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Abstract: Earth–abundant transition metal chalcogenide materials are of great research interest for
energy production and environmental remediation, as they exhibit better photocatalytic activity due
to their suitable electronic and optical properties. This study focuses on the photocatalytic activity
of flower-like SnS2 nanoparticles (composed of nanosheet subunits) embedded in TiO2 synthesized
by a facile hydrothermal method. The materials were characterized using different techniques, and
their photocatalytic activity was assessed for hydrogen evolution reaction and the degradation of
methylene blue. Among the catalysts studied, 10 wt. % of SnS2 loaded TiO2 nanocomposite shows
an optimum hydrogen evolution rate of 195.55 µmolg−1, whereas 15 wt. % loading of SnS2 on TiO2

exhibits better performance against the degradation of methylene blue (MB) with the rate constant of
4.415 × 10−4 s−1 under solar simulated irradiation. The improved performance of these materials
can be attributed to the effective photo-induced charge transfer and reduced recombination, which
make these nanocomposite materials promising candidates for the development of high-performance
next-generation photocatalyst materials. Further, scavenging experiments were carried out to confirm
the reactive oxygen species (ROS) involved in the photocatalytic degradation. It can be observed
that there was a 78% reduction in the rate of degradation when IPA was used as the scavenger,
whereas around 95% reduction was attained while N2 was used as the scavenger. Notably, very
low degradation (<5%) was attained when the dye alone was directly under solar irradiation. These
results further validate that the •OH radical and the superoxide radicals can be acknowledged for
the degradation mechanism of MB, and the enhancement of degradation efficiency may be due to the
combined effect of in situ dye sensitization during the catalysis and the impregnation of low bandgap
materials on TiO2.

Keywords: photocatalyst; hydrothermal; hydrogen evolution; degradation; transition metal
chalcogenide; TiO2; SnS2

1. Introduction

Emission-less, energy efficient, and low-carbon power production is vital for a green
economy. Therefore, renewable energy production from hydro, wind, and solar power
paves the way toward overcoming the current environmental issues of fossil fuels [1].
Photocatalytic water splitting involved in hydrogen and oxygen evolution reactions can
produce chemical energy in H2 and O2 by utilizing solar energy [2]. The practical appli-
cation of overall water splitting remains limited due to the lack of effective and stable
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catalysts to reduce reaction energy barriers. Therefore, the development of efficient and
affordable photocatalysts is of great significance.

Various materials, such as TiO2 [3–6], ZnO [7], mixed oxide materials [8], dye [9,10],
and metal-doped oxide materials [11,12], have been intensively focused on for photocat-
alytic applications. Among these, TiO2 is considered a gold standard due to its significant
characteristics, such as strong optical absorption, favorable band edge position, nontoxi-
city, and abundant availability [13,14]. However, the wide bandgap energy (~3.2 eV) of
TiO2 necessitates UV irradiation, but the composites of TiO2 with co-catalysts enable the
catalysts to absorb visible light abundant in solar radiation [15].

Recently, transition metal chalcogenides (TMCs) have gained more attention due to
their electrocatalytic properties that includes indirect bandgaps, optoelectronic behavior,
and their stability [16,17]. Moreover, the stronger edge effects and the quantum confine-
ment effects make these nanodots (quantum dots) or nanostructures of metal chalcogenides
possible to utilize considerable amounts of solar irradiation [17–19]. These are playing an
increasingly important role in different applications, such as photo degradation [20], capaci-
tors [21], and hydrogen evolution [22] due to their suitable electronic and optical properties.

The generation of an exciton pair and the effective charge separation in these semicon-
ductor photocatalysts lead to an efficient photocatalytic process. The efficiency of charge
transport mainly depends on the crystallinity, particle, and crystallite size of the materials.
Although the small bandgap energy of TMCs necessitates the use of visible irradiation, com-
posites of TMCs with co-catalysts, for example, graphene [23], graphene oxides [24], carbon
nitride [25], metal oxides [26,27], and metals [28], were found to increase the conductivity
of electrons, provide active sites, and effectively separate the electron and hole pairs gener-
ated by the semiconductor photocatalysts. Among the transition metal chalcogenides, SnS2
receives significant attention due to its interesting optical and electronic properties [29].
It has a CdI2-type layered n-type semiconductor and a bandgap of about 2.18 eV [30,31].
Until now, different SnS2 nanostructures with a range of morphologies have been prepared
in various conditions, exhibiting intriguing physical and chemical properties; for example,
well uniform nanoflake SnS2 was synthesized by the hydrothermal method at 145 ◦C in
48 h by Feng et al. [32], whereas in a different study, Huijuan Geng et al. used Titon-X
100 as a surfactant to get hexagonal nanoflake SnS2 [33]. However, the photocatalytic
performance of SnS2 is still considered unsatisfactory, and only few works have been re-
ported on SnS2 nanoparticles for photocatalytic water splitting and photodegradation. The
objective of this paper is to investigate whether SnS2/TiO2 nanocomposite will enhance the
photocatalytic hydrogen production and rate of degradation of organics. Herein, we report
SnS2-embedded TiO2 nanocomposites synthesized by the facile hydrothermal method for
photocatalytic hydrogen production and photocatalytic degradation of methylene blue un-
der simulated solar irradiation. We also investigate the optimal loading weight percentage
of SnS2 in the nanocomposite for these applications. These results will be of enormous
interest to the scientific community involved in material chemistry research, especially
with metal chalcogenide materials for various photocatalysis applications.

2. Results
2.1. Characterization of Materials

The powder XRD pattern of pure SnS2, TiO2, and different weight percentages of
SnS2/TiO2 (5, 10, 15, and 20) nanocomposites are illustrated in Figure 1. The peaks observed
at the 2 theta value of 25.29, 37.88, 48.25, 53.74, 55.14, 62.71, 68.86, 70.30, and 75.06 for
the TiO2 material are due to (101), (004), (200), (105), (211), (204), (116), (220), and (215)
diffraction planes of anatase phase of TiO2 (JCPDS:00-004-0477), and the peaks at 2 theta
values of 14.76, 27.97, 32.00, 41.79, 49.92, 52.41, 54.79, and 60.55 for pristine SnS2 are due to
(001), (100), (101), (102), (110), (111), (103), and (201) diffraction planes, which confirms the
formation of SnS2 (JCPDS:00-023-0677). A combination of SnS2 and TiO2 peaks observed
with the 5, 10, 15, and 20 wt. % SnS2/TiO2 (ST-5, ST-10, ST-15, and ST-20, respectively)
nanocomposite confirms good impregnation of SnS2 on TiO2.
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Figure 1. XRD for pristine TiO2 (ST-0), SnS2 (ST-100), and X wt. % of SnS2/TiO2 (ST-5, ST-10, ST-15,
and ST-20) nanocomposites.

Scanning electron microscopic images of pristine TiO2 and SnS2 are illustrated in
Figure 2a,b and Figure 2c,d, respectively. It can be clearly seen from Figure 2a,b that
the pure TiO2 nanoparticle showed an irregular 3D block-like structure covered with
sponge-like particles. The micrograph obtained at higher magnification (Figure 2b) clearly
illustrates that the aggregated particles have spongy-like structures, supported by the data
published elsewhere [26]. A flower-like structure composed with nanosheets was attained
for pristine SnS2 and is shown in Figure 2c,d.

SEM images of different wt. % of SnS2. embedded TiO2 nanocomposites, ST-5 (e),
ST-10 (f), ST-15 (g), and ST-20 (h), are shown in Figure 3. These SnS2/TiO2 nanocomposites
in different wt. % possess nanosheets with a morphology decorated with sponge-like
material and, therefore, exhibit aggregation.
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Figure 3. SEM images for X wt. % of SnS2/TiO2: (a–e) ST-5, (b–f) ST-10, (c–g) ST-15, and (d–h) ST-20 nanocomposites.

The atomic ratios between Sn and Ti were calculated by using energy dispersive
spectroscopy (EDS), with the values found to be 0.029, 0.039, 0.052, and 0.101 for ST-5,
ST-10, ST-15, and ST-20, respectively. The calculated values closely matched with the
expected values, which are tabulated in Table S1.

The bandgap energies of the pristine SnS2, and different wt. % of SnS2/TiO2 nanocom-
posite materials were estimated by using the Tauc plot (Figure 3), which transformed the
absorption spectra (Figure 4a) via the Kubelka–Munk function [26,34], [F(R∞)E]n vs. E,
when n = 0.5, for a direct allowed transition (K = F(R∞)). Figure 4c shows the Tauc plot
with the absorption spectra of pristine TiO2. Bandgaps estimated from the Tauc plots, by ex-
trapolating the steep portion of the plot in Figure 4b,c to the x-axis, suggest the bandgaps of
pristine SnS2 to be 1.890 eV, which is closer to some literature studies [35], and the bandgap
values of SnS2-embedded TiO2 nanocomposite to be (ST-5—2.250 eV, ST-10—2.015 eV,
ST-15—2.005 eV, and ST-20—1.980 eV), whereas the bandgaps for pristine TiO2 (3.100 eV)
materials lie in the range between 1.89 and 3.10 eV. The pure SnS2 sample shows strong
absorption in the visible region with an absorption edge of ~555 nm, corresponding to a
bandgap of 1.89 eV. However, the loading of TiO2 with SnS2 elevates the absorption level/
bandgap gradually, which is consistent with the visual color of the samples gradually
changing from yellow to white.
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2.2. Photocatalytic Hydrogen Evolution

Transition metal chalcogenides (TMCs) have been in the spotlight due to their opto-
electronic properties; in addition, they exhibit better performance against photocatalytic
applications. To study SnS2/TiO2’s activity for photocatalytic application, the synthesized
nanocomposites for hydrogen production and photocatalytic dye degradation were used.
The amount of H2 evolution was measured under solar simulated illumination, and the re-
sults show an optimum hydrogen evolution of 195.55 µmolg−1 with 10 wt. % of SnS2/TiO2
nanocomposite, which is more than double the amount of hydrogen attained with pure
TiO2 (89.20 µmolg−1), as presented in Table 2. The rate of hydrogen evolution was found
to increase with increasing wt. % of SnS2 on TiO2 up to 10 wt. % of loading, and a further
increase resulted with a decrease in hydrogen evolution. This result can be correlated
with the bandgap energies of the materials, which may effectively induce the formation of
electron–hole pairs. In the case of pure SnS2 (Figure 5), there was no hydrogen evolution
obtained; this can be related to the faster recombination of exciton pairs due to its relatively
small bandgap energy (1.89 eV). These results may suggest that the SnS2 nanoparticles act
as a co-catalyst when they are in the SnS2/TiO2 nanocomposites and, thus, enhance excited
electrons in the reactive site of titanium dioxide (Figure 7).

It is noteworthy to compare the result obtained in this study with the literature; al-
though the experimental conditions are varied and the results are attained in different
units, the comparison may provide insight into the TMC materials for hydrogen evolu-
tion. Table 1 compares the amount of hydrogen evolution from various transition metal
chalcogenides studied under different experimental conditions. It can be clearly seen that
different levels of metal doping enhance the hydrogen production, where the carbona-
ceous substrates improve the performance by providing better surface sites. Further, dye
sensitization on these materials and their influence on hydrogen production were also
studied. In addition, variable morphologies, such as nanosheets, films, and nanotubes
of TMC materials were studied and are illustrated in the table below. Although the com-
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parison of different photocatalysts is challenging, it can be clearly seen that the catalyst
prepared in this work exhibits a reasonably good amount of hydrogen in addition to better
degradation ability.
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Table 1. A comparison of amount of hydrogen evolved with different transition metal chalcogenides.

Material Preparation
Method

Amount of Hydrogen
Produced Ligtht Source Sacrificial Agent

CdS on WS2
Impregnation–

sulfidation 0.198 mmolh−1 Visible Latic acid [36]

Dye-sensitized NiSx on
graphene

In situ chemical
deposition 0.34 mmolh−1 - - [9]

MoS2 on RGO and CdS Photoreduction 0.099 mmolh−1 Visible Latic acid [37]

MoS2 on graphene Hydrothermal 1.80 mmolh−1 Visible Na2S-Na2S2O3 [38]

MoS2 QDs on TiO2 NTA Electrodeposition
0.065 mmolcm−2h−1

0.053 mmolcm−2h−1

0.016 mmolcm−2h−1

UV
Visible

NIR
- [19]

ZnTCPP-MoS2 on TiO2 Hydrothermal 0.010 mmolh−1 - triethanolamine
(TEOA) [39]

10 wt. % CoS2 on TiO2 Hydrothermal 2.55 mmolg−1 UV Methanol [26]

2D SnS2 on g-C3N4 Hydrothermal 0.972 mmolh−1g−1 Visible TEOA and
H2Pt2Cl6.6H2O [40]

Te/SnS2/Ag Hydrothermal 0.332 mmolh−1 UV–visible - [41]

SnS2 nanosheets Solvothermal 1.06 mmolh−1g−1 UV–visible Na2S
Na2S2O3

[42]

CdS on SnS2 Hydrothermal 20.2 mmolh−1g−1 UV–visible Latic acid [35]

Pt nanoparticles on oxide,

Hydrothermal

10.0 mmolh−1g−1

UV [43]
Pt nanoparticles on SnS2

nanoplatelets, and 9.0 mmolh−1g−1

Pt nanoparticles on SnS2
and oxide 3.0 mmolh−1g−1

10 wt. % SnS2 on TiO2
nanocomposite Hydrothermal 0.195 mmolg−1 UV–visible Methanol
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2.3. Photocatalytic Degradation

Photocatalytic degradation of methylene blue was also employed to study the synergic
effect of the prepared nanocomposite materials. The reaction suspension was allowed to
establish adsorption equilibrium by stirring the suspension in the dark for 30 min. After
direct sunlight illumination, the solution withdrawn from the reactor in a time interval
was tested by studying the absorbance of the remnant dye solution. The absorption spectra
for different samples, such as (a) pure TiO2 (ST-0), (b) pure SnS2 (ST-100), SnS2/TiO2
nanocomposites ((c) ST-5, (d) ST-10, (e) ST-15, and (f) ST-20 are illustrated in Figure 6, which
clearly explains the better photocatalytic activity of these nanocomposites. The rate of
the reaction was determined by the linear plot of ln (A/A0) vs. time A0-absorbance of
initial solution (t = 0), where A is absorption of the solution at time t. The highest rate of
degradation was obtained for the sample ST-15 (15 wt. % of SnS2/TiO2) with the rate of
4.415 × 10−4 s−1 compared to the pure TiO2 (2.745 × 10−4 s−1) and SnS2 (1.955 × 10−4 s−1).
These results may suggest the essential role of SnS2 in the nanocomposite photocatalyst,
which enhances the separation of photo-generated electron–hole pairs and thus maximizes
the utilization of photon under direct sunlight. It is well known that there are two possible
paths for the degradation of the dye: (i) the visible light can be absorbed by the dye
molecules, resulting in excited electrons and injection of these electrons into the conduction
band of the catalyst, and (ii) the catalyst itself can absorb photons, and the electrons
ejected from the valence band to the conduction band will then migrate to its active site.
Further, in this study, the scavenging experiments were conducted in the presence of an
N2 environment (absence of O2) and in the presence of IPA (to scavenge the •OH radical).
It can be clearly seen that there was a 78% reduction in the rate when IPA was used
as the scavenger (Figure S3, Supplementary Materials), whereas around 95% reduction
was attained while N2 was used as the scavenger (Figure S4, Supplementary Materials).
Notably, very low degradation (<5%) was attained when the dye alone was placed under
direct light (Figure S5, Supplementary Materials). These results further validate that the
•OH radical and the superoxide radicals (•O2) can be acknowledged in the degradation
mechanism of MB (Figure 7). The effective degradation efficiency can be attributed to the
combined effect of in situ dye sensitization and the impregnation of chalcogenide materials
on TiO2.
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A comparison between the rate of degradation and the hydrogen production is listed
in Table 2. As indicted in the table, the bandgap energy of the materials can be correlated
with the better performance of degradation and hydrogen production. The materials
ST-10 and ST-15 show very similar bandgaps, and that may be attributed to the higher
performance of those materials. The replication studies also showed a similar trend in the
photocatalytic degradation and hydrogen production.

Table 2. Comparison of the amount of hydrogen evolved and rate constant of the degradation
reaction of MB by using pure SnS2, TiO2, and SnS2-embedded TiO2 nanocomposite over simulated
irradiation with the bandgap of these materials.

Sample
Amount of

Hydrogen Evolved
(µmolg−1)

Rate Constant of
Photodegradation

Reaction (×10−4 s−1)

Calculated BandGap
Value (eV)

ST-100 0.00 1.955 ± 0.185 1.890
ST-20 142.35 2.768 ± 0.181 1.980
ST-15 171.30 4.415 ± 0.258 2.005
ST-10 195.55 3.948 ± 0.110 2.015
ST-5 28.25 2.661 ± 0.388 2.250
ST-0 89.20 2.745 ± 0.513 3.100

3. Materials and Methods
3.1. Materials

The following chemicals were used without further purification. Titanium tetra iso-
propoxide, 98+% (Sigma–Aldrich Norway AS, Oslo, Norway) was employed as the precur-
sor for TiO2 preparation. Concentrated HNO3 (Sigma–Aldrich Norway AS) PHARMCO-
AAPER ethyl alcohol (200 proof; absolute, anhydrous, Sigma–Aldrich Norway AS) was
used as catalyst and solvent, respectively. Tin (II) chloride, pentahydrate, ACS reagent,
≥98% (Sigma–Aldrich Norway AS) was used as the tin precursor; thiourea, ACS reagent,
99.0% (Sigma–Aldrich Norway AS) was utilized as sulfur source; and conc. HCl (used as
hydrolyzer) and deionized water (resistivity > 18 M cm, Velp/AREC, VELP Scientifica Srl,
Usmate, MB, Italy) were used to prepare the solution mixtures.
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3.2. Methods
3.2.1. Synthesis
Titanium Dioxide

Nanocrystalline titanium dioxide was prepared using the method we reported pre-
viously [26] under hydrothermal conditions using the sol–gel technique. In a typical
synthesis, 32.5 mL of ethanol is acidified with 0.3 mL concentrated HNO3 in a Teflon liner
and stirred at a constant speed (300 rpm); 6.60 mL of titanium (iv) isopropoxide is then
added drop wise into it with continuous stirring; finally, 3.0 mL of water is added to the
solution for the formation of a gel. It is then transferred into an autoclave (AUTOCLAVE-
PTFE-0100, TECINSTRO, Maharashtra, India) and kept at 180 ◦C for 6 h. The final product
is then washed with ethanol, and the dried product calcined at 500 ◦C for 6 h.

SnS2-Embedded TiO2 Nanocomposite

The appropriate amount of SnCl2.2H2O was taken into a 50 mL beaker containing
0.8 mL of concentrated hydrochloric acid (37%) in 10 mL of deionized water. It was then
stirred at 300 rpm for 30 min, followed by the addition of the appropriate amount of TiO2
(hydrothermally synthesized) before being completely dispersed by constant stirring for
10 min. Then, an appropriate amount of thiourea was added into the solution made up to
40 mL volume by adding deionized water. Finally, the resulting solution was transferred in
an autoclave and kept at 145 ◦C for 12 h. The final product was collected by centrifugation,
and it was washed with the mixture of deionized water and ethanol (v/v = 1:1) several
times. It was then air-dried to prepare X wt. % (X = 0 (ST-0), 5 (ST-5), 10 (ST-10), 15 (ST-15),
20 (ST-20), and 100 (ST-100)) of the SnS2-embedded TiO2 material. Similar conditions were
followed in the preparation of pristine SnS2 nanoparticles without adding titanium dioxide.
We refer to this as ST-0—SnS2 is denoted by S; T stands for TiO2; and the numbers 0, 5, 10,
15, 20, and 100 are the wt. % of SnS2 in TiO2.

3.2.2. Characterization

Synthesized nanocomposite materials were characterized using different techniques,
such as powder X-ray diffraction (patterns of the catalysts were recorded using D8 AD-
VANCE ECO in a 1 kW copper X-ray tube diffractometer with the scan range from 3 to
90 degrees (2theta)), diffuse reflectance spectra (DRS Cary 100 Bio UV-Visible spectropho-
tometer, Santa Clara, CA, USA) by measuring the intensity in the wavelength range of
800–200 nm, and scanning electron microscopy (SEM, Oxford instrument, Nano Analysis,
Concord, MA, USA).

3.2.3. Photocatalytic Hydrogen Evolution

The photocatalytic experiments were carried out for pristine TiO2, SnS2, and ST-X
(X = 05, 10, 15, and 20). Firstly, the synthesized nanocomposite was suspended in a solution
containing 1.5 mL of deionized water and 0.5 mL of methanol (hole scavenger). The
suspension was degassed for 30 min with high-purity argon prior to irradiation. The final
suspensions were continuously stirred throughout the experiment. A 300 W Xenon lamp
(Oriel light source, Xenon arc lamp, Newport 1000W, Irvine, CA, USA) with an AM 1.5 G
filter was used as the source of radiation. Finally, the amount of H2 produced was measured
by using gas chromatography (SRI 8610 C, SRI Instruments, Torrance, CA, USA) equipped
with a molecular sieve column and a TCD (thermal conductivity detector), and the amount
of hydrogen produced was quantified by using a calibration curve prepared previously.

3.2.4. Photocatalytic Degradation

Photocatalytic degradation of methylene blue (MB) solution was performed using a
ST-X nanocomposite photocatalyst. In a typical experiment, 25.0 mg of the photocatalyst
is suspended with 50 mL of MB solution (initial concentration of 10 ppm) under direct
sunlight. Prior to irradiation, the suspensions are sonicated in the dark for 30 min to
ensure the establishment of adsorption or desorption equilibrium. Periodically, 3 mL of
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suspension is withdrawn, and absorption spectra of the solution are obtained using a
UV/Vis spectrometer (JENWAY 6800 UV/Vis spectrophotometer (OSA, UK)). Scavenging
experiments were also carried out under the IPA and N2 environment.

4. Conclusions

The pure SnS2, TiO2, and different wt. % of SnS2/TiO2 nanocomposite samples
were successfully synthesized by the facile hydrothermal process, affording an effective
photocatalyst that can be utilized for hydrogen production and degradation of methylene
blue. The SnS2/TiO2 nanocomposite with 10 wt. % shows an optimum rate of hydrogen
production of 195.55 µmolg−1, whereas SnS2/TiO2 nanocomposites with 15 wt. % exhibit
a high rate of degradation of methylene blue (4.415 × 10−4 s−1). The pure SnS2 was
found to be inactive due to a lower bandgap, and pure TiO2 shows less photoactivity
compared with the nanocomposites. This study concludes that SnS2 acts as co-catalyst
and thus effectively induces the formation of electron–hole pairs that leads to the higher
photocatalytic activity in both hydrogen production and photodegradation applications.
The scavenging experiments showed evidence of a 78% reduction in the rate of degradation
when IPA was used as the scavenger, whereas around 95% reduction was attained in the
presence of N2. Nearly no (<5%) degradation was attained when the dye alone was under
direct solar irradiation. Furthermore, our analysis clearly showed that enhancement in
degradation MB could be attributed to hydroxyl radicals and superoxide radicals.

Supplementary Materials: The following information is available online at https://www.mdpi.
com/article/10.3390/catal11050589/s1, Figure S1: Elemental dispersive spectra for ST-0, ST-5, ST-10,
ST-15, ST-20, and ST-100; Figure S2: First-order kinetics of degradation of methylene blue by using
samples ST-0, ST-5, ST-10, ST-15, ST-20, and ST-100; Table S1: Theoretical and experimental value of
ratio between Sn and Ti from EDS analysis.
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