
 
 

Estimating peat occurrence by using 

remotely sensed data at Skrimfjella, 

Norway 

 

 

 

Mikko Sparf 

Master Thesis in Climate Change Management 

Department of Environmental Sciences, Faculty of Engineering and Science 

WESTERN NORWAY UNIVERSITY OF APPLIED SCIENCES 

 

Sogndal 

June, 2021 

 

 

 
I confirm that the work is self-prepared and that references/source references to all sources used in the work are 

provided, cf. Regulation relating to academic studies and examinations at the Western Norway University of Applied 

Sciences (HVL), § 10. 



 
 

  



 
 

 

 

 
 

Estimating peat occurrence by using 

remotely sensed data at Skrimfjella, 

Norway 

Master thesis in Climate Change Management 

 

Author: 

Mikko Sparf 

 

Author signature 

Mikko Sparf 

Thesis submitted:  

 

Summer 2021 

 

 

Open thesis 

 

Main Supervisors: Inger Auestad, Knut Rydgren 

 

Co-supervisors: Mette Kusk Gillespie, Julien Vollering 

 

Keywords: 

Peatland 

Remote sensing 

Peat occurrence 

Topography 

Spectrometer 

             Number of pages: 39 

                    + 

              Appendix: 14 

 

 

              Sogndal, 24.6.2021 

                       Place/Date/year 

 

This thesis is a part of the master’s program in Climate Change Management (Planlegging for 

klimaendringer) at the Department of Environmental Sciences, Faculty of Engineering and 

Science at the Western Norway University of Applied Sciences. The author(s) is responsible 

for the methods used, the results that are presented and the conclusions in the thesis. 

 

 



 
 

 



 

I 
 

 

Preface 
 

I would like to offer my special thanks to my main supervisors Knut Rydgren and Inger Auestad, 

for their help and enthusiasm related to the thesis. The same applies for Mette Kusk Gillespie 

and Julien Vollering, for their special knowledge in geophysics and statistics. 

Additional thanks to Stein Joar Hegland and Mark Gillespie for showing interest in the thesis. 

I would also like to thank my fellow students, mainly Karl-Kristian Muggerud for the data 

collection period and the support in various stages of the thesis. Thanks to the other students of 

the MCCM class for making me feel welcome and allowing me to tag along for various activities. 

This thesis has a sister thesis focusing on peat occurrence in the same study area. It is 

recommended to read both dissertations to get the full picture of peatlands  in Skrimfjella. 

  



 

II 
 

Abstract 
 

Peatlands are undeniably an important asset in climate change management. Still, even today 

many of the natural peatlands in Norway are in danger of being dried in order to build new 

cabins, highways or wind parks. Traditionally, confirming peat occurrences can require some 

extensive fieldwork. Traversing the areas by foot has for long been the only method of locating 

new peat deposits in an accurrate way. This study aims to discover and confirm if remotely 

sensed data could be used to find new peat deposits reliably. Recently, LiDAR and radiometric 

(gamma-ray spectrometric) data have shown potential, and this is a first time researching peat 

occurrence in a study area with such a great variation in topography. 

The characteristics of the study area in Skrimfjella inspired the predictor selection used in this 

thesis. 106 peat occurrence points and 123 added positive occurrence points (from peat depth 

measurements) were visited in the study area and examined in relation to the Digital Elevation 

Model-derived predictors: elevation, slope, topographic wetness index, heat index and aspect 

favorability. Additionally, the radiometric predictors uranium, thorium and potassium as well as 

the combination of these three were used for modeling of the relationships between the 

predictors and the occurrence points. Slope, topographic wetness index and elevation had the 

most explanatory value, while uranium was the most predictive radiometric predictor. The final 

model included these predictors and only had a sensitivity of 0.28, meaning that the model 

could only identify 28% of the existing peat. The specificity was 0.96, meaning that when the 

model identified peat, it was typically right. Model accuracy was 50%. The failure of the 

radiometric predictor performance could be traced back to the various bedrock types affecting 

the spectrometer measurements in Skrimfjella. The better performance of the topographic 

predictors not based on aspect, is likely due to the variable characteristics in the study area. 

With proper spectrometer calibrations and a decent sample size, using remotely sensed data for 

estimating peat occurrence has a great potential for peatland management and therefore, 

climate change mitigation. 
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Samandrag på norsk 
 

Torvmark spiller unektelig en viktig rolle innen planlegging for klimaforandringer. I Norge er 

fortsatt mange av de naturlige torvmarksområdene utsatt for drenering, dette som følge 

utbygging av hytter, motorveier og vindparker. Tradisjonelt har ofte omfattende feltarbeid vært 

nødvendig for å nøyaktig bekrefte forekomst av torv. Herunder har det å nå områdene til fots 

vært den eneste måten å lokalisere forekomstene på. Denne studien tar sikte på å undersøke 

om fjernmålte data kan brukes til å avduke forekomst av torv på en pålitelig måte. Nylig har 

LiDAR- og radiometriske (gammaspektrometri) data vist potensiale, dette vil være den første 

gangen torvforekomst har blitt forsket på i et studieområde med tilsvarende variasjon i 

topografi. 

Studieområdets karaktertrekk har inspirert utvelgelsen av prediktorene. Innenfor dette området 

ble 106 punkter for torvforekomst og 123 punkter (fra dybdemålinger) med bekreftet forekomst 

av torv, besøkt. Punktenes sammenheng med prediktorene (utvunnet fra digitale 

høydemodeller): høyde over havet, helningsgrad, topografisk våthetsindeks, varmeindeks og 

gunstig aspekt, ble undersøkt. I tillegg ble de radiometriske prediktorene uran, thorium og 

kalium – samt en kombinasjon av alle tre, brukt for å modellere sammenhengen mellom 

prediktorene og forekomst-punktene. Helningsgrad, topografisk våthetsindeks og høyde over 

havet hadde de mest forklarende verdiene. Uran viste seg å være den sterkeste radiometriske 

prediktoren. Den endelige modellen bestod av de overnevnte prediktorene og hadde en 

sensitivitet på 0.28, noe som betyr at modellen kun identifiserte 28% av eksisterende torv. 

Spesifisiteten var 0.96, som betyr at når modellen identifiserte torv – tok den for det meste rett. 

Modellens nøyaktighet var 50%. Måten de radiometriske prediktorene feilet på kunne spores 

tilbake til variasjonen i berggrunnen, noe som har påvirket de tidligere spektrometriske 

målingene omkring Skrimfjella. Den bedre ytelsen observert hos de topografiske prediktorene 

(ikke basert på aspekt), er mest sannsynlig et resultat av områdets varierende karakteristikk. 

Med korrekt kalibrering av spektrometeret og en tilfredsstillende prøvestørrelse, vil denne 

metoden ha et stort potensial innen forvaltning av myr og torvmark, og derfor også som et 

avbøtende tiltak mot klimaforandringer. 
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1. Introduction 
 

 There are many types of peatlands in the world, and whether it is the fens of Finland or 

the mires of Ireland, they all contain peat. Peat is a valuable resource, that has traditionally 

been exploited, for example as a fuel for heating or a fertilizer for horticulture (Moshynskyi et 

al. 2021). Additionally, peatlands as environments have not always been recognized for their 

invaluable ecosystem services or climate change mitigation potential. Rather, countries used to 

drain them in favor of forestry, agriculture and housing purposes (Holden, Chapman & Labadz, 

2004; Joosten & Clarke, 2003). Peat forms in waterlogged conditions when plant material does 

not receive enough oxygen to decompose properly (Belyea & Baird, 2006). Peat accumulates 

when the production of organic matter, which in boreal conditions mainly consists of sphagnum 

mosses, sedges and shrubs, exceeds the decomposition rate (IUCN, 2018). If the groundwater 

level is lowered due to ditching, the peatland will start to release the carbon it has stored during 

the past thousands of year in the form of carbon dioxide (CO2) (Juszczak, 2012). Only 

approximately 3% of earths land surface is peatlands, yet it makes up to around 30% of carbon 

held in soil (Xu et al. 2018). The number is rough, as many countries have lacking recording 

systems for peatland carbon content (Chimner, Ott, Perry & Kolka, 2014). Neverthless, the 

carbon storing potential of peatlands located in the boreal region alone is second only to the 

oceans (Alexandrov, Brovkin, Kleinen & Zu, 2019). As written by Alexandrov et al. (2019), for the 

global carbon cycle to recover from anthropogenic emissions, the importance of northern 

peatlands is undeniable.  

 Peatlands are still a somewhat unknown ecosystem to many people and can get easily 

overlooked in spatial planning, especially the smaller mires not marked on maps. A number of 

small peat deposits can still hold a considerable amount of carbon in an area where peatlands 

are abundant. The methods for measuring carbon content are developing fast and getting more 

accurate as more people are studying peatlands and their potential to mitigate climate change 

(Chimner, Ott, Perry & Kolka,2014). The aim of this thesis is to increase the knowledge related 

to modern peatland mapping, by examining the applicability of remote sensing as a peat 

occurrence detector. Despite being a novel concept, it has already been studied by other 
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researchers (Aitkenhead, 2016; Silvestri et al. 2019). This thesis is inspired by a similar study by 

Gatis et al. (2018) in Dartmoor, where the focus was on mapping peat depth. The research team 

was exploring which of the remote sensing-derived predictors would have the strongest 

relationship with peat depth. They achieved great results with radiometric data, thus it was one 

of the key aspects of this study too. My eventual goal was to see if the remotely sensed data is 

an efficient way to estimate peat occurrence and how well it can predict landscape-scale peat 

area. This can be summarized in the following research question: What kind of characteristics 

are optimal for peat formation and which of the chosen predictors produce the best 

predictability for peat occurrence?  

Finding an answer to these questions could help future studies on peat occurrence 

establish the most indicative set of predictors to use. The predictors selected for this study can 

be divided to topographic and radiometric predictors. Gatis et al. (2019) got a clear relationship 

between radiometric dose and peat depth, which made the selection of my study area depend 

on the availability of radiometric data. In my study, I had a set of occurrence points that were 

selected using the remotely sensed data. This was done by leaving out the already confirmed 

peat locations and evaluating the landscape structure to get a sample of points where the 

topographic predictor conditions would apply. By analyzing remotely sensed data and 

comparing it to field observations of the point locations, I aimed to discover if peat occurrence 

could be modeled accurately using the selected predictors.  

 Norway has great potential for interesting study areas, because of the rich and varying 

nature. However, the rugged terrain, with high elevation variability can make the landscape 

hard to measure reliably by using remotely sensed data, due to the uncertainty in vegetation 

mapping (Bryn, Strand, Angeloff & Rekdal, 2018) or the measuring helicopter having to maintain 

a set altitude from the ground (Baranwal et al. 2013). These are some of the reasons why the 

research and management of Norwegian peatlands still has room to develop. More accurate 

measurements and mapping would lead to improved status for such important natural areas. In 

case of a new wind power or highway construction project, it would be useful to know the 

extent of the local peatlands beforehand, so that the peatlands can be a factor in a site 

determining process before the planning phase ends. If even the smaller peat patches could be 
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reliably recorded, the planners would be able to estimate the carbon content of the area in a 

natural state and make an emission balance comparison of the developed area. (Bartlett et al. 

2020) However, the peatlands can often be far away from main roads and measuring every site 

manually with a peat probe or a ground penetrating radar would take a great amount of time 

and resources (Parry et al. 2014), which can be limited in modern day spatial planning.  

In Norway, the estimate of dried peatlands for various development purpose over the years 

is only about 20% of the country’s total peatland volume, which is considerably lower than the 

European or Nordic medium (Joosten & Clarke, 2003; Kløve, 1999). Despite that, the mostly 

protected peatlands of Norway are still threatened by wind power and housing projects. 

(Jakobsen et al. 2019) These two are the main reasons why natural peatlands can still be 

drained, as most other purposes have been banned or heavily regulated (Norwegian Ministry of 

Climate and Environment, 2020). Also, the remaining natural peatlands are not all counted for. 

The estimates of how much peat there is in the soil to bind carbon are not precise, partly due to 

the aforementioned issues with remote or inaccessible locations, as well as differences in 

measuring, archiving or most importantly, the criteria used for defining peat (Chimner, Ott, 

Perry & Kolka, 2014; Joosten & Clarke, 2003). Success in modeling could lead to remote sensing 

becoming a more established tool for peatland mapping, that could aid future projects in this 

field. Mapping peatlands is a step towards better management of these important ecosystems. 

Moreover, we must keep our focus on peatland restoration and preservation, rather than 

economically exploiting the natural peatlands that are left. Changing the mindsets of people can 

take time, but the future looks bright, with peatland conservation gaining international 

momentum during the last decades (Stoneman et al. 2016; Bartlett et al. 2020). 
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2. Methods 
 

2.1.Study Area 

 

Figure 1. The study area is located south from Kongsberg, highlighted in this map of Norway. The map is presenting 
occurrence and depth points, as well as the three mires we used the GPR on. 

 

The 40 km2 study area is located in Skrimfjella, 15 kilometers south of Kongsberg city in 

the county of Viken (Fig. 1) The elevation within the study area varies from around 200 to 700 m 

above sea level. Annual precipitation varies from 750-1000 mm of the lower parts in the north 

to 1000-1500 mm of the higher parts in the south (NVE & MET Norway, 2021). Temperature 

averages vary from -3°C in January to 18°C in July, with an annual average temperature of 2-6°C 

(NVE & MET Norway, 2021). Geology in the area varies greatly with granite and limestone being 

the most common bedrock types (Fig. 2) There are also beds of sandstone and shale in the 

middle, as well as some monzonite and syenite in the southern edge of the study area, near 
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Store Stølevann. The area is divided by the Oslo rift and the Kongsberg formation (NGU, 2020). 

The soil composition in the area includes podzols, lithosols, brown earths, swamp soils, as well 

as vertic and gleyic cambisols (Norges Geografiske Oppmåling, 1983).  

Figure 2. The bedrock variability in and around the study area. The main deposits inside the study area include 
granite (1) and limestone (2), as well as some syenite (3) and monzonite (4). The limestone is surrounded by small 
deposits of sandstone and clay. (NGU)  

 

Observations during fieldwork revealed the dominant tree species in the area to be birch 

(Betula pubescens), pine (Pinus sylvestris) and spruce (Picea abies), with sudden changes in the 

vegetation along the different parts of the study area. The forests and especially peat deposits 

in the area are patchy and scattered, which can increase the species diversity, as the peatlands 

are at different stages of development. Typical field and bottom layer species in these peatlands 

and their outskirts included sedges, cottongrasses (Cyperaceae), starr (Carex), heather (Calluna 

vulgaris), blueberry (Vaccium myrtillus), lingonberry (Vaccinium vitis-idaea) juniper (Juniperus 

communis), stunted trees etc. Bogs in higher elevations also grew cloudberry (Rubus 

chamaemorus). 
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2.2.Occurrence Points 
 

The occurrence points in the study area (Fig. 1) were selected by a stratified random 

method using remotely sensed data. Areas with slopes steeper than 20 degrees were excluded 

from the sampling because it is very unlikely for peat to occur there (Tallis, 1973). Likewise, 

areas mapped as mires in national map data (Bjørdal, 2007) were excluded because these areas 

were proven to contain peat. From the remaining study area, approximately 100 occurrence 

points were chosen by random using the 'iSDM' R package (version 1.0; Hattab et al. 2017). The 

chosen points were regularly spaced in predictor space, so-called 'environmentally systematic 

sampling’ (US EPA, 2002). This three-dimensional predictor space was defined by elevation, 

slope, and potassium dose. The goal for this sampling design was to efficiently cover the range 

of predictor values in areas that could plausibly contain peat.  

Figure 3. A typical occurrence point was in a bottom of the forest, under blueberries (Vaccium myrtillus) or other 
subshrubs. Most occasions it was hard to determine the occurrence without digging. Pictures taken in August 2020. 

 

The fieldwork for the thesis was done in August, by visiting the 106 occurrence point 

locations with a handheld GPS-device and a shovel. When arriving within three meters of a 

point, I examined the soil content for peat by digging 20 cm of the soil, whenever possible (Fig. 

3). If the ground was dry and hard to a degree where the shovel would not penetrate the 

surface, I concluded that it was not possible for peat to occur there. In the case of visible 

bedrock on the spot, I marked the point as no peat right away. Sometimes there was sphagnum 

without peat or vice versa. Any case where I was uncertain, I dug 20 cm of the surface and took 
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photographs of the soil and its surroundings for later determination (Fig. 4). Six locations were 

inaccessible due to them being on private property, fenced area or underwater. These are 

marked as absences (0) in the dataset. In the end, only one of the points was left unchecked, 

due to its remote location from the other points. Some locations, especially in steep slopes, 

caused occasional issues with the GPS accuracy, but this problem was normally fixed by a quick 

recalibration of the device.  

 

Figure 4. Sometimes the surroundings of an occurrence point location looked suitable, but it was hard to tell if there 
would be peat without digging. Here an opening in a forest near a confirmed bog grows sphagnum and club moss 
(part of the Lycopodiopsida) but seems too dry. Picture taken in August 2020. 

 

 

 



 

15 
 

2.3.Depth Measurements 
 

During the fieldwork, we also measured 109 depth points using peat probe. I eventually 

used the points in the modeling part as an extra sample to improve the accuracy of the models. 

To get some perspective on how efficient the most common methods of peat occurrence/depth 

measuring are compared to the remote sensing, we measured the depth of three individual 

mires with a ground penetrating radar (GPR), in addition to the probe. (Muggerud, in prep.) 

 

2.4.Preparing the Predictors 
 

First, I fetched a digital elevation model (DEM) of the study area from høydedata.no 

(Kartverket, n.d.). To be able to compare results with those by Gatis et al. (2018), I used the 

same predictors with the exception of adding heat index and aspect favorability. I also chose the 

same 10 m raster cell resolution they used (Gatis et al. 2018). The radiometric data was 

originally in 50 m resolution, but it was resampled in QGIS (Version 3.10.14; QGIS Development 

Team, 2021) to fit in with the 10 m rasters. I created the predictor rasters in QGIS using the 

raster tools “Slope” and “Aspect” on the DEM (Fig. 5). In addition to being individual predictors, 

these were used for calculating the Topographic Wetness Index (TWI), which is composed of 

slope and upslope contributing area (Kopecký et al. 2021). In theory, it indicates runoff 

efficiency, and reveals where water tends to gather, represented by a higher TWI value. High 

TWI benefits peat formation, but after a certain threshold is crossed, the high wetness will 

translate as a permanent water body not likely to contain peat. Slope and aspect were also used 

to calculate the heat index, which is more common in vegetation studies but seemed fitting for 

the purpose of this thesis (Beers, Dress & Wensel, 1966). It indicates the heat distribution on a 

topographic emphasis. Aspect was converted into aspect favorability, as the plain aspect was 

not treating the highest and the lowest degrees (around 0 and 360) as neighbors but opposing 

high and low values. 
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Figure 5. Digital elevation model. Topographic characteristics of the study area on a map of 

elevation and slope.  

 

Topographic Wetness Index (TWI) was calculated in QGIS using the raster calculator and the 

“Flow accumulation” SAGA tool. The following function was used in the calculator: 

TWI= 𝑙𝑛
𝛼

𝑡𝑎𝑛𝛽
 

where α is the upslope contributing area in m2 and β is the slope in radians. (Van der Kwast, 

2016) 

Heat Index (HI) was calculated in R, using the following function: 

HI= 𝑐𝑜𝑠𝛼1 ×  𝑡𝑎𝑛𝛼2  

where α1 is the aspect difference from 202.5° and α2 the slope (Parker, 1988) 

Aspect favorability, which was was calculated in R using the following function: 

Aspect favorability= 𝑐𝑜𝑠(𝐴𝑚𝑎𝑥 − 𝐴) + 1 

where A was the measured aspect and the max value was set on 202.5° (Beers, Dress & Wensel, 

1966) 

 



 

17 
 

The radiometric data for Potassium, Thorium and Uranium was obtained from Norges 

Geologiske Undersøkelse (NGU) data portal. This data was produced with a HummingbirdTM EM 

and magnetic helicopter survey system. Additionally, two external gamma-ray spectrometers 

(Exploranium GR820 and Radiation Solutions RSX-5) were used (Baranwal et al. 2013). They 

were calibrated accordingly to the radiation type. The predictor ‘radiometric dose’ was a 

combination of the Potassium, Thorium and Uranium data. 

Radiometric dose was calculated by adding the radiation of the individual elements together 

using the following calculation: 

Radiometric dose= 𝐾 (%) + 𝑇ℎ (𝑝𝑝𝑚) + 𝑈(𝑝𝑝𝑚) = 𝐷(𝑛𝐺𝑦 × ℎ1)  

where the sum of Potassium (K), Thorium (Th) and Uranium (U) radiation values (ppm) form the 

radiometric dose. (nanoGray per hour) (Gatis et al. 2019) 
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2.5.Statistical Analyses 
 

I used RStudio (version 1.4.113; RStudio Team (2021) to model the relation between the 

predictors and the peat occurrence data, which was in binomial form (1 for peat and 0 for no 

peat). The data type led to the choice of using a binomial Generalized Linear Model (GLM). I 

started by importing the occurrence points and predictor rasters into R from shapefiles created 

in QGIS. The rasters were limited to match the study area, which I did by using a simple plot to 

check that they were aligned properly. Then I stacked the predictors together and combined 

them with the occurrence data to have a common data table for the upcoming modeling. (Fig. 

6)  

Predictor Origin 

Elevation Digital Elevation Model from høydedata.no 

Slope Calculated from the DEM 

Aspect Favorability Calculated from the aspect raster in QGIS + R 

Topographic Wetness Index Calculated in QGIS (SAGA tool) 

Heat Index Calculated in QGIS + R 

Radiometric Dose Combination of the elements below 

Kalium Obtained from NGU Geoscience Data Service 

Thorium Obtained from NGU Geoscience Data Service 

Uranium Obtained from NGU Geoscience Data Service 

Figure 6. The chosen predictors and how they were obtained and created. 
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The preliminary results from the test plots I used pointed towards having too few 

positive occurrence values, only 20 out of the 106 in total. To have a larger sample of positive 

occurrences and improve the model accuracy, I converted the depth points we measured during 

the fieldwork, into occurrence points. As a result, I had a set of 225 occurrence points. On one 

hand, this produced an increased number of positive values for the models to determine the 

characteristics of what is needed for peat to occur. On the other hand, it risked tipping the scale 

towards positive occurrences having a greater impact than the negative. Probability of 

occurrence with a small bilinear data set like this can often be under- or overestimated. That is 

why the occurrences need to have a correct weighting in the set (Nad’o & Kaňuch, 2018). To 

avoid bias, I used weights to optimize the value of the new occurrence points. Since there were 

a total of 127 positive occurrence points, I used a 127/20 ratio to make the weights. This gave 

the negative occurrences more value and the positives and the negatives were equally valued 

by the models. 

Now that all the data was sorted out properly, I ran the GLMs with occurrence against 

every combination of two predictors to find out how each predictor pair relates to the 

occurrence data. Comparing the AIC (Akaike’s An Information Criterion) numbers of these 

models already gave an idea of which predictors had the best predictability and how the main 

model would be put together. AIC can be interpreted as a performance indicator that 

represents the fit of the model with the selected predictors (Grove, Sakamoto, Ishiguro & 

Kitagawa, 1986) 

I also inspected FOP (Frequency of Observed Presence) plots which are a part of the R 

package MIAmaxent, between occurrence and each predictor. These are meant for recognizing 

patterns in occurrence frequency, which made them useful for this study. (Vollering, Halvorsen, 

Mazzoni, 2019) FOP plots also produce useful visualizations of how the different predictors 

affect the occurrence.  

I used forward and backward selections to plot the predictors against each other. In 

forward selection, predictors are added until the model has reached its peak performance. The 

rest of the predictors are then discarded. Backward selection works backwards, starting with a 
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full roster, and dropping predictors until the point where its performance would suffer. Forward 

and backward selections would often produce the same outcome, but it is recommended to do 

both to check for slight errors in a script or data, that the other selection would miss. In some 

cases, they can also produce a different outcome. (Burdon & Kumar, 2004) The results 

presented in the thesis are mainly from the backwards selection, but I checked both thoroughly 

to confirm that the results were not contradicting each other. The scripts for the selections can 

be found in the Appendix.  
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3. Results 
 

3.1.Frequency of Observed Presence 
 

Interpreting the FOP plots revealed the most and the least significant relationships in a 

visual form. (Fig 7.) According to these plots, the occurrence points in the study area correlate 

well with slope (Fig. 7b) and TWI (Fig. 7c). The slope graph illustrates how a flatter slope relates 

to increase in occurrence. A rise and decline in the TWI trend line illustrate that too little or too 

much wetness has a negative effect for peat accumulation. In the elevation graph (Fig. 7a), the 

occurrence points are scattered over a larger extent. There is a steady rise in occurrence in 

relation to elevation, until about 700 meters, and a decline after that. This is due to the study 

area not having many points over this elevation. Moreover, most of the occurrence points are 

situated in altitudes greater than 300 m, which is due to the characteristics of the study area 

and does not mean peat would not occur in lower altitudes. The heat index differs from the 

other graphs, because of its different working principle. The values settle close to 0 and only 

range from -1 to 1 by default. The FOP plot of aspect favorability did not produce a clear 

pattern. The profiles of the radiometric predictors seem to be in-line with each other. Out of 

these four, uranium (Fig. 7g) stands out with the sudden decline in occurrence as radiation 

levels increase.  
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Figure 7. FOP plots of all predictors: Elevation (a), slope (b), TWI (c), heat index (d), aspect favorability (e), radiation 
(f), uranium (g), kalium (h), and thorium (i). The light grey mountain-shaped parts in the graphs are the most well-
presented characteristics in the study area and the dots are the occurrence points. The red trend line helps to 
visualize the distribution of the positive occurrences according to the predictor, meaning that the line can be used to 
determine whether the effect of the predictor on the occurrence is positive or negative. 

 

3.2.Modeling results 
 

Of all the predictors, slope and TWI appeared to have the most explanatory value 

through the different stages of modeling. The results from single predictor GLMs added 

elevation to this group. These three predictors had the best performance, according to their 

AICs. Slope (614) and TWI (627) were considerably better at predicting occurrence than the 

other predictors, and elevation (662) scored better than the rest (AIC range 668-672). None of 
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the remaining predictors stood out, which meant the differences were so small that finding 

them required more in-depth modeling.   

 

3.2.1.Generalized Linear Models 

 

Later analyses confirmed TWI, slope and elevation to be the best predictors in relation to 

peat occurrence. The majority of the occurrence points are distributed between the medium 

wetness levels, from around 6 to 14 on the x-axis of the TWI scale (Fig. 8a). Peat was more 

common in wet areas (TWI range 9-13) than dry areas (TWI range 7-10). This is in line with the 

fact that peat favors wetter conditions, although the study area does not seem to include very 

dry areas for comparison. Only a handful of the ocurrence points are situated at the high end of 

the TWI scale (15), which gives an idea of the optimal TWI range and its limits for peat deposits 

in the study area. The points were more evenly distributed along the slope gradient (Fig. 8b), yet 

the graph has a significant amount of the positive occurrences in the lower end of the x-axis, 

which indicates that the degree of the slope must be smaller for peat to be more likely to occur. 

These two show a clear connection between the predictor and the occurrence, which was not 

obvious with the other predictors.  

 

Figure 8. Results of the GLMs for Topographic Wetness Index and slope. The occurrence points are presented in the 
x-axis, while the trend line indicates the estimated optimal range where peat is most likely to occur, according to 
these variables.  
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Elevation and uranium were the other predictors selected for the model. The occurrence 

points are much more evenly distributed along the x-axis, and the trend lines go straighter. That 

means less predictive power than the slope and TWI had. The elevation graph still shows a clear 

increase in the occurrence as the elevation increases (Fig. 9a). The values in the middle of the 

elevation range are the most accurate, while the low and the high end have some more 

uncertainty. The uranium graph does not provide much information, other than uranium having 

a slight negative effect on peat occurrence (Fig. 9b) 

 

Figure 9. Results of the GLMs for elevation and uranium (radiation dose). Less curve on the line and thicker grey 
areas means more uncertainty in the estimation. The rest of the GLM graphs can be found in the appendix. 

 

GLMs of the of the predictor pairings supported the results from the other analyses. Best 

pairs were formed from elevation with slope (AIC 571), elevation with TWI (AIC 591) and slope 

with TWI (AIC 605) (Tab. 1). From this result I anticipated the selection of these predictors for 

the final model. In the end, the result from backward selection for all the predictors (elevation, 

slope, aspect favorability, TWI, HI, radiometric dose, uranium, potassium and thorium) included 

slope, TWI, elevation and uranium.  
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Predictor Rad. Dose TWI Heat Index Elevation Slope Aspect Fave 

Rad. Dose  625.01 674.51 656.09 613.31 671.48 

TWI   625.58 591.17 605.8 626.7 

Heat Index    663.83 612.35 648.45 

Elevation     571.88 659.98 

Slope      612.36 

Aspect Fave       

Table 1. The AIC-numbers of the predictor pairings. Plotting them together in pairs helps in exploring the relations 
and understanding the process of the final selection better. AIC was the best value for comparing the predictors. 

The top three predictors remained the same in the individual AIC-value comparison. 

Potassium, which was the last one to be left out from the final model, was very close to uranium 

in performance. Aspect favorability performed better than uranium, but in the end uranium had 

more synergy with the top three, and aspect favorability was discarded. The AIC-numbers of 

slope, TWI and elevation were clearly smaller, while the rest of the predictors were much closer 

to each other in individual performance (Tab. 2). 

 

Table 2. The AIC-numbers of the individual predictors from the GLMs. The lower AIC-number does not always mean 
that the predictor will be part of the final model. Aspect favorability lost performance when it was grouped with 
other predictors. 

 

The coefficient estimates for the model confirm that an increase in TWI and elevation, as 

well as a decrease in slope and uranium affect peat occurrence positively (Tab. 3). The estimates 

are adequate, with only uranium having a slightly larger standard error. Uranium p-value also 

points towards slightly less significance than the other predictors. None of the predictors 

increase the chance for peat occurrence by a large margin. More occurrence points would be 

needed to find out precisely how much each predictor could influence the occurrence of peat in 

the study area. 

Predictor Slope TWI Elevation Aspect 

Fave 

Uranium Potassium Heat 

index 

Rad. 

dose 

Thorium 

AIC 614.56 627.52 662.25 668.89 669.24 669.61 671.93 671.96 672.76 
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Coefficients Estimate Standard Error P-value 

(Intercept) -6.272 0.829 3.88 x 10-14 

TWI 0.243 0.048 3.60 x 10-17 

Slope -0.143 0.029 7.69 x 10-7 

Elevation 0.008 0.001 2.41 x 10-13 

Uranium -4.979 1.834 0.00664 

Table 3. The coefficient distances from zero presented in a table form. The results are from the last GLM (backward 
selection). 

 

3.4.Model Performance 
 

The model performance was not as good as expected, when reflecting on the results 

from Gatis et al. (2019). The performance indicators for depth data and binomial occurrence 

data are not the same, but they provide enough information to make the comparison (Bevan, 

2013). Sensitivity of the final model was 0.28, meaning that the model successfully identified 

28% of the existing peat, leaving 72% of the peat undetected. Specificity was 0.96, meaning that 

the times the model identified peat, it was right 96% of the times. (Swift, Heale & Twycross, 

2019) The conclusion from these numbers seems to be that the model was too modest; it was 

lacking data to make any more deductions. The model got 50% accuracy, so the classification of 

peat or no peat was right half of the times. 

 

3.5.Modeled Occurrence Probability 
 

After the modeling in R was complete, I exported the model predictions into QGIS, 

where a raster of the model predictions was created (Fig. 10) I call it Modeled Occurrence 

Probability, as it is not a clear map of where peat deposits can be found, but a result of a model 

estimating occurrence of peat deposits. The influence of the main topographic predictors is 

visible. The areas with a better probability for peat seem to be at higher elevations, have a 
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higher TWI or a gentler slope. The effect of uranium is too faint to be pointed out from the 

raster. 

 

 

Figure 10. The final model predictions in a raster format. Modeled Occurrence (MO) Probability is the calculated 
model predictions from the predictors chosen for the final model (slope, elevation, TWI and uranium). 

  



 

28 
 

 

4. Discussion 
 

4.1.Evaluating the model 
 

One of the reasons why the final model did not reach the expectations, is the small 

sample size. The predictors that performed well in the model, are likely to be correct, but the 

predictive power they have on peat occurrence is still somewhat inaccurate. Especially with a 

binomial data set, having a larger sample could boost the performance of the model greatly 

(Bevan, 2013). The characteristics of the study area in Skrimfjella are not represented well 

enough by the 106 original occurrence points. For example, elevation range of roughly 500 

meters is only covered by 21 points per 100-meter difference. This occurrence data is not 

directly comparable to the depth data from Dartmoor (Gatis et al. 2019), but with fewer radical 

changes in the landscape, the depth points there have less individual value, making them 

represent the study area better. Gatis et al. (2019) also produced a map of modelled peat 

extent, which can be compared to the raster of Modeled Occurrence Probability. (Fig 10.) The 

basic principle is the same, but the one from Dartmoor was made using more confirmed peat 

values, while my “map” is based on estimations from a less representative dataset. An optimal 

result from a study focusing on occurrence would produce a similar raster, but with clearer 

contrast of possible peat deposit presences and absences. 

 

4.2.Evaluating the predictors 
 

The predictors chosen for this study are inspired by the research from Gatis et al. (2019), 

with some exceptions. My chosen predictors included heat index and aspect favorability. The 

fact that these two did not perform as well as expected, does not mean they should be 

discarded in the future studies right away. The main reason for using these in a study would be 

to measure the effect of solar radiation on peat formation, which could also be a predictor of its 

own. Additionally, aspect has been used to produce some decent values on other studies (Chico 
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et al. 2020). However, the strong performance of slope makes an argument against heat index 

and aspect favorability. If peat favors flat terrain, then predictors based on aspect lose some of 

their significance, because flat areas are exposed to sunlight in the same way throughout the 

day. There might be mountains blocking certain directions, but this is hard to include in a model.  

Radiometric dose did not have such an impact it had on the Dartmoor study, where it 

was clearly the most predictive one of the predictors (Gatis et al. 2019). In my study, 

radiometric dose failed to contribute significantly to the modelling of peat occurrence, and was 

left out of the final model. Only uranium had the predictive power to be selected for it. Of the 

rasters created in QGIS, uranium was also the radiation type that seemed to be the weakest in 

the study area, compared to the other types of radiation. (Fig. 12) That could be one of the 

reasons for its best predictability, considering the overall weakness of the radiometric data for 

this area. If higher radiation leads worse results, then the best radiometric predictor would 

logically be the one that has the smallest radiation value. 

 

Topographic predictors fared better than those derived from the radiometric data. This 

could be due to the great variability in bedrock types in the area (Fig. 2). Since the radiometric 

signal behaves differently in different bedrock and soil types (Rawlins et al. 2007), greater 

Figure 10. Potassium (a), thorium (b) and uranium 
(c) radiation values in the study area. The change of 
bedrock type from granite to limestone is visible in 
the upper left corner of the thorium (b) map, hinting 
that the bedrock could have a major role in the 
performance of the radiometric predictors. The 
boundaries of available radiometric data for the 
area can be seen in the lower left corner of the 
rasters. 
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radiometric predictor accuracy would require calibration for each bedrock type separately (Gatis 

et al. 2019). The equipment that was used to measure the radiation in the study area was 

calibrated for each radiation type (Baranwal et al. 2013), but for the purpose of having radiation 

as a predictor in this kind of a study, calibrating the measuring tools for different bedrock types 

would be essential. Another thing affecting the radiometric data, is the seasonal variability in 

the area. In northern Europe, where the seasons are very different from each other, the time of 

the data extraction should be considered carefully. The radiometric data of the target area were 

measured during May and July 2011. Other regions that were part of the same survey, were 

measured between 2008 and 2009, during the summer and autumn months (Baranwal et al. 

2013). The measurement period is long, but conditions are also the most similar between the 

five warmest months. Nevertheless, temperatures and precipitation can change considerably 

between months and years. To minimize the effect of the seasonal variability, the conditions of 

measurement days should be noted, so they can be used in the interpretation of the results, if 

there seems to be some difference to the expected radiation values.  

Remote sensing is developing rapidly and calibrating the spectrometer for different 

bedrock types would still be less work than going to the field with the depth measuring gear. 

Skrimfjella has multiple bedrock types (Fig. 2)(NGU, 2020), so for the purpose of developing the 

method and increasing the international knowledge about the relationship between bedrock 

and the different radiation types, I would choose a future study area with one or two bedrock 

types. The topography in Skrimfjella also varies more than that in Dartmoor, which raises 

questions about the topographic predictors. Would flatter topography and less bedrock types 

make radiometric predictors perform better than topographic ones in comparison? The 

characteristics of the area could have a notable impact on how the predictors perform, 

especially when the sample size is low. Additionally, remote sensing seems to work better with 

flat-bottomed peatlands (Vernimmen et al. 2020).   

Slope and TWI were the best predictors for the area by a clear margin. When there are 

plenty of slopes in the environment, it becomes more visible that the model will see the flat 

areas as superior to the steep ones. The same is true for the TWI, as it also relies heavily on 

slope. The precision of these two predictors benefits from a more radical topography. With 
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elevation, the link between altitude and peat formation is not as direct. (X1) Peat needs still 

water to occur, and in areas with high elevation, many parts are too steep to hold water or peat. 

This limits the chances for peat deposits. Peat occurrence in mountainous areas has not been 

studied extensively, but the forming of peat does not seem to suffer from higher altitudes 

(Llanos et al. 2017). The results from the GLM demonstrate a positive relationship with peat 

occurrence and higher elevation. A result like this can be due to peatlands in lower altitudes 

being dried for agriculture or forestry, among other purposes. When a peatland is located high 

enough, it is much less attractive a target for exploitation, and thus so many of the peatlands in 

the region have been spared from drying. The lack of roads and other infrastructure do not 

make it optimal for agriculture or other long-term projects. Drying requires digging, which 

comes with obvious logistical problems, despite the purpose of drying the peatland. Lately, this 

kind of regions have been considered for new wind park projects or cabin building. A part of 

Skrimfjella was also briefly included in a plan charting possible wind power locations, which 

makes investigating peat occurrence there useful and timely (Jakobsen et al. 2019). 

 

4.3.Future Research on Peat Occurrence  
 

For future studies working with peat occurrence, it is important to establish some 

guidelines for the fieldwork. The fieldwork should be done in a time of the year that the ground 

is melted, and it is possible to dig. Having a GPS-device with at least a three-meter accuracy is 

also recommended. Many of the occurrence point locations required digging, as the sphagnum 

growth indicated the possibility of peat, even when the surroundings were dry. There were 

some visible peat pouches around many of the point locations, but the occurrence points rarely 

happened to be situated on them. In many cases, the GPS led me to a place that was mossy or 

looked otherwise suitable but did not contain peat. Sometimes identifying the peat was hard, as 

the peat I found was in different phases of decaying. The Von Post scale defines ten different 

states of decay for sphagnum peat, which can make peat classification in the field difficult. 

(Laine et al. 2018) There was no clear pattern to be visually identified with the peat deposits 

while visiting these points during the fieldwork.  
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Windmills and cabins are an exception in a sense that they are not as demanding on the 

land as agriculture or forestry, which are the main reasons for historical peatland draining 

(Joosten & Clarke, 2003). The land does not have to be productive or nutritious for either 

structure. It just has to be dry enough for the building site to be established. Then it is up to the 

cabin owner if they want to live on a peatland, as long as the cabin is built on a sturdy spot. 

Wind turbines can be situated in any type of terrain if it is physically possible to build them 

there. The construction of a wind turbine is the most damaging part for its surrounding land 

area. A study by Heal et al. (2019) revealed a change in the macronutrient concentration (mainly 

dissolved organic carbon and soluble reactive phosphorus) in a catchment area mostly covered 

by blanket peat, due to forest felling, borrow pits, turbine base and road construction. 

Furthermore, operating wind turbines seem to affect the peatland environment, by slightly 

altering the temperature of the ground-level microclimate. Soil, soil surface and air temperature 

at a Scottish wind farm experienced up to 0.18°C increase, when the turbines were on 

(Armstrong et al. 2016). Although not very drastic of a change, it could affect the ecosystem 

respiration and thus the CO2 intake of the mire (Ward et al. 2013). Additionally, a study on wind 

parks on undegraded peatlands by Smith, Nayak & Smith (2014) claims, that peat is more 

valuable for the climate, than the wind power generated from the turbines built on the peat 

deposit would be.  

The world has come a long way from the old days, when peatlands were drained out of 

necessity, like they were in Finland before the urbanization (Turunen, 2008). Historically, the 

amount of drained peatland has steadily decreased, the closer to the present day we look. It 

might seem like we have already caused irreversible harm to our ecosystems and climate, but 

there are still uncharted peatlands in the world, that can be preserved (Joosten & Clarke, 2003). 

As the technology related to peat mapping continues to develop, all these yet-to-be-identified 

peatland locations have a greater chance of being taken under the wing of some international 

agreements set to improve natural values (Stoneman et al. 2019). 
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5. Conclusion 
 

Peat occurrence in the Skrimfjella study area (40 km2) was modeled with predictors 

inspired by the study Gatis et al. (2019) did on Dartmoor. The final model included slope, 

elevation, TWI and uranium (dose). The role of the radiometric data in this study was 

diminished, likely due to the great variation in topography, but especially bedrock. The 

spectrometer used to measure the radiation should be calibrated accordingly for each bedrock 

type beforehand to improve the estimated accuracy of the data type. The model accuracy was 

only 50% with a sensitivity of 0.28 and specificity of 0.96. A future study following a similar 

modeling pattern, should take sample size into account and ensure enough positive and 

negative occurrences to cover all the characteristics of the study area properly, thus avoiding 

bias due to regional differences. The role of remotely sensed data in estimating peat occurrence 

is promising but requires some a priori knowledge and planning, when selecting the study area 

and sample size. It is highly recommended to do both occurrence and depth modeling 

simultaneously, as having data from both measurements can provide more relevant and 

applicable spatial information. Having access to both peat depth and extent from the same 

study area can be useful in a larger scale, than the individual results. It would also reveal more 

about the current state of the area, which could be used in protection of the peatlands.  
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Appendix B – Predictor Rasters 
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B-3. Topographic Wetness Index raster 

 

B-4. Heat Index raster 
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B-5. Aspect raster 

 

B-6. Radiometric dose raster 
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