. Sinz and A. Schürr, editors,Modellierung 2012, pages
59–74. Gesellschaft für Informatik e.V., 2012. Accepted: 2018-11-14T09:41:29Z
ISSN: 1617-5468.

Bibliography 213

BIBLIOGRAPHY

[210] H. Goldstine and J. von Neumann. Planning and coding of problems for an
electronic computing instrument. Technical Report Part II, Volume 1-3, Institute
for Advanced Study, Princeton, New Yersey, 1947.

[211] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements traceability
problem. InProceedings of IEEE International Conference onRequirements Engineering,
pages 94–101, Apr. 1994.

[212] A. Grothendieck and M. Raynaud. Revêtements étales et groupe fondamental
(SGA 1). arXiv:math/0206203, Jan. 1971. arXiv: math/0206203.

[213] B. Gruschko, D. Kolovos, and R. Paige. Towards Synchronizing Models with
Evolving Metamodels. InMODSE 2007, 2007.

[214] H. Grönniger, J. O. Ringert, and B. Rumpe. System Model-Based Definition of
Modeling Language Semantics. In D. Lee, A. Lopes, and A. Poetzsch-Heffter,
editors, Formal Techniques for Distributed Systems, Lecture Notes in Computer
Science, pages 152–166, Berlin, Heidelberg, 2009. Springer.

[215] E. Guerra, J. de Lara, D. S. Kolovos, and R. F. Paige. Inter-modelling: From Theory
to Practice. In D. C. Petriu, N. Rouquette, and Ø. Haugen, editors, MODELS ’10,
Lecture Notes in Computer Science, pages 376–391. Springer Berlin Heidelberg,
2010.

[216] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, andM. Roth. Clio Grows Up: From
Research Prototype to Industrial Tool. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’05, pages 805–810, New
York, NY, USA, 2005. ACM. event-place: Baltimore, Maryland.

[217] A. Habel and K.-H. Pennemann. Correctness of high-level transformation
systems relative to nested conditions†. Mathematical Structures in Computer
Science, 19(2):245–296, Apr. 2009.

[218] A. Habel and C. Sandmann. Graph Repair by Graph Programs. In M. Mazzara,
I. Ober, and G. Salaün, editors, Software Technologies: Applications and Foundations,
Lecture Notes in Computer Science, pages 431–446, Cham, 2018. Springer
International Publishing.

[219] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, June 1987.

[220] V. Haren. TOGAF Version 9.1. Van Haren Publishing, 10th edition, 2011.

[221] J. Haungs, M. Fowler, R. Johnson, S. McConnell, and R. Gabriel. Software
Development: Arts & Crafts or Math & Science? In Companion to the 19th Annual
ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’04, pages 141–142, New York, NY, USA, 2004. ACM.

[222] W. He and L. D. Xu. Integration of Distributed Enterprise Applications: A Survey.
IEEE Transactions on Industrial Informatics, 10(1):35–42, Feb. 2014.

214 Bibliography

BIBLIOGRAPHY

[223] I. Healthcare Information and Management Systems Society. Interoperability in
Healthcare, July 2020.

[224] R. Hebig, D. E. Khelladi, and R. Bendraou. Approaches to Co-Evolution of
Metamodels and Models: A Survey. IEEE Transactions on Software Engineering,
43(5):396–414, May 2017.

[225] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende. Closing the Gap between
Modelling and Java. In M. van den Brand, D. Gašević, and J. Gray, editors,
Software Language Engineering, Lecture Notes in Computer Science, pages 374–383,
Berlin, Heidelberg, 2010. Springer.

[226] T. Heindel. A Category Theoretical Approach to the Concurrent Semantics of Rewriting:
Adhesive Categories and Related Concepts. PhD thesis, University of Duisburg-Essen,
Apr 2010.

[227] T. Heindel. Hereditary Pushouts Reconsidered. InH. Ehrig, A. Rensink, G. Rozen-
berg, and A. Schürr, editors, Graph Transformations, Lecture Notes in Computer
Science, pages 250–265, Berlin, Heidelberg, 2010. Springer.

[228] F. Hermann, H. Ehrig, and C. Ermel. Transformation of Type Graphs with
Inheritance for Ensuring Security in E-Government Networks. In M. Chechik
and M. Wirsing, editors, Fundamental Approaches to Software Engineering, Lecture
Notes in Computer Science, pages 325–339. Springer Berlin Heidelberg, 2009.

[229] F.Hermann,H. Ehrig, C. Ermel, and F.Orejas. ConcurrentModel Synchronization
with Conflict Resolution Based on Triple Graph Grammars. In J. de Lara and
A. Zisman, editors, FASE 2012, LectureNotes in Computer Science, pages 178–193.
Springer Berlin Heidelberg, 2012.

[230] F.Hermann,H. Ehrig, F.Orejas, K. Czarnecki, Z.Diskin, andY. Xiong. Correctness
ofModel Synchronization Based on Triple GraphGrammar. In J.Whittle, T. Clark,
and T. Kühne, editors,MODELS 2011, pages 668–682, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[231] A. Hevner. A Three Cycle View of Design Science Research. Scandinavian Journal
of Information Systems, 19(2), Jan. 2007.

[232] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Information
Systems Research. MIS Quarterly, 28(1):75–105, 2004. Publisher: Management
Information Systems Research Center, University of Minnesota.

[233] S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano. GRoundTram: An integrated
framework for developing well-behaved bidirectional model transformations. In
2011 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011), pages 480–483, Nov. 2011.

[234] S. Hidaka, M. Tisi, J. Cabot, and Z. Hu. Feature-based Classification of Bidi-
rectional Transformation Approaches. Softw. Syst. Model., 15(3):907–928, jul
2016.

Bibliography 215

BIBLIOGRAPHY

[235] G. Hinkel and E. Burger. Change Propagation and Bidirectionality in Internal
Transformation DSLs. Softw. Syst. Model., 18(1):249–278, Feb. 2019.

[236] HL7.org. Graphql - FHIR v4.0.1.

[237] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM,
12(10):576–580, Oct. 1969.

[238] M. Hofmann, B. Pierce, and D. Wagner. Symmetric Lenses. In Proceedings of
the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’11, pages 371–384, NewYork, NY, USA, 2011. ACM. event-place:
Austin, Texas, USA.

[239] M. Hofmann, B. Pierce, and D. Wagner. Edit Lenses. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’12, pages 495–508, New York, NY, USA, 2012. ACM.

[240] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley Signature Series (Fowler).
Pearson Education, 2012.

[241] Z.Hu,A. Schürr, P. Stevens, and J. F. Terwilliger. Dagstuhl seminar onbidirectional
transformations (BX). ACM SIGMOD Record, 40(1):35, 2011.

[242] D. Hume. A Treatise of Human Nature. 1740.

[243] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical Assess-
ment of MDE in Industry. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 471–480, New York, NY, USA, 2011. ACM.

[244] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, Cambridge, 2 edition, 2004.

[245] Z. Huzar, L. Kuzniarz, G. Reggio, and J. L. Sourrouille. Consistency Problems
in UML-based Software Development. In Proceedings of the 2004 International
Conference on UML Modeling Languages and Applications, UML’04, pages 1–12,
Berlin, Heidelberg, 2005. Springer-Verlag.

[246] ISO/IEC JTC 1/SC 7 Software and systems engineering. Iso/iec/ieee 42010:2011
- systems and software engineering — architecture description. https://www.
iso.org/standard/50508.html, Dec. 2011.

[247] ITSMF UK. ITIL Foundation Handbook. The Stationery Office, GBR, 3rd edition,
2012.

[248] J. Ivari. A Paradigmatic Analysis of Information Systems As a Design Science.
Scandinavian Journal of Information Systems, 19(2), Jan. 2007.

[249] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2016.

216 Bibliography

https://www.iso.org/standard/50508.html
https://www.iso.org/standard/50508.html

BIBLIOGRAPHY

[250] I. Jacobson, H. B. Lawson, P.-W. Ng, P. E. McMahon, and M. Goedicke. The
Essentials of Modern Software Engineering: Free the Practices from the Method Prisons!
Association for Computing Machinery and Morgan & Claypool, 2019.

[251] K. Jensen and L. M. Kristensen. Colored Petri nets: a graphical language for
formal modeling and validation of concurrent systems. Communications of the
ACM, 58(6):61–70, May 2015.

[252] M. Johnson and R. Rosebrugh. Sketch Data Models, Relational Schema and Data
Specifications. Electronic Notes in Theoretical Computer Science, 61:51–63, Jan. 2002.

[253] M. Johnson and R. Rosebrugh. Fibrations and universal view updatability.
Theoretical Computer Science, 388(1):109–129, Dec. 2007.

[254] M. Johnson and R. Rosebrugh. Implementing a Categorical Information System.
In J. Meseguer and G. Roşu, editors, Algebraic Methodology and Software Technology,
Lecture Notes in Computer Science, pages 232–237, Berlin, Heidelberg, 2008.
Springer.

[255] M. Johnson and R. Rosebrugh. Symmetric delta lenses and spans of asymmetric
delta lenses. The Journal of Object Technology, 16(1):2:1, 2017.

[256] M. Johnson, R. Rosebrugh, and R. Wood. Algebras and Update Strategies. j-jucs,
16(5):729–748, Mar. 2010.

[257] M. Johnson, R. Rosebrugh, and R. J. Wood. Entity-relationship-attribute designs
and sketches. Theory and Applications of Categories, 10(1):94–112, 2002.

[258] M. Johnson and R. D. Rosebrugh. Unifying Set-Based, Delta-Based and Edit-
Based Lenses. In A. Anjorin and J. Gibbons, editors, Bx@ETAPS 2016, volume
1571 of CEUR Workshop Proceedings, pages 1–13. CEUR-WS.org, 2016.

[259] M. Johnson and P. Stevens. Confidentiality in the process of (model-driven)
software development. In Conference Companion of the 2nd International Conference
on Art, Science, and Engineering of Programming, Programming’18 Companion,
pages 1–8, Nice, France, Apr. 2018. Association for Computing Machinery.

[260] M. Jørgensen and D. Sjøberg. Generalization and theory-building in software
engineering research. Empirical Assessment in Software Eng. Proc, pages 29–36,
2004.

[261] A. Joshi andM. P. E. Heimdahl. Model-Based Safety Analysis of SimulinkModels
Using SCADE Design Verifier. In R. Winther, B. A. Gran, and G. Dahll, editors,
Computer Safety, Reliability, and Security, Lecture Notes in Computer Science,
pages 122–135, Berlin, Heidelberg, 2005. Springer.

[262] N. M. Josuttis. SOA in Practice. "O’Reilly Media, Inc.", 2007.

[263] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: a QVT-like
transformation language. In Companion to the 21st ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications - OOPSLA ’06,
page 719, New York, New York, USA, 2006. ACM Press.

Bibliography 217

BIBLIOGRAPHY

[264] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, and D. Varró. Survey and
classification of model transformation tools. Software & Systems Modeling, Mar.
2018.

[265] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain
analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

[266] I. Kant. Kritik der Reinen Vernunft. 1787.

[267] T. Kehrer, U. Kelter, M. Ohrndorf, and T. Sollbach. Understanding model
evolution through semantically lifting model differences with SiLift. In 2012 28th
IEEE International Conference on Software Maintenance (ICSM), pages 638–641, Sept.
2012. ISSN: 1063-6773.

[268] T. Kehrer, U. Kelter, and G. Taentzer. A rule-based approach to the semantic
lifting of model differences in the context of model versioning. In 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011),
pages 163–172, Nov. 2011. ISSN: 1938-4300.

[269] T. Kehrer, U. Kelter, and G. Taentzer. Consistency-preserving edit scripts in
model versioning. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 191–201, Nov. 2013.

[270] T. Kehrer, C. Pietsch, U. Kelter, D. Strüber, and S. Vaupel. An adaptable tool
environment for high-level differencing of textualmodels. InOCL’15: International
Workshop on OCL and Textual Modeling, pages 62–72. CEUR-WS.org, 2015.

[271] T. Kehrer, G. Taentzer, M. Rindt, and U. Kelter. Automatically Deriving the
Specification of Model Editing Operations from Meta-Models. In P. Van Gorp
and G. Engels, editors, Theory and Practice of Model Transformations, Lecture
Notes in Computer Science, pages 173–188, Cham, 2016. Springer International
Publishing.

[272] R. Kennaway. Graph rewriting in some categories of partial morphisms. In
H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Graph Grammars and Their
Application to Computer Science, LectureNotes in Computer Science, pages 490–504.
Springer Berlin Heidelberg, 1991.

[273] S. Kent. Model Driven Engineering. In M. Butler, L. Petre, and K. Sere, editors,
Integrated Formal Methods, Lecture Notes in Computer Science, pages 286–298,
Berlin, Heidelberg, 2002. Springer.

[274] W. Kessentini, H. Sahraoui, and M. Wimmer. Automated metamodel/model
co-evolution: A search-based approach. Information and Software Technology,
106:49–67, Feb. 2019.

[275] J. Kienzle, G. Mussbacher, B. Combemale, and J. Deantoni. A unifying framework
for homogeneous model composition. Software & Systems Modeling, 18(5):3005–
3023, Oct. 2019.

218 Bibliography

BIBLIOGRAPHY

[276] B. Kitchenham, S. Charters, D. Budgen, P. Brereton, M. Turner, S. Linkman,
M. Jørgensen, E. Mendes, and G. Visaggio. Guidelines for performing Systematic
Literature Reviews in Software Engineering. techreport 1, Evidence Based
Software Engineering, Software Engineering Group School of Computer Science
and Mathematics Keele University Keele, Staffs ST5 5BG, UK, jul 2007.

[277] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin,
K. E. Emam, and J. Rosenberg. Preliminary guidelines for empirical research in
software engineering. IEEE Transactions on Software Engineering, 28(8):721–734,
Aug. 2002.

[278] H. Klare. Multi-model Consistency Preservation. In Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, MODELS ’18, pages 156–161, New York, NY,
USA, 2018. ACM. event-place: Copenhagen, Denmark.

[279] H. Klare and J. Gleitze. Commonalities for Preserving Consistency of Multiple
Models. In MODELS 2019 Companion, pages 371–378, Sept. 2019.

[280] H. Klare, M. E. Kramer, M. Langhammer, D. Werle, E. Burger, and R. Reussner.
Enabling consistency in view-based system development — The Vitruvius
approach. Journal of Systems and Software, 171:110815, Jan. 2021.

[281] M. Kleiner, M. D. Del Fabro, and P. Albert. Model Search: Formalizing and
Automating Constraint Solving in MDE Platforms. In T. Kühne, B. Selic, M.-P.
Gervais, and F. Terrier, editors, ECMFA 2010, Lecture Notes in Computer Science,
pages 173–188. Springer Berlin Heidelberg, 2010.

[282] M. Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems. "O’Reilly Media, Inc.", Mar. 2017.
Google-Books-ID: p1heDgAAQBAJ.

[283] W. Kling, F. Jouault, D.Wagelaar, M. Brambilla, and J. Cabot. MoScript: ADSL for
Querying and Manipulating Model Repositories. In A. Sloane and U. Aßmann,
editors, Software Language Engineering, Lecture Notes in Computer Science, pages
180–200, Berlin, Heidelberg, 2012. Springer.

[284] A. Knapp and T. Mossakowski. Multi-view Consistency in UML: A Survey. In
Graph Transformation, Specifications, and Nets, LNCS 10800, pages 37–60. Springer,
Cham, 2018.

[285] K. Knight. Unification: a multidisciplinary survey. ACM Computing Surveys,
21(1):93–124, Mar. 1989.

[286] H.-S. Ko, T. Zan, and Z. Hu. BiGUL: A Formally Verified Core Language for
Putback-based Bidirectional Programming. In PEPM ’16, pages 61–72. ACM,
2016.

[287] M. Koegel, M. Herrmannsdoerfer, Y. Li, J. Helming, and J. David. Comparing
State- and Operation-Based Change Tracking on Models. In 2010 14th IEEE

Bibliography 219

BIBLIOGRAPHY

International Enterprise Distributed Object Computing Conference, pages 163–172,
Oct. 2010. ISSN: 1541-7719.

[288] D. Kolovos, R. Paige, and F. Polack. Detecting and Repairing Inconsistencies
AcrossHeterogeneousModels. In Proceedings of the 2008 International Conference on
Software Testing, Verification, and Validation, ICST ’08, pages 356–364, Washington,
DC, USA, 2008. IEEE Computer Society.

[289] D. S. Kolovos. Establishing Correspondences between Models with the Epsilon
Comparison Language. In R. F. Paige, A. Hartman, and A. Rensink, editors,Model
Driven Architecture - Foundations and Applications, Lecture Notes in Computer
Science, pages 146–157, Berlin, Heidelberg, 2009. Springer.

[290] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige. Different Models for
Model Matching: An Analysis of Approaches to Support Model Differencing.
In Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software
Models, CVSM ’09, pages 1–6, Washington, DC, USA, 2009. IEEE Computer
Society.

[291] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. The Epsilon Object Language (EOL).
In A. Rensink and J. Warmer, editors, Model Driven Architecture – Foundations
and Applications, Lecture Notes in Computer Science, pages 128–142, Berlin,
Heidelberg, 2006. Springer.

[292] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Merging Models with the
Epsilon Merging Language (EML). In O. Nierstrasz, J. Whittle, D. Harel, and
G. Reggio, editors,Model Driven Engineering Languages and Systems, Lecture Notes
in Computer Science, pages 215–229, Berlin, Heidelberg, 2006. Springer.

[293] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. On the Evolution of OCL for
Capturing Structural Constraints in Modelling Languages. In J.-R. Abrial and
U. Glässer, editors, Rigorous Methods for Software Construction and Analysis: Essays
Dedicated to Egon Börger on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science, pages 204–218. Springer, Berlin, Heidelberg, 2009.

[294] H. König and Z. Diskin. Advanced Local Checking of Global Consistency in
Heterogeneous Multimodeling. In ECMFA 2016, pages 19–35, 2016.

[295] H. König and Z. Diskin. Efficient Consistency Checking of Interrelated Models.
In ECMFA 2017, pages 161–178, 2017.

[296] J. Kosiol, L. Fritsche, A. Schürr, and G. Taentzer. Adhesive Subcategories of
Functor Categories with Instantiation to Partial Triple Graphs. In E. Guerra
and F. Orejas, editors, Graph Transformation, Lecture Notes in Computer Science,
pages 38–54. Springer International Publishing, 2019.

[297] J. Kosiol and H. Radke. Rule-based repair of emf models : Formalization and
correctness proof. In GCM 2017, 2017.

220 Bibliography

BIBLIOGRAPHY

[298] R. Krömer. Tool and Object: A History and Philosophy of Category Theory. Science
Networks. Historical Studies. Birkhäuser Basel, 2007.

[299] B. Kuechler and V. Vaishnavi. On theory development in design science research:
anatomy of a research project. European Journal of Information Systems, 17(5):489–
504, Oct. 2008.

[300] T. S. Kuhn. The structure of scientific revolutions. University of Chicago Press,
Chicago, 1970.

[301] I. Kurtev, J. Bézivin, and M. Aksit. Technological spaces: An initial appraisal. In
CoopIS, DOA’2002 Federated Conferences, Industrial track, 2002.

[302] H. König and P. Stünkel. Single Pushout Rewriting in Comprehensive Systems.
In F. Gadducci and T. Kehrer, editors, Graph Transformation, Lecture Notes in
Computer Science, pages 91–108, Cham, 2020. Springer International Publishing.

[303] T. Kühne. Matters of (Meta-) Modeling. Software & SystemsModeling, 5(4):369–385,
Dec. 2006.

[304] S. Lack and P. Sobociński. Adhesive categories. In I. Walukiewicz, editor,
Foundations of Software Science and Computation Structures, pages 273–288, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[305] S. Lack and P. Sobociński. Toposes Are Adhesive. In A. Corradini, H. Ehrig,
U. Montanari, L. Ribeiro, and G. Rozenberg, editors, Graph Transformations,
Lecture Notes in Computer Science, pages 184–198. Springer Berlin Heidelberg,
2006.

[306] J. Lambek. From λ-calculus to cartesian closed categories. To HB Curry: essays on
combinatory logic, lambda calculus and formalism, pages 375–402, 1980.

[307] R. Lämmel. Coupled software transformations (ExtendedAbstract). InProceedings
1st International Workshop on Software Evolution Transformations, pages 31–35, 2014.

[308] J.-L. Lauriere. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10(1):29–127, Feb. 1978.

[309] F. W. Lawvere. Functorial Semantics of Algebraic Theories. PhD Thesis, Columbia
University, 1963.

[310] F. W. Lawvere and S. H. Schanuel. Conceptual Mathematics: A First Introduction to
Categories. Cambridge University Press, Cambridge, 2 edition, 2009.

[311] E. Leblebici, A. Anjorin, L. Fritsche, G. Varró, and A. Schürr. Leveraging
Incremental PatternMatchingTechniques forModel Synchronisation. In J. de Lara
and D. Plump, editors, Graph Transformation, Lecture Notes in Computer Science,
pages 179–195. Springer International Publishing, 2017.

Bibliography 221

BIBLIOGRAPHY

[312] E. Leblebici, A. Anjorin, and A. Schürr. Inter-model Consistency Checking Using
Triple Graph Grammars and Linear Optimization Techniques. In Proceedings of
the 20th International Conference on Fundamental Approaches to Software Engineering
- Volume 10202, pages 191–207, New York, NY, USA, 2017. Springer-Verlag New
York, Inc.

[313] E. Leblebici, A. Anjorin, and A. Schürr. Developing eMoflon with eMoflon. In
D. Di Ruscio and D. Varró, editors, Theory and Practice of Model Transformations,
Lecture Notes in Computer Science, pages 138–145. Springer International
Publishing, 2014.

[314] S. K. Lellahi and N. Spyratos. Towards a categorical data model supporting
structured objects and inheritance. In J. W. Schmidt and A. A. Stogny, editors,
Next Generation Information System Technology, Lecture Notes in Computer Science,
pages 86–105, Berlin, Heidelberg, 1991. Springer.

[315] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, July 1993.

[316] M. Lindvall and K. Sandahl. Practical Implications of Traceability. Software:
Practice and Experience, 26(10):1161–1180, 1996.

[317] P. Lopes and J. L. Oliveira. A semantic web application framework for health
systems interoperability. In Proceedings of the first international workshop on
Managing interoperability and complexity in health systems, MIXHS ’11, pages 87–90,
New York, NY, USA, Oct. 2011. Association for Computing Machinery.

[318] M. Löwe. Extended algebraic graph transformation. PhD thesis, Technical University
of Berlin, Germany, 1991.

[319] M. Löwe and M. Tempelmeier. Single-pushout rewriting of partial algebras. In
D. Plump, editor, Proceedings of GCM co-located with ICGT / STAF, L’Aquila, Italy,
volume 1403 of CEUR Workshop Proceedings, pages 82–96, 2015.

[320] F. J. Lucas, F.Molina, andA. Toval. A systematic reviewofUMLmodel consistency
management. Information and Software Technology, 51(12):1631–1645, Dec. 2009.

[321] R. Lämmel. Software Languages: Syntax, Semantics, andMetaprogramming. Springer
International Publishing, 2018.

[322] M. Löwe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109(1):181–224, Mar. 1993.

[323] M. Löwe. Graph Rewriting in Span-Categories. In H. Ehrig, A. Rensink,
G. Rozenberg, and A. Schürr, editors, Graph Transformations, Lecture Notes
in Computer Science, pages 218–233, Berlin, Heidelberg, 2010. Springer.

[324] M. Löwe. Refined Graph Rewriting in Span-Categories. In H. Ehrig, G. Engels,
H.-J. Kreowski, and G. Rozenberg, editors, Graph Transformations, Lecture Notes
in Computer Science, pages 111–125, Berlin, Heidelberg, 2012. Springer.

222 Bibliography

BIBLIOGRAPHY

[325] M. Löwe, H. König, C. Schulz, and M. Schultchen. Algebraic graph transfor-
mations with inheritance and abstraction. Science of Computer Programming,
107-108:2–18, Sept. 2015.

[326] S. Mac Lane. Categories for the Working Mathematician. Springer, 1998.

[327] N. Macedo and A. Cunha. Implementing QVT-R Bidirectional Model Trans-
formations Using Alloy. In V. Cortellessa and D. Varró, editors, Fundamental
Approaches to Software Engineering, Lecture Notes in Computer Science, pages
297–311. Springer Berlin Heidelberg, 2013.

[328] N. Macedo and A. Cunha. Least-change bidirectional model transformation with
QVT-R and ATL. Software & Systems Modeling, 15(3):783–810, July 2016.

[329] N. Macedo, A. Cunha, andH. Pacheco. Towards a framework for multidirectional
model transformations. In EDBT/ICDT 2014, pages 71–74, 2014.

[330] N. Macedo, T. Guimarães, and A. Cunha. Model repair and transformation
with Echo. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 694–697, Nov. 2013. ISSN: null.

[331] N. Macedo, T. Jorge, and A. Cunha. A Feature-Based Classification of Model
Repair Approaches. IEEE Transactions on Software Engineering, 43(7):615–640, July
2017.

[332] M. Makkai. Generalized sketches as a framework for completeness theorems.
Journal of Pure and Applied Algebra, 115:49–79, 179–212, 214–274, Feb. 1997.

[333] R. Malhotra. Empirical Research in Software Engineering: Concepts, Analysis, and
Applications. CRC Press, Mar. 2016.

[334] F. Mantz, G. Taentzer, Y. Lamo, and U. Wolter. Co-evolving meta-models and
their instance models: A formal approach based on graph transformation. Science
of Computer Programming, 104(1):2–43, 2015.

[335] S. T. March and G. F. Smith. Design and natural science research on information
technology. Decision Support Systems, 15(4):251–266, Dec. 1995.

[336] M. L. Markus, A. Majchrzak, and L. Gasser. A Design Theory for Systems That
Support Emergent Knowledge Processes. MIS Quarterly, 26(3):179–212, 2002.
Publisher: Management Information Systems Research Center, University of
Minnesota.

[337] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,
B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing
Semantics to Web Services: The OWL-S Approach. In J. Cardoso and A. Sheth,
editors, Semantic Web Services and Web Process Composition, Lecture Notes in
Computer Science, pages 26–42, Berlin, Heidelberg, 2005. Springer.

[338] S. Martínez, S. Gérard, and J. Cabot. Efficient model similarity estimation with
robust hashing. Software and Systems Modeling, Aug. 2021.

Bibliography 223

BIBLIOGRAPHY

[339] L. Meertens. Designing Constraint Maintainers for User Interaction. Technical
report, CWI, Amsterdam, 1998.

[340] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A Programming Platform for
GenericModelManagement. InProceedings of the 2003ACMSIGMOD International
Conference on Management of Data, SIGMOD ’03, pages 193–204, New York, NY,
USA, 2003. ACM. event-place: San Diego, California.

[341] T.Mens andR. VanDer Straeten. Incremental Resolution ofModel Inconsistencies.
In J. L. Fiadeiro and P.-Y. Schobbens, editors, Recent Trends in Algebraic Development
Techniques, Lecture Notes in Computer Science, pages 111–126. Springer Berlin
Heidelberg, 2007.

[342] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. Electronic Notes
in Theoretical Computer Science, 152:125–142, Mar. 2006.

[343] Meteor Development Group Inc. Apollo federation overview. https://www.
apollographql.com/docs/federation/, Last Accessed: 07.02.2020, 2021.

[344] B. Milewski. Category Theory for Programmers. Blurb, Incorporated, Aug. 2019.

[345] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, July 1991.

[346] D. Monniaux. A Survey of Satisfiability Modulo Theory. In V. P. Gerdt, W. Koepf,
W.M. Seiler, and E. V. Vorozhtsov, editors,Computer Algebra in Scientific Computing,
Lecture Notes in Computer Science, pages 401–425, Cham, 2016. Springer
International Publishing.

[347] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set, Hets. In
O. Grumberg and M. Huth, editors, Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science, pages 519–522. Springer
Berlin Heidelberg, 2007.

[348] T. Mossakowski and A. Tarlecki. Heterogeneous Logical Environments for
Distributed Specifications. In A. Corradini and U. Montanari, editors, Recent
Trends in Algebraic Development Techniques, Lecture Notes in Computer Science,
pages 266–289, Berlin, Heidelberg, 2009. Springer.

[349] S. K. Mukhiya, F. Rabbi, V. Ka I Pun, A. Rutle, and Y. Lamo. A GraphQL approach
to Healthcare Information Exchange with HL7 FHIR. Procedia Computer Science,
160:338–345, Jan. 2019.

[350] F. u. Muram, H. Tran, and U. Zdun. Systematic Review of Software Behavioral
Model Consistency Checking. ACM Computing Surveys, 50(2):17:1–17:39, Apr.
2017.

[351] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. C. Cheng, P. Collet,
B. Combemale, R. B. France, R. Heldal, J. Hill, J. Kienzle, M. Schöttle, F. Steimann,
D. Stikkolorum, and J. Whittle. The Relevance of Model-Driven Engineering

224 Bibliography

https://www.apollographql.com/docs/federation/
https://www.apollographql.com/docs/federation/

BIBLIOGRAPHY

Thirty Years from Now. In J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and
E. Insfran, editors, Model-Driven Engineering Languages and Systems, Lecture
Notes in Computer Science, pages 183–200, Cham, 2014. Springer International
Publishing.

[352] N. Mustafa and Y. Labiche. The Need for Traceability in Heterogeneous Systems:
A Systematic Literature Review. In 2017 IEEE 41st Annual Computer Software and
Applications Conference (COMPSAC), volume 1, pages 305–310, July 2017. ISSN:
0730-3157.

[353] N. Nassar, J. Kosiol, T. Arendt, and G. Taentzer. OCL2AC: Automatic Transla-
tion of OCL Constraints to Graph Constraints and Application Conditions for
Transformation Rules. In L. Lambers and J. Weber, editors, Graph Transforma-
tion, Lecture Notes in Computer Science, pages 171–177, Cham, 2018. Springer
International Publishing.

[354] N. Nassar, H. Radke, and T. Arendt. Rule-Based Repair of EMF Models: An
Automated Interactive Approach. In E. Guerra and M. van den Brand, editors,
Theory and Practice of Model Transformation, Lecture Notes in Computer Science,
pages 171–181. Springer International Publishing, 2017.

[355] I. Nassi and B. Shneiderman. Flowchart techniques for structured programming.
ACM SIGPLAN Notices, 8(8):12–26, Aug. 1973.

[356] P. Naur and B. Randell. Software Engineering: Report of a conference sponsored
by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968. Technical
report, Scientific Affairs Division, NATO, Brussels, 1969.

[357] C. Nentwich, W. Emmerich, and A. Finkelsteiin. Consistency Management with
Repair Actions. In ICSE ’03, pages 455–464, 2003.

[358] P. G. Neumann. Computer Related Risks. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 1995.

[359] I. Newton. Philosophiæ Naturalis Principia Mathematica. 1687.

[360] J. F. Nunamaker and M. Chen. Systems development in information systems
research. In Twenty-Third Annual Hawaii International Conference on System Sciences,
volume 3, pages 631–640 vol.3, Jan. 1990.

[361] B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging inconsistency in software
development. Computer, 33(4):24–29, Apr. 2000.

[362] B. Nuseibeh, J. Kramer, and A. Finkelsteiin. Expressing the relationships between
multiple views in requirements specification. In Proceedings of the 15th international
conference on Software Engineering, ICSE ’93, pages 187–196, Washington, DC, USA,
May 1993. IEEE Computer Society Press.

[363] Object Management Group. Object Constraint Language (OCL) v.2.3.1, 2012.

Bibliography 225

BIBLIOGRAPHY

[364] Object Management Group. Business Process Model And Notation (BPMN)
v.2.0.2, 2014.

[365] Object Management Group. Unified Modeling Language (UML) v.2.4.1, 2015.

[366] Object Management Group. XML Metadata Interchange (XMI) v.2.5.1, 2015.

[367] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation (QVT) v.1.3. http://www.omg.org/spec/QVT/1.3, 2016.

[368] Object Management Group. Meta Object Facility (MOF) Core Specification v.
2.4.1, 2016.

[369] Object Management Group. Decision Model and Notation (DMN) v.1.2, 2019.

[370] F. Orejas, E. Pino, and M. Navarro. Incremental Concurrent Model Synchro-
nization using Triple Graph Grammars. In H. Wehrheim and J. Cabot, editors,
Fundamental Approaches to Software Engineering, Lecture Notes in Computer
Science, pages 273–293, Cham, 2020. Springer International Publishing.

[371] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. C. Polack. The Design
of a Conceptual Framework and Technical Infrastructure for Model Management
Language Engineering. In Proceedings of the 2009 14th IEEE International Con-
ference on Engineering of Complex Computer Systems, ICECCS ’09, pages 162–171,
Washington, DC, USA, 2009. IEEE Computer Society.

[372] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Matragkas, and J. R. Williams. Model
Management in the Wild. In R. Lämmel, J. Saraiva, and J. Visser, editors, GTTSE
2011, LNCS, pages 197–218. Springer, Berlin, Heidelberg, 2013.

[373] R. F. Paige, N. Matragkas, and L. M. Rose. Evolving models in Model-Driven
Engineering: State-of-the-art and future challenges. Journal of Systems and Software,
111:272–280, Jan. 2016.

[374] P. Y. Papalambros. Design Science: Why, What and How. Design Science, 1, July
2015. Publisher: Cambridge University Press.

[375] D. L. Parnas. Software Engineering Principles. INFOR: Information Systems and
Operational Research, 22(4):303–316, Nov. 1984.

[376] T. Parr. The Definitive ANTLR Reference: Building Domain-specific Languages.
Pragmatic Bookshelf, 2007.

[377] J. Pearl. Heuristic Search Theory: Survey of Recent Results. In Proceedings of
the 7th International Joint Conference on Artificial Intelligence - Volume 1, ĲCAI’81,
pages 554–562, San Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc.

[378] K.-H. Pennemann. An Algorithm for Approximating the Satisfiability Problem of
High-level Conditions. Electronic Notes in Theoretical Computer Science, 213(1):75–
94, May 2008.

226 Bibliography

http://www.omg.org/spec/QVT/1.3

BIBLIOGRAPHY

[379] K. Petersen, S. Vakkalanka, andL. Kuzniarz. Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software
Technology, 64:1–18, Aug. 2015.

[380] B. C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, Cambridge,
MA, USA, 1991.

[381] F. Piessens and E. Steegmans. Categorical data-specifications. Theory and
Applications of Categories, 1:156–173, 1995.

[382] S. F. Pileggi and C. Fernandez-Llatas. Semantic Interoperability: Issues, Solutions,
Challenges. River Publishers, Mar. 2012.

[383] J. Pinna Puissant. Resolving Inconsistencies in Model-Driven Engineering using
Automated Planning. PhD Thesis, University of Mons, Sept. 2012.

[384] J. Pinna Puissant, R. VanDer Straeten, and T.Mens. Badger: A Regression Planner
to ResolveDesignModel Inconsistencies. InA. Vallecillo, J.-P. Tolvanen, E. Kindler,
H. Störrle, and D. Kolovos, editors,Modelling Foundations and Applications, Lecture
Notes in Computer Science, pages 146–161, Berlin, Heidelberg, 2012. Springer.

[385] J. Pinna Puissant, R. Van Der Straeten, and T. Mens. Resolving model incon-
sistencies using automated regression planning. Software & Systems Modeling,
14(1):461–481, Feb. 2015.

[386] D. Plump. Hypergraph rewriting: Critical pairs and undecidability of confluence.
In R. Sleep, R. Plasmeĳer, and M. van Eekelen, editors, Term Graph Rewriting,
pages 201–213. John Wiley, 1993.

[387] S. Pokarev, M. Reichert, M. W. A. Stehen, and R. Wieringa. Semantic and
Pragmatic Interoperability: A Model for Understanding. In Proceedings of the
Open Interop Workshop on Enterprise Modelling and Ontologies for Interoperability,
volume 160. CEUR-WS.org, 2005.

[388] J. D. Poole. Model-driven architecture: Vision, standards and emerging technolo-
gies. In In In ECOOP 2001, Workshop on Metamodeling and Adaptive Object Models,
2001.

[389] K. Popper. Logik der Forschung. 1935.

[390] R. A. Pottinger and P. A. Bernstein. Merging Models Based on Given Correspon-
dences. In J.-C. Freytag, P. Lockemann, S. Abiteboul, M. Carey, P. Selinger, and
A. Heuer, editors, Proceedings 2003 VLDB Conference, pages 862–873. Morgan
Kaufmann, San Francisco, Jan. 2003.

[391] M. R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in SAT-based
formal verification. International Journal on Software Tools for Technology Transfer,
7(2):156–173, Apr. 2005.

[392] T. W. Pratt. Pair grammars, graph languages and string-to-graph translations. J.
Comput. Syst. Sci., 5(6):560–595, Dec. 1971.

Bibliography 227

BIBLIOGRAPHY

[393] F. Rabbi, Y. Lamo, andW.MacCaull. Co-ordination of multiple metamodels, with
application to healthcare systems. Procedia Computer Science, 37(1877):473–480,
2014.

[394] J. C. Raoult. On graph rewritings. Theoretical Computer Science, 32(1):1–24, Jan.
1984.

[395] A. Reder and A. Egyed. Model/analyzer: a tool for detecting, visualizing and
fixing design errors inUML. In Proceedings of the IEEE/ACM international conference
on Automated software engineering, ASE ’10, pages 347–348, Antwerp, Belgium,
Sept. 2010. Association for Computing Machinery.

[396] A. Reder and A. Egyed. Computing repair trees for resolving inconsistencies in
design models. In 2012 Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 220–229, Sept. 2012.

[397] A. Rensink. Representing First-Order Logic Using Graphs. In H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg, editors, Graph Transformations, Lecture Notes
in Computer Science, pages 319–335. Springer Berlin Heidelberg, 2004.

[398] A. Rensink and A. Kleppe. On a Graph-Based Semantics for UML Class and
Object Diagrams. Electronic Communications of the EASST, 10(0), July 2008.

[399] J. E. Rivera andA. Vallecillo. Representing andOperatingwithModel Differences.
In R. F. Paige and B. Meyer, editors, Objects, Components, Models and Patterns,
Lecture Notes in Business Information Processing, pages 141–160. Springer Berlin
Heidelberg, 2008.

[400] E. Robinson and G. Rosolini. Categories of partial maps. Information and
Computation, 79(2):95–130, Nov. 1988.

[401] J. D. Rocco, D. D. Ruscio, H. Narayanankutty, and A. Pierantonio. Resilience in
sirius editors: Understanding the impact of metamodel changes. In Proceedings of
MODELS 2018 Workshops: ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE,
MDETools, GEMOC, MORSE, MDE4IoT, MDEbug, MoDeVVa, ME, MULTI, Hu-
FaMo, AMMoRe, PAINS co-located with ACM/IEEE 21st International Conference
on Model Driven Engineering Languages and Systems (MODELS 2018), Copenhagen,
Denmark, October, 14, 2018, pages 620–630, 2018.

[402] J. F. Roddick. SchemaEvolution inDatabase Systems: AnAnnotatedBibliography.
SIGMOD Rec., 21(4):35–40, Dec. 1992.

[403] G. Rozenberg. Handbook of graph grammars and computing by graph transformation,
Volume 1. World Scientific, 1997.

[404] J. Rubin and M. Chechik. N-way Model Merging. In ESEC/FSE 2013, pages
301–311, New York, NY, USA, 2013. ACM.

[405] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual. Addison-Wesley Professional, 2nd edition, 2004.

228 Bibliography

BIBLIOGRAPHY

[406] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2010.

[407] A. Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis,
University of Bergen, 2010.

[408] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A Diagrammatic Formalisation
of MOF-Based Modelling Languages. In TOOLS EUROPE 2009, pages 37–56.
Springer, Berlin, Heidelberg, 2009.

[409] A.Rutle, A. Rossini, Y. Lamo, andU.Wolter. A formal approach to the specification
and transformation of constraints in MDE. JLAMP, 81(4):422–457, 2012.

[410] M. Sabetzadeh and S. Easterbrook. Analysis of inconsistency in graph-based
viewpoints: a category-theoretical approach. In 18th IEEE International Conference
on Automated Software Engineering, 2003. Proceedings., pages 12–21, Oct. 2003.
ISSN: 1938-4300.

[411] M. Sabetzadeh and S. Easterbrook. An Algebraic Framework for Merging
Incomplete and Inconsistent Views. In RE 2005, pages 306–315, 2005.

[412] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, andM. Chechik. Consistency
Checking of Conceptual Models via Model Merging. In RE 2007, pages 221–230,
oct 2007.

[413] L. Samimi-Dehkordi, B. Zamani, and S. Kolahdouz-Rahimi. EVL+Strace: a novel
bidirectional model transformation approach. Information and Software Technology,
100:47–72, Aug. 2018.

[414] J. E. Sammet. The real creators of Cobol. IEEE Software, 17(2):30–32, Mar. 2000.
Conference Name: IEEE Software.

[415] D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Monographs in Theoretical Computer Science. An EATCS
Series. Springer-Verlag, Berlin Heidelberg, 2012.

[416] I. Santiago, A. Jiménez, J. M. Vara, V. De Castro, V. A. Bollati, and E. Marcos.
Model-Driven Engineering as a new landscape for traceability management: A
systematic literature review. Information and Software Technology, 54(12):1340–1356,
Dec. 2012.

[417] H. Schichl. Models and the History of Modeling. In J. Kallrath, editor, Modeling
Languages in Mathematical Optimization, Applied Optimization, pages 25–36.
Springer US, Boston, MA, 2004.

[418] S. Schneider, L. Lambers, and F. Orejas. Automated reasoning for attributed
graph properties. International Journal on Software Tools for Technology Transfer,
20(6):705–737, Nov. 2018.

Bibliography 229

BIBLIOGRAPHY

[419] S. Schneider, L. Lambers, and F. Orejas. A Logic-Based Incremental Approach
to Graph Repair. In R. Hähnle and W. van der Aalst, editors, Fundamental
Approaches to Software Engineering, Lecture Notes in Computer Science, pages
151–167. Springer International Publishing, 2019.

[420] P. Schultz, D. I. Spivak, C. Vasilakopoulou, and R. Wisnesky. Algebraic databases,
2016.

[421] P. Schultz and R. Wisnesky. Algebraic data integration*. Journal of Functional
Programming, 27, 2017.

[422] A. Schürr. Specification of graph translators with triple graph grammars. In E. W.
Mayr, G. Schmidt, and G. Tinhofer, editors, Graph-Theoretic Concepts in Computer
Science, pages 151–163, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[423] K. Schwab. The Fourth Industrial Revolution. Penguin UK, Jan. 2017.

[424] J. C. Segen. The Dictionary of Modern Medicine. CRC Press, Feb. 1992.

[425] P. Selinger. A Survey of Graphical Languages for Monoidal Categories. In
B. Coecke, editor, New Structures for Physics, Lecture Notes in Physics, pages
289–355. Springer, Berlin, Heidelberg, 2011.

[426] S. Sendall and W. Kozaczynski. Model Transformation: The Heart and Soul of
Model-Driven Software Development. IEEE Softw., 20(5):42–45, sep 2003.

[427] A. P. Sheth. Changing Focus on Interoperability in Information Systems:From
System, Syntax, Structure to Semantics. InM. Goodchild, M. Egenhofer, R. Fegeas,
and C. Kottman, editors, Interoperating Geographic Information Systems, The
Springer International Series in Engineering and Computer Science, pages
5–29. Springer US, Boston, MA, 1999.

[428] M. A. A. d. Silva, A. Mougenot, X. Blanc, and R. Bendraou. Towards Automated
Inconsistency Handling in Design Models. In Advanced Information Systems
Engineering, Lecture Notes in Computer Science, pages 348–362. Springer, Berlin,
Heidelberg, June 2010.

[429] H. A. Simon. The Sciences of the Artificial. MIT Press, third edition, Jan. 1969.

[430] I. Solheim and K. Stølen. Technology Research Explained. Technical Report A313,
SINTEF, Mar. 2007.

[431] I. Sommerville. Software Engineering. Pearson/Addison-Wesley, 2004.

[432] G. Spanoudakis, A. Finkelstein, and D. Till. Overlaps in Requirements Engineer-
ing. Automated Software Engineering, 6(2):171–198, Apr. 1999.

[433] G. Spanoudakis and A. Zisman. Inconsistency Management in Software Engi-
neering: Survey and Open Research Issues. In Handbook of Software Engineering
and Knowledge Engineering, pages 329–380, 2001.

230 Bibliography

BIBLIOGRAPHY

[434] G. Spanoudakis and A. Zisman. Software traceability: a roadmap. In Hand-
book of Software Engineering and Knowledge Engineering, pages 395–428. WORLD
SCIENTIFIC, Aug. 2005.

[435] S. Staab, T. Walter, G. Gröner, and F. S. Parreiras. Model Driven Engineering
with Ontology Technologies. In U. Aßmann, A. Bartho, and C. Wende, editors,
Reasoning Web. Semantic Technologies for Software Engineering: 6th International
Summer School 2010, Dresden, Germany, August 30 - September 3, 2010. Tutorial
Lectures, Lecture Notes in Computer Science, pages 62–98. Springer, Berlin,
Heidelberg, 2010.

[436] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse Modeling
Framework. Pearson Education, Dec. 2008.

[437] A. G. Stephenson, D. R. Mulville, F. H. Bauer, G. A. Dukeman, P. Norvig, L. S.
LaPiana, and R. Sackheim. Mars climate orbiter mishap investigation board
phase i report. Technical report, NASA, Washington D.C., 1999.

[438] P. Stevens. A Landscape of BidirectionalModel Transformations. InGenerative and
Transformational Techniques in Software Engineering II, Lecture Notes in Computer
Science, pages 408–424. Springer, Berlin, Heidelberg, July 2007.

[439] P. Stevens. Bidirectional model transformations in QVT: semantic issues and
open questions. Software & Systems Modeling, 9(1):7, dec 2008.

[440] P. Stevens. Bidirectional transformations in the large. In 2017 ACM/IEEE
20th International Conference on Model Driven Engineering Languages and Systems
(MODELS), pages 1–11, 2017.

[441] P. Stevens. Towards Sound, Optimal, and Flexible Building fromMegamodels.
In Proceedings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS ’18, pages 301–311, New York, NY,
USA, 2018. ACM.

[442] P. Stevens. Connecting software build with maintaining consistency between
models: towards sound, optimal, and flexible building from megamodels.
Software and Systems Modeling, Mar. 2020.

[443] R. V. D. Straeten, J. P. Puissant, and T. Mens. Assessing the Kodkod Model Finder
for Resolving Model Inconsistencies. In ECMFA, 2011.

[444] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: Principles
and methods. Data & Knowledge Engineering, 25(1):161–197, Mar. 1998.

[445] P. Stünkel, H. König, Y. Lamo, and A. Rutle. Multimodel correspondence through
inter-model constraints. In Conference Companion of the 2nd International Conference
on Art, Science, and Engineering of Programming, Programming’18 Companion,
page 9–17, New York, NY, USA, 2018. Association for Computing Machinery.

Bibliography 231

BIBLIOGRAPHY

[446] P. Stünkel, H. König, Y. Lamo, and A. Rutle. Towards multiple model synchro-
nization with comprehensive systems. In H. Wehrheim and J. Cabot, editors,
Fundamental Approaches to Software Engineering, volume 12076 of Lecture Notes in
Computer Science, pages 335–356. Springer, Cham, Apr. 2020.

[447] P. Stünkel, O. v. Bargen, A. Rutle, and Y. Lamo. GraphQL Federation: A
Model-Based Approach. Journal of Object Technology, 19(2):18:1–21, July 2020.

[448] P. Stünkel and H. König. Single pushout rewriting in comprehensive systems of
graph-like structures. Theoretical Computer Science, 884:23–43, 2021.

[449] P. Stünkel and H. König. Single pushout rewriting in comprehensive systems of
graph-like structures. Theoretical Computer Science, July 2021.

[450] P. Stünkel, H. König, Y. Lamo, and A. Rutle. Comprehensive Systems: A
formal foundation for Multi-Model Consistency Management. Formal Aspects of
Computing, July 2021.

[451] P. Stünkel, H. König, A. Rutle, and Y. Lamo. Multi-Model Evolution through
Model Repair. Journal of Object Technology, 20(1):1:1–25, Jan. 2021.

[452] G. Taentzer, K. Ehrig, E. Guerra, J. D. Lara, T. Levendovszky, U. Prange, D. Varro,
and S. Varro-Gyapay. Model Transformation by Graph Transformation : A
Comparative Study. Model Transformations in Practice Workshop at MODELS 2005,
Montego, 2005.

[453] G. Taentzer, M. Ohrndorf, Y. Lamo, and A. Rutle. Change-Preserving Model
Repair. In M. Huisman and J. Rubin, editors, Fundamental Approaches to Soft-
ware Engineering, Lecture Notes in Computer Science, pages 283–299, Berlin,
Heidelberg, 2017. Springer.

[454] A. S. Tanenbaum and M. v. Steen. Distributed Systems: Principles and Paradigms.
Pearson Prentice Hall, 2007.

[455] R. N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations,
Theory, and Practice. John Wiley & Sons, Jan. 2009.

[456] J. P. Team. Jakarta ee: Jakarta persistence 3.0, 2020.

[457] I. J. . I. technology. ISO/IEC 7498-1:1994, 1994.

[458] T. J. Teorey, D. Yang, and J. P. Fry. A Logical Design Methodology for Relational
Databases Using the Extended Entity-relationship Model. ACM Comput. Surv.,
18(2):197–222, 1986.

[459] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. A. Raja, and K. Kamran.
Requirements traceability: a systematic review and industry case study. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 22(03):385–433,
May 2012. Publisher: World Scientific Publishing Co.

232 Bibliography

BIBLIOGRAPHY

[460] D. Torre, Y. Labiche, and M. Genero. UML Consistency Rules: A Systematic
Mapping Study. In Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, EASE ’14, pages 6:1–6:10, New York, NY,
USA, 2014. ACM.

[461] W. Torres, M. v. d. Brand, and A. Serebrenik. Model Management Tools for
Models of Different Domains: A Systematic Literature Review. In 2019 IEEE
International Systems Conference (SysCon), pages 1–8, Apr. 2019. ISSN: 2472-9647.

[462] W. Torres, M. G. J. van den Brand, and A. Serebrenik. A systematic literature
review of cross-domain model consistency checking by model management tools.
Software and Systems Modeling, Oct. 2020.

[463] F. Trollmann and S. Albayrak. Extending model to model transformation results
from triple graph grammars to multiple models. In D. Kolovos and M. Wimmer,
editors, Theory and Practice of Model Transformations, pages 214–229, Cham, 2015.
Springer International Publishing.

[464] F. Trollmann and S. Albayrak. Extending model synchronization results from
triple graph grammars to multiple models. In P. Van Gorp and G. Engels, editors,
Theory and Practice of Model Transformations, pages 91–106, Cham, 2016. Springer
International Publishing.

[465] A. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265,
1937.

[466] H. Ulrich, J. Kern, D. Tas, A. K. Kock-Schoppenhauer, F. Ückert, J. Ingenerf, and
M. Lablans. QL4mdr: a GraphQL query language for ISO 11179-based metadata
repositories. BMC Medical Informatics and Decision Making, 19(1):45, Mar. 2019.

[467] U.S. Government Accountability. Health Care: National Strategy Needed to
Accelerate the Implementation of Information Technology. http://www.gao.
gov/products/GAO-04-947T, Last Accessed: 08.11.2017, 2004.

[468] U.S. Government Accountability. Health andHuman Services’ Estimate ofHealth
Care Cost Savings Resulting from the Use of Information Technology. http:
//www.gao.gov/products/GAO-05-309R, Last Accessed: 08.11.2017, 2005.

[469] M. Usman, A. Nadeem, T.-h. Kim, and E.-s. Cho. A Survey of Consistency
Checking Techniques for UML Models. In Proceedings of the 2008 Advanced
Software Engineering and Its Applications, ASEA ’08, pages 57–62, USA, Dec. 2008.
IEEE Computer Society.

[470] R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using Description
Logic to Maintain Consistency between UMLModels. In P. Stevens, J. Whittle,
and G. Booch, editors, «UML» 2003 - The Unified Modeling Language. Modeling
Languages and Applications, Lecture Notes in Computer Science, pages 326–340,
Berlin, Heidelberg, 2003. Springer.

Bibliography 233

http://www.gao.gov/products/GAO-04-947T
http://www.gao.gov/products/GAO-04-947T
http://www.gao.gov/products/GAO-05-309R
http://www.gao.gov/products/GAO-05-309R

BIBLIOGRAPHY

[471] B. C. van Fraassen. Scientific Representation: Paradoxes of Perspective. Analysis,
70(3):511–514, July 2010.

[472] D. Varró, G. Bergmann, A. Hegedüs, A. Horváth, I. Ráth, and Z. Ujhelyi. Road to
a reactive and incremental model transformation platform: three generations of
the VIATRA framework. Software & Systems Modeling, 15(3):609–629, July 2016.

[473] K. H. Veltman. Syntactic and semantic interoperability: New approaches to
knowledge and the semantic web. New Review of Information Networking, 7(1):159–
183, Jan. 2001.

[474] M. Voelter. DSL Engineering: Designing, Implementing and Using Domain-specific
Languages. CreateSpace Independent Publishing Platform, 2013.

[475] O. C. von Bargen. Integration of Web Services and their data models with special
regard to GraphQL. Master’s thesis, Høgskulen på Vestlandet, Bergen, Norway,
2020.

[476] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen. Model-Driven Software
Development: Technology, Engineering, Management. John Wiley & Sons, June 2013.

[477] J. G. Walls, G. R. Widmeyer, and O. A. El Sawy. Building an Information System
Design Theory for Vigilant EIS. Information Systems Research, 3(1):36–59, 1992.
Publisher: INFORMS.

[478] R. F. C. Walters. Categories and Computer Science. Cambridge University Press,
New York, NY, USA, 1992.

[479] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[480] A. I. Wasserman. Tool integration in software engineering environments. In
F. Long, editor, Software Engineering Environments, Lecture Notes in Computer
Science, pages 137–149, Berlin, Heidelberg, 1990. Springer.

[481] J. H. Weber and C. Kuziemsky. Pragmatic Interoperability for Ehealth Systems:
The Fallback Workflow Patterns. In Proceedings of the 1st International Workshop on
Software Engineering for Healthcare, SEH ’19, pages 29–36, Piscataway, NJ, USA,
2019. IEEE Press. event-place: Montreal, Quebec, Canada.

[482] N. Weidmann, A. Anjorin, L. Fritsche, G. Varró, A. Schürr, and E. Leblebici. Incre-
mental Bidirectional Model Transformation with eMoflon: : IBeX. In J. Cheney
and H.-S. Ko, editors, Proceedings of the 8th International Workshop on Bidirectional
Transformations co-located with the Philadelphia Logic Week, Bx@PLW 2019, Philadel-
phia, PA, USA, June 4, 2019, volume 2355 of CEUR Workshop Proceedings, pages
45–55. CEUR-WS.org, 2019.

[483] N. Weidmann, L. Fritsche, and A. Anjorin. A search-based and fault-tolerant
approach to concurrent model synchronisation. In Proceedings of the 13th ACM
SIGPLAN International Conference on Software Language Engineering, pages 56–71.
Association for Computing Machinery, New York, NY, USA, Nov. 2020.

234 Bibliography

BIBLIOGRAPHY

[484] R. L. Wexelblat, editor. History of Programming Languages. Association for
Computing Machinery, New York, NY, USA, 1978.

[485] A. N. Whitehead and B. Russell. Principia Mathematica. 1910.

[486] J. Whittle, J. Hutchinson, and M. Rouncefield. The State of Practice in Model-
Driven Engineering. IEEE Software, 31(3):79–85, may 2014.

[487] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal. Industrial
Adoption of Model-Driven Engineering: Are the Tools Really the Problem? In
A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. Clarke, editors,Model-Driven
Engineering Languages and Systems, Lecture Notes in Computer Science, pages
1–17, Berlin, Heidelberg, 2013. Springer.

[488] J. R. Williams, R. F. Paige, and F. A. C. Polack. Searching for Model Migration
Strategies. InME ’12, pages 39–44, New York, NY, USA, 2012. ACM.

[489] S.Winkler and J. vonPilgrim. A survey of traceability in requirements engineering
and model-driven development. Software & Systems Modeling, 9(4):529–565, Sept.
2010.

[490] G. Winskel. Categories of models for concurrency. In Seminar on Concurrency,
Carnegie-Mellon University, page 246–267, Berlin, Heidelberg, 1984. Springer-
Verlag.

[491] L. Wittgenstein. Tractatus Logico-Philosophicus. 1922.

[492] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering. Springer-Verlag, Berlin Heidelberg, 2012.

[493] U.Wolter. Logics of First-Order Constraints – A Category Independent Approach.
arXiv:2101.01944 [cs], Jan. 2021. arXiv: 2101.01944.

[494] U. Wolter and Z. Diskin. The Next Hundred Diagrammatic Specification Tech-
niques — An Introduction to Generalized Sketches —. Technical report, Depart-
ment of Informatics, University of Bergen, Bergen, 2007.

[495] U. Wolter, Z. Diskin, and H. König. Graph Operations and Free Graph Algebras.
In Graph Transformation, Specifications, and Nets, Lecture Notes in Computer
Science, pages 313–331. Springer, Cham, 2018.

[496] K. Wong. What Grounded the Airbus A380? Cadalyst, Dec. 2006.

[497] A. T. Wood-Harper, L. Antill, and D. E. Avison. Information systems definition: the
Multiview approach. Blackwell Scientific Publications, Ltd., GBR, 1985.

[498] World Wide Web Consortium (W3C). Simple Object Access Protocol (SOAP) 1.2,
2007.

[499] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei. Supporting
Automatic Model Inconsistency Fixing. In ESEC/FSE ’09, pages 315–324, New
York, NY, USA, 2009. ACM.

Bibliography 235

BIBLIOGRAPHY

[500] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards automatic
model synchronization from model transformations. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineering, ASE
’07, pages 164–173, Atlanta, Georgia, USA, Nov. 2007. Association for Computing
Machinery.

[501] Y. Xiong, H. Song, Z. Hu, and M. Takeichi. Synchronizing concurrent model
updates based on bidirectional transformation. Software & Systems Modeling,
12(1):89–104, Feb. 2013.

[502] W. Yeung. Checking Consistency between UML Class and State Models Based
on CSP and B. Journal of Universal Computer Science, 10(11):1540–1559, Nov. 2004.

236 Bibliography

APPENDIX A
LITERATURE STUDY REFINEMENTS

Chap. 4 contains a literature study investigating approaches related to multi-model
consistency management. It is based on the content of [451]. On the occasion of writing
this thesis, that study had been extended and as a result the presentation of the feature
model had been modified. Concerning the extension, Chap. 4 additionally covers the
survey papers [461], [190], [350], and [416], adding an increased number of background
material. Concerning the feature model, the following sections will explain the detailed
changes of the feature model in this thesis, compared to the one in [451]:

Model

The changes to the Models feature dimension in [451] are visualised in Fig.A.1 and
highlighted by red colour. I performed some renaming of features. For example, Trees
have been renamed to Terms since the latter is the more general term. The sub-features
of the abstract XML feature (now named XML-based) have been reorganised: EMF is now
subsumed by XMI, Free Form and XML are the new XML feature since XSD is rightly an
aspect of the Conformance dimension. Moreover, RDF is introduced as a new concrete
XML-based technology for model representation. Finally, I introduced DSLs as a new
concrete feature for representing models.

Change

The changes to the Changes dimension in [451] are depicted in Fig.A.2. The major
change is a reorganisation on the top layer. Definition and Types are now grouped under
the newly introduced abstract feature Allowed Updates, which makes the presentation
more clear. Making Definition an optional sub feature makes the Undefined feature
obsolete. Moreover, Recording is moved under Representation since it is recording is
related to representation. Moreover, I introduced a more refined distinction beneath
the Change Identification Procedure feature (now named Model Differencing) and under
Definition::Customizable.

Conformance

The changes to the Formats dimension in [451] (now named Conformance to align
it with the terminology of Chap. 3) are shown in Fig.A.3. The major change is that

Models

Tech-
Space

XML-based

SQL

Free
Form

XSD

XMI

EMF

PL

Other
JVM

.NET

Haskell

Prolog

Formalism

Set-
based

Logical

Trees
Terms

Relations

Graphs

Object
Oriented

Category
Theory

XML

DSLs

RDF

XMI

<<new>>

<<new>>

<<merged>>

<<merged>>

Fig. A.1: Differences w.r.t. the Models feature dimension

Changes

Representation Definition

Types Recording Meta-
Information

State-
Based

Delta-
Based

Structural
Delta

Operational
Delta

Undefined

Fixed
Builtin

Customizable

Atomic

Complex Offline Online

Intrusive Non-
Intrusive

Change
Identification
Procedure

HistoryEnvironment
Data

Rename

Insert

Update

Delete

Move

Merge

Copy Sequence Parallelism Contingency
Plans

Previous
State Complete

Allowed
Updates

<<new>>

Model
Differencing

Explicit

Implicit

<<new>>

<<new>>

Syntactic Semantic

<<new>> <<new>>

Fig. A.2: Differences w.r.t. the Change feature dimension

238 Appendix

Formats Migration

Modifications
Representation Free

Restricted

Predefined

Customizable

Manual

Execution
Conformance

Well-
Formedness

Typing

Constraints

Semi-
Automatic

Automatic

CoExistence
Period

Concrete
Syntax

Type
System

BNF
Grammar

Relational
Schema MetamodelType

Graph
Algebraic
Signature

Knowledge
Base

Conservative
Copy

Metamodel

FormalismTechSpace

Definition

<<new>>

<<new>><<new>>

<<new>>

Fig. A.3: Differences w.r.t. the Conformance feature dimension

Migration and all its children are now removed since metamodel-model co-evolution
is not the topic of this thesis. A minor change is that Conformance has had to be
renamed to Well-Formedness to avoid name collision. The Representation feature is
moved beneath the new abstract feature Metamodel, which additionally investigates
ways of defining metamodels. Under the Representation aspect, the distinction is now
split into TechSpace and Formalism, similar to the Models feature. In this context, also
new technologies and formalisms had been added, e.g. OWL is introduced as a way for
representing metamodels.

Correspondence

The changes to the Multi-Models dimension (now named Correspondence to align it
with the terminology in Chap. 3) is shown inn Fig.A.4. There are some changes
in terminology, which are highlighted in the figure. The features Privacy, Authority,
Arity are now all grouped beneath Properties. The Communication aspect had been
deleted because it has little importance to my work. The two major changes are the
introduction of the abstract feature Commonalities and General Architecture. The latter
subsumes the old Synthesis feature and additionally considers the Maintainer Network
approach, see Sec. 3.3.5. The Commonalities feature now groups the aspects Definition
and Representation. The latter has been extended by Complement-based approaches,
which are common in programming-based BX. Finally, Matching Procedure is now its
own top-level feature (beneath Operations).

Consistency

The changes to the Consistency dimension in [451] are shown in Fig.A.5. Here, I mainly
added new features, e.g. PL-based means for Rule::Definition, Other Formalisms, and the

Appendix 239

Multi-
Models

Correspondence

Paradigms
Components

Precedence/
Authority

Privacy

Communication

Concurrency

Homogeneous

Heterogeneous

Typing

Tech
Spaces

Formalisms

Arity

Binary Multi-ary

Informational
Overlaps
Content

Asymmetric Symmetric

Representation
Trace-based

Trans-
formations

Traceability
Links

Weaving

System
Model
Merging

Model
Enrichment
Decorations

Definition

PredefinedCustomizable

Formulas/
Rules

Keys
Structural
Properties

External
Element
Tuples

Matching
Procedure

Properties

Synthesis
GlobalViewMerging

Language-
Extension

Preexisting

Constructed

Serial

Parallel

Model
Space
Level

Model
Level

Element
Level

Commonalities

Complement-
based

Maintainer
Networks General

Architecture

<<new>>

<<new>>

<<new>>

<<new>>

<<moved>>

Fig. A.4: Differences w.r.t. the Correspondence feature dimension

ConsistencyDefinition Check

Meta-
Information

Inconsistency-
LevelsBuiltin

Customisable

External
Informal

Combinator-
Library

Grammar

Logical
Theory

FOL

OCL

...

Execution

Invocation

Reporting

Manual

Automatic

On-
Demand

Event-
Based

Boolean

Rules
ElementsGoals

Unmodifiable

Scope Repair-
Hints

Modifiable

Moved to Operations::Verification

Implementation<<new>>

Nature

Structural Behavioural Intra-Model Inter-Model

Other
Formalisms

PL

Rules

<<new>><<new>><<new>><<new>>

<<new>>

<<new>>

<<new>>

<<new>>

Fig. A.5: Differences w.r.t. the Consistency feature dimension

240 Appendix

Repair

Implementation

Search
Based

Rule
Based

Universal
Solutions

Fixed Strategy

Heuristics Engine

Atomic
Search CSP Solver

SAT SMT LP/CSP/ASP Optimizer

Operational
Imperative Declarative

Syntactical Semantical Generative Analysis

Human
Interaction

Upfront

Default
Values

Cost
Declaration

Policy
Declaration

Interactive

Result
Selection

Enter
Values

Strategy
Selection

Learning

Incrementality

Invocation

Manual

Automatic
Event-based

Rule
Declaration

Policy-
based

Formal
Guarantees

<<moved>>

<<moved>>

<<new>>

Fig. A.6: Differences w.r.t. the Repair feature dimension (1/2)

distinction between Behavioural and Structural rules. The abstract feature Check (now
called Verification) has become its own top-level feature (beneath Operations), which
also investigates implementation approaches now.

Operations

In [451], I considered Repair as the only real operation. In Chap. 4, I added Verification
and Matching to the list of operations. Beneath the Repair feature, I did some changes,
which are highlighted in Fig.A.6 and Fig.A.7, respectively. The general distinction
into Implementation, Human Interaction, Properties (now named Formal Guarantees),
Invocation, and Result has stayed the same. Some features have moved down in the
tree and some features have been renamed, which is visible in the figures. The feature

RepairResult

Size

Presentation

Single

Multiple

Unordered

Ordered

Change

State

Labelled
Nulls

Properties
Formal

Gurantees Completeness

Correctness

Hippocratic

Compositionality

Optimality

Artifacts
Least
Change

Least
Surprise

Complexity

Minimal
Invocations

Linear

Polynomial

Exponential
Procedure

Well
Behaved

Consistency
Improving

Full

History
ignorant

<<new>>

<<moved>>

Fig. A.7: Differences w.r.t. the Repair feature dimension (2/2)

Appendix 241

Optimizer has been removed, because it turned out that the only related study [312]
used optimisation for “model matching” and not for “model repair”.

242 Appendix

APPENDIX B
PROOFS

B.1 Proof of Theorem 8

The schema for this proof is sketched in (B.1). The proof of Prop 4 showed that M is a
full subcategory of the diagram category GI = (SetB)I. Using cartesian closedness of the
category of small categories (Fact 41), I get that SetB×I ∼= (SetB)I (Fact 40). Intuitively,
this means that a functor with two arguments (of type B and I, resp.) can be curried, i.e.
it can be interpreted as a family of functors, each of which has one argument of type
B, and the family varying over a parameter of type I. Finally, we define an auxiliary
category N (B.1) as a subcategory of SetB×I of those functors N : B× I→ Set that map
“the same” morphism (modulo the construction in [3]) to monomorphisms as in M
(B.1). Finally, we show that N is isomorphic to CS.

SetB×I oo
∼= [3, 27.3 (e)]

// (SetB)I

CS oo
∼= (Sect. B.1)

// N
?�

(Sect. B.1)

OO

oo
∼= (Sect. B.1)

//M
?�

(Prop. 4)
OO

(B.1)

Definition of N

Because I contains 2n+ 1 objects, the cartesian product B× I of B and I in the category
of small categories has 2n + 1 copies B−n, . . . ,B0, . . . ,Bn of B together with arrow
spans

(s, 0) (s,−j)
(ids,j0)

oo
(ids,jj)

// (s, j)

for each j ∈ {1, . . . , n} and for each s ∈ |B|.
An example of a product category for n = 2 is shown in (5.19) in Example 5.2.

Hence, one obtains 2n+ 1 columns in (5.19).
Hence, objects in SetB×I are functors N : B× I→ Set, which simultaneously act as

2n+ 1 functors from B to Set, augmented with spans

N((s, 0)) N((s,−j))
N((ids,j0))
oo

N((ids,jj))
// N((s, j))

of total functions for each s ∈ |B| and all j ∈ {1, . . . , n}. In (5.19) these are the two spans

in the top row, if s = V . For s = E these spans occur in the bottom row in (5.19).
I define N to be the subcategory of SetB×I of functors N, which maps all (ids, j0) to

monomorphisms (injective functions) in Set for all s ∈ |B|.

Equivalence of N and M

The equivalence between SetB×I and (SetB)I is based on currying and un-currying the
respective functor definitions. The category M has imposed the restriction, that all
imagesM(j0) : M(−j)→M(0) of j0 under an M-object M are monomorphisms in G.
The latter is represented as a family (M(j0)(s) :M(−j)(s)→M(−j)(s))s∈|B|, which has
a one-to-one correspondence with the family N((s, j0)) (s ∈ |B|, j ∈ {1, . . . , n}).

Equivalence of CS and N
Let N ∈ |N| and C ∈ |CS|. We will show that every comprehensive system C has an
equivalent representation as an N-object. First, we define a one-to-one correspondence
within C’s components. We identify

• N((s, i)) and Ci(s) for all s ∈ |B|, 0 6 i 6 n (1. in Definition 5.19).

• and N((op, idi)) : N((s, i)) → N((s ′, i)) and Ci(op) : Ci(s) → Ci(s
′) for all

op : s→ s ′ ∈ B→, 0 6 i 6 n (2. in Def. 5.19).

Furthermore, in Sec. 5.1.3 it was demonstrated, how a partial morphism in some
category can be expressed by an equivalence class of spans with the inner leg being a
monomorphism. Therefore,

• N((s, k)) for all s ∈ |B|,−n 6 k < 0 (the apex of the span),

• N((ids, j0)) : N(s,−j) � N(s, 0) for all s ∈ |B|, 0 < j 6 n (the domain embed-
ding),

• and N((ids, jj)) : N(s,−j) → N(s, j) for all s ∈ |B|, 0 < j 6 n (the concrete
assignment)

form a concrete representative of the projection pCj,s : C0(s) ⇀ pCj,s in C.
The remaining constituents of N:

• N((op, j0)) for all 0 < j 6 n and non-identity morphisms op : s→ s ′ ∈ B→,

• N((op, jj)) for all 0 < j 6 n and non-identity morphisms op : s→ s ′ ∈ B→

are subject to the following equations, which are a consequence of the definition of
composition in the product category B× I (compare with the diagonals in (5.19)) and
of N being a functor (which must preserve these compositions):

N((ids ′, jj)) ◦N((op, id−j)) = N((ids ′, jj) ◦ (op, id−j))
= N((op, jj))

= N((op, idj) ◦ (ids, jj))
= N((op, idj)) ◦N((ids, jj))

244 Appendix

N((ids ′, j0)) ◦N((op, id−j)) = N((ids ′, j0) ◦ (op, id−j))
= N((op, j0))

= N((op, idj) ◦ (ids, j0))
= N((op, idj)) ◦N((ids, j0))

These conditions correspond to the generalised edge-node incidence (5.13)+(5.14).
Hence CS ∼= M, as claimed. �

B.2 Proof of Theorem 9

Let (m : B → D, f : C → D) be a co-span in CS. Utilizing Theorem 8, I choose to
perform the proof in M, i.e. showing the existence of (g : A → B,n : A → C) as a
pullback for (m, f) in M.

Recall that G = SetB has all pullbacks, which are constructed component-wise
for each s ∈ |B| (Lemma 32). The component-wise construction lifts to GI (for each
i ∈ I) resulting in the j-indexed family of cubes as shown in (B.2). Note that for any
object M ∈ |M|, the span (M(0) � M(−j) →,M(jj)) in (5.8) can be seen as a partial
G-morphism pMj :M0 ⇀Mj.

A0
n0 //

g0

ww

C0

f0

ww
0 B0

m0 // D0

dom(pAj)
n−j

//

g−j

xx

⊆Aj

OO

pA
j

��

dom(pCj)
f−j

xx

?�

⊆Cj

OO

pC
j

��

−j

j0

OO

jj

��

dom(pBj)
m−j

//

pB
j

��

?�

⊆Bj

OO

dom(pDj)
?�

⊆Dj

OO

pD
j

��

Aj
nj

//

gj

ww

Cj

fj
ww

j Bj mj

// Dj

(B.2)

The spans (g0, n0), (g−j, n−j), and (gj, nj) are constructed component-wise as pullbacks
in M. The universal pullback property of the top face w.r.t to the horizontal inner face
in the middle provides the morphism ⊆Aj that makes the upper rear faces commute.
And the universal pullback property of the bottom face w.r.t to the horizontal inner
face in the middle provides the morphism pA

j
that makes the lower rear faces commute.

It remains to show that A ∈ |M|. For this I have to show that ⊆Aj is a monomorphism
Assume two morphisms x : X → dom(pAj) and y : X → dom(pAj) such that

⊆Aj ◦x =⊆Aj ◦y. Postcomposing this arrow simultaneosly with n0 and g0 yields

n0◦ ⊆Aj ◦x = n0◦ ⊆Aj ◦y
g0◦ ⊆Aj ◦x = g0◦ ⊆Aj ◦y

Appendix 245

using the commutativity of the left and back face, followed bymonomorphism property
(C.13) of ⊆Bj and ⊆Cj , I get

n−j ◦ x = n−j ◦ y
g−j ◦ x = g−j ◦ y

Recall that the horizontal inner face is a pullback, i.e. n−j and g−j are jointly monic
(Fact 35) and therefore x = y as required. �

B.3 Proof of Theorem 5

Let f : G → H ∈ C→ be a (signature) morphism, C ∈ SenI (C|Π)(C) be a sketch
(sentence), and i : I→ H ∈ |C ↓ H| a slice-category object (model).

The following equivalence has to be proven

(C ↓ _)(f)(i) |= C⇔ i |= SenI (C|Π)(f)(C) (B.3)

Let in the following i∗ : O→ G be the image of C ↓ _)(f)(i).

“⇒”:

Assume that i∗ |= (b, p) for all diagrammatic constraints (b, p) ∈ Constr(C), i.e.
there exists a span (b ′ : X → O, i ′ : X → ar(p)) that is a pullback of (i∗ : O →
G, b : ar(p)→ G), see (B.4). Now both squares in (B.4) compose due to the pullback
composition lemma (Fact 30). As a consequence, I have that i |= (f ◦ b, p). Hence,
i |= SenI (C|Π)(f)(C) as required.

O I

X G H

ar(p)

b

f

i
i∗

f∗

y

i ′

b ′

(B.4)

“⇐”:

Assume that i |= SenI (C|Π)(f)(C). Hence for all (f ◦ b, p) ∈ Constr(SenI (C|Π)(f)(C))

there is a ((b, f) ′ : X → I, i ′ : X → ar(p) that is the pullback of (f ◦ b : ar(p) → H, i :

I → H). Now, due to the pullback decomposition lemma (Fact 30) there is a unique
morphism b ′ : X → O such that (b ′, i∗, i ′, b) is a pullback square, see (B.5). Hence,
i∗ |= (b, p), which yields (C ↓ _)(f)(i) |= C as required.

246 Appendix

X

O I

G H

ar(p)

b

f

i
i∗

f∗

y

(b,f) ′

i ′

b ′

(B.5)

�

B.4 Proof of Proposition 13

Isomorphisms trivially yield naturality squares that are pullbacks. The composition of
two reflectivemonomorphisms is a reflectivemonomorphism aswell because pullbacks
compose. To see that reflective monomorphisms are stable under pullback, consider
again our pullback construction inM from the proof of Theorem9, depicted in (B.2).
This time, the upper front face is a pullback and all components ofm are monic, i.e.
m is a reflective mono. We have to show that all components of n are monic and that
the upper back face is a pullback, i.e. n is a reflective mono. The former, however,
is easy, since pullbacks in M preserve monomorphisms (Fact 34): Recall that A was
constructed via taking pullbacks component-wise in Theorem 9. For the pullback
property consider the diagram in (B.6)

dom(pAj)

(a)

� �
⊆Aj

//

��

n−j

��

⊆Bj ◦g−j

))
A0

(b)

g0 //
��

n0

��

B0��

m0

��

dom(pCj)
� �
⊆Cj

//

⊆Dj ◦f−j

55C0
f0 // D0

(B.6)

I use the fact that the upper front-face in (B.2) is a pullback because m is reflective
monomorphism by assumption. I compose it with the horizontal inner face in (B.2),
which is a pullback by construction resulting in a pullback that forms the outer rectangle
in (B.6). The right square (b) in (B.6) is the top face in (B.2) and therefore also a pullback
by construction. Now we know that the upper and lower triangles in (B.6) commute
because they represent the upper left and upper right faces in (B.2). Therefore, I can
use the pullback-decomposition lemma to conclude that (a) is a pullback, as desired. �

B.5 Proof of Theorem 14

Let m : A � B and f : A → C be a span of comprehensive systems with m ∈ M a
reflective monomorphism. Again, I construct the pushout (g : B → D,n : C � D)

Appendix 247

component-wise in M like I did in the proof of Theorem9. The construction is dual to
the one in the proof of Theorem9 and again I have to pay special attention to the upper
cubes (images of j0)

A0

f0

ww

//
m0 // B0

g0
ww

C0 // n0
// D0

dom(pAj)
� ?

⊆Aj

OO

//
m−j

//

f−j

xx

dom(pBj)

g−j
xx

� ?

⊆Bj

OO

dom(pCj)
� ?

⊆Cj

OO

//
n−j

// dom(pDj)

⊆Dj

OO

(B.7)

Consider the commutative cube in (B.7). The rear faces are given via the span (m, f)

where the back face is a pullback because m ∈ M . The top and bottom faces are
constructed as pushouts and by the universal property of the bottom face pushout,
we get the morphism D(j0) that makes the front and right face commute. Since
G is adhesive [304], pushouts preserve monomorphisms such that n0 and n−j are
monomorphisms.

Next, we show that the front face is a pullback, for this consider the diagram in
(B.8).

dom(pAj)
f−j

//

f0◦⊆Aj

((

��

m−j

��

(a)

dom(pCj)
� �
⊆Cj

//

��

n−j

��

(b)

C0��

n0

��

dom(pBj) g−j

//

g0◦⊆Bj

66dom(pDj) ⊆Dj
// D0

(B.8)

The square (a) is a pushout by construction (bottom face in B.7) and the outer square is
a pullback composed out of the back (pullback due the reflective property ofm) and
top face (pushouts along monomorphisms in adhesive categories are pullbacks as well)
in (B.7). Using the special pullback-pushout property in G [305, Lemma 6] the square
(b) becomes a pullback.

It remains to show that ⊆Dj is a monomorphism. For this consider the following
Set-theoretic argument, which is stable under sort-wise construction (lifts to SetB):
Assume ⊆Dj is not monic, then there are two elements x, y ∈ dom(pDj) that ⊆Dj maps
to the same element z ∈ D0. Now, I know that dom(pDj) is the apex of a pushout,
therefore n−j and g−j are jointly surjective (Fact 38) and thus x, ymust have pre-images
x ′, y ′ under (n−j, g−j) in dom(pCj) or dom(pBj).

Note that the cases x ′ /∈ dom(pCj)∧y /∈ dom(pBj) or x ′ ∈ dom(pCj)∧y
′ /∈ dom(pBj)

disqualify immediately since (a) is a pullback. Also x ′, y ′ ∈ dom(pCj) is not possible
since (b) is a pullback and ⊆Cj is monic. Therefore consider the case x ′, y ′ ∈ dom(pBj)

further. Then x ′, y ′ must have distinct images under inclusion ⊆Bj in B0 that must

248 Appendix

be mapped to z via g0. Now D0 is also constructed as the apex of a pushout and for
x ′, y ′ ∈ B0 being mapped to the same element inD0, there must be pre-images of x ′, y ′
in A0 that are mapped to the same element in z ∈ C0. But dom(pCj) is the pullback
object of n0 and⊆Dj and therefore z ∈ C0 must have two pre-images in dom(pCj)which
violates the monomorphism property of ⊆Cj .

Hence, one must conclude that ⊆Dj is a monomorphism. �

B.6 Proof of Theorem 15

Let B be a comprehensive system. For the existence of M -partial arrow classifiers, I
have to show the existence of an M -morphism ηB : B� LB such that for every span
(f : X→ B,m : X� A) there exists a unique morphism [m, f〉 : A→ LB such that the
resulting square is a pullback. Again I perform the construction in M and focus on
the image of j0’s. For the jj’s some aspects need not be considered (e.g. pullbacks and
monos), hence from the proof for the j0’s the proof for the jj’s follows.

X0

f0

ww

//
m0 // A0

[m0,f0〉ww

B0 // ηB0

// LB0

dom(pXj)
� ?

⊆Xj

OO

//
m−j

//

f−j

xx

dom(pAj)

[m−j,f−j〉xx

� ?

⊆Aj

OO

dom(pBj)
� ?

⊆Bj

OO

//
η
dom(pB

j
)

// Ldom(pBj)

[η
dom(pB

j
)
,⊆Bj 〉

OO

(B.9)

Consider the cube in (B.9). I use the fact that G has mono-partial arrow classifiers and
construct the partial arrow classifier of B inM component-wise. This gives the existence
of unique (dashed arrows) [m0, f0〉 and [m−j, f−j〉 such that the top and bottom face
become pullbacks. Using the partial arrow classifier property of ηB0 : B0� LB0 w.r.t.
[ηdom(pBj)

,⊆Bj 〉 yields [ηdom(pBj)
,⊆Bj 〉 such that the front face becomes a pullback, i.e.

ηB is a reflective monomorphism if it is a monomorphism. The former is due to the
fact that if in a partial arrow span [m, f〉, f is a monomorphism, then also [m, f〉 is a
monomorphism, see Lemma 45. Finally, I have to show that the right face commutes,
i.e. [m0, f0〉◦ ⊆Aj = [ηdom(pBj)

,⊆Bj 〉 ◦ [m−j, f−j〉 consider the diagram (B.10).

dom(pXh)

f0◦⊆Xj

��

//
m−j

// dom(pAj)

[m−j,f0◦⊆Xj 〉

��

[m0,f0〉◦⊆Aj

vv

[η
dom(pB

j
)
,⊆Bj 〉◦[m−j,f−j〉

((
B0 // η

B0

// LB0

(B.10)

Appendix 249

Using the partial map [m−j, f0◦ ⊆Xj 〉w.r.t. ηB0 , there is a unique (dashed) arrowmaking
the square a pullback. Thus

[m0, f0〉◦ ⊆Aj = [m−j, f0◦ ⊆Xj 〉 = [ηdom(pBj)
,⊆Bj 〉 ◦ [m−j, f−j〉

�

B.7 Proof of Proposition 17

(The proof is performed inM) For the first part of the proof let 0

0 := (∅ : ∅⇀ ∅)16j6n

be the totally undefined multi-model span. It is easy to see that this object must be an
initial object inM, which immediately follows from the fact that the empty graph ∅ is
the initial object in G.

For the second part of the proof letM and N be two multi-model spans. Consider
(B.11) and recall that G has coproducts.

M0 +N0

M0 dom(pMj) + dom(pNj) N0

dom(pMj) Mj +Nj dom(pNj)

Mj Nj

λ0

λ−j

λj

⊆Mj

pM
j

⊆Nj

pM
j

κ0

κ−j

κj

uj

vj (B.11)

Hence, one can construct coproducts for each component yielding the respective
family of coproduct injections λ and κ. Due to the universal coproduct product of
dom(pMj)+dom(pNj) there are morphisms uj : dom(pMj)+dom(pNj)→M0+N0 and
vi : dom(pMj)+dom(pNj)→Mj+Nj for all 1 6 j 6 nmaking the respective diagrams
commute. To show that the family of spans M0 +N0

uj←− dom(pMj) + dom(pNj)
k−→

Mj +Nj forms a multi-model span one has to verify that the u’s are monomorphisms.
For this, note that coproducts extend to a functor + : C× C→ C and recall that G

is extensive [81], i.e.
G ↓ A×G ↓ B ∼= G ↓ A+ B (B.12)

is an equivalence between slice categories. Now, note that that the pair of monomor-
phisms ⊆Mj : dom(pMj) ↪→M0 and ⊆Nj : dom(pNj) ↪→ N0, which can be considered as
objects of the comma categories G ↓ M0 and G ↓ M0 respectively, are a monomor-
phism in G ↓M0 ×G ↓ N0 (products preserve monos). Hence, due to the equivalence
in (B.12), ui, which is the image of (⊆Mj ,⊆Nj) under +, must be a monomorphism as
well. �

250 Appendix

B.8 Proof of Theorem 18

An immediate consequence of the definitions ofM in terms of coproducts is that T is
injective on objects and on morphism sets, hence an embedding, such that it remains
to show preservation of pushouts.

As seen in Theorem 14, pointwise pushout construction of a span in M may fail to
belong toM. This obstacle can be overcome because I use coproducts in the construction
of T . Let ν : M→ N := T(n : D→ H), then the naturality squares ν0◦ ⊆Mj =⊆Nj ◦ν−j
(images of j0’s) are pullbacks due to the following:

The definition of M(j0) can also be written

M(j0) :
∐
r∈R

Djr ↪→
∐
r∈R

D(r)

with Djr = D(r), if there is f ∈ I→(_, j) and r = dom(f), and Djr = 0 (the initial object,
see Appendix C.3, i.e. the empty graph) otherwise, because X+ 0 ∼= X in G. Similarly,
this inclusion can be extended forM1. In both cases the summand-wise squares

D(r)
nr // H(r)

Djr
nr or id0//

id or 0
D0(r)

OO

Hjr

id or 0
D1(r)

OO
(B.13)

are pullbacks, such that it suffices to show that two pullback squares in G always add
up to a pullback square of their coproducts, see (B.14).

A1
h1 // B1

(p.b.)

A2
h2 // B2

⇒(p.b.)

A1 +A2
h1+h2 // B1 + B2

(p.b.)

C1
h ′1

//

k ′1

OO

D1

k1

OO

C2
h ′2

//

k ′2

OO

D2

k2

OO

C1 + C2
h ′1+h

′
2

//

k ′1+k
′
2

OO

D1 +D2

k1+k2

OO
(B.14)

This can be demonstrated as follows: G is known to be extensive, see Sec. B.7, i.e.
the functor + : G ↓ B1 × G ↓ B2 → G ↓ (B1 + B2) between comma categories is an
equivalence of categories, its inverse is taking pullbacks along coproduct injections
[81]. This adds pullbacks adjacent on the right of the two left pullbacks in (B.14) and,
by pullback composition [34], we obtain two pullbacks with the arrow k1 + k2 as right
vertical arrow. Since G is a topos [207], it can be shown that these two then add to the
right pullback in (B.14), see §5.3. in [207].

Now, consider the cube from (B.7) in the proof of theorem14. This time left and
back faces are pullbacks. Using the fact that pushouts in G are mono-hereditary [227],
I conclude that front and right faces are pullbacks and that ⊆Dj is a monomorphism,
i.e. the result is actually a comprehensive system. Hence, I have to show that all
components are pushouts, i.e. the right squares in (B.15) are pushouts in G for all

Appendix 251

i ∈ I→.
D

m +3

f

��

G1

f ′

��

M
µ +3

φ

��

N

φ ′

��

M(i)
µi //

φi
��

N(i)

φ ′i
��

H
m ′ +3 J K

µ ′ +3 L K(i)
µ ′i // L(i)

(B.15)

This is, however, clear from the definition of T for i > 0 (because models are untouched
and the left square is a pushout by assumption). For i 6 0, all four objects in the right
square are coproducts over a certain indexing set I (I = I→ for i = 0 and I = I→(_, j) for
i = −j < 0), where the coproduct amalgamates relation graphs of the graph diagrams
(index r ∈ R).

Finally, since
∐

is a functor from GI to G, which is left-adjoint to the diagonal
functor ∆I (cf. [34, Ex.13.2.4]), it preserves colimits, hence all squares are pushouts,
because in the left square there are pointwise pushouts separately for each relation
index r ∈ R. �

252 Appendix

APPENDIX C
CATEGORY THEORY ESSENTIALS

C.1 History and Background

Category theory was originally invented by Eilenberg and MacLane [152] to bridge two
seemingly disparate mathematical domains: topology (i.e. the study of abstract shapes)
and algebra (i.e. the studyof abstract equations). It allowed to “translate” results fromone
field to the other and vice versa. Shortly after its inception, Grothendieck used category
theory to advance the theory about algebraic geometry [212]. Lawvere recognised that
category theory could serve as an alternative foundation to mathematics and, in his
frequently cited PhD thesis [309], showed how algebraic theories are interpreted in the
categorical framework. His work paved the way for the categorical study of logic and
algebra. Today, teaching universal logic, model theory and universal algebra generally
encompasses teaching category theory as well. Lambek [306] made the discovery
that the theoretical foundation of functional programming (i.e. the typed λ-calculus)
can be described by a special type of categories (i.e. cartesian closed categories) and
Moggi [345] proposed a categorical concept (i.e. monads) to model effects in functional
programming. Since then category theory has become a popular tool for formal
investigations about functional programming [344]. Also other areas of (theoretical)
computer science have been affected by category theory [203]. For instance, algebraic
specification [415], concurrency theory [490], or formal verification [205]. In the context
of software engineering, category theory has been used as a means of data specification
[117, 252] and as the foundation for algebraic graph transformation [149], a popular
formalism for describing model transformations [452]. Recently, quantum physics has
been described bymeans of category theory [93] based on its visual and simultaneously
formal (string) diagram language [425]. This is a rather compact summary of the
historical development of category theory and its applications, for a more detailed
account see [298].

The central authoritative textbook about category theory is MacLane’s Categories
for the Working Mathematician [326], which, however, is rather advanced and targeted
primarily at mathematicians. A more gentle introduction for a broader audience is
found in Lawvere’s Conceptual Mathematics [310]. There are also textbooks targetted
specifically at computer scientists and software engineers [34, 171, 380, 478]. Spivak
and Fong’s Seven Sketches [177] is the most recent introductory textbooks, which
emphasizes the practical applicability of category theory in Science and Engineering.
In the following, I will give a short presentation of the concept required for the

understanding of Chap. 5 in order to make this thesis self-contained. For a more
background information, I refer to the textbooks mentioned above.

C.2 Introduction

Intuitively, a category is a universe of homogenous mathematical structures (the objects)
together with abstract means to “compare” them (the morphisms). One may think of
categories as a generalisation of (pre-)orders, monoids and graphs together.

First Intuition: Preorders
The mathematical concept behind “comparison” is given by orders. The most generic
form of an order is a preorder, which is a relation �⊆ X×X on some set X satisfying the
following conditions:

∀x ∈ X :x � x (Reflexivity)
∀x, y, z ∈ X :x � y∧ y � z =⇒ x � z (Transitivity)

The tuple (X,�) is called a preordered set.

{a, b, c}

{a, b}

::

{a, c}

OO

{b, c}

dd

{a}

OO ::

{b}

dd ::

{c}

dd OO

∅

OOee ::

(C.1)

(C.1) contains a visualisation of a preordered set, the subset lattice (℘X,⊆) of the
three-element set X := {a, b, c}. The visualisation is given in the form of a directed
graph, i.e. every element of ℘X becomes a vertex and an edge is drawn if there is a
subset relation X ′ ⊆ X ′′ for two sets X ′, X ′′ ∈ ℘X. Note, however, that not all edges
have to be drawn, e.g. there is no direct edge between ∅ and {a, b} and no loop on {a}.
This is because, we know that (C.1) depicts a preorder and therefore (Reflexivity) and
(Transitivity) hold.

...

��

...

��

...

��

...

��

. . .

20

VV

��

21

VV

��

22

VV

��

23

VV

��

. . .

10

VV

��

11

VV

��

12

VV

��

13

VV

��

. . .

0

VV

1

VV

2

VV

3

VV

. . .

(C.2)

254 Appendix

ChangeRepresentation
State-
Based

Delta-
Based

Structural
Delta

Operational
Delta

Fig. C.1: Feature model excerpt (of Fig. 4.3)

(C.2) illustrates a different (and this time infinite) preorder (Nat,≡mod 10), i.e. the
set of all natural numbers together with the modulus relation. Two natural numbers
n and m are congruent modulo 10, written n ≡ m(mod 10), if there is an integer k
such that n = a ∗ 10 +m. Comparing (C.2) to (C.1), there is a new phenomenon:
There are cycles. This is due to the fact that (Nat,≡mod 10) is an equivalence relation. An
equivalence relation is a preorder that additionally is symmetric:

∀x, y ∈ X :x � y =⇒ y � x (Symmetry)

A programming related example of an equivalence relation is given by the equals()
method in Object, the abstract superclass of classes in Java. By providing a custom
implementation for this method in a concrete subclass, the programmer implicitly
defines an equivalence relation and hence should ensure that his implementations
conforms to the properties of (Reflexivity), (Transitivity), and (Symmetry).

What is commonly understood under the term order is called partial or total order
in mathematics. A partial order is an anti-symmetric preorder:

∀x, y ∈ X :x � y∧ y � x =⇒ x = y (Anti-Symmetry)

Graphically speaking, a partial-order only allow those cycles that arise from
(Reflexivity). There are many examples of partial orders in software engineering, e.g.
the inheritance-relationship among classes inUML class digrams, the commit-history of
a git-repository, or the package-structure in a Java-program. Also this thesis comprises
examples of partial orders. For instance, the feature model in Chap. 4 represents a
partial order.

Consider Fig. C.1, which represent an excerpt of Fig. 4.3 and, read left-to-right, can
formally be interpreted by a preordered set (ignoring the different types of feature
relationships such as mandatory, optional, or-group, xor-group).

A total order is partial order that additionally is strongly-connected, i.e.there are no
“incomparable” pairs of elements:

∀x, y ∈ X :x � y∨ y � x (Strongly connected)

A well known total order is given by the natural numbers Nat = (Nat,6):

0 // 1 // 2 // 3 // . . .

or truth values denoted by 2 := ({⊥,>}, {(⊥,⊥), (>,>), (⊥,>)}), which is visualised as

Appendix 255

follows:
⊥ // > (C.3)

In programming languages, the latter is usually called Boolean and its two elements
are called true and false.

Finally, instead of expressing � as a relation, I could instead have defined as a
function1 Hom� : X× X→ 2. The relationship between Hom� and � is captured by
the following equivalence:

∀x, y ∈ X : x � y⇔ Hom�(x, y) = > (C.4)

This alternative approach is important to keep in mind for later when I will provide
the final definition of categories, which will also explain the choice of the name Hom.

Second Intuition: Monoids
A monoid is a triple (M,ε,⊗) whereM is the carrier set, ε ∈ M is called the neutral
element and ⊗ : M ×M → M is a function, the monoid multiplication satisfying the
following conditions:

∀m ∈M :m⊗ ε = m = ε⊗M (Identity Element)
∀m,n, k ∈M :(m⊗ n)⊗ k = m⊗ (n⊗ k) (Associativity)

The are many examples of monoids in Mathematics, e.g. natural numbers with
additions (Nat, 0,+) or natural numbers with multiplication (Nat, ∗, 1). The most
graphic example of monoids for Software Engineers are lists over some data type T , e.g.
List<T> in Java: The instances of T provide the material for the carrier set, the empty
list represents the neutral element, and list concatenation is the monoid multiplication.
It is easy to verify that this construct satisfies the monoid axioms (Identity Element)
and (Associativity),

Third Intuition: Graphs
Graphs are utilised to visualise orders in Sec. C.2 but they have many more application
areas and there are different “types” of graphs, see Sec. 5.1.1. For this thesis, the most
important concept are directed multigraphs G := (V, E, o, t) where V is a set of vertices, E
is a set of edges, owner : E→ V is a function that assigns the owner vertex to an edge
(origin), and target : E → V is another function that assigns the target vertex to an
edge.

Graphs are encountered almost everywhere in Computer Science and software
engineering. One popular example are class diagrams. For example consider Fig. C.2,
which is actually an excerpt of Fig. 6.3. This “graph” contains 6 vertices and 7 edges:
Every class (4 elements) and data type (2 elements) is interpreted as a vertex and every
reference (3 elements) and attribute (4 elements) is interpreted as an edge.

1In typical abuse of notation, I am using 2 to refer to both the respective preorder as well as the
underlying set.

256 Appendix

Query
Type

name : String

Field

name : String

isMandatory : Boolean

isListValued : Boolean

type1..1

Selection

root
1..1

field
1..1

0..*

Fig. C.2: Class diagram excerpt (of Fig. 6.3)

A common phenomenon of object-oriented programming is navigation on such
class diagram graphs. For instance, a programmer may write down the following path

root.field.type.name

inside a method of the class Query. Formally, this expression can be interpreted as a list
of edge names, i.e. there is an underlying “path monoid” where monoid multiplication
is denoted by “.” and the neutral element is given by “this”. There is an important
intricacy to this monoid, its multiplication operator is only partial. This means that one
can only concatenate e.e ′ two edge names e, e ′ ∈ E if they are incident, i.e. t(e) = o(e ′).
Thus, writing “this.root.type” starting in Querywould not be allowed.

Another example of this idea is the network of updates in a model space, see
Sec. 3.3.1: Models represent vertices, updates represent edges, idle updates are the
empty paths, and composed updates are general paths.

A category can actually be described via paths on directed multigraphs by intro-
ducing some special terminology: Vertices are renamed to objects, paths over edges are
renamed to morphisms, the function o : E→ V is renamed to domain, and the function
t : E→ V is renamed ot codomain.

Appendix 257

Definition and Examples

Definition C.1 Category

A category C consists of the following:

• A class of objects |C|.

• For every pair of objects A,B ∈ |C|, there is a set of morphisms called a
hom-set and denoted C(A,B). For every member f ∈ C(A,B), A = dom(f)

is called the domain of f and B = cod(f) is called the codomain of f. The
class of allmorphisms (i.e. union of all hom-sets) is denoted by C→.

• For every object A ∈ |C| there is a unique identity morphism idA ∈ C(A,A).

• For every triple of objects A,B,C ∈ |C| and morphisms f ∈ C(A,B) and
g ∈ C(B,C), there is a composite g ◦ f ∈ C(A,C). Thus, composition can be
interpreted as binary partial operation

_ ◦ _ : C→ × C→ ⇀ C→

that is defined iff its arguments are incident (cod(f) = dom(g)).

Furthermore, C has to satisfy the following laws:

• Composition ◦ is neutralw.r.t. identities, i.e. for all f ∈ C(A,B):

idB ◦ f = f = f ◦ idA (Identity Laws)

• Composition ◦ is associative, i.e. for all f ∈ C(A,B), g ∈ C(B,C), and
h ∈ C(C,D):

(h ◦ g) ◦ f = h ◦ (g ◦ f) (Associativity Laws)

A category where the class of objects is a set is called small.

Coming back to the introductory examples in Sec. C.2, every preorder is a cate-
gory: The carrier set provides the objects and the relation provides the morphisms,
(Reflexivity) guarantees that the (Identity Laws) hold, and (Transitivity) guarantees
that the (Associativity Laws) hold. Intuitively speaking, a preorder is category where
the hom-set for each pair of object at most contains a single element, e.g. named >
(see the concluding remark of Sec. C.2). Thus, there was no need to give a name to the
edges in (C.1) and (C.2).

Likewise, every monoid (M,ε,⊗) is a category C. This time the class of objects
is a singleton set. The name of the element in this singleton does not matter, one
may call it ∗. The carrier set M of the monoid is interpreted as the homset C(∗, ∗).
The neutral element is the identity of ∗ and composition ◦ is defined through ⊗. The
resemblance between (Identity Element) and (Identity Laws) as well as (Associativity)
and (Associativity Laws) is obvious.

258 Appendix

Arguably, themost important example of a category is the categorySet (the assembly
language of mathematics).

Fact 20 Category Set

The category of sets and functions Set comprises:

• The classa of all sets as objects,

• For a pair of sets A,B ∈ |Set|, their hom-set Set(A,B) is the set of all
functions f : A→ B.

• The identity for a set A is given by the identicalmapping on this set:

idA :=

{
A→ A

x 7→ a

• The composition of two functions f : A→ B and g : B→ C with incident
domain/codomain is defined by function composition:

g ◦ f :=

{
A→ C

a 7→ g(f(a))

aSee Russel’s paradox [485]

The notion of composition as function composition is the reason for category theory
sometimes being described as the “algebra of functions” [478]. One may also consider
other categories built over the collection of all sets. They differ in the definition of their
morphisms and consequentially in the definition of identities and composition.

Example C.1 Category of Sets and Relations Rel

The category of sets and relations Rel comprises:

• The class of all sets as objects,

• For a pair of sets A,B ∈ |Rel|, their hom-set Rel(A,B) is the set of all
relations R ⊆ A× B.

• The identity for a set A is given by the diagonal relation on this set:

∆A := {(a, a) | a ∈ A}

• The composition of two relations R ∈ Rel(A,B) and Q ∈ Rel(B,C) is
defined by relation composition:

Q ◦ R := {(a, c) | ∃b ∈ B : (a, b) ∈ R∧ (b, c) ∈ Q}

Appendix 259

Example C.2 Category of Sets and Inclusions Incl

The category of sets and inclusions Incl is the partial order given by the subset
relation

A ⊆ B⇔ ∀a ∈ A =⇒ a ∈ B

over the class of all sets.

Example C.3 Nat

Nat denotes a category given by the total order on the set of natural numbers.

Categories that are based on the collection of all sets are very big. Hence, I want
give two examples of very small categories.

Example C.4 The empty category 0

The empty category 0 has an empty set of objects and hence and empty set as
morphisms. Identities and composition are totally undefined.

Example C.5 The terminal category 1

The terminal category 1 has exactly one object • and exactly one morphism, the
identity on •.

Finally, one can construct categories from known ones.

Definition C.2 Opposite Category Cop

Let C be a category. There is an opposite category Cop, where

• the class of objects is the same, i.e. |C| = |Cop|,

• the morphisms are “inverted”, i.e. f ∈ C(A,B)⇔ fCop(B,A).

• identities are the same, and

• composition is inherited from C in the opposite way:

g ◦ f ∈ C→ ⇔ f ◦ g ∈ Cop→

260 Appendix

Definition C.3 Product Category C× D

Let C and D be categories. Their product category C× D comprises

• The cartesian product |C|× |D| as objects,

• For (C,D), (C ′, D ′) ∈ |C× D|, the hom-set C× D((C,D), (C ′, D ′)) =

C(C,C ′)× D(D,D ′) is given by the cartesian product of hom-sets from C
and D,

• identities are pairs of identities from C and D, i.e. id(C,D) = (idC, idD) for
C ∈ |C| and D ∈ |D|, and

• composition is defined category-wise, i.e. (f, g) ∈ C× D((C,D), (C ′, D ′))

and (f ′, g ′) ∈ C× D((C ′, D ′), (C ′′, D ′′)) their composite is defined as fol-
lows:

(f ′, g ′) ◦ (f, g) = (f ′ ◦ f, g ′ ◦ g)

Intuitively, the “constructions” in Def. C.2 and Def. C.3 are described as “inverting
the arrows” and “composing two categories in parallel”, respectively. The former
ascribes to a categorical phenomenon called Duality: One may say that a construction
or a proof can be carried out “dually”. This means that it happens in the same way but
the arrows point in the other direction.

Isomorphism

Due to the abstract nature of categories, it is generally not possible to check if two
objects represent the same thing because one can generally not have a look inside the
objects. However, one can compare them via the morphisms that go in and out. If
two objects are comparable by invertible morphisms, they are called isomorphic, i.e.
“identical modulo some internal restructuring”. In Set, this translates to “identical
modulo renaming”.

Isomorphisms are closely related to equivalence relations, see the cycles in (C.2).

Definition C.4 Isomorphism

Let C be a category and A,B ∈ |C| two objects in this category. A and B are
called isomorphic, written A ≈ B, if and only if there exist two morphisms
i : A→ B ∈ C→ and i−1 : B→ A ∈ C→ such that idA = i−1 ◦ i and idB = i ◦ i−1.
The morphisms, i and i−1 are called isomorphisms.

The following Fact follows immediately from Def. C.1 and Def. C.4.

Fact 21 Equivalence Relation ≈

Let C be a category. The relation ≈⊆ |C| × |C| induced by the concept of
isomorphisms is an equivalence relation. An equivalence class [A]≈ := {A ′ | A ≈
A ′} is called an abstract object.

Appendix 261

C.3 Important Concepts

In the remainder of this appendix chapter, I will enumerate several categorical concepts
that are used in this thesis. I will provide a definition and intuitive motivation for each
of them. Yet, these presentations are rather brief. For detailed treatment, I refer to the
textbooks mentioned in the introduction of this appendix section.

Functors and Adjunctions

In the previous section, I introduced several examples of categories. Some of them
smaller, some of them bigger. Moreover, some of them are apparently contained in
each other. For instance, the category Set is apparently contained in Rel since every
function can be seen as a special relation and composition of functions in Rel is function
composition. Hence, a concept for “comparing” categories is needed, which is provided
by the notion of functors.

Definition C.5 Functor

Let C and D be two categories. A functor F : C→ D comprises,

• an object mapping, i.e. for every object A ∈ |C| in the source category, F
assigns an object F(A) ∈ |D| in the target category,

• and a morphism mapping, i.e. for every morphism f : A→ B, F assigns a
morphism F(f) : F(A)→ F(B) in the target category,

such that

• identities are mapped to identities, i.e. for all A ∈ |C|: F(idA) = idF(A).

• and composition is preserved, i.e. for all f ∈ C(A,B) and g ∈ C(B,C):
F(g ◦ f) = F(g) ◦ F(f)a.

F is called an embedding, written C v D, if and only if it is injective on objects of C
and injective on C(A,B) for all A,B ∈ |C|.
Furthermore, a functor F is called contravariant if either the domain or codomain
category is an opposite category, e.g. F : C→ Dop.

aNote, that the composition ◦ in the left hand side of the identity is the composition of C,
while the composition in the right hand side is the composition of D.

In this thesis, I will often write the definition of a functor in a more compact way:

F :=

C→ D
A ∈ |C| 7→ F(A) ∈ |D|
f : A→ B ∈ C→ 7→ F(f) : F(A)→ F(B) ∈ D→

If the object mapping is trivial, the middle line is omitted. Let me now give an example
that let us compare Incl with Set, which turns out to be an embedding.

262 Appendix

Example C.6 Embedding Incl into Set

There is an embedding functor <:

<:=

{
Incl→ Set
A ⊆ B ∈ Incl→ 7→ incl : A ↪→ B ∈ Set→

where incl : A ↪→ B is a special injective functions (monomorphism):

incl :

{
A ↪→ B

a ∈ A 7→ a ∈ B

It is also possible to compare Incl with Nat when restricting Incl to finite sets,

Example C.7 Cardinality as a functor

There is a cardinality functor |_|:

|_| :=

Incl→ Nat
A 7→ |A|

A ⊆ B 7→ |A| 6 |B|

that assigns the cardinality (i.e. number of elements) to each set.

The functor concept allows to compare categories at a large scale.

Appendix 263

Fact 22 Category of Categories: Cat and CAT

The category of small categories and functors Cat comprises

• The class of all small categories as objects,

• For a pair of small categories C,D ∈ |Cat|, their hom-set Cat(C,D) is the set
of all functors F : C→ D.

• The identity for a category C is given by the identity Functor:

idA :=

C→ C
A 7→ A

f : A→ B 7→ f : A→ B

• The composition of two functors F : C → D and G : D → E is defined by
component-wise composition:

g ◦ f :=

C→ E
A 7→ G(F(A))

f : A→ B 7→ G(F(f))) : G(F(A))→ G(F(B))

One may also consider to replace the class of all small categories with the class of
all categories. However, the resulting construct (quasi-category) CAT cannot be
called category (“Russell’s paradox”).

Furthermore, one may now be interested to “compare” functors. The respective
concept for this are natural transformations:

Definition C.6 Natural Transformation

Let F : C → D and G : C → D be two functors between the same categories. A
natural transformationα : F⇒ G is given by a |C|-indexed family ofD-morphisms
(αA : F(A)→ G(A)A∈|C|, such that for every f ∈ C(A,B) the following diagram
commutes:

F(A)
F(f)

//

αA
��

F(B)

αB
��

G(A)
G(f)

// G(B)

(C.5)

The diagram in (C.5) is called a naturality square. When every D-morphisms in a
natural transformation α is an isomorphism, α is called a natural isomorphism.

Functors and natural transformations can be organised as category as well:

264 Appendix

Fact 23 Functor Category

Let C and D be small categories. The functor category DC comprises

• The class of all functors from C to D as objects,

• For a pair of functors F,G : C→ D, their hom-set DC(F,G) is the class of all
natural transformations α : F⇒ G.

• The identity for a functor F is given by the natural identities:

idF := (idF(A))A∈|C|

• The composition of two natural transformations α : F⇒ G and β : G⇒ H

is defined object-wise composition of morphisms in D:

β ◦ α := (βA ◦ αA)A∈|C|

The concept of functor categories (Fact 23) is used to construct new categories from
known ones. Often, these constructions are based on Set. Hence, functors G : B→ Set
going into set will play an important role in this thesis, see Def. 5.1. For example,
directed multigraphs can be described via such a construction.

With functors and natural transformation, we have all tools at hand to check
whether two categories (i.e. classes of mathematical structures) are essentially “the
same” modulo isomorphism. The latter is called an equivalence.

Definition C.7 Equivalence of Categories

Let C and D be two categories. They are said to be equivalent, written C ∼= D, if
there exists a pair of functors R : C→ D and L : D→ C together with two natural
isomorphisms ≈C: L ◦ R⇒ idC and ≈D: idD ⇒ R ◦ L,
If these families of isomorphisms are actually identities, then C and D are said to
be isomorphic.

In category theory there is also a weaker notion than equivalence, called adjunction2.
Intuitively speaking it means that two classes of structures are equivalent modulo some
“free construction” that can be universally applied. An example for such a construction
is the free monoid A∗ (lists) over a set A.

2It is sometimes noted that this notion is the actual reason category theory was invented

Appendix 265

Definition C.8 Adjunctions, (Co)-Free constructions

Let C and D be two categories and R : C→ D, L : D→ C be two functors between
them. L and R are said to be adjoint, written L a R if there exists two natural
transformations η : idD ⇒ R ◦ L (called unit) and ε : L ◦ R⇒ idC (called co-unit).
Equivalently, an adjunction can be defined as co-free constructionw.r.t to a functor
L : D→ C. A co-free constructions assigns to everyC-objectB aD-object R(B) and
C-morphism εB : L(R(B))→ B such that for every D-object A and C-morphism
f : L(A)→ B there exists a unique morphism f : A→ R(B) such that f = εB ◦L(f).
This is summarized in the diagram in (C.6).

C D

B L(A)
∀foo

L(f)zz

A

∃!f

}}

L(R(B))

εB

OO

R(B)

(C.6)

Universal Constructions

Universal constructions have proven to be important for many software theoretical
methods. Intuitively universal constructions can be described as a generalisation of
meets and joins in a pre-order. Some well known examples for universal constructions
in Set are cartesian products or disjoint unions (coproduct). It is important to note that
Set possesses all these universal constructions and thus every category SetB does as
well [207]. The construction of universal constructions in those categories is carried
out “pointwise”. I say that a universal object is constructed “pointwise” in SetB, if it is
constructed separately for each B-object by relying on the existence of the respective
universal construction in Set. The universal properties guarantee, that the resulting
object is a well-defined object in SetB. Examples are given in the proofs of Lemma 29
and Lemma 32. For more details on this idea, I refer to [207].

In this thesis, I will use the concept of “chosen” universal constructions. This is
because, in general, most universal constructions are only unique up to isomorphism.
When constructing an object from given ones, one has to pick a particular object within
the equivalence class. I assume that for Set and Set-based categories such as SetB, a
such choice exists, e.g. via a corresponding naming strategy.

The universal constructions in this section are based on the concept of a diagram, i.e.
a selection of objects and morphisms in a category that is formally expressed by means
of a functor:

Definition C.9 Diagram

Let C be a category. A diagram over C is given by a functor D : I→ C where I is
a small category, the shape of the diagram.

266 Appendix

Initial and Terminal Objects

Final and initial objects are defined over an empty diagram and therefore relate uniquely
to all objects in a category.

Definition C.10 Initial and Terminal Objects

An object 1 ∈ C is said to be terminal iff. for all X ∈ |C| there exists a unique
morphism 1X : X→ 1. Dually, an object 0 ∈ C is said to be initial iff for all X ∈ |C|
there exists a unique morphism 0X : 0→ C.

X

1X
��

0

0X
��

1 X

Fact 24 Terminal object in Set

A one-element set, e.g. 1 = {•} is a terminal object in Set.

Fact 25 Initial object in Set

The initial object in Set is the empty set 0 = ∅.

Coproducts

Coproducts a.k.a. sums provide means to collect a set of objects and work with them
uniformly, similar to type abstraction in programming.

Definition C.11 Binary Coproduct

Let C be a category and A,B ∈ C be objects. A binary coproduct of A and B is
given by an object A+ B and two coproduct injection morphisms ιA : A→ A+ B

and ιB : B → A+ B such that for all pairs of C-morphisms f : A → C and
g : B → C with C ∈ C there exists a unique morphism [f;g] : A+ B → C such
that [f;g] ◦ ιA = f and [f;g] ◦ ιB = g, visualised in (C.7):

C

A+ B

[f,g]!

OO

A

ιA
;;

f

::

B

ιB
cc

g

dd (C.7)

The mediating morphism [f;g] acts like f and g via case distinction and allows to

Appendix 267

extend Def. C.11 into a functor definition:

_+ _ :=

C× C→ C
(A,A ′) 7→ A+A ′

(f : A→ B, g : A ′ → B ′) 7→ [ιB ◦ f, ιB ′ ◦ g] : A+A ′ → B+ B ′

A multi-ary coproduct
∐

is given by multiple applications of the binary coproduct
functor, because the latter are associative ((A1 + A2) + A3 ∼= A1 + (A2 + A3)) and
commutative (A1+A2 ∼= A2+A1) up to isomorphism. The (multi-ary) coproduct over
an I-indexed family of C-objects (Ai)i∈I is denoted (

∐
i∈IAi, (ιi : Ai →

∐
i∈IAi)i∈I)

and the mediating morphism for a family of morphisms (fi : Ai → C)i∈I by
∐
fi :∐

i∈IAi → C.

Fact 26 Coproducts in Set

Set has all coproducts. A binary coproduct in Set is given by disjoint union
A t B := {(i, x) | (x ∈ A∧ i = 1)∨ (x ∈ B∧ i = 2)} for A and B being sets. The
initial object 0 in Set is the empty set ∅.

Lemma 27 Coproducts in SetB [207]

Every functor category SetB has coproducts due to the fact that Set has all
coproducts and we can construct them pointwise.

Proof. Let F and G be two objects in SetB and consider the family of diagrams in (C.8),
which is indexed by f : A→ B ∈ B→

F(A)

F(f)

��

ιF(A)

&&

G(A)
ιG(A)

xx

G(f)

��

F(A) +G(A)

F(f)+G(f)!

��

F(B)
ιF(B)

&&

G(B)
ιG(B)

xx

F(B) +G(B)

(C.8)

The coproduct of F and G for objects A,B is given by constructing the respective
coproducts F(A) +G(A) and F(B) +G(B) in Set, the morphism mappings (F+G)(f)
(dotted line) arises uniquely from the universal property of coproducts. �

Products

Products provide the means to express all possible ways of combining two objects and
product types are part of every programming language where they are better known
as “record types”.

268 Appendix

Definition C.12 Binary Product

Let C be a category and A,B ∈ C be objects. A binary product of A and B written
A× B is given by a span (A× B, πA : A× B→ A,πB : A× B→ B) such that for
all spans (X, f : X→ A, g : X→ B) there is a unique morphism (f, g) : X→ A× B
such that πA ◦ (f, g) = f and πB ◦ (f, g) = g, visualised in (C.9)

C

f

��

g

��

〈f,g〉
��

A× B
πA

{{

πB

##
A B

(C.9)

The most well-known instance of products are cartesian products in set.

Fact 28 Products in Set

Set has all products. A binary product in Set is given by the cartesian product
A× B := {(a, b) | a ∈ A∧ b ∈ B} for A and B being sets.

Lemma 29 Products in SetB

Every functor category SetB has products due to the fact that Set has all products
and one can construct them pointwise.

Proof. Dual to the proof in Lemma29. �

Pullbacks

A pullback can be seen as the categorical version of an inner join: two structures A and
B are combined where they coincide on a common structure C. Pullbacks are defined
over a diagram called co-span, i.e. a pair of morphisms sharing the same codomain,
and result in a span, i.e. a pair of morphisms sharing the same domain.

Appendix 269

Definition C.13 Pullback

Let C be category and a co-span of C-morphisms A a→ C
b← B be given. The

pullback of a and b is given by the span A πA← A ×(a,b) B
πB→ B such that

a ◦ πA = b ◦ πB and for all pairs of C-morphisms f : D→ A and g : D→ B such
that b ◦ g = a ◦ f and there exists a unique morphism 〈f, g〉 : D → A×(a,b) B

such that πA ◦ 〈f, g〉 = f and πB ◦ 〈f, g〉 = g, visualized in (C.10):

D g

$$

f

&&

〈f,g〉!
%%

A×(a,b) B
πB //

πA
��

p.b.

B

b
��

A a
// C

(C.10)

The morphisms πA and πB are sometimes called projections.

Throughout this thesis, I will regularly depict pullback diagrams. For a pullback
diagram depicted below (which is highlighted by the small “q” symbol in the upper
left corner),

D A

B C

f

g

f ′

g ′

y

the object D is called the “pullback object”. The morphisms (f, g, f ′, g ′) form a
commutative square, written g ◦ f ′ = f ◦ g ′. Moreover, f ′ is called “the pullback of f
along g” (analogously for g ′).

Fact 30 Pullback Composition and Decomposition

There is a well-known fact about composition and decomposition of pullbacks,
which immediately follows from their universal property:

A B E

C D F

c

d

g

a

fb

h

(i) (ii) (C.11)

Consider the diagram in (C.11), let (i) denote (b, h, d, c), (ii) denote (f, g, b, a),
and (i) + (ii) denote (f, g ◦ h, d, b ◦ c). Then, if (i) and (ii) are pullbacks, so is
(i) + (ii). Likewise, if (i) + (ii) and (ii) are pullbacks, so is (i).

270 Appendix

Fact 31 Pullbacks in Set

Set has pullbacks. Given two mappings f : A → C and g : B → C with same
codomain the pullback A ×(f,g) B is given by the fibred product A ×(f,g) B :=

{(a, b) | a ∈ A, b ∈ B, f(a) = g(b)}.

Lemma 32 Pullbacks in SetB [207]

Every functor category SetB has pullbacks due to the fact that Set has all pullbacks
and we can construct them pointwise.

Proof. Let F,G and H be objects in SetB and ν : F ⇒ H and µ : G ⇒ H morphisms in
SetB. Consider the following cube for some f : A→ B ∈ B→:

F(A)×(µ,ν) G(A)
µ ′A

ww

ν ′A //

F×(µ,ν)G(f)!

��

G(A)

µA
{{

G(f)

��

F(A)

F(f)

��

νA
// H(A)

H(f)

��

F(B)×(µ,ν) G(B)
ν ′B //

µ ′B

ww

G(B)

µB
{{

F(B) νB
// H(B)

The pullback of µ and ν for objects A and B is given by constructing the respective
pullbacks F(A) ×(µ,ν) G(A) and F(B) ×(µ,ν) G(B) in Set along (µA, νA) and (µB, νB)

respectively, the morphism mapping (F×(µ,ν) G)(f) (dotted line) arise uniquely from
the universal property of the pullbacks in the bottom face of the cube. �

Definition C.14 Monomorphism

Amorphismm : A→ B is called a monomorphism iff (idA, idA) is a pullback of
the cospan (m,m), see (C.12).

A
idA //

idA
��

p.b.

A

m
��

A m
// B

(C.12)

In this casem has the left cancellation property, which is a consequence of the
pullback property in (C.12):

∀f, g : C→ A : m ◦ f = m ◦ g =⇒ f = g (C.13)

I sometimes highlight the special property of m by denoting it with a special
arrowm : A� B.

Appendix 271

Fact 33 Monomorphism in Set

In Set the class of monomorphisms is exactly the class of injective mappings.

Fact 34 Pullbacks preserve Monos

If a is a monomorphism in the diagram of Def. C.13, then πB is a monomorphism,
as well.

Fact 35 Pullback projections are “jointly monic”

Themorphisms πA and πB in (C.10) are jointlymonic, i.e. for all x : X→ A×(a,b)B

and y : X→ A×(a,b) B:

πA ◦ x = πA ◦ y∧ πB ◦ x = πB ◦ y =⇒ x = y

which immediately follows from the universal pullback property.

Pushouts

Pushouts are the “opposite” of pullbacks by providing a universal co-span completion.
A pushout can intuitively be described as gluing of two structures at a defined interface.

Definition C.15 Pushout

Let C be a category and a span of C-morphisms A a← C
b→ B be given. The

pushout of a and b is given by the co-span A ιA→ A +(a,b) B
ιB← B such that

ιA ◦ a = ιB ◦ b and for all pairs f : A → D and g : B → D there exists a unique
morphism [f;g] : A+(a,b) B → D such that [f;g] ◦ ιA = f and [f;g] ◦ ιB = g,
visualized in (C.14):

C
b //

a

��

p.o.

B

ιB
�� g

��

A

f //

ιA
// A+(a,b) B

[f,g]!
%%
D

(C.14)

The morphisms ιA and ιB are sometimes called injections.

272 Appendix

Fact 36 Pushouts in Set

Set has all pushouts: Given two mappings f : C→ A and g : C→ Bwith same
domain, consider a relation ∼ on A t B, defined as follows (ιA and ιB are the
embeddings into the disjoint union A t B)

a ∼ b = {f(c), g(c) | c ∈ C}

and ≡ the least equivalence relation containing ∼, then the pushout of f and g is
given by A+(f,g) B := (A t B)/≡.

Lemma 37 Pushouts in SetB

Every functor category SetB has pushouts due to the fact that Set has all pushouts
and we can construct them pointwise.

Proof. Dual to the proof of Lemma 32. �

Fact 38 Pushout injections are “jointly surjective” in Set

Since, pushouts are dual to the notion of pullbacks, they show a property called
jointly epic. An epimorphism is the dual notion of a monomorphism (Def. C.14)
and in Set the epimorphisms correspond to the class of surjective functions. This
means that in Set, pushout injections are jointly epic, which can formally be
expressed as

∀x ∈ A+(a,b) B : (∃x ′ ∈ A : ιA(x
′) = x)∨ (∃x ′ ∈ B : ιB(x

′) = x)

General Limits and Colimits

All of the concepts above can be generalised into the notion of limits and colimits,
which are unique (co)cones. A cone is a distinguished object together with a family of
outgoingmorphisms that commute with all morphisms in the diagram (“sitting under”)
and a cocone is a distinguished object together with a family of incomingmorphisms
commuting with all morphisms in the diagram (“sitting over”). Limits are generalized
meets (“biggest cone below”), and colimits are generalized joins (“smallest cocone
above”):

Definition C.16 (Co-)Cone

Let C be a category and D : I → C be a diagram. For an object C ∈ |C| we can
define a functor ∆C : I→ C that maps every object I ∈ |I| to C and every arrow
i : I → I ′ ∈ I(I, I ′) to idC. A cone (C, π : ∆C ⇒ δ) is an object together with a
natural transformation π, i.e. the selection induced by δ. A cocone(C, κ : δ⇒ ∆c)

is the dual notion.

Appendix 273

Definition C.17 (Co-)Limit

Let C be a category and D : I→ C be a diagram.
A limit is a cone (L, π : ∆L ⇒ D) such that for all cones (X, ξ : ∆X ⇒ D) there
exists a unique morphism u! : X → L such that πI ◦ u! = ξI for all I ∈ |I|. The
components of the natural transformation π are called projections.
A limit is a cocone (C, κ : D⇒ ∆C) such that for all cocones (X, ξ : D⇒ ∆X there
exists a unique morphism u! : C → X such that u! ◦ κI = ξI for all I ∈ |I|. The
components of the natural transformation κ are called injections.
Both notions are visualized in the diagrams below.

X

ξI

ξI ′

��

u!
��

D(I)

κI
((

ξI

##

D(i)
// D(I ′)

κI
vv

ξI

{{

L
πI

��

πI ′

��

C

u!
��

D(I)
D(i)

// D(I ′) X

A functor F : C→ D is said to preserve a limit (L, π : ∆L ⇒ D) (respectively colimit)
if (F(L), F(π) : ∆L ⇒ F ◦D) is a limit in D. The following important fact is found in
every textbook about category theory (e.g. [326]) relates Def. C.17 and Def. C.8.

Fact 39

If L a R are two adjoint functors, then L preserves colimits and R preserves limits.

Exponentials and Cartesian Closedness
Exponentials can intuitively be described as away to “objectify”morphisms in a category.
The most well-known example are function types such as the set of functions between
two domains.
Definition C.18 Exponential

Let C be a category with binary products. An exponential object is given by an
object BA ∈ |C| equipped with a morphism eval : BA × A → B such that for
every object C×A and morphism f : C×A→ B there exists a unique morphism
u : C→ BA such that the following diagram commutes.

BA ×A B

C×A

eval

f
u×idA

The object BA is sometimes called an internal hom, i.e. the “objectification” of the
hom-set C(A,B). The unique morphism u in Def. C.18 corresponds to the notion of
“currying” in programming languages.

274 Appendix

Definition C.19 Cartesian closed category

A category C is called cartesian closed if and only if

• it has terminal objects,

• it has has all binary products, and

• it has has all exponentials.

Cartesian Closed Categories (CCCs) represent a model for the typed λ-calculus [306].
The following fact can easily beproven in everyCCCand the twoopposite isomorphisms
in (C.15) correspond to “currying” and “uncurrying”.

Fact 40 “Currying” and “Uncurrying”

In every cartesian closed category C there is an isomorphism:

AB×C ≈ (AB)C (C.15)

for A,B,C ∈ |C|.

Fact 41 Cartesian Closed Categories

The categories Set, SetB (see [207]) and Cat (see [3, 27.3 (e)]) are cartesian closed.

Subobject and Partial Arrow Classifiers

Subobject classifiers are an essential ingredient for doing logic in a category. Predicates,
which play a central role in logic, are closely related to subsets. Simultaneously,
monomorphisms are representatives of subsets. Subobject classifiers are special
morphisms that relate to monomorphism in a unique way.

Definition C.20 Subobject Classifier

Let C be a category with terminal objects and pullbacks. A suboject classifier is
given by a morphism > : 1→ Ω such that for every monomorphism a : A� X

there is a unique morphism χA : X → Ω such that the following diagram is a
pullback:

A 1

X Ω

a >

χA

!

Appendix 275

Fact 42 Subject Classifier in Set and SetB

Set has subobject classifiers: Every two-element set can serve as a subobject
classifier. Also, SetB has subobject classifiers. However, their construction is a bit
more involved, see [207].

Partial Arrow Classifiers are an implication of subobject classifiers, which play in
important role in Chap. 5. This name comes from the fact that a span, which contains
one monic morphism can be interpreted as a representative of a partial morphism, see
Sec. 5.1.3.2.

Definition C.21 Partial Arrow Classifier

LetB be an object inC. A partial arrow classifier forB is given by amonomorphism
ηB : B� LB such that for a partial morphism span [m, f〉 : A⇀ B there exists a
unique morphism [m, f〉 : A→ LB (the totalization) such that the resulting square
(C.16) is a pullback:

X

f
��

// m //

p.b.

A

[m,f〉!
��

B ηB
// LB

(C.16)

Fact 43 Partial Arrow Classifiers in Set

Set and SetB for a small category B have partial arrow classifiers. In Set, L adds
a new ⊥-element to every set and turns a partial function into a total function by
mapping all non-mapped elements to ⊥. In SetB, the construction becomes more
involved, see [207, pp.202-210].

276 Appendix

Fact 44 Partial Arrow Classifiers form Adjunction

In a category with partial arrow classifiers, L extends to a functor, which follows
directly from Def. C.21 and composition of partial morphisms via pullbacks
(Def. 5.11). The resulting functor L is right adjoint to Γ and defined as follows:

L :=

Par(C)→ C
A 7→ LA

[m, f〉 : A⇀ B 7→ [ηA ◦m, f〉 : LA→ LB

(C.17)

where the morphism-mapping [ηA ◦m, f〉 is explained in further detail by the
diagram in (C.18):

X

idX

// m // A

idA

idA
A��
ηA
��

X //
m //

f
��

A //
ηA //

[m,f〉
��

LA

[ηA◦m,f〉
��

B // ηB
// LB

idLB
LB

(C.18)

The underlying co-free construction of the adjunction Γ a L is shown in (C.19).

ParM (C) C

B ΓMA
∀[m,f〉

?

ΓM([m,f〉)K

A
∃![m,f〉

~~

ΓMLB

εB

?

LB

(C.19)

with εB := [ηB, idB〉 for all B ∈ |ParM (C)| and A ∈ |C|.

Def. C.21 and thus Fact 44 can be generalised by exchanging the class of monomor-
phisms by an admissible subclass M , see Def. 5.21. The respective construction is then
called a M -partial arrow classifier and mentioned in Theorem15.

Finally, there is an important lesser known fact about partial arrow classifiers:

Lemma 45 Partial Arrow Classifiers preserve monomorphisms

When the morphism f in (C.16) is a monomorphism, so is [m, f〉.

Proof. Consider again the diagram in (C.18) and recall the adjunction Γ a L. Thus
L has left adjoint in Γ and therefore preserves limits, including monomorphisms
(which are just special pullbacks). Hence, [ηA ◦m, f〉 is a monomorphism since it is
Lf. Monomorphisms compose and so is [ηA ◦m, f〉 ◦ ηA a monomorphism. The latter
is equal to [m, f〉 because of the universal property of the partial arrow classifiers:
The upper squares are trivially pullbacks and the lower rectangle is a pullback by the
universal property. The whole outline [idA ◦m, f ◦ idX〉 is a partial map and equal to

Appendix 277

[m, f〉. Since there is a unique morphism that make the outer square a pullback, we
have

[m, f〉 = [ηA ◦m, f〉 ◦ ηA
which is a monomorphism. �

278 Appendix

	Dedication
	Preface
	Scientific Environment
	Acknowledgments
	Abstract
	Samandrag
	List of abbreviations
	I Intro
	Introduction
	Challenges: Interoperability, Consistency, and Traceability
	Solutions: Software Engineering and Modelling
	Motivational Scenarios
	Semantic Interoperability between Software Systems
	Consistency of Software Design Documents

	Research Project: Multi-model Consistency Management

	Method
	Philosophy of Science
	Philosophy: A (short) historical account
	Science: The Demarcation Problem
	Research Methodology

	Research Methodology in Constructive Sciences
	Research Methodology in Software Engineering
	Research Methodology in this PhD project

	II Contributions
	Conceptualisation
	Existing Concepts & Ideas
	View-based Software Development
	(In)consistency Management
	Traceability Management
	Consistency Management in UML
	Multi-View Modeling
	Metamodeling
	Model Transformation
	Model Management
	Megamodeling
	Model Repair
	Bidirectional Transformations
	Coupled Evolution

	Generic Model Management Framework
	Artefacts
	Operations

	Multi-Model Consistency Management Framework
	Model Spaces
	Commonalities
	Consistency Rules
	Model Repair
	Architectures
	Summary: Conceptual Model

	State of the Art
	Method
	Feature Model
	Models
	Change
	Conformance
	Correspondence
	Matching
	Consistency
	Verification
	Repair

	Observations
	Demonstration of Selected Approaches
	Echo
	Epsilon
	eMoflon

	Summary & Identified Limitations

	Formalisation
	Representation
	Formalising Models
	Formalising Conformance
	Formalising Change
	Formalising Correspondence

	Verification
	Verification via Merging: Colimit
	Verification via Weaving: Comprehensive System

	Restoration
	Back- and Forth-propagation
	Adhesivity
	Triple Graph Grammars and Graph Diagrams

	Summary & Future Directions

	Implementation
	First Iteration: GraphQL Federation
	Background: Web Services & GraphQL
	Problem Statement: Federation
	Existing Tool: Apollo Federation
	Solution Design: Declarative Schema Merging
	Solution Implementation: GraphQLIntegrator

	Second Iteration: Model Management Functionality
	Tech Spaces: Integrating EMF
	Comprehensive Systems: Generalising the Federation

	Third Iteration: Consistency Management Functionality
	Integration of existing verification tools
	Common Constraints: INTEGRITY & FORALL
	Model Management via Goals

	Summary & Future Directions

	Validation
	Validation of the Conceptual Framework
	Validation of the Formalism
	Validation of the Tool
	Feasibility
	Features
	Scalability

	III Outro
	Conclusion
	Summary
	Threats to Validity
	Related Work
	Industrial Solutions
	Academic Approaches

	Future Work
	Conclusion

	Bibliography
	Literature Study Refinements
	Proofs
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 5
	Proof of Proposition 13
	Proof of Theorem 14
	Proof of Theorem 15
	Proof of Proposition17
	Proof of Theorem 18

	Category Theory Essentials
	History and Background
	Introduction
	Important Concepts

