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Abstract. At present, most of the insurance claims in the offshore wind industry are due to cable 
failures where a large percentage occurs during the installation of the array and export cables. 
As the reliability of the cables depends on the location and installation method, it is important to 
map the risks involved, which can compromise the cable’s integrity in individual projects. This 
paper presents sensitivity analyses conducted on crucial parameters in the cable laying process, 
with an objective of successful installation of subsea power cables without any damages to the 
cable. The analyses focus on the peak tension loads with reference to key parameters as cable 
self-weight and laying geometry, as well as the cable deployment position on the installation 
vessel. Finite element analyses were conducted with both static forces and dynamic forces for 
irregular vessel motions, by the aid of the well-tested software OrcaFlex. 

1.  Introduction 
A current matter of discussion and a considerable issue within the offshore wind industry is the failure 
rates of the subsea power cables. These failures are said to account for as much as 75-80 % of the total 
cost of the insurance claims [1]. The impact of these cables failing is significant. Regarding finances, 
the cost for locating and replacing a section of damaged subsea cable can vary from £0.6-1.2 million 
[2]. Additionally, comes the loss in revenue as the damaged cable no longer transmits power. Failed 
cables may also cause damage to the turbines and depending on the cable, bring a whole wind farm out 
of service while repairs are conducted.  
    During the installation phase of the cable, there are many factors present that challenge the integrity 
of the cable. In order to ensure safe deployment to the seabed, it is vital to identify risks and hazards that 
are present or might occur in these operations. It is also of importance to understand the mechanical 
properties and specifications of the cable. The mechanical properties of the cable are to a large degree 
influenced by its cable protection system and the armour needs to withstand all handling required during 
the life cycle of the project. During installation, the cables should not be subjected to any mechanical 
loads that would exceed the cable’s design limits (e.g., tension, bending, torsion and crushing). The 
laying parameters including minimum bend radius, minimum layback and maximum lay tension, needs 
to be part of the cable’s limits and the limitations shall be maintained during the whole process [3, 4]. 
    Tension forces on subsea cables during laying operations have been a topic amongst researchers for 
many years [5-14]. The maximum tension force must be calculated and analysed in advance and during 
laying to avoid less favourable operation situations. Investigating the crucial parameters that inflict top 
tension on the cable could obtain knowledge on how to complete the cable-lay operation without 
damaging the cable protective system and thereby cause failure of the cable. 
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2.  The power cable grid and structure 
Offshore wind farms may include different layouts, but in general a wind farm consists of a number of 
wind turbine generators, with a grid of subsea cables placed along the seabed. Array-cables connect the 
wind turbines to each other and to an offshore substation, if present. Export cables connect the wind 
farm to the onshore transmission system [15]. In larger offshore parks the wind turbines are connected 
to an offshore platform (substation), which has the purpose of transforming the energy by increasing the 
voltage, before export cables transports the energy further. For export cables, it is mostly common to 
see HVAC (High Voltage Alternating Current) three-phase cables. HVDC (High Voltage Direct 
Current) is also an option for export cables, however, this requires the presence of a converter station 
(both offshore and onshore). The convertor station transforms the power from AC to DC [16].  
    The structure of a subsea power cable depends on whether it is alternating current or direct current 
which is to be transported. Here, DC cables usually incorporates a single conductor while AC cables 
normally consist of 3 conductors transporting current at three phases. AC cables have been dominating 
the cable network within offshore wind farms as the power generation is generated with alternative 
current [16]. 
    A cable is basically an assembly consisting of a power core(s) with individual/common screen and 
sheath, assembly fillings, armour, and an outer protection. The cables may also include packages of 
optical fibres. The design of the cable depends on the conditions of the renewable energy project being 
developed. Such factors include: number of turbines, location, turbine size, if a convertor is needed, 
cable route, installation method and cable protection method. The majority of high voltage cables are 
individually designed for each single project [3].  

 
Figure 1. Typical 3-phase AC subsea power cable cross-section [3]. 

    The armour of a cable has the task of providing the majority of the cable’s own protection against the 
environmental and mechanical stress. This layer depends on the need of the specific project of which 
the subsea cable is to be installed. The tensional strength of the cable relays heavily on the structure and 
stiffness properties of this layer [16]. Single armoured cables are typically used in conjunction with 
cable burial, which will provide the cable with sufficient protection. Double armoured cables are 
significantly heavier and more inflexible, making these more difficult to install. Double armoured cables 
are often used when additional protection against the marine environment is needed, i.e., in locations 
where there is a high risk of crush damage and hostile seabed interventions [15]. 
    On top of the armour wires is another protective layer, the outer serving. This layer presents first-
hand protection of the cable during all handling. These two main types of servings include extruded 
polymeric outer servings and servings made from wound yarn layers. The outer serving of a cable has 
an impact on the installation procedure, where these two outer serving types include different friction 
coefficients. The wound yarn layers will provide a good grip for the tensioners onboard the cable laying 
vessel (CLV). While the extruded servings, on the other hand, are more slippery [16]. 
    The majority of the subsea cable failures originate from degradation and breakdown of the insulation, 
which allows for water to come in contact with the conductor and the transmission is lost. There are 
several failure modes that can compromise the integrity of the cable, which can be classified as 
electrical-, thermal-, chemical-, and mechanical failures [3]. External damage to cables can cause 
failures occurring rapidly or in a slow process. Due to the subsea cables high-strength armour, it would 
take a significant amount of force to directly break the cable and cause loss of transmission. More 
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usually, external aggression will cause deformations in the multiple protective layers before chemical-, 
electric- and/or thermal stress occur at the damaged location, causing degradation of the cable [17]. 
    A subsea cable is subjected to large tension loads during cable installation. Based by the design of the 
cable, only the outer serving and armour are configured to resist these tensile forces. Therefore, the 
cable’s ability to withstand loads that may occur during its designated life span, depends on the 
mechanical characteristics of these cable layers. With too low tensile stiffness, the cable is vulnerable 
to excessive deformation of its structure. Due to the nature of the helical structure of the cable’s armour, 
axial tension and torsion are coupled to each another. Both axial elongation and torsion angle are 
produced, when either a tension load or torsion load is applied to the cable. Axial stresses origin therefore 
from dynamic tension and local torsion, included are also bending stresses [18]. Axial tension (beyond 
cable limits) can cause failures such as elongation, compression (bird-caging / buckling), strain and 
bonding failure between conductor and insulation.  

3.  Cable laying operations 
The laying operation of a subsea power cable is influenced by many factors. One of the largest concerns 
is to keep a proper balance of tension in the cable. Controlling the tension can be achieved by monitoring 
all the variables, which include vessel speed, layback length, bend radius, departure angle and the 
tensioner’s speed / pressure. These variables are affected by water depth, wave forces, current forces on 
the cable, and vessel motion in six degrees of freedom.[3] The cable tensioner on the laying vessel has 
the objective to brake and control the speed of the laying process, as well as to prevent product slippage 
during installation. The vessel speed and tensioner pay-out velocity need to be coordinated so the proper 
tension in the cable can be achieved. With too high axial tension in the cable the cable is naturally in the 
risk of getting damaged. On the other side, too low tension might cause the cable to compress at Touch 
Down Point (TDP), bend excessively or fall uncontrollably to the seafloor [16, 17]. The tensioner’s pull 
and pay-out speed can be controlled on the CLV. While an ROV (Remotely Operated Vehicle) can 
monitor the cable as it is being placed on the seafloor. The ROVs are equipped with cameras and 
positioning devices, which can allow the crew onboard to monitor the cable’s position related to the 
vessel, the layback length and its catenary shape. This provides a higher level of control on the laying 
operation [16]. 

 

Figure 2. Main parameters in a cable laying process [3]. 

    The choice of a cable laying platform depends on the need of the project, and often the CLV or the 
barge are equipped and specially designed/adapted to each unique operation. The most influencing factor 
for a selection of such a platform lays with its loading capacity, deck space, handling equipment and 
manoeuvrability properties [16]. The main methods for deployment of a subsea cable include: S-lay with 
a chute/stinger and J-lay over the side of the vessel or through a moon pool. The most common method 
in the industry is S-lay with the cable being deployed over a chute. The chute is formed as a rounded 
part of the vessel stern and will have a radius that equal to or larger than the MBR (Minimum Bend 
Radius) of the cable. With the J-lay method, the cable is deployed almost vertically down to the seabed, 
allowing it to have shorter layback lengths. The largest difference between these methods are the 
bending shapes of the cable as its being deployed, from the placement of the tensioner to the seabed. S-
lay will have a bend over the chute and a bend at TDP (giving the S shape). J-lay will have no bending 
of the cable at the top after the tensioner and only a bend at TDP (forming a J-shape) [19].  
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Figure 3. Deployment methods: S-lay and J-lay [19]. 

4.  Catenary equations 
A geometric catenary is the curve that a hanging cable assumes under its own weight when supported 
at its ends. In order to perform a simplified analysis with catenary equations some idealizations of the 
cable are required. This includes zero bending stiffness, disregard of current and wave forces, continuous 
homogenous material and zero elastic elongation [20]. 
    In order to find the necessary tension of the cable, the following equation (5) for catenary mooring 
lines may be applied due to its similarity in the static theory. The tension at the top of the cable is caused 
by the cable’s own weight, the gravity force and the horizontal force at the bottom from the anchoring 
of the cable. Eliminating the horizontal force while the cable is hanging straight down, giving the 
minimum tension. However, this gives a small bend radius at the touch down point and increases the 
risk of compression in the cable. Therefore, it is recommended to increase the bend radius by adding a 
layback length and hence a horizontal tension force is added at the top [21]. The main parameters of the 
catenary equations are illustrated in Figure 4 below. 

 
Definitions of parameters: 
T0 [N]: Horizontal bottom tension 
S [m]: length of hanging line from touchdown 
           to a random position on the cable 
h [m]: Water depth 
L [m]: Layback distance 
w [N/m]: Weight in water per unit length 
T [N]: Cable tension 
TV [N]: Vertical tension at the cable’s upper position  
            (waterline) 
TH [N]: Horizontal tension at the cable’s upper position  
             (waterline) 
𝜑𝜑[-]: orientation of cable element with the horizontal 
 
    
 

In this case it is assumed a horizontal seabed. The cable lays in the x-z plane. Placement of origin 
(0,0) can be found at touchdown point in x direction and at the waterline in z direction. It should be 
noted that this model of catenary equations only considers the cable part submerged in seawater. In 
order to check the cable’s configuration in the 2D plane, the following equation can be used according 
to given assumptions.[20]: 

 𝑧𝑧 + ℎ =
𝑇𝑇𝐻𝐻
𝑤𝑤 �𝑐𝑐𝑐𝑐𝑐𝑐ℎ �

𝑤𝑤𝑤𝑤
𝑇𝑇𝐻𝐻
� − 1� (1) 

    To measure the cable’s layback length: 

 𝑤𝑤 =
𝑇𝑇𝐻𝐻
𝑤𝑤
𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ �

ℎ𝑤𝑤
𝑇𝑇𝐻𝐻

+ 1� (2) 

    The arc length of the cable can be derived from: 

 𝑐𝑐 =
𝑇𝑇𝐻𝐻
𝑤𝑤
𝑐𝑐𝑠𝑠𝑠𝑠ℎ �

𝑤𝑤𝑤𝑤
𝑇𝑇𝐻𝐻
� (3) 

Figure 4. Catenary parameters [20]. 
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    Tension in the cable can be found as the sum of the horizontal- and vertical tension, where the 
horizontal tension equals the bottom tension (𝑇𝑇𝐻𝐻 = 𝑇𝑇0): 

 
𝑇𝑇 = 𝑇𝑇𝐻𝐻 + 𝑤𝑤(ℎ + 𝑧𝑧) (4) 

    Calculating the dynamic contribution to the tension, however, is a complex task. Due to current and 
ocean waves, the cable is exposed to dynamic forces. The wave-induced vessel motion causes the 
laying wheel or chute to move vertically. This will alter the layback length and can give an increase or 
decrease of tension, while current might provide damping or drag to the cable [16]. 
 

5.  Modelling of cable lay scenarios 
Static and dynamic models were created in the software OrcaFlex 11.0f. The full 3D non-linear time 
domain finite element program can calculate the dynamic response of a system based on several user 
defined conditions. During static calculation, the goal is to find positions and orientations for each 
element within the created model such that all forces and moments are in equilibrium. From here, the 
static calculation can be used as a starting configuration for a dynamic simulation [22]. The modelled 
scenarios in this paper are based on the corresponding author’s master thesis [23]. 

5.1.   Scenarios and sensitivity analysis 
The main objective of the sensitivity analysis performed is to seek information about the restrictions of 
a subsea HVAC cable’s armour and outer layer, considering tension load. Allowable tension must be 
within the range xmin – xmax kN to avoid damaging the cable by exceeding its mechanical limitations. At 
the same time, the tension should be kept well under the selected tensioner’s limits. The analyses seek 
to reveal some of the parameters that affect the increase and decrease of tension, with the emphasis on 
maximum tension in the cable. The focus is on an export cable installation scheme, which is further 
divided into three scenarios:  
 

1. Cable lay with alternative cable weights; by analysis of three subsea HVAC cables 
configurations in static seas (no waves) by use of Orcaflex with comparison of the catenary 
equations. 

2. Cable lay with alternative bending stiffness configurations with forced vessel motions. 
3. Cable lay with irregular vessel motion (JONSWAP wave spectrum) with three alternating 

deployment positions: over stern starboard chute, midships through a moonpool and to the 
vessel’s amidships external starboard side.  

    The sensitivity analysis is conducted as a series of analyses, where one parameter is altered at the 
time, with a minimum of three variations of the same parameter. A sensitivity test is normally used to 
identify which independent variables can have big individual influence on a dependent variable. This 
type of analysis is an important tool to incorporate in various steps of an installation analysis, including 
evaluation of operational method and analysis method. A cable installation analysis normally seeks to 
define the dynamic and static loads involved in the various phases of the operation, as well as to 
determine operable weather conditions. Operability for cable installation can be determined/examined 
by the test of various sea-states and vessel headings, combined with other project specific settings in 
time domain simulations. If the predetermined operational limits can be maintained within the 
simulation time set, this combination of parameters can be seen as “operable”. At the same time, if the 
load conditions or a vessel motion response for a given sea state are found to be excessive, lesser 
conditions should be tested until satisfactory limits can be found [16]. Here, a sensitivity analysis can 
achieve higher validity of the installation analysis performed and operational method can be optimized 
by knowledge and identification of crucial parameters.  
    A matrix containing the key parameters was developed for each of the three scenarios (Table 1 and 
2).  
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Table 1. Key parameters for scenario 1 & 2. 

Key parameters Scenario 1 Scenario 2 

Vessel 
- Relative heading [deg.] 

(Head sea) 
180 

(Head sea) 
180 

Cable (Properties see section 5.3) 
- Weight [kg/m] 
 
 
Axial stiffness [MN] 
Bending stiffness (section 5.3) 
 
 
- Deployment speed [m/s] 
- Deployment position 

 
100 
120 
140 
600 

Hysteresis 
- 
- 
0 

Stern chute 

 
100 

- 
- 

600 
Hysteresis 
Non-linear 
Constant 

0 
Stern chute  

Environment (Airy wave) 
-Water depth [m] 
-Seabed friction Coeff. [-] 

 
30 
0,5 

 
30 
0,5 

Layback distance [m] 10, 20, 30 15 

 
Table 2. Key parameters for scenario 3. 

Key parameters – Scenario 3 

Vessel 
- Relative heading [deg.] 
- Deployment speed [kts] 

(Head sea) 
180 
0 

 
135 
0 

(Beam sea) 
090 

0 

 
045 

0 

(Stern sea) 
000 
0 

Cable (Properties see section 5.3) 
- Deployment speed [m/s] 
- Deployment position 

 
0 

Stern chute 
Moonpool 

M. Starboard 

 
0 

Stern chute 
Moonpool 

M. Starboard 

 
0 

Stern chute 
Moonpool 

M. Starboard 

 
0 

Stern chute 
Moonpool 

M. Starboard 

 
0 

Stern chute 
Moonpool 

M. Starboard 
Environment (JONSWAP) 
-Current [ms-1]  
-Significant wave height [m] 
-Wave period [s] 
-Water depth [m] 
-Seabed friction Coeff. [-] 

 
0 
3 

4,5,6…→13 
100 
0,5 

 
0 
3 

4,5,6…→13 
100 
0,5 

 
0 
3 

4,5,6…→13 
100 
0,5 

 
0 
3 

4,5,6…→13 
100 
0,5 

 
0 
3 

4,5,6…→13 
100 
0,5 

Layback distance [m] 25 25 25 25 25 

 

5.2. Wave parameters and extreme value analysis 
The dynamic simulations in this case are performed with irregular waves by a JONSWAP wave 
spectrum. A wave spectrum represents the wave amplitude distribution of individual wave frequencies 
when considering a stationary sea state. The JONSWAP spectrum was developed from wave 
measurements in the Southern North Sea and describes sea conditions under developing wave conditions 
but can also describe fully developed sea conditions. Young sea-states are often a part of the working 
environment for offshore windfarms. The spectrum is determined by the significant wave height and 
wave period parameters, and the spectrum is unidirectional without wave energy spreading [21, 24]. 
    When considering irregular seas, it is desirable that the extreme waves have a certain probability of 
exceedance to include the extreme response of the vessel in the analysis. Statistical estimation can be 
used to obtain extreme value from random waves time series [21]. With operability often being defined 
as a 3-hour operable sea state [24], performing simulations of this length would require significant 
computational effort. In order to reduce the simulation time for the sensitivity analyses, a selection of 
this 3h period is extracted. For each combination of wave height and wave period, a 3h irregular wave 
sequence is generated in OrcaFlex for 20 random seeds (equal seeds for each deployment method). From 
this sequence, the point in time where the highest waves occur is pointed out and this point will be the 
centre of which 200 seconds is simulated. The highest waves can be found by measuring the wave height 
between two zero upward crossings or two zero downward crossings (Highest rise & highest fall). An 
example of such a wave profile is presented in Figure 5.  
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Figure 5. Characterising the Largest Rise and Fall From a 3h period. 

5.3.  Cable configurations 
For the first scenario, three different weights for a HVAC export cable were utilized. Scenario 2 includes 
three different modelling methods for bending stiffness. While scenario 3 will include the lightest cable 
with a single bending stiffness configuration. Main specifications are listed in Table 3, see also Figure 
6 regarding cable bending stiffness properties. 
 

Table 3. Cable configuration specifications. 

Property Unit Value 
 Scenario 1 Scenario 2 Scenario 3 

Overall diameter mm 243 243 243 
Weight in air kg/m 100, 120, 140 100 100 
Axial stiffness (No 
rotation) 

MN 635 635 635 

Bending stiffness kNm2 Non-linear hysteresis 
 

21.45 
Non-linear 

Non-linear hysteresis 

Non-linear hysteresis 
 

Torsion stiffness 
(clockwise): 

kNm2 121 121 121 

 

                                      
Figure 6. Left: Non-linear hysteresis bending stiffness, Right: Non-linear bending stiffness. 

 
5.4. Orcaflex models 
The simulations were performed with a modified OrcaFlex default vessel (vessel length 121m). The 
normal default vessel in OrcaFlex compromises data that correspond to a particular 103 m long tanker. 
OrcaFlex automatically Froude scales vessel type data to the vessel length given, so this default data can 
be useful if the vessel to be analysed is a tanker of the same / different length. The sensitivity analyses 
will include forces caused by the vessel’s motions imposed by waves. The behaviour of the vessel is 
represented through a set of transfer functions, termed “Response Amplitude Operators” (RAOs), which 
are unique to each vessel. In order to properly assess the effects a sea state will have on a vessel’s motion, 
this unique set of RAOs for the particular vessel should be applied. In this case the assumption was 
made that the default vessel could be used to reach the objectives of the sensitivity analyses. The 
scenarios are modelled with a stationary vessel and with no cable being paid out during the simulation. 
As the pay-out speed of the cable can be matched with the vessel velocity, a stationary vessel can be 
assumed to give similar results. When modelled with a stationary vessel, one needs to account for the 
capstan effect around the chute as no cable will be paid out. Because of the interaction of frictional 
forces and tension, the tension on the cable “wrapped” around the chute, will be different from one side 

http://127.0.0.1:53817/Content/html/Vesseldata.htm#VesselDataLength
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to the other.[25] The modelling of the vessel, cable and the three cable deployment methods can be seen 
in Figures 7 and 8. 
    For the S-lay model, the cable will be deployed over a chute at the stern. Here the cable was 
modelled with one end fixed to the vessel 3m above deck, 6m forwards of the chute and 4,3m to 
starboard from centreline. The chute has a radius of 5m. 
    The J-lay model with deployment over starboard side have the cable fixed to the vessel 54m from 
the vessel’s transom, 3m above deck and 15m to starboard from centreline. The cable is held in place 
by supporters and a vertical tower (13m height) created by shapes. For the model with deployment 
through the moonpool, the setup is similar to that of the midship starboard model. Here the cable is 
moved from the starboard to the centre of the vessel. The moonpool was created using shapes (trapped 
water) with dimensions: 7.2 x 7.2 x 9.5 [m]. 

 
Figure 7. S-Lay model.  

 
Figure 8. J-lay models: deployment over starboard side (left) and trough the moonpool (right). 

 
5.5. Cable lay criteria 
During cable lay there are certain criteria that need to be fulfilled to ensure a successful installation 
without compromising the cable’s integrity. Some of the main limiting criteria are maximum allowable 
tension, compression, Minimum Bend Radius (MBR) and Side Wall Pressure (SWP). Sidewall pressure 
can be considered as the radial force which is applied on a cable when pulled around a conduit bend, 
sheave or bended in a J-tube. SWP may crush and flatten a cable, when the pressure exceeds the limit. 
The MBR is often determined by the manufacturer as a combination of axial tension and bending 
curvature. As the MBR is a variable, depending on the applied tension, maintaining the MBR during 
cable installation is sometimes the limiting factor in operability. Common practice regarding 
compression is to avoid compression altogether as there is no accepted industry standard for 
determination of compression limits in subsea power cables. When considering limits for maximum 
axial tension, this may be set by either the limit of the tensioner or the breaking design limit of the cable 
(the combination of tension and curvature).[3, 16] For the sensitivity analysis the tension was measured 
at the cable by the chute exit point, and supporting tower entry point (which are both at same height 
above the vessel deck). By this reading of tension data, the capstan effect is neglected in this case.     

6.  Results and discussions 
6.1.  Scenario 1 
The overall configuration and the effective tension along water depth, are compared in between results 
from simulation in OrcaFlex and the catenary equations. The results can be seen in Figure 9. It is 
observed that the graphs are in good agreement in static seas. The effective tension distribution be seen 
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to be linear through the water depth. While the maximum tension will increase with steeper steps as the 
layback length increases. 

 
Figure 9. Illustrations from left: Cable configuration, Tension along arc and Tension across depth. 

HVAC cable A=100kg/m, HVAC cable B=120kg/m and HVAC cable C=140kg/m. 
 
6.2.  Scenario 2 
Bending stiffness is defined as the ratio of the bending moment to bending curvature. Subsea power 
cables tend to show a so-called non-linear bending stiffness behaviour. The curve for bending moment 
versus curvature is here described by a hysteresis loop (Figure 6) due to internal stick-slip effects (caused 
by friction) and elastic-plastic material behaviour in the lead sheaths and the copper conductors.[26] 
Hysteresis effects in non-linear bend stiffness can provide a source of damping for the cable close to the 
touch down point. When a cable is modelled without bending hysteresis or i.e., Rayleigh damping, high 
frequency compression and tension waves can travel along the cable in the simulation, which can affect 
the values obtained for the tension.[22] The hysteresis behaviour of bending stiffness is data that only 
within the last years have been provided by manufacturers, compared to previously, were constant 
bending stiffness was the norm for analyses.  
    A simple sensitivity analysis was conducted on the effects of bending stiffness, concerning 
minimum and maximum tension along the arc in the simulation period. Here the vessel was given 
superimposed motions with a -0.5m surge, 4m heave and 9s period.  
    The effects of these various bending stiffness configurations can be clearly shown (Figure 10) for 
minimum tension along the arc length. Constant bending stiffness and bending stiffness without 
hysteresis may be too conservative in regard to compression. However, for maximum tension along the 
arc at the same simulation period, the different configurations pose a less variance but nonetheless a 
difference in tension readings.  
 

 
Figure 10. Left: Min. tension across arc length. Right: Max. tension across arc length. Measured from 

exit of chute and TDP is approx. at 54m (min. tension) and 62m (max tension). 

 
Figure 11. Bending behaviour of the cable in compression (at t=20,7s). From left: 1. Constant bending 

stiffness, 2. Non-Linear bending stiffness, 3. Non-linear bending stiffness with hysteresis. 
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    With regards to minimum tension, the effects of the various bending stiffness configurations can be 
seen for compression in the cable at the TDP (Figure 11). Here, bending stiffness with hysteresis will 
dampen the bending of the cable at a larger degree compared to the other two configurations, creating 
a smoother bend. 

6.3.  Scenario 3 
Most CLVs today have the chute or laying wheel at the stern of the vessel, while the J-lay method could 
be more frequently seen as offshore wind farms move to deeper waters. From the results (Tables 4 to 
6), the S-lay method showed to be very sensitive to the wave induced vessel motions. It is mainly pitch 
and heave motions that contribute to the vertical motion of the chute at the stern, and the severity of 
these motions will vary from vessel to vessel as they all have different motion characteristics. Particular 
benefits can be obtained in case where the pitch can be reduced. For the J-lay methods, both deployment 
methods were shown to be sensitive for heave and roll motions of the vessel; in particular for deployment 
over the mid-starboard side. Deployment through the moonpool was clearly less affected by vessel 
motions, compared to the other methods. Even with its peak tension at a wave heading of 90 degrees, 
this method showed significant lower dynamic tension compared to the static tension.  

Table 4. Max. tension loads – Deployment over stern chute. 
 Wave 

Dir. 
              Tp [s] 
Hs [m] 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 

M
ax

 te
ns

io
n 

[k
N

] 

- Static (no waves) 75 
0 3.0 82 85 102 96 103 98 98 94 92 92 

45 3.0 78 83 98 110 135 105 109 106 100 97 
90 3.0 91 105 113 105 112 117 101 98 93 88 

135 3.0 76 81 94 101 117 103 102 107 99 90 
180 3.0 78 82 95 115 126 108 109 106 106 98 

Table 5. Max. tension loads – Deployment over midships port side. 
 Wave 

Dir. 
              Tp [s] 
Hs [m] 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 

M
ax

 te
ns

io
n 

[k
N

] 

- Static (no waves) 79 
0 3.0 83 84 81 83 83 83 84 82 82 82 

45 3.0 92 115 122 129 106 100 96 104 90 92 
90 3.0 97 111 115 147 155 164 135 139 128 134 

135 3.0 91 83 86 95 106 105 104 100 97 97 
180 3.0 87 101 101 88 102 97 86 95 91 110 

Table 6. Max tension loads – Deployment through moonpool. 
 Wave 

Dir. 
              Tp [s] 
Hs [m] 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 

M
ax

 te
ns

io
n 

[k
N

] 

- Static (no waves) 74 
0 3.0 76 76 80 79 80 78 78 78 78 78 

45 3.0 77 80 86 91 88 88 102 87 88 86 
90 3.0 86 100 110 108 116 104 132 111 104 97 

135 3.0 77 80 92 98 98 91 99 95 90 93 
180 3.0 78 83 82 91 95 94 98 94 92 92 

7.  Conclusion 
Several sensitivity analyses concerning cable laying operations, were conducted within this study. Here, 
the objective was focused on investigating several parameters that might provide peak tension loads on 
a HVAC subsea export cable under installation. The analyses were all performed by the aid of the 
software, OrcaFlex.  
    A static analysis of different types of bending stiffnesses were carried out, for its importance when 
modelling the cable laying scenario. This showed that modelling with a constant value or with a non-
linear bending stiffness would be more conservative than modelling with a non-linear bending stiffness 
with hysteresis, when considering compression. Regarding maximum tension, this caused only a minor 
difference in tension spread and maximum value. To validate simulation results, three cable 
configurations were investigated with catenary equations. The catenary shape and tension along water 
depth were examined in a static state and showed to be in good compliance. The three HVAC cables 
with varying weights were investigated further for their sensitivities for maximum tension with three 
different layback lengths. This illustrated that the design of the cable regarding its weight, will have a 
significant impact on tension loads, and this should be taken into consideration when designing a cable’s 
armour. An overly conservative design will surely reduce the weather window available for installation. 
    A final sensitivity analysis was conducted on different cable deployment positions with irregular 
vessel motions in varying sea states in the time domain. Here, deployment over a chute at the stern (S-
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lay), along the mid-starboard side (J-lay) and through a moonpool (J-lay) were investigated for their 
relations to peak tension loads. The results showed that deployment over the stern would make the cable 
vulnerable to vessel motions of roll, heave, and pitch. Deployment midships of the vessel’s external 
starboard side reduces the effect of pitch, while deployment through the moonpool reduces both the 
effects of roll and pitch on cable dynamics and thereby the maximum tension loads. The importance of 
the cable’s deployment position may depend on the location of operation. While every project is with 
different frames, it can be said that the choice of deployment method, would have a significant effect on 
the available weather window of operation. This could influence the competition between vessel owners, 
as the client will select the vessel based on costs and operational uptime expected in a laying season.       
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