
RESEARCH ARTICLE

Influence of adiposity and physical activity on

the cardiometabolic association pattern of

lipoprotein subclasses to aerobic fitness in

prepubertal children

Tarja Rajalahti1,2,3, Eivind Aadland4, Geir Kåre Resaland4,5, Sigmund Alfred Anderssen4,6,

Olav Martin KvalheimID
1*

1 Department of Chemistry, University of Bergen, Bergen, Norway, 2 Førde Health Trust, Førde, Norway,

3 Red Cross Haugland Rehabilitation Centre, Flekke, Norway, 4 Department of Sport, Food and Natural

Sciences, Western Norway University of Applied Sciences, Sogndal, Norway, 5 Faculty of Education, Center

for Physical Active Learning, Arts and Sports, Western Norway University of Applied Sciences, Sogndal,

Norway, 6 Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway

* olav.kvalheim@uib.no

Abstract

Aerobic fitness (AF) and lipoprotein subclasses associate to each other and to cardiovascu-

lar health. Adiposity and physical activity (PA) influence the association pattern of AF to lipo-

proteins almost inversely making it difficult to assess their independent and joint influence

on the association pattern. This study, including 841 children (50% boys) 10.2 ± 0.3 years

old with BMI 18.0 ± 3.0 kg/m2 from rural Western Norway, aimed at examining the associa-

tion pattern of AF to the lipoprotein subclasses and to estimate the independent and joint

influence of PA and adiposity on this pattern. We used multivariate analysis to determine the

association pattern of a profile of 26 lipoprotein features to AF with and without adjustment

for three measures of adiposity and a high-resolution PA descriptor of 23 intensity intervals

derived from accelerometry. For data not adjusted for adiposity or PA, we observed a car-

dioprotective lipoprotein pattern associating to AF. This pattern withstood adjustment for

PA, but the strength of association to AF was reduced by 58%, while adjustment for adipos-

ity weakened the association of AF to the lipoproteins by 85% and with strongest changes in

the associations to a cardioprotective high-density lipoprotein subclass pattern. When

adjusted for both adiposity and PA, the cardioprotective lipoprotein pattern still associated to

AF, but the strength of association was reduced by 90%. Our results imply that the (nega-

tive) influence of adiposity on the cardioprotective association pattern of lipoproteins to AF is

considerably stronger than the (positive) contribution of PA to this pattern. However, our

analysis shows that PA contributes also indirectly through a strong inverse association to

adiposity. The trial was registered 7 May, 2014 in clinicaltrials.gov with trial reg. no.:

NCT02132494 and the URL is https://clinicaltrials.gov/ct2/results?term=

NCT02132494&cntry=NO.
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Introduction

Aerobic fitness (AF) is a strong predictor of cardiometabolic health in adults [1]. High concen-

tration of small low-density lipoprotein (LDL) particles in adults correlates to cardiovascular

disease (CVD) [2]. A pattern of high concentration of lipoprotein triglycerides (TG), very-low-

density lipoproteins (VLDL) and large VLDL particles, and low concentration of high-density

lipoproteins (HDL), large HDL and large LDL particles, and large average size of VLDL parti-

cles and low average size of HDL and LDL particle size correlates to insulin resistance [3–5].

This condition may ultimately translate into to type 2 diabetes mellitus and progress into

CVD.

Associations between AF and cardiovascular risk factors are also observed for children [6]

and unfavorable associations between adiposity, lipoproteins and cardiovascular risk factors

have been verified in studies of children and adolescents. Thus, Suriano et al. [7] found waist

circumference to be a predictor of cardiovascular risk in children, while Slyper et al. [8] found

that the body mass index (BMI), and several lipoprotein features, correlated with thickening of

the intima-media of the carotid artery in a cohort of adolescents. Cardiovascular status as

expressed by AF and serum lipoprotein patterns in early years proceeds into adulthood with

consequences later in life [9,10]. It is therefore important to study such associations for chil-

dren and adolescents. In a previous study, we therefore investigated the association between

AF and the lipoprotein pattern with BMI as covariate in 94 prepubertal children [11]. AF cor-

related positively to a cardioprotective lipoprotein pattern of high concentration of HDL, large

and very large HDL particles and average size of HDL particles and to low concentrations of

TG, chylomicrons (CM), VLDL, large and medium size VLDL particles, and average size of

VLDL particles. BMI had a strong negative association to this pattern implying that control for

adiposity is crucial for assessing the independent association pattern of lipoproteins to AF. In a

recent investigation [12] of associations of adiposity, physical activity (PA) and lipoprotein

subclasses for a cohort of 841 children, we found a similar pattern as for AF. The pattern with-

stood adjustment for adiposity.

Ekelund et al. [13] observed an independent association of PA and AF to metabolic risk fac-

tors in 1709 European children and PA/exercise intervention studies on adults [14,15] have

shown strong impact of PA on the lipoprotein pattern. Considering those studies, our previous

investigation on the association of AF to lipoprotein subclasses [11] was constrained by not

including PA. In intervention studies for adults, increased PA correlated partly to the cardio-

protective lipoprotein pattern to AF observed in our study for children, but PA in adults also

correlated to reduced concentrations of LDL and the small atherogenic LDL particles and

increased concentration of large LDL particles leading to increased average size of LDL parti-

cles. The same pattern was observed for physical active versus inactive adults by Kujala et al.

[16] and the pattern withstood adjustment for adiposity. A meta- analysis including 10 inter-

vention studies on adults [17] confirmed the strong favorable impact of PA on the lipoprotein

subclass pattern.

In this work, our aim is to extract the association pattern of AF to lipoproteins in children

and to examine the independent and joint influence of adiposity and PA on the association

pattern. The same age group as in our previous study [11] is investigated, but for much larger

cohort [18]. The relative influence of adiposity and PA on the association of AF to the lipopro-

teins is assessed through variance explained in AF and lipoproteins. Our aims present some

challenges as adiposity and PA have virtually opposite association pattern to the lipoproteins

[12], and the lipoprotein features are strongly multicollinear, as are the covariates adiposity

and PA. The high-resolution PA descriptor used in this work even possessed linear depen-

dency which requires a novel approach to adjustment to achieve the objectives of our study.
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Materials and methods

Study and participants

1129 5th graders (94% of those invited) from 57 schools in Western Norway participated in

this study [18]. Of these, 841 children provided valid baseline data on all relevant variables and

were included in the present analysis.

Our procedures and methods conform to ethical guidelines defined by the World Medical

Association’s Declaration of Helsinki and its subsequent revisions. The South-East Regional

Committee for Medical Research Ethics in Norway approved the study protocol (reference

number 2013/1893). Prior to all testing, we obtained written informed consent from each

child’s parents or legal guardian and from the responsible school authorities. The study is reg-

istered in Clinicaltrials.gov with identification number: NCT02132494.

Aerobic fitness test

The Andersen aerobic fitness test [19], which is a proxy for AF [20], but less influenced by adi-

posity than VO2peak in children [11], was executed according to the standard procedure. The

test measured the total distance covered during a 10-minutes run. Children ran from one end-

line to another (20 m apart) in a to-and-fro movement intermittently, with 15-second work

periods and 15-second breaks.

Lipoprotein subclasses

Overnight fasting serum samples were obtained and stored at -80 ˚C according to a standard-

ized protocol [21] and shipped on dry ice to the laboratories doing the analyses.

Serum lipoprotein profiles were characterized by 26 measures: Concentrations of total cho-

lesterol (TC), total TG, CM, VLDL, LDL, HDL, two subclasses of CM (CM-1 and CM-2), five

subclasses of VLDL (VLDL-L1, VLDL-L2, VLDL-L3, VLDL-M, VLDL-S), four subclasses of

LDL (LDL-L, LDL-M, LDL-S, LDL-VS), six subclasses of HDL (HDL-VL1, HDL-VL2,

HDL-L, HDL-M, HDL-S and HDL-VS), and the average particle size of VLDL, LDL and HDL.

The subclasses are labelled according to the classification of Okazaki et al. [22] except that we

have combined their three subclasses of very small LDL particles and their two subclasses of

very small HDL particles. Following the terminology of Ozaki et al., the abbreviations VL, L,

M, S and VS imply very large, large, medium, small, and very small particles. Some of the VL

subclasses are divided further in accordance with the classification by Okazaki et al. We calcu-

lated triglyceride and cholesterol separately and independently for all subclasses using the

approach described in the next paragraph but combined them into one subclass representing

the total concentration for each subclass of lipoproteins.

The 26 lipoprotein measures were obtained from a partial-least-squares (PLS) regression

model [23] obtained by calibrating proton nuclear magnetic resonance (NMR) spectra to

results obtained from high performance liquid chromatography (HPLC). 106 serum samples

were used in the calibration. Repeated Monte Carlo resampling was used to optimize the

models with respect to predictive performance [24]. The HPLC analyses of the 106 calibration

samples were performed by Skylight Biotech (Akita, Japan) as described by Okazaki et al.

[22]. Proton NMR was performed at the MR core facility (NTNU, Trondheim) by a standard

procedure [25] using a Bruker Avance III 600 MHz spectrometer, equipped with a QCI Cryo-

Probe and an automated sample changer (SampleJet) (Bruker BioSpin GmbH, Karlsruhe,

Germany.
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Physical activity descriptor

Raw PA data was obtained using the ActiGraph GT3X+ accelerometer [26] worn at the waist

over seven consecutive days, except during water activities (swimming, showering) or while

sleeping. Units were initialized at a sampling rate of 30 Hz. Files were analyzed at 1 second

epochs using the KineSoft analytical software version 3.3.80 (KineSoft, Loughborough, UK).

The use of 1 second epochs were found to be optimal for studying associations between meta-

bolic and PA variables for this cohort [27]. Data were restricted to hours 06:00 to 23:59. In all

analyses, consecutive periods of� 60 minutes of zero counts were defined as non-wear time

[28]. We applied wear time requirements of� 8 hours/day and� 4 days/week to constitute a

valid measurement. We defined a PA descriptor by creating 23 PA variables of total time

(min/day) obtained from the vertical axis to capture movement in narrow intensity intervals

throughout the spectrum, from 0–99 to� 10000 counts per minute (cpm). This descriptor

covers the entire intensity spectrum. The intervals used for the descriptor were 0–99, 100–249,

250–499, 500–999, 1000–1499, 1500–1999, 2000–2499, 2500–2999, 3000–3499, 3500–3999,

4000–4499, 4500–4999, 5000–5499, 5500–5999, 6000–6499, 6500–6999, 7000–7499, 7500–

7999, 8000–8499, 8500–8999, 9000–9499, 9500–9999 and� 10000 cpm.

Adiposity measures

We calculated three measures of adiposity: BMI (kg/m2), waist to height ratio (WC/H), and

skinfold thickness. BMI was calculated as mass divided by the squared height. Body mass was

measured with an electronic scale (Seca 899, SECA GmbH, Hamburg, Germany). Height was

measured with a transportable stadiometer (Seca 217, SECA GmbH, Hamburg, Germany).

Waist circumference (WC) was measured twice between the lowest rib and the iliac crest with

the child’s abdomen relaxed at the end of a gentle expiration using an ergonomic measuring

tape (Seca 201, SECA GmbH, Hamburg, Germany). If the difference between measurements

was>1 cm, a third measurement was taken. The average of the two closest measurements was

used for analyses. Skinfold thickness was measured at the left side of the body using a Harpen-

den skinfold caliper (Bull: British Indicators Ltd., West Sussex, UK). Two measurements were

taken at each position (biceps, triceps, subscapular, and suprailiac). If the difference between

measurements was>2 mm, a third measurement was obtained. The total sum of the average

of the two closest measurements for each site was used for analysis.

Transformations and pretreatment of variables

It is not a necessary assumption that the variables are normally distributed, but our method

produces more stable models if the variables are approximately normally distributed. All vari-

ables, except age, the binary variable for sex, and the Andersen aerobic fitness test (which was

approximately normally distributed), were thus log-transformed. Thereafter they were mean-

centered and standardized to unit variance prior to the statistical analysis. The preprocessed

data prior to centering and standardization to unit variance, are provided as supplementary

information (S1 Table). After log transformation, normal probability plots showed that only

CM, VLDL and a few of their subclasses in addition to TG still deviated from normal

distribution.

Data sets

Four different data set were created by using a projection approach [23] to adjust all variables

for covariates.

Data set 1: Variables adjusted for age and sex (S2 Table).
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Data set 2: Variables adjusted for age, sex, and PA (S3 Table).

Data set 3: Variables adjusted for age, sex, and adiposity (S4 Table).

Data set 4: Variables adjusted for age, sex, PA, and adiposity (S5 Table).

All variables, outcome, covariates, and explanatory variables were adjusted simultaneously

and jointly by successive orthogonal projections [23]. Age and sex had only weak correlations

to the covariates adiposity and PA and were adjusted for without requiring any special action,

but for the linear dependent PA descriptor and the nearly dependent adiposity descriptor of

BMI, W/H, and skinfold, we had to follow a different path. The PA descriptor of the 23 inten-

sity variables was orthogonalized using principal component analysis (PCA) [23]. Monte

Carlo resampling with 100 repetitions leaving out randomly and predicting 25% of the data in

each run showed that four principal components, explaining jointly 92.8% of the total variance

of the PA variables, contained all the predictive information about PA. We used these four

orthogonal PCs to adjust for PA by successive orthogonal projections [23]. The same proce-

dure applied for the three adiposity measures showed that only the first PC, accounting for

88.1% of the total variance in the adiposity variables, contained predictive information and

was used to adjust for adiposity.

Regression models

We used multivariate pattern analysis [29] with AF as outcome and the lipoproteins as explan-

atory variables for modelling of data set 1–4. The procedure uses PLS regression [23] with the

number of PLS components determined by a significance test based on 1000 models calculated

by repeated Monte Carlo resampling [24]. Post-processing of the PLS models with target pro-

jection (TP) [23] provides a single predictive vector for the lipoproteins quantifying the associ-

ations to the predicted AF. For model interpretation and visualization of association patterns,

we used selectivity ratio (SR) plots [30].

Results

Descriptive statistics for the variables

The 841 children (50% boys) were (mean ± standard deviation) 10.2 ± 0.3 years old. The result

for the Andersen test was 898 ± 102 m, for BMI 18.0 ± 3.0 kg/m2, for WC/H 0.43 ± 0.05, and

for skinfold thickness 49.8 ± 26.4 mm. S6 Table provides mean and standard deviation for a

range of common anthropometric and blood variables for this cohort. Mean and standard

deviation for the 23 variables defining the PA descriptor is provided in S7 Table. S1 File in the

present article contains mean and standard deviation for concentrations of lipoproteins and

average particle size for VLDL, LDL and HDL.

Correlations between variables

Correlations coefficients between the variables after adjustments for age and sex are tabulated

in S8 Table and briefly summarized in S1 File. The correlation patterns of AF and the adiposity

measures to the lipoprotein profile and PA are almost opposite, while AF and high-intensity

PA shares a similar association pattern to lipoproteins.

Models

Fig 1 shows the association patterns of AF to lipoproteins for the four models.

Heights of bars show quantitatively the associations of the lipoprotein features to the pre-

dicted AF. Bars above and below the vertical line at zero implies positive and negative associa-

tions to AF, respectively.
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Table 1 summarizes features of data and models for the association between AF and the

lipoproteins.

Discussion

Table 1 shows that adjustment has a larger influence on AF (column 1) than on the lipopro-

teins (column 2). For instance, adjustment for age and sex removes 8.9% of the variance in AF,

Fig 1. Selectivity ratio plot of the models. The Andersen aerobic fitness test is outcome and the lipoproteins features are explanatory variables. Adjustment for a) age

and sex, b) age, sex, and PA, c) age, sex, and, adiposity, d) age, sex, PA, and adiposity. The error intervals on the bars correspond to 95% confidence limits.

https://doi.org/10.1371/journal.pone.0259901.g001

Table 1. Description of data and models.

Data R2AF0
a R2LP0

a R2AFb R2LPb SR plot

Adjusted for age, sex 91.1 98.6 9.2 40.4 Fig 1A

Adjusted for age, sex, PA 73.0 95.0 3.9 37.5 Fig 1B

Adjusted for age, sex, adiposity 69.3 90.6 1.4 33.3 Fig 1C

Adjusted for age, sex, adiposity, PA 62.1 89.5 0.9 31.8 Fig 1D

aPercent remaining variance of total variance in aerobic fitness (AF) and lipoprotein (LP) profile after adjustment.
bPercent explained variance (by models) in the lipoproteins and AF of their total original variance.

https://doi.org/10.1371/journal.pone.0259901.t001

PLOS ONE Influence of adiposity and physical activity on the cardiometabolic association pattern

PLOS ONE | https://doi.org/10.1371/journal.pone.0259901 November 18, 2021 6 / 12

https://doi.org/10.1371/journal.pone.0259901.g001
https://doi.org/10.1371/journal.pone.0259901.t001
https://doi.org/10.1371/journal.pone.0259901


but only 1.4% for lipoproteins. Boys were more physical active than girls in our cohort so

adjustment for sex explains the reduction in variance in AF. The minor reduction of lipopro-

tein variance is expected as prepubertal boys and girls have similar lipoprotein profiles [31].

Adjustment for PA or adiposity reduces the variance in AF profoundly and of the same magni-

tude, but reduction in variance for lipoproteins is twice as large for adjustment of adiposity

compared to PA implying a stronger confounding influence of adiposity than PA on the lipo-

protein association pattern to AF. The reduction in explained variance in AF after adjustments

(Table 1, column 3) confirms this expectation. Furthermore, adjustment for PA after adjust-

ment for adiposity leads only to a minor additional reduction in explained variance for AF.

This observation further implies a correlation between PA and adiposity so that adjustment

for adiposity removes variance in PA and vice versa [12]. The strength of this association

increases with increasing intensity of PA and peaks with a flat maximum around 7000–7500

counts/minute (S1 File). This pattern resembles the association pattern of PA to other meta-

bolic health variables [32], but the maximum correlation is shifted towards higher PA inten-

sity. Explained variance in lipoproteins (Table 1, column 4) relating to AF remains relatively

robust to adjustments.

The SR plot of the model adjusted for age and sex (Fig 1A) reveals a positive association of

AF to a cardioprotective lipoprotein pattern: Negative associations to concentrations of TG,

CM, VLDL, and all their subclasses except VLDL-S, and to LDL and all LDL subclasses except

LDL-L, and the small and very small HDL particles, and positive associations to HDL,

HDL-VL2, and HDL-L. Association is also negative to average size of VLDL particles and posi-

tive to the average size of HDL particles. This pattern withstand adjustment for PA (Fig 1B),

but adjustment for adiposity weakens the association of AF to the cardiometabolic favorable

patterns of HDL particles. Further weakening is observed by adjustment for both adiposity

and PA. However, all associations of AF to lipoprotein features found significant before adjust-

ments, are still significant after adjustment as inferred from the 95% limits confidence bands

in the SR plot.

The association of AF to the cardioprotective lipoprotein pattern resisted adjustment by

both PA and adiposity, but the associations to total HDL and the very large and large HDL

subclasses were further weakened (Fig 1D). Adiposity appears more important than PA for the

association pattern of AF to the lipoproteins. This is consistent with previous investigations.

Thus, in a cohort of 262 children (9–10 years old), Hager et al. [33] observed decrease in TG,

TC and LDL and increase in HDL with increase in AF, but strong association of the lipopro-

teins to body fat led to the conclusion that “the goal of favorably altering blood lipids in chil-

dren should begin with increasing PA and fitness, which in turn will lead to reductions in

body fat”. This recommendation was supported by Slyper et al. [8]. In a cohort of 61 obese

non-diabetic adolescents, they observed a lipoprotein pattern comparable to ours associating

to BMI and concluded that “focus of CVD prevention in the adolescent obese should be vis-

ceral obesity, and not blood lipids or lipid subclasses.” Gutin et al. [34] examined relationships

between AF, body fat, and lipoproteins, the latter being expressed as an atherogenic index, in a

cohort of 57 children. They observed an inverse relationship between AF and CV risk but

increased risk with body fat. In a cohort of 590 children, Hurtig-Wennlöf et al. [35] found pos-

itive association of AF to HDL and negative associations to TC and TG and stronger associa-

tion of AF than PA to CV risk factors. Our finding that the association of AF to the

cardiometabolic lipoprotein pattern resists adjustment for PA supports their observation. In a

cohort of 1826 adolescents, Bell et al. [36] found similar associations to PA for a comprehen-

sive lipoprotein profile as we observed to PA [12] for the same cohort as analyzed in the pres-

ent work and for AF for the smaller cohort of 94 children [11] implying a similar association

patterns for AF and PA. However, the strong negative association of LDL and all subclasses of
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LDL to AF found in the present investigation was not observed for PA in Bell et al. [36] or in

Rajalahti et al. [12]. Ekelund et al. [13] found independent effects from AF and PA on meta-

bolic risk factors in children implying that AF associates to lipoproteins partly independently

of PA. Several investigations on adults [14–17] have found similar association of PA to lipo-

proteins as we did for AF in the children. Hence, the observed association pattern with AF

partly mirrors the correlation between PA and AF. Thus, we observed a decrease in the total

LDL concentration and the small and very small LDL particles with increased AF in line with

association pattern between PA and lipoproteins in adult populations [14–17]. However, also

concentration of medium and large LDL particles decreases with increase in AF rendering

average LDL particle size uncorrelated to AF in our study (Fig 1).

Strengths and weaknesses

Studies of associations between AF and lipoproteins in children have mostly been limited to

the standard lipid panel of TC, LDL and HDL cholesterol, and TG. Resolution into subclasses

discriminates between small and large LDL and HDL particles, which associate inversely to

cardiometabolic health, allowing an understanding of how AF impacts cardiovascular health

through its association to lipoprotein pattern.

Cholesterol levels peak in prepubertal children at approximately 10 years age and then drop

during puberty before rising again during adulthood [37]. For children, it is therefore benefi-

cial to constrain such studies to a narrow age range.

Our analytical approach is adapted to handle multicollinear data and enables adjustment

for confounders with linear dependency. This provides net association patterns and quantify

the influence of confounders on the strength of the patterns which represent a challenge for

use of molecular metabolomics descriptors in PA/exercise studies [38].

Because our analyses were restricted to cross-sectional associations, a limitation is that we

cannot infer causality from our findings. Furthermore, our cohort embraces only Norwegian

children. This limits the generalization of our study since there are differences in lipoprotein

levels between different ethnic groups that may impact on the association to AF. However, in

addition to studies discussed above, Okuma et al. [39] observed the same inverse association of

adiposity to the cardioprotective subclass pattern of HDL in Japanese schoolchildren as

observed in this study. So, the association patterns between lipoprotein and AF and its relation

to PA and adiposity extend beyond the ethnic group in our study. Our study lacks information

about diet which impacts the lipoprotein distribution. This is a limitation of the study design.

Conclusion

Since cardiometabolic risk factors carry over from childhood to adulthood, it is crucial to

understand the complex relationships between AF, lipoproteins, adiposity, and PA in children.

Our study shows that AF associates positively to a cardioprotective lipoprotein pattern but that

the strength of this association is strongly influenced by PA and adiposity. PA associates posi-

tively to both AF and this pattern, while adiposity associates almost inversely and stronger than

PA to this pattern. However, since PA and adiposity are inversely associated, adjustment by adi-

posity also removes variance of PA shared with AF. Thus, adiposity and PA in childhood influ-

ences the cardioprotective lipoprotein pattern directly, but also indirectly through the inverse

relation of PA to adiposity. Although adiposity has a stronger independent association than PA

to cardiometabolic health, the indirect influence of PA through the inverse relationship to adi-

posity must be taken into consideration when assessing the relative importance of these two fac-

tors on cardiometabolic health. Physical activity has an additional positive effect by preventing

increase in adiposity and thus strengthening the cardiometabolic healthy lipoprotein pattern.
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Supporting information

S1 Table. Unadjusted data. Data for 841 children where 7 children have replicated lipoprotein

analyses (implied by sample label containing R). Note that to prevent possibilities for identifi-

cation, the variable AGE has been rounded to integers in the table, while it was used with two

decimal places in the actual calculations.

(XLSX)

S2 Table. Data adjusted for age and sex. Data for 841 children where 7 have replicated lipo-
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