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PREFACE
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Institute of Technology, Stockholm, Sweden.

The author of this thesis has been enrolled the PhD program in Computer Sci-
ence: Software Engineering, Sensor Networks and Engineering Computing, with a
specialization in Engineering Computing.

This thesis is organized in two parts. Part I provides an overview of the relevant
field and the background for the articles in the thesis, including a summary of the
works. Part II consists of a collection of published and peer-reviewed research articles
and submitted papers.

There are two collections of articles included in the thesis, of which the first is to be
considered our main contribution.
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2021. A predictive framework based on brain volume trajectories enabling early
detection of Alzheimer’s disease. Computerized Medical Imaging and Graphics.
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Paper B Mofrad, Samaneh A., Lundervold, Astri J., Vik, Alexandra and Lundervold,
Alexander S. 22 January 2021. Cognitive and MRI trajectories for prediction of
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longitudinal measurements to image classification: Application to longitudinal
MRI in Alzheimer’s disease. Under review. April 2021.

Computational models for Memory networks:
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April 2021. On neural associative memory structures: Storage and retrieval of
sequences in a chain of tournaments. Neural Computation. MIT Press. *: equal
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Paper E Mofrad, Asieh A., Yazidi, Anis, Mofrad, Samaneh A., Hammer, Hugo L. and
Arntzen, Erik. 3 March 2021. Enhanced equivalence projective simulation:
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Computation. MIT Press.
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ABSTRACT

Starting in the mid-20th century and throughout their developments, modern neu-
roscience and artificial intelligence (AI) have provided each other with inspiration,
insights, and tools. The degree to which they are intertwined has been in constant
flux over the years, but always present. With the enormous resurgence of interest in
machine learning over the past decade, led by the much-celebrated successes of artifi-
cial neural networks and deep learning, the bond between the two fields seems to be
growing stronger.

Artificial intelligence and machine learning have always kept an eye on biological
intelligence and learning, as these provide our only examples of general intelligence and
strong learning capabilities, inspiring the development of theirmuch less capable–albeit
improving–counterparts, which are based on computational models. The growing
attention to both neuroscience and AI is also leading to growth where they intersect, i.e.
in neuroscience-inspired AI andAI-inspired neuroscience, and in the usage of computational
AI models within neuroscience and the cognitive sciences.

In this context, the present thesis aims to make a modest contribution through our
application of machine learning techniques to the study of dementia using data from
longitudinal MRI and psychometric testing, and through our proposed models for
simulating aspects of the formation of memory networks during learning and memory
retrieval. The former is our main contribution and is addressed in studies A, B, and C,
while the latter is reflected in studies D and E.

Through longitudinal studies, i.e. studies based on the collection of repeated
measurements from the same subjects, or experimental units, over time one can
observe how measurements develop and discover new relationships between variables.
Longitudinal data analysis is a large field of research comprised of a multitude of
methods and is widely applicable to e.g. behavioural analysis and medicine. One
inherently longitudinal phenomenon of particular interest for the present work is the
biological, neurological, and cognitive alteration linked to aging. There is an immense
need to develop methods that can indicate the risk of developing aging-related diseases
such as dementia, as well as for increasing the understanding that is derived from new
computational models for cognitive skills such as memory and learning.

The first part of this thesis (studies A, B, and C) develops and evaluates methods
for using machine learning models with longitudinal data that have a time-dependent
structure. We propose two novel and flexible frameworks to describe the trajectories of
change extracted from the longitudinal data. The two frameworks are, respectively,
based on (i) a combination of mixed-effects models in order to extract features from
the longitudinal trajectories that can be used to train any type of machine learning
classifier and (ii) mapping the multi-dimensional data onto two-dimensional images,
enabling classifications based on convolutional neural networks.

The second part of this thesis (studies D and E) aims to construct simple and flexible
models that can be used to simulate learning and memory retrieval processes in the
human brain. These proposed memory networks are: (i) defining a new associative
memory for storing sequences and investigate how to make efficient retrievals, and (ii)



a combination of a reinforcement learning model to form memory connections in the
training phase and an iterative diffusion process to update the memory network to be
used in the test phase.

We found that the frameworks proposed in the first part of the thesis, although
being relatively simple approaches to the complexities of longitudinal data analysis,
are comparable to other approaches in the literature as regards accurately predicting
dementia. The proposed model for learning and retrieval based on associative memory
in Paper D has several features that make it resemble its biological brain counterpart
more than comparable models in the literature do, while significantly reducing errors
in sequence-retrieval. The model for episodic memory developed in Paper E is quite
flexible and can provide simulations of actual experiments on typical and atypical
human behaviours.



The main keywords for the two research directions of this thesis are presented in the
Venn diagram, where some common concepts in the two parts are pictured in blue.





SAMMENDRAG

I løpet av deres utvikling siden midten av det 20. århundret har moderne nevroviten-
skap og kunstig intelligens (AI) utvekslet inspirasjon, innsikter og verktøy. Graden av
sammenfletting av de to feltene har variert gjennom årene, men den har alltid vært til
stede. På grunn av den enorme interessen for maskinlæring over de siste ti årene, utløst
og ledet av de velkjente suksesser innen kunstige nevrale nettverk og deep learning,
ser båndet mellom de to feltene ut til å stadig bli sterkere.

Kunstig intelligens og maskinlæring har alltid holdt et blikk på biologisk intelligens
og læring, da disse er våre eneste eksempler på generell intelligens og gode evner til
læring, noe som inspirerer utvikling av deres mye mindre kapable analoger basert på
beregnings-modeller. Den økende interessen for både nevrovitenskap og AI har også
ledet til økt interesse for skjæringen mellom disse, i.e. for nevrovitenskap-inspirert AI og
AI-inspirert nevrovitenskap, og også økt bruk av beregninsorienterte AI-modeller innen
nevrovitenskap og kognitive vitenskaper.

Denne avhandlingen forsøker å gi et lite bidrag i denne kontekst, gjennom vår bruk
av maskinlæringsteknikker innen studiet av demens basert på data fra longitudinell
MRI og psykometrisk testing, og gjennom våre foreslåtte modeller for å simulere aspekt
ved dannelsen av hukommelses-nettverk under læring og minneinnhenting. Det første
temaet er vårt hovedbidrag, adressert i arbeidene A, B og C, mens det andre reflekteres
i arbeidene D og E.

Gjennom longitudinelle studier, det vil si studier der en samler inn repeterte
målinger fra samme individ, eller eksperimentell enhet, over tid, så kan man obser-
vere hvordan målingene utvikler seg og oppdage nye sammehenger mellom variabler.
Longitudinell dataanalyse er et stort felt bestående av en lang rekke metoder, med
et bredt anvendelsesområde innen for eksempel studiet av atferd og innnen medisin.
Et iboende longitudnelt fenomen som er spesielt aktuelt for vårt arbeid er biologiske,
nevrologiske og kognitive endringer forbundet med aldring. Det er stort behov for
metoder som kan brukes til å indikere risiko for utvikling av demens og andre aldersre-
laterte sykdommer, og også for en økt forståelse avledet fra nye beregningsorienterte
modeller for ulike kognitive egenskaper slik som hukommelse og læring.

Avhandlingens første del (arbeidene A, B og C) utvikler og evaluerer teknikker
for å bruke maskinlæringsmodeller sammen med longitudinelle, tidsavhengige data.
Vi foreslår to nye og fleksible rammeverk for å karakterisere trajektorier, eller baner,
avledet fra longitudinelle data. De to rammeverkene er (i) en kombinasjon av mixed
effects-modeller for å trekke ut egenskaper fra longitudinelle baner som så kan brukes
til å konstruere maskinlæringsbaserte klassifikatorer, og (ii) en representasjon av
multi-dimensjonale data som to-dimensjonale bilder for å muliggjøre bruk av standard
bildeklassifikasjonsmodeller slik som todimensjonale konvolusjonelle nevrale nettverk.

Avhandlingens andre del (arbeidene E og D) forsøker å konstruere enkle og
fleksible modeller for å simulere lærings- og hukommelsesinnhentings-prosesser hos
mennensker. Våre foreslåtte hukommelses-nettverk er basert på (i) en ny form for
assosiativ hukommelse-struktur som kan lagre og effektivt finne igjen sekvenser,
og (ii) en kombinasjon av en forsterkende læring-modell for å danne hukommelses-



forbindelser under en trenings-fase og en iterativ diffusjonsprosess for å oppdatere
hukommelses-nettverket under en test-fase.

Vi fant at rammeverkene utviklet i avhandlingens første del gav prediktive modeller
for demens med et lignende ytelsesnivå som andre modeller fra litteraturen, på tross av
deres relativt enkle tilnærming til kompleksiteten i longitudinell dataanalyse. Modellen
for læring og gjenfinning basert på assosiativ hukommelse utviklet i arbeid D har
flere egenskaper som gjør den mer sammenlignbar med aspekter ved dens biologiske
analoger enn andre sammenlignbare modeller fra litteraturen, mens den samtidig gir
en betydelig reduksjon i antall feil under sekvens-gjenfinning. Modellen for episodisk
hukommelse utviklet i arbeid E er relativt fleksibel, og kan gi simuleringer av faktiske
eksperimentelle studier av typisk og atypisk atferd.
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OVERVIEW





“In fact, the belief that neurophysiology is even relevant
to the functioning of the mind is just hypothesis. Who
knows if we’re looking at the right aspects of the brain at
all. Maybe there are other aspects of the brain that nobody
has even dreamt of looking at yet.”

—Noam Chomsky [22]

CHAPTER 1
INTRODUCTION

1.1 Motivation

Artificial intelligence (AI) and modern neuroscience have been growing together
since the last century. Inextricably linked, with many early pioneers who worked
simultaneously in AI and in neuroscience or psychology, they inspire, support, and
give each other a boost. While AI and neuroscience have collaborated less in more
recent years, on account of the growth in each field, they always keep an eye on one
another, aspiring to grow at their intersection as well [60, 126].

Artificial Neural Network (ANN) is an approach to artificial intelligence that
is used in deep learning, and is based on a (vastly) simplified model of biological
neural networks [60, 84]. ANN architectures replicate the hierarchical structure of
mammalian cortical systems with an information flow in consecutive and nested
processing layers [82]. The neurosciences, in parallel with mathematical and logic-
based methods, have always been a prolific source of inspiration for developing new
algorithms and architectures for AI. For example, human learning through the senses
of vision, hearing, and touch, have inspired the designs of ANN architectures and
methods to train them by adjusting parameters via interactions and learning procedures
in order to minimise error or maximise reward. In general, when a computational
model replicates a cognitive behaviour, the model is a reasonable candidate for use in
AI systems [60, 139].

Neuroscience attempts to explore how the brain system works and explain a
wide variety of perceptual, visual, cognitive, and logical tasks [126]. The classical
framework for neuroscience systems models simple computations in a neural system.
This oversimplification is limiting and necessitates new approaches such as using the
advantages of networks designed to learn from data. In ANNs, the computations
are performed by specifying the structure of the network architecture and setting
some learning rules, instead of designing a specific computational model [126]. In
general, AI that enables computers to solve complex cognitive tasks can assist in the
development of theoretical and experimental progress in neuroscience. The success of
ANNs has encouraged cognitive scientists to use ANNs to investigate the biological
cognition and its neural basis [24, 126]. Many recent findings have shown that AI
models improve theories about the brain [60, 126]. For instance, they help to shed
light on many behavioural and neuropsychological phenomena [77], replicates the
transformation in perceptual systems [75], improves the structure of learning models



Introduction

that mimic memory functions [132], and helps to analyse and explain large amounts of
neurobiological data [126].

When exploring cognitive sciences, a good model needs to be both explanatory
and interpretative. An important property of ANNmodels is their predictive power,
which helps achieve practical aims such as following changes related to disease in
medical applications. For example, deep ANNs can be used to predict the brain action
of a patient who has a damaged brain region as a result of neurodegenerative disease.
Predictive power is an important component towards obtaining successful models in
neuroscience [24].

It is within this context, that the present thesis seeks to make a modest contribution
to the use of AI. We study cognitive behaviour and the prediction of future states of
brain functionality, and design computational models for such phenomena. The main
contribution of this work is the development of predictive models based on machine
learning and deep learning for detecting the risk of dementia. Longitudinal data
retains the dynamics of the variables in a study, which results in a greater predictive
powers as it is possible to monitor the progression of the variables. In the second part
of our work, we propose two models for episodic memory networks to simulate and
analyse the learning and retrieval processes in memory, both brain and computer. A
short summary of parts I and II are provided in the following sections.

1.2 Summary of Part I

The first part of this thesis (studies A, B, and C) deals with the challenges when using
standard machine learning and deep learning methods on longitudinal data. These
challenges include issues related to strongly inter-correlated variables, the presence of
missing observations at different time-points, and the fact that subgroups of patients are
often unbalanced. See Section 3.1 for definitions of the different types of longitudinal
data.

To address these challenges, the thesis proposes two analytic frameworks that
describe the trajectories of individual changes in longitudinal data. Descriptive features
are extracted from the trajectories, and are then used to trainmachine learning and deep
learning classifiers. In this part of the thesis, the frameworks are developed in order to
identify features that predictmild cognitive impairment (MCI), andAlzheimer’s disease
(AD) at an early stage. Participants and measurements were taken from the relatively
large and comprehensive ADNI dataset (adni.loni.usc.edu); the measurements
included psychometric test scores and data from Magnetic Resonance Imaging (MRI)
examinations. Figure 1.1 illustrates the two proposed frameworks and their application
in the prediction of dementia.

The first framework (Fig 1.1: a) was designed as a combination of mixed-effects
models, a class of models capable of producing regression models from dependent
variables, which were used to derive features from MRI examinations and some
cognitive tests, and machine learning models, which were used to predict dementia.
The idea behind the second framework (Fig 1.1: b) was to convert the classification
problems from the longitudinal data into image classification problems. This framework
mapped the extracted trajectories of multi-dimensional data onto two-dimensional
images, and then used these to train a convolutional neural network to perform image

4 Chapter 1

adni.loni.usc.edu


1.3 Summary of Part II

classification.
While in both approaches we used the trajectories of changes in the brain, in the first

model, we extracted features from the trajectories and applied classical classification
machine learning models, and in the second framework, we used the entire trajectories
by mapping their values to an image and applied newer deep learning methods. With
the data that we have used in these studies, both frameworks performed comparably.

The results indicate that the proposed approaches to longitudinal data analysis
were successful in classifying the different subgroups of participants recruited in the
ADNI study.

1.3 Summary of Part II

In the second part of this thesis (studies D and E), two flexible and interpretable com-
putational models for learning and retrieval in associative- and episodic memories
are proposed (Fig. 1.2). The model in paper D provides a new structure for associa-
tive memory, with feedback in the learning structure of a tournament-based neural
network [72] (see section 2.2.2 for details). This allows retrieving the whole sequence
from a given segment of it, regardless of where the segment is located in the sequence.
Moreover, the newly proposed retrieval methods increase the model’s efficiency and
reduce errors when retrieving sequences, and make them more biologically plausible
compared with earlier tournament-based neural networks [72] (Fig. 1.2: Paper D). The
model in Paper E has two parts: a type of reinforcement learning model (projective
simulation) with an episodic memory that simulates the learning procedure, and then
an iterative diffusion process that updates the episodic memory so that indirect rela-
tions are derived, which is similar to the formation of equivalence relations in the brain
(Fig. 1.2: Paper E). This model is quite flexible and can replicate the actual experiments
on typical behaviour and the non-formation of relations in atypical groups such as
among autistic children.

While the proposed models in Part II are simplifications of human memory, they
could improve understanding and explaining of some types of cognitive behaviour.

1.4 Thesis organisation

This thesis has two components: Overview and Articles. The overview consist of six
chapters, including an introduction (Chapter 1) that provides an overall picture of the
thesis. Chapter 2 provides general insights into the relevant concepts in neuroscience,
neural networks, and neuroimaging. Chapter 3 briefly explains longitudinal data,
mixed-effects models, machine learning, and convolutional neural network as the basis
of the work in Part I. Chapter 4 provides an overview of the data and software libraries
used in this work. A summary of the five papers is given in Chapter 5. Finally, Chapter
6 draws some conclusions and suggests directions for future research. The papers are
included in Part II.

Chapter 1 5
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Fig. 1.1: Part I. The longitudinal data presented in this part of the thesis measured
the development of brain volume and cognition during aging with MRI and cognitive
tests, respectively. The volumes of the hippocampus and ventricles of one participant,
who was cognitively normal (CN) before the age 85, and then suffered MCI, and at the
age of 87 developed AD, are illustrated on the top. There is atrophy from aging and
developing dementia in the hippocampus volume, whereas the ventricles are growing.
An example of data is presented in the table in which SID and ROI is short for subject ID
and regions of interest, respectively. The two frameworks in Part I have been designed
to extract these alterations in the brain, represented in the table, to predict MCI and
AD by using the mixed-effects model in Papers A and B, and by mapping the data onto
2D images in Paper C before applying machine learning and deep learning methods.
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1.4 Thesis organisation

Fig. 1.2: Part II. Some computational models for memory and simulating the process
of learning and retrieval are represented in Part II. In Paper D, a model for associative
memory has been designed to store a sequence of information (here with length 20,
s1 − s20) as a chain of tournaments (a). This paper suggests different algorithms for
retrieving a sequence, given a segment of that sequence (see Section 2.2.2 for more
details) (b). In Paper E, the projective simulation, that is a type of reinforcement
learning containing episodic memory is used for the learning step (c); then a network
enhancement procedure is employed to update the network of the episodic memory
that formed (d) (see Sections 2.2.3 and 2.2.4 for more details). The figures presented for
Paper D are from [99] and the figures for Paper E are based on figures presented in
[15].
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“Modules of brain networks define communities of struc-
turally and functionally related areas, but they do not
represent or support discrete mental faculties.”

—Olaf Sporns [144] CHAPTER 2
NEUROSCIENCE AND NEURAL NETWORKS

This chapter consists of two sections describing the essential terms in this thesis related
to neuroscience and neural networks. Section 2.1 relates to memory, the learning
process, aging, and neurodegenerative disease, and presents some neuroimaging
techniques and psychometric tests. Section 2.2 presents definitions and tools for
modelling networks such as artificial neural networks, associative memory, projective
simulation, and network enhancement.

2.1 Brain structure and function

Brain connectivity has been studied by way of a combination of brain mapping
techniques, includingmorphometry, diffusion tensor imaging and task-based or resting
state functional MRI [131]. In this section we give a short presentation on the process
of memory and learning in the brain, and its relevance to neurodegenerative diseases
and dementia. This is followed by a presentation of some neuroimaging tools. Lastly,
we present the two cognitive tests included in study B and their relations to the brain
atrophy [107].

2.1.1 Memory and learning

Memory function is a process by which information is encoded, stored, and retrieved.
There are many subtypes and models of memory function, and it is common to make
a distinction between sensory memory, short-term memory, working memory, and
long-term memory [6, 135]. In this model, sensory memory is important for sensory
experiences obtained over very brief periods of time; short-term memory is important
for retaining information over a short period of time (from a few seconds to a few days);
working memory [7, 139] represents the ability to manipulate information temporarily
stored in short-term memory; and long-term memory is important for preserving
memory for a long time. Together, these partly overlapping aspects of memory function
are of key importance to our functioning in daily life. This is also true of forgetting,
which is of crucial importance to the replacement and updating of knowledge [56, 139].

Memory traces are not stored in specific areas of the brain, but the hippocampus is
known as a sort of gating mechanism for information between the short- and long-term
memory functions [14, 57, 128]. It is, however, important to take into account that there
are multiple sensory and cognitive functions, as well as functional brain networks,
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involved when solving a memory task. Information must first reach and be interpreted
by our sensory system, and several other cognitive domains are involved before
the information is stored and recalled [139]. All these different aspects of memory
function may be affected in a patient suffering from a neurodegenerative disorder; e.g.,
short-term memory is affected at an early stage of Alzheimer’s disease. Modelling
these memory functions and dysfunctions has been one of the most active subjects for
researchers modelling brain networks, both for clinical and for theoretical use [99, 142].

Episodic memory, a part of long-term memory, is a major neurocognitive memory
system that enables one to remember and elaborate ideas such as the self, subjective
time, and consciousness. It is a past-orientedmemory system that makes possible a sort
of mental time travel from the present to the past and thus allowing one to remember
and re-experience one’s own previous experiences [149]. Associative memory is an
episodically based memory system that forms the links in episodic memory [30, 38].
It refers to learning and remembering the relationship between initially unrelated
items, such as an area and its name. Associative memory is heavily relied on in daily
life [93, 143], but it is also one of the first parts of memory that is impacted by aging and
neurodegenerative diseases such as dementia [93]. Associative memory has been an
active topic for constructing memory models inspired by the human brain, aiming to
both understand brain function and building memory stores for technical use [99, 142].

2.1.2 Neurodegeneration and dementia

Worldwide, average life expectancy has improved substantially over the previous
decades [130]. In 2018, for the first time in recorded history, the number of people
older than sixty-five surpassed the number of children five years or younger. Currently,
about one in eleven people in the world are more than 65 years old. This is expected
to grow to one in six by 2050. Furthermore, the number of people older than 80 is
predicted to rise from 143million in 2019 to 426million in 2050 [151].

Aging is linked to a decline in processing speed, working memory, and inhibitory
function, as well as atrophy in several brain structures [16, 113]. These normally-
appearing changes are intensified in individuals with age-related diseases such as
dementia [125], and make the discrimination between normal and disease-related
aging both challenging and important [125].

About 50million peopleworldwide suffer fromdementia [161], with over 9.9million
new cases of dementia being diagnosed each year [121]. In 2016, dementia was the fifth
leading cause of death in the world [111], and the number of people with dementia is
predicted to be about 131 million by 2050 [121]. Since 2018, the overall cost of dementia
care has grown to more than one trillion US dollars [121, 161], and dementia has a
strong impact on public health, family members, and caregivers. Based on a study in
the US [4], in 2018, more than 16 million family members and other unpaid caregivers
were engaged for an estimated 18.5 billion hours taking care of people with dementia.
Furthermore, this caregiving, which is valued at approximately $234 billion in the US,
increases the risk of emotional distress, negative mental outcomes, and even physical
suffering [4].

In 1906, Alois Alzheimer, a clinical psychiatrist, and neuroanatomist reported what
he referred to as a severe and peculiar disease process affecting the cerebral cortex and
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behaviour of a 50 year oldwoman [64], a diseasewhich is nowcalledAlzheimer’s disease
(AD). AD is a common irreversible neurodegenerative disorder [5, 113], responsible for
up to 60% to 70% of all cases of dementia [121]. Being a chronic neurodegenerative
disease, AD causes a progressive death of brain neurons. As none of the available
pharmacologic treatments and non-pharmacologic therapies can slow or stop the
damage and destruction of neurons, even for moderate AD, treatment and therapies for
preventing damage in the first place is crucial to slowing the disease process [4, 34, 105].
This early stage of AD lies partly within the construct of mild cognitive impairment
(MCI) [117, 118].

MCI is characterised by a specific pattern of cognitive decline and represents a
transitional state between normal cognitive aging and dementia [46]. An amnestic
pattern of MCI is associated with an up to ten-fold increased in risk of AD [13, 116],
but it is important to emphasise that not all patients with MCI will develop this disease.
The search for biomarkers and other strong predictors of conversion from MCI to AD
is, therefore, an important field of research [117, 162].

2.1.3 Brain structures and MR imaging

Brain imaging is one of the main tools for analysing and understanding the brain
from a structural and functional point of view. For the purposes of the present study,
we are most concerned with magnetic resonance imaging (MRI). This is a powerful
technique for high-resolution 3D imaging of the human body, including the brain. MRI
uses nuclear magnetic resonance to capture the anatomic structures and physiological
function of tissues from a microscopic and molecular level [23, 110]. It is non-invasive,
operating without harmful X-ray, and ionising radiation [26, 110]. MRI is one of the
most broadly used techniques for monitoring and diagnosing the risk and process of
diseases in the body [26].

So-called T1-weighted images, constructed based on a specific type of MR pulse
sequences, are often used for the evaluation of anatomic structures, such as brain
morphometry [23, 148]. In studies A, B, and C, we used T1-weighted images to monitor
changes in brain volume in order to analyse the risk of dementia. Several studies have
shown that different areas in the brain, such as the hippocampus and entorhinal cortex
are associated with a disturbance of episodic memory and are affected by aging and
dementia [20, 85, 123, 127]. These findings are in line with studies that indicate that
the hippocampus and the entorhinal cortex are important brain regions of the brain for
learning and which are also the first part of the brain damaged by neurodegenerative
disease [93, 128].

Functional and diffusion magnetic resonance imaging are types of MRI-based
imaging that take two different approaches to capturing the connectivity and motion in
the brain [68, 73]. Functional MRI (fMRI) is an activity measurement that depends on
blood oxygenation levels in the vessels and demonstrates regional metabolism changes
in the human brain. The techniques of fMRI allows the mapping of brain function
and has been widely applied in neuroscience research, including the monitoring of
clinical and pharmacological interventions in cognitive diseases [48, 92]. DiffusionMRI
is determined by detecting and measuring the diffusive motion of water’s molecules
in fluid-containing structures [18, 41]. These modern neuroimaging techniques help
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us investigate the connectivity and processing in the brain that result from cognitive
behaviours [141, 152].

2.1.4 Cognitive tests

Cognitive tests are designed to measure more or less specific aspects of cognitive
function [58], and performance on these tests can provide a tool to quantify aspects
of brain function [78]. In Study B, we included the Rey Auditory Verbal Learning
Test (RAVLT) [133] and the Alzheimer’s Disease Assessment Scale–Cognitive Subscale
(ADAS-Cog) [129]. These tests are known to address some of the impairments in
patients with AD and can be related to brain structures [107].

RAVLT is an episodic memory test assessing immediate and long-term memory
function [39, 78, 133] The test is brief, easy to understand, and straightforward, and
therefore it is acceptable for people aged 7 to 89 years [133]. This test is widely used as
an early predictor of an amnestic type of MCI, and several studies have shown that
impairment in RAVLT scores is reflected in atrophymeasures obtained by neuroimaging
examinations [107, 160].

In this test, the examiner reads a list of 15 unconnected words out loud at a rate of
one word per second. The participant is then asked to recall as many words as possible.
After five repetitions of this trial, the examiner reads a new list of 15 words, and the
participants have to repeat as many words of the new words as they can remember.
Immediately following this, the individual is asked to recollect as many words as
possible from the initial list (trial 6). After a duration of 30 minutes, the participants are
again asked to remember the words from the first list (trial 7) [107, 133]. For an elderly
participant, the test can be rather stressful, revealing impaired cognitive abilities [28].

ADAS-Cog aims to assess the level of cognitive and non-cognitive behavioural
symptoms associated with Alzheimer’s disease through a short battery of tests [129]. It
includes both subject-based tests and observer-based assessments. ADAS-Cog estimates
cognitive domains such as memory function, language, and praxis through tasks
includingword recall, word recognition, naming objects, reasoning, and comprehension
of spoken language [83]. In Study B, ADAS-Cog is used as a global measure of cognitive
function. Higher scores onADAS-Cog scoremeansmore severe impairment of cognitive
function. The results of this test are expected to be linked to global neuroimaging
markers of dementia [104, 107].

2.2 Computational models

There is immense interest in constructing models for brain networks, as they can
provide insights into brain functionality, its memory systems, learning process and
more. Additionally, such models can result in new techniques for computer science and
artificial intelligence [11, 15, 101]. Even simplemodels can be useful in this respect, both
as tools for exploring and assessing brain function, and especially as computational
models able to solve relatively complex tasks.
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2.2.1 Artificial neural networks

Artificial Neural Network (ANN) is a computational model that combines statistical
techniques and graph networks, aiming to imitate biological neural networks. With the
enormous increase in computational power and the amount of data generated across
society, it has become a very powerful way to solve a variety of hard problems [47, 81,
96, 156].

The basic structural units of artificial neural networks are neurons and their
connections, through which information is transferred. Brain neural networks process
information inparallel throughhundreds of billions of interconnectedneurons; however,
ANNs through an immense simplification of biological neural networks, nevertheless
demonstrate a fairly good level of what can arguably be called intelligence, which
can be sufficient for them to provide a better understanding of processes in the
brain [60, 81, 156].

Learning, or signal propagation in ANNs, is a kind of automatedweight change that
operates locally and uses only the information of a few connected neurons to compute
new weights. Furthermore, neurons operate in parallel and relatively independently of
each other [81]. The locality and parallelism features make ANNs biologically plausible
and allow them to execute much more quickly [81]. ANN models are characterised
by their learning process, their connection patterns, and the weights associated with
the connections, since these factors characterises the information flow through the
network [153].

ANNs arewell developedwith amathematical and statistical theoretical foundation,
including linear algebra and Bayesian statistics [108, 109]. When a signal is transported
through a connection, it is multiplied by the weight of the corresponding edge, which
can be positive or negative [80, 153]. Some networks model more complex behaviour
by connecting the final output nodes with earlier nodes, which causes the network
to have feedback resulting in a highly nonlinear function, which is to a certain extent
analogous to the behaviour of a brain neural network [96]. The setting of weights in
a network is essential to specify its functioning, as they determine the relationship
between the input and output of the network [153]. The learning or adapting weights
in a network are setting according to a training phase which requires data and is a
major phase in developing an ANN. Various training procedures are required due to
the structure of the networks [153].

Deep ANNs are composed of multiple processing layers in the network (Fig. 2.1b)
so as to learn by representing data in different layers. The layers perform simple
mathematical operations, such as convolution, pooling, and normalisation, which are
implementable in a biological system [25, 126]. Feed-forward and recurrent neural
networks are popular architectures of ANNs used in deep learning. A feed-forward
neural network has a hierarchical network, that is ordered into layers (Fig.2.1b), where
the first layer is the input layer, which that receives the data, the last layer is the output
layer, which returns the results of network computations, and the layers in between are
so-called hidden layers which mediate between the input and the output layers [147].
A recurrent neural network is a model that accounting time in the network by including
feedback to the network at the local or global level. It allows the information to flow
back from the output towards the input field [54, 63]. An idea behind the recurrent
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Fig. 2.1: Neurons are basic units of artificial neural networks, and learning is the
propagation of signals through their connections, which interpolate as an automated
weight change in the network. Deep learning, is an architecture of deep ANN which
has several hidden layer for processing the input data before sending them to output
layer for final processing and giving the output. The neuron illustration is taken from
[17]

neural network is that to solve sequential or time-series problems, at some point the
“current” input may not be sufficient and may requires access to previous information
to solve them correctly [97]; therefore the current input is processed based on past as
well as future inputs [54]. Hopfield network and in general associative memories are a
class of recurrent neural networks (see Section 2.2.2).

In recent years, ANNs have rapidly progressed in different areas such as medicine,
psychology, and neuroscience, in terms of meeting many challenges, such as im-
age visualisation and segmentation, classification tasks, diagnosing disease, drug
personalisation, and modelling cognitive behaviours [90, 98, 99, 126, 164].

2.2.2 Neural associative memory

Associative memory. Neural associative memory is a particular class of neural
networks capable of memorising a set of patterns and with the ability to retrieve an
original storedpattern fromanoisyversionor apartial clue [79, 99]. Associativememory
is inspired by a similar concept in neuroscience, and as in artificial neural networks, it
includes the representation of neurons. The term associative refers to the connection
between two or more pieces of information when stored in the memory [79, 99]. For
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example, when you see a scene you may remember sequences from the movie, when
you hear a literary phrase you may recall a poem with those words, or when you smell
some food you may remember a journey.

Hopfield’s network [65] was a milestone in the construction of the first auto-
associative memory in 1982 (see Fig. 2.2a) [65]. Learning from the dynamical and
circuit properties of neurons and their interactions, Hopfield was motivated to design
a content-addressable memory to model this dynamic biological behaviour, and thus
suggested a larger and more complex construction for a computer memory with
a greater capacity [65]. Associative memories in general propose some beneficial
properties such as robustness against noise, error correction, categorisation, storage
capacity, and retrieval performance [65, 99].

Clique-based neural network. In brain activity, at any given time, a few neurons
are firing simultaneously among an enormous population, which has motivated the
design of more efficient associative memories [52, 53]. A clique-based network has a
larger storage capacity and greater robustness in storage and retrieval compared with
the Hopfield network [52]. Remember that a clique in a graph (network) is a complete
sub-graph, for example, in Fig. 2.2 b) the red and green sub-graphs are two cliques of
size four. In a clique-based neural network, neurons are split up into clusters. Each
clique is formed by connecting neurons in the individual clusters [52, 53] (See Fig 2.2
b).

Fig. 2.2: A Hopfield neural network (a) is a complete graph, while a clique-based
neural network (b) is a sparse network, with neurons split up into clusters, and the
connections building cliques where each node is in one cluster.

Tournament-based neural network. Since anticipation and the forward direction
of time are fundamental properties of human intelligence, considering the time and
order of sequences during learning and storing in neural networks is an important
factor for in imitating the brain network. Tournament-based neural network [72] are
an extension of clique-based neural networks that have oriented clockwise connections
(see Fig. 2.3), and therefore gains the ability to store sequential data as a chain of
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tournaments [91]. In graph theory, a tournament is a complete graph with directions
assigned to all edges. This model is able to store sequences with a high degree of
efficiency, where its mechanism of anticipation makes it more biologically plausible [72,
99]. In paper D [99] we proposed a more general tournament-based neural network
that has some counterclockwise connection as well.

Fig. 2.3: Here is an illustration of a chain of tournaments for storing and retrieving a
sequence with an arbitrary length [99]. The coloured circles are the clusters with the
nodes inside them (see the enlarged clusters 1 and 2). The tournaments are size 4 (4
connected nodes), and an arrow represents a set of possible connections between nodes
of two clusters (the arrow between clusters 1 and 2 represents three arrows illustrated
in the zoomed in part). This network, for instance, allows storing a sequence of length
20, i.e. s1, . . . s20, that passes cyclically clusters and uses different nodes at each passage
(the zoomed in part illustrate how this sequence passes three times through clusters
1 and 2). In this example, each node has arrows to three forward nodes, so giving
the first three components (s1, s2 and s3) to the retrieval algorithm retrieves the entire
sequence. This figure is based on [72].

2.2.3 Projective simulation
Reinforcement learning Reinforcement learning refers to an area of machine learn-
ing concerned with how a learner (animals, human, or machine) learns what to do and
how to map situations to actions by maximising the cumulative reward received from
the environment (see Figure 2.4) [145]. The learner is in general not told which action
to take, and must discover the correct action through trial and error. The feedback
strategy in reinforcement learning is an evaluative process that deals with learning
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in sequential decision-making problems instead of correcting responses. Reinforce-
ment learning is an interdisciplinary field usually studied in machine learning but
also widely developed in other fields, especially in behaviour learning, psychology,
neuroscience, and robotics [21, 98, 159].

Fig. 2.4: Reinforcement learning is concerned with how a system learns by maximising
the cumulative reward received from the environment. The learner discovers the
correct action through a trial and error. This figure is based on Fig. 1 in [15].

Stimulus equivalence Stimulus equivalence attempts to explain how dissimilar
events or ideas, particularly those that have never been related directly, are treated
similarly. For instance, how might ideas A and B, which are both related to idea C,
come to be related when they are not related directly and therefore all three ideas be
used interchangeably [50]. Based on equivalence relation in mathematics, stimulus
equivalence can be determined by properties of reflexivity (A = A), symmetry (if A = C
then C = A), and transitivity (if A = C and B = C, then A = B) [137].

Stimulus equivalence was originally introduced by psychologists to understand the
complexity of human behaviour and optimise teaching methodologies for children
and adults with disabilities [2, 136] A number of groups of children with autism
spectrum disorder and Down’s syndrome [2], as well as adults with neurocognitive
disorders such as mild cognitive impairment can benefit from these efficient learning
techniques [3].

Projective simulation. Projective simulation is a new, physics-based approach to
artificial intelligence that can connect the field of quantum physics to reinforcement
learning. It can be seen as a type of reinforcement learning, with applications in
advanced robotics as well as behavioural analysis [15, 94, 100]. Projective simulation is
a system that is in continuous interaction with its environment so as to learn by trial and
error through feedback; however, it has a more general framework than reinforcement
learning, and can be applied to more problems, such as in quantum mechanics. A
projective simulator resembles the internal representation in episodic memory and
allows the agent (system) to project itself into a potential future, on the basis of previous
experiences, and them make a new action [15] (see Fig.2.5). The episodic memory is a
directed weighted network of episodes embedded in the projective simulator, that can
be described as a stochastic network. The stochastic network instead of determining

Chapter 2 17



Neuroscience and Neural Networks

the next step for the agent by only the history of experiences, assigns the probabilities
to the possible steps. The episodic memory is the most important difference between
projective simulation and other standard reinforcement learning methods and allows
the simulation of more complex features such as the future actions of agents. Projective
simulation works on the basis of a randomwalk through the episodic memory network
and updates it by creating new episodes and changing network weights [15] where
an episode refers to a patch of stored previous experience. The structure of episodic
memory in a projective simulation means this framework for reinforcement learning
better resembles the real functionality of the brain [61, 101].

Fig. 2.5: Projective simulation [15] is a type of reinforcement learning with an embed-
ded episodicmemory. Thismodel is based on a randomwalk through episodicmemory
to find the more probable actions. The episodic memory has a structural-dynamical
property that enables the agent to detach the immediate connection with the environ-
ment and react upon its future exploration. This figure initially presented in Fig. 1 and
2 by Briegel et al [15].

Equivalence projective simulation. Stimulus equivalence and projective simula-
tion are both used to study the complexity of behaviour. The former can be found in
human subjects and the latter in artificial agents [100]. Equivalence projective simula-
tion, as proposed by Mofrad et. al [100] is a novel machine learning model that can
replicate human behaviour in terms of stimulus equivalence and which links the field
of equivalence theory in behaviour analysis to an artificial agent in the machine learn-
ing area. Equivalence projective simulation updates the internal episodic memory of
the original projective simulation to model several stimulus equivalence experiments.
The learning process can be perceived in the re-configuration of the episodic memory
by updating the weights, adding new episodes and new links.

Thismodel derives new equivalent relations, symmetry, transitivity, and equivalence
without receiving feedback from the environment. The model incorporates the ability,
as in human memory, to forget while learning, and it is possible to model disabilities of
memory by manipulating the parameters. Therefore, this model can simulate various
behaviours such as the formation of equivalence relations in participants and the
non-formation of equivalence relations in language-disabled children measured by
real experiments [100].
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Fig. 2.6: The network enhancement updates a givenweighted networkwith an iterative
diffusion process. a) For updating the weight between any two nodes (e.g. node 1 and
2), all weighted paths between them with a length of three (green paths) or less (yellow
and pink paths), are considered. The network on the left is an example of the strong
connection between nodes 1 and 2, while the network on the right is an example of
the weak connection between these two nodes. b) The network enhancement has an
iterative process for updating the weights of the network. If there are strong paths
between two nodes or if their connections are supported with many weak edges, the
edge between them updates by strengthening the weight of the direct connection. It
also weakens the edges’ weight if they are not supported by many strong paths. This
figure is based on Fig.1 in [155].

2.2.4 Network enhancement

Networks are prevalent in biological systems and encode the patterns of connectivity
in their structures. Due to the complexity of biological organisation and the limitations
of measurement technology, biological networks are noisy and unreliable. The noise in
the network can affect the performance of the analysis by affecting the entire structure
of the network, such as by changing the weight of edges that hide real biologically
important connections. [66, 155].

Network enhancement is a diffusion-based computational method for denoising
the biological network. It converts a noisy, undirected, weighted network into a new
network with the same nodes but different weights for edges. The idea is that if nodes
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are connected through a path with high-weight edges, these nodes are more likely
to be connected directly. This model uses random walks with a maximum length of
three and generates a network by revising the weight of the edges. It removes the weak
edges and enhances the edges with a high-weight path (see Fig. 2.6).

Anetwork enhancement can be applied for denoisingdifferent networks byupdating
their connections. In paper E [101] a network enhancement model was applied to
update the network of episodic memory, created by a projective simulation model
[101].

20 Chapter 2



“I never assume that we can argue from the truth of singular
statements to the truth of theories. I never assume that by
force of ‘verified’ conclusions, theories can be established
as ‘true’, or even as merely ‘probable’.”

—Karl Popper [120]
CHAPTER 3

LONGITUDINAL DATA ANALYSIS AND
MACHINE LEARNING

3.1 Longitudinal data

Data and data analysis improve our understanding of the world and help us to detect
the consequences of events. Data can take various forms: numerical data, which has
natural numerical values; categorical data, which counts the number of observations
in each category, such as the number of females and males; cross-sectional data, which
consist of observations measured at the same point in time; sequence of data, which
is an enumerated collection of elements that occur or are arranged in a particular
order; time-series, which contain observations of a sequence of points in time; and
longitudinal data, which involves repeated observations of the same items at different
points in time [140].

More broadly, longitudinal data can be understood as any information that tells us
what has happened in a set of study cases over a sequence of time points; thus it is multi-
dimension and multi-variate data involving measurements over time [36]. Sequences,
time-series, and cross-sectional data can be seen as special cases of longitudinal data
that are in one dimension only [33, 43].

A cohort study is a type of longitudinal study that engages and follows participants
who share a common characteristic, such as a particular career, demographic similarity,
or disease risk factor. By measuring outcomes during a follow-up period, it is possible
to explore how and why the variables change. Cohort study is therefore an effective
and robust method of establishing cause and effect [9]. It is an important method and
among the most powerful approaches to research in the fields of epidemiology and
bio-medicine, helping to explore and understand what factors affect the likelihood
of developing a disease [9, 69]. Some diseases cause rapid fatality, making a study
more difficult due to survivor bias. Cohort studies reduce the effect of this bias by
involving factors in the study such as the calculation of incidence rates, relative risks,
and confidence intervals [69, 86].

It is often possible to address the same questions in a longitudinal or cross-sectional
study, but the major advantage of the former is its capacity to distinguish the effect
of three time-related terms: cohort, period, and age [19, 33, 95]. Age effect show how
individuals change as they age and progress through their lifespan, with variations
often being linked to biological and social processes [10, 12]. Period effect show the
changes that occur over a period of time, an external factors that equally affects all
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groups in the study, regardless of the age of the individuals. A cohort effect is a
change characterising population as they move across time in a cohort (e.g. a unique
experience) which is independent of the process of aging [12, 76]. The differences
between age, duration, and cohort are demonstrated by Suzuki [146] in the following
dialogue:

A: “I can’t seem to shake off this tired feeling. Guess I’m just getting old. [Age
effect]"

B: “Do you think it’s stress? Business is down this year, and you’ve let your fatigue
build up. [Period effect]"

A: “Maybe. What about you?"

B: “Actually, I’m exhausted too! My body feels really heavy."

A: “You’re kidding. You’re still young. I could work all day long when I was your
age."

B: “Oh, really?"

A: “Yeah, young people these days are quick to whine. We were not like that.
[Cohort effect]"

Fig. 3.1 illustrates a difference between cross-sectional and cohort study by an
hypothetical example [33].

The benefits of longitudinal data are not without costs. In addition to some
problems similar to those associated with cross-sectional studies, longitudinal designs
have problems not included in cross-sectional designs, including problems with
spurious measurement changes over time and missing data [51, 88, 95]. One issue with
longitudinal measurements arises when distinguishing unreliability from true change,
which can happens even if identical measurement instruments are used at different
time-points. Differences in establishing study or lifespan changes may result in what is
measured at one time-point being incomparable to what is measured at another [95].

In longitudinal data design, there are commonly missing observations. There is a
risk of bias due to participants dropping-out of the study. For instance, in aging and
health research, subjects may drop out of follow-ups due to out-of-scope residence,
health, loss of interest in participating, or mortality [51, 87, 88]. Some studies describe
a longitudinal study as “balanced” where data from repeated-measures has an equal
number of observations for all variables in the study and as “unbalanced” where
the number of observations is unequal. Missing data is possible in either type of
design [87, 138].

Since, in a longitudinal study, the repeated measurements within one individual
are correlated, analysing longitudinal data requires special statistical methods to draw
valid scientific inferences. In addition, it is necessary to determine whether the data is
balanced or unbalanced to indicate the appropriate statistical model [33, 87].

The most common techniques that researchers use to analyse longitudinal data are
univariate methods, multivariate methods such as generalized estimating equations
(GEE), and mixed-effects models [1, 8, 138, 150, 163].

22 Chapter 3



3.1 Longitudinal data

Fig. 3.1: This illustration compares the hypothetical cross-sectional and longitudinal
studies originally presented in [33]. There can be entirely different results for the
relationship between reading ability and agewhen taking cross-sectional or longitudinal
approaches. In (a), the cross-sectional study shows a reduction in reading ability among
older children. In (b), the same type of data was obtained from a longitudinal study
with length two. This data shows that although the younger children began with a
higher level of reading ability, everyone improved over time.

In univariate methods, the main aim is reducing the multiple outcomes into a
single summary measure. In this approach, the observations for each individual are
summarised as one value such as mean, median, maximum, last value, or slope of
changes. These univariatemeasures are then compared across groups. By summarising
measurements per person, the observation for the participants are independent, which
means that various univariate techniques can be employed for analysing data. The
approach is simple to understand and computation is easy. However, depending on
the choice of summary function, there may be a substantial loss of information [1, 8].

Multivariate methods aim to estimate regression lines through data without ex-
plicitly modeling the correlation and covariance structures of the data. Traditional
multivariate methods are used to test whether mean vectors in two or more samples
have parallelism or differences in multivariate data. These methods can be used to
analyse longitudinal data when observations are taken at the same time points for all
subjects [1, 163]. Other important proposed methods for multivariate longitudinal data
include linear models with correlated errors such as the generalised estimating equa-
tions (GEE) framework [163]. The GEE model is an extension of the generalised linear
model from the independent data to the repeated longitudinal data setting [1]. GEE
analysis estimates the regression coefficients in an iterative procedure to analyse the re-
lationships between the variables in the model at different time points simultaneously.
Indeed, GEE, by combining a within-subject relationship with a between-subjects rela-
tionship introduces a single regression coefficient for representing the data [150]. An
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extensive explanation of the details of GEE is beyond the scope of this work. Note
that most of these multivariate methods do not handle large amounts of missing and
irregularly spaced observations [1].

A mixed-effects model is one of the most natural solutions to model dependence
among multivariate longitudinal data. It is a multivariate regression with explicit
modelling of correlation and covariance structures, and can be thought of as a more
general multivariate model. We explain mixed-effects models in some detail below
(Section 3.2.1)

3.2 Predictive models

3.2.1 Mixed-effects models

Mixed-effects models are a flexible and powerful statistical tool in the analysis of group
data such as longitudinal data in various areas. This method’s flexibility in respect of
modelling within-group correlations for both balanced and unbalanced longitudinal
data in an identical framework has increased its popularity [119]. Mixed-effects
models use a mixture of fixed effects – which refer to (1) regression coefficients that are
associated with an entire population and are constant for all subjects and not allowed
to be randomly varied at subject level and (2) random effects, which are associated
with individuals to represent variability between-subjects and infer the conditional
covariance structure [119, 138]. Mixedmodels thus perform estimation and inference on
the regression coefficients in the data with multiple levels of grouping by considering
within-subject correlation structures [8, 32, 138]. A random-effects approach can be
used in linear, generalised linear, and non-linear mixed models [40] and such models
are implemented in reliable and efficient statistical software [8, 119].

In this work we have used a linear mixed-effects model based on the model of West
et al. [158] to estimate the values of each subject by considering the cohort effect in the
data:

Yij = βcXc
ij︸ ︷︷ ︸

fixed effect

+u0i + u1iXij + εij︸ ︷︷ ︸
random effect

, (3.1)

where Yij for subject i : 1, . . . ,N (N is the number of subjects involved in the study)
is the estimated value for the covariate that we modelled, at observation j : 1, . . . , ni

(ni is the number of observations for subject i in unbalanced longitudinal data). Xc
ij

for subject i is the predictor values obtained at time point j. c : 0, 1, 2 indicates the
power of the predictor in the model. We have considered only one predictor in our
models (X = age).βc are fixed effect parameters whereas u0i, and u1i are random-effect
parameters and εij denotes random residual errors.

In this thesis (in Paper A and B) we have used linear mixed effects models to extract
features from multivariate longitudinal data for later use for classification.
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3.2.2 Classical machine learning
Machine learning consists of a set of tools and techniques based on computer science,
statistics, and data sciences. These are algorithms that help computer systems improve
automatically through experience [74]. Machine learning has been widely used in
many fields of study, for clustering, classification, regression and more [122]. In this
work (Papers A and B), we have used some well-known classification algorithms,
which are matched with independent data, such as logistic regression, support vector
machine, K-nearest neighbors, random forest, and a gradient boosting model, to
propose predictive frameworks appropriate for longitudinal data [102, 103].

In the field of machine learning, a classification task has two meanings. The first is
discovering existing classes within a set of observations; the other is when we know
about certain classes and seek to set rules to classify a new observation as belonging
to one of those classes. The former is referred to as unsupervised classification or
clustering, and the latter as classification using supervised learning [96]. The term
“classification” in our work refers to the one based on supervised learning.

3.2.3 Deep learning and convolutional neural networks
Artificial neural networks (discussed in Section 2.2.1 ), or deep neural networks, are
a class of machine learning models that have recently outperformed other models in
multiple tasks, particularly as regards image processing, cognitive tasks, and natural
language processing [89, 122].

Convolutional neural networks, which have emerged from the study of the brain’s
visual cortex, are a specific architecture of artificial neural networks that are broadly
used for analysing images, e.g. in computer vision [47]. The term “convolution” refers
to the mathematical operations that process some of the filtering of the connections
through the layers of the neural network to make its architecture more similar to that
of real vision [47].

One of the challenges in training a neural network is over-fitting. In general,
over-fitting occurs when the model performs well on the training set but poorly on the
test set [47, 49]. To reduce the risk of over-fitting, different techniques are employed
to regularise the tasks of neural networks. These techniques contain both implicit
regularisation, such as data augmentation and transformation methods, and explicit
regularisation, such as dropout, batch normalisation, andweight decay [35, 44, 49]. Our
work in Paper Cmakes use of convolutional neural networks and various regularization
techniques to perform an image classification task.
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“Without big data, you are blind and deaf and in the middle
of a freeway.”

—Geoffrey Moore [106] CHAPTER 4
DATA AND SOFTWARE

4.1 Data and ethics

The data used in this work was obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI study was launched in
2003 as a public-private partnership, led by principal investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early AD [45].
Informed consent was obtained from all subjects prior to enrollment. All methods
were carried out in accordance with relevant guidelines and regulation. The present
study was approved by the ADNI Publication Committee (ADNI DPC).

We have also used data collected by the Australian Imaging, Biomarker & Lifestyle
Flagship Study of Ageing (AIBL) database (https://aibl.csiro.au). Launched
in 2006, AIBL is the largest study in Australia to discover the biomarkers, cognitive
characteristics, and health and lifestyle factors that determine the development of
symptomatic AD. It comprises more than 1000 participants with a minimum age of
60 years and contains healthy volunteers and MCI and AD subjects. AIBL study
methodology has been reported previously by Ellis et al. [37].

From these data sources, we selected longitudinal subjects who had at least two
brain MRI scans, over a period of 15 years. Our data collection contains 1673 subjects
(with a total of 8002 scans) from ADNI (7764 scans from 1603 subjects) and AIBL
(238 scans from 70 subjects). In addition, for part of the work with these subjects,
where available, we took their scores on three cognitive tests during the ADNI study:
ADAS-cog-13, RAVLT-Immediate and RAVLT-Percent-Forgetting. In addition to the
MRI scans and cognitive tests, we took gender, educational level and age into account
in the analysis in this part. The subjects in this part had three types of cognitive
diagnosis: cognitively normal (CN), mild cognitive impairment (MCI), and dementia
or Alzheimer’s Disease (AD).

Based on the ADNI labels, we defined four new subgroups, with a restriction to
subjects with MRI scans at a minimum of two time-points. We labelled subjects as
healthy controls (HCs) if they were labelled as CN at all visits, converted MCI (cMCI) if
they were CN at their first visit but later converted to MCI during the study, stable MCI
(sMCI) if they were MCI at all visits, and converted AD (cAD) if they were labelled as
MCI at the first visit but later converted to AD (see Table 4.1). This differentiated the
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subjects according to stable and progressive groups, and led to the identification of
characteristics associated with the rate of changes [104].

Labels in ADNI and our longitudinal labels

Labels Subgroup Description

ADNI

CN Cognitively normal at visit
MCI Mild cognitive impairment at visit

Dementia Alzheimer’s disease at visit

This work

HC CN at all visits
cMCI Initially CN but later converted to MCI
sMCI MCI at all visits
cAD Initially MCI but later converted to AD
sAD Dementia at all visits

Table 4.1: The original ADNI labels and the longitudinal labels used in the present
study [103].

Collecting data for building a longitudinal study is an expensive and time-
consuming process, with multiple pitfalls associated to the inherent challenges of
longitudinal studies (see Section 3.1). Existing, large-scale and well-organized data
collections such as ADNI and AIBL are therefore extremely valuable when developing
and testing new methods. While this data has several advantages such as multimodal-
ity in measurement and a large number of participants, it has some limitations as well,
which cannot easily be overcome as the data is already collected and annotated. One
limitation is related to the disease diagnosis. The patients with MCI are highly di-
verse [27, 154], and clinical diagnosis of AD is uncertain [5]. Some studies have shown
the AD is established in the brain years before impairments appear in the cognition [71].
Furthermore, in the datasets used in our work, the time between visits for subjects is on
average half a year. It makes distinguishing between MCI and AD difficult as several
patients are assumed as MCI, while AD has been established in their brain already.
Furthermore, variability in MRI measurements, due to using scanners with different
strengths and other environmental conditions during MRI examinations such as differ-
ent head positions and head motion during scan, are some of the possible sources of
instability in the data [31, 148].

4.2 Software libraries

FreeSurfer FreeSurfer is a powerful a widely used software package providing auto-
mated, robust, and accurate analyses of structural and functional human neuroimaging
data [42]. Themain focus of FreeSurfer is on analysing structural MRI scans of the brain,
including segmentation of brain structures, segmentation of hippocampal sub-fields,
segmentation of white matter by using diffusion MRI, and the reconstruction of sur-
face models of the cerebral cortex. FreeSurfer is designed for the processing of both
cross-sectional data and longitudinal data series [42, 124].
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To obtain brain region volumes, we reprocessed all the T1-weighted MRI images
used for our studies using the same version of FreeSurfer v.6.0 (the latest version
at the time of the experiment) with the same systems: Ubuntu 18.04 GNU/Linux
workstations. This was a very time-consuming process, but also necessary to reduce
some of the variations we observed between the results obtained by different versions
of FreeSurfer [103].

Python libraries. The code developed in this thesis was built on the basis of various
libraries and functions in Python, especially Pandas [112], Numpy [59], Matplotlib [70],
and seaborn [157]. In addition, in Papers A and B, we used the function mixedlm in the
statsmodels library [134], version 0.11.0. to construct and fit the linear mixed-effects
model. For the machine learning parts we used functions from scikit-learn [115]
and ELI5. In Paper C, we employed fastai [67], a deep learning library based on
PyTorch [114]. In Paper D, we used NetworkX [55] which is a library for analysing
networks in Python. For drawing the figures we used https://app.diagrams.net/.
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“The beauty ofmathematics only shows itself tomore patient
followers.”

—Maryam Mirzakhani [29] CHAPTER 5
SUMMARY OF STUDIES

This chapter contains a summary of the five papers included in the thesis. Papers A, B,
and C forms Part I of our work, and Paper D and E forms Part II.

5.1 Paper A: A predictive framework based on longitudinal tra-

jectories: Application to detection of Alzheimer’s disease

The main purpose of study A [103] is tackling balanced and imbalanced longitudinal
data, containing noise and missing data at some time points, and to use them for
prediction by applying standard machine learning methods that are not designed
specifically for longitudinal data. We proposed a rather simple framework that uses
mixed-effects models for extracting features from complex sets of longitudinal data
together with well-known machine learning methods.

The main application of this study was the prediction of levels of dementia before
clinical diagnosis, based on measuring volume atrophy in different regions of the brain.
We applied our proposed framework to a collection of longitudinal brain MRI data
from ADNI and AIBL for two predictive tasks (see data details in [103] and Section 4.1):

1. HC subjects vs. converted to MCI subjects

2. stable MCI subjects vs. converted to AD subjects

As the tasks were predicting future diagnostic status and investigating whether the
model may indicate the risk of conversion, all information from the point of conversion
onwards was removed. In other words, in task 1, with regard to cMCI subjects,
we removed MRI scans that corresponded to clinical diagnoses of MCI, and in task
2, with regard to cAD subjects, we removed MRI scans that corresponded to AD.
Fig. 5.1 illustrate the preparation steps for the features. Following the computation
of brain region volumes using FreeSurfer on T1-weighted MRI recordings, a linear
time-dependent mixed-effects model was used to derive features from brain volume
trajectories. With the use of mixed-effects models, the instability and fluctuation
observed in the volume trajectory become less influential (Fig. 5.1c, blue trajectory vs.
red line), which leads to more robust features. For each variable, i.e. the hippocampus
and ventricle volumes, we derived the characteristics of the slope of changes and the
deviation from the cohort value for all subjects. In addition, we used the subjects’ sex,
average age at the time of scans, and the age at last scan (see Fig. 5.1d (1-4)).
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Next, we used a soft voting strategy to train an ensemble model based on a logistic
regression and a support vector machine. We constructed the model using data from
the ADNI dataset, and evaluated it using data from non-overlapping subjects sourced
from both ADNI and AIBL. On separate test sets, the model predicted the risk of MCI
with an average accuracy of 69% and the risk of AD with an average accuracy of 75%
ahead of the corresponding clinical diagnoses. The results indicate the ability of this
framework to make early predictions of MCI and AD, before clinical diagnosis, based
on volume atrophy in the brain.

Fig. 5.1: After segmentation of T1-weighted images with FreeSurfer, we had a table of
volumes associated with brain regions. We combined this table with scores of some
selected cognitive tests (in Paper B) for the same subjects. We kept participants with at
least two MRI scans (a). For each subject, we had some selected regions of the brain
(ROI) and cognitive test (CogT ) at several time points except for missing data (b). We
applied linear mixed effect model (c) to get the cohort regression and random effect
for all subjects (d), separately for each variable (ROIs and CogTs). Next, we extracted
the features from the results of the linear mixed models (e), and by adding some other
information, we set up a vector of features for each individual (f), ready for applying
machine learning methods.
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5.2 Paper B: Cognitive and MRI trajectories for prediction of

Alzheimer’s disease

Paper B [104] is an extension of Paper A and has two main purposes. First, it assesses
the application of the proposed framework in Paper A to different kinds of data. The
experiment in Paper A included only longitudinalMRI data to predict MCI, whereas for
Paper B, we used the same application as in Paper A but included cognitive measures
and the following classification outcomes:

1. Classifying HC vs. cMCI

2. Classifying sMCI vs. cAD

Secondly, we investigated whether the prediction performance of the model improved
when adding information from the MRI examinations.In this regard, we applied the
pipeline from Paper A, a combination of mixed effects and machine learning models, to
analyse a sample of multi-modal longitudinal data that include six sub-regions of the
brain and performance on three cognitive tests. Morphometric brain measurements
corresponding to the cognitive measures were selected. Brain measures associated with
memory function (RAVL) included volumes of the entorhinal cortex and hippocampus.
Furthermore, the total ADAS-Cog-13 score was used as a global measure corresponding
to a global MRI volume measure of the lateral ventricles.

The features of the trajectories of change in cognitive and brain measures for the
two pairs of subgroups (HC vs. cMCI), and (sMCI vs. cAD) were derived by applying
statistical mixed-effects models (see Fig. 5.1 e-f). These features were then used to
train an ensemble machine learning model to predict MCI and AD. The ensemble
model was based on a soft voting strategy according to five models: logistic regression,
support vector machine, K-nearest neighbours, random forest, and a gradient boosting
classifier. To investigate which features were weighted highest in the classification
tasks, we ran a permutation importance test to identify feature importance. The test
is based on measuring the change in model accuracy when each feature is randomly
shuffled multiple times. A feature is deemed to be more important than others if its
permutation has a larger negative impact on the performance of the model.

We first applied the ensemble model to the features extracted from cognitive tests
and then inspected whether the performance changed when adding the MRI features.
Evaluation of the model in an independent test set indicated that the inclusion of
MRI features substantially improved the classification of HC versus cMCI, while the
result for sMCI versus cAD was only slightly improved. By integrating MRI features,
the accuracy for (HC vs. cMCI) increased from 62% to 77%, whereas for (sMCI vs.
cAD) changed from 77% to 78%. The results are in line with findings indicating that
cognitive dysfunctions may become evident in a patient’s performance on cognitive
tests several years after Alzheimer’s disease has established in the brain [71].
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5.3 Paper C: From longitudinal measurements to image classifica-

tion: Application to longitudinalMRI in Alzheimer’s disease

In this study [102] we tackle the same problem in Paper A with a new approach that
makes it possible to use complex sets of longitudinal data together with standard
image classification methods. In this regard, we represented the longitudinal data
from each subject as a two-dimensional grey-scale image and used them to train deep
convolutional neural network image classifiers. Fig. 5.2 illustrates the setup.

To evaluate our approach, we applied it to a set of longitudinal subjects (with at
least three MRI scans) selected from the ADNI data source, containing ascending,
descending, and categorical data. Our data set consisted of 736 subjects (female/male:
299/437) with a total of 3956 MRI scans. Note that the number of time points and
the length between them varies significantly. The task was to classify two groups of
subjects stable MCI versus converged AD (defined in Papers A and B)For each subject,
we collected the measured volumes of all the regions in the brain using FreeSurfer
6.0 applied to the T1-weighted MR images, and we used the subjects’ sex, level of
education, and age at the time of the MRI examinations.

Before producing the two-dimensional images, the values associated with each
feature, i.e. brain volume regions, age, gender, and education were scaled separately
to obtain a standard range for each (Fig. 5.2: b). This was then used to scale the test
set and other new previously unseen subjects. Then, for each subject, we gathered all
the collected data in a matrix so that one axis was associated with time points and
the other with the corresponding values of those time points (Fig. 5.2: d). Next, each
scaled matrix was mapped onto a two-dimensional grey-scale image so that the pixel
intensity represented the matrix values (Fig. 5.2: c and e). Note that before scaling
we randomly selected the final test set. We then constructed a convolutional neural
network for classifying sMCI versus cAD. During the training of our models, we used
multiple regularisation techniques such as dropout, batch normalisation, and weight
decay. Furthermore, to balance the class sizes and boost our models’ generalisation
ability, we augmented the data set by producing and adding Gaussian noise to the
existent images. We conducted a grid search over the space of hyper-parameters to
optimise their values and improve the model performance. Then we selected the
top-performing models in terms of accuracy on validation data and calculated the final
results by ensembling the selected models based on soft and hard voting strategies.

In an independent test set, we obtained average accuracies of 75.9% and 76.3%
for hard and soft voting, respectively. This is a competitive result compared to other
approaches for similar tasks, while the proposed technique is much simpler than other
image classification methods using the original MRI recordings and can be applied to
imbalanced longitudinal data.

5.4 Paper D: On neural associative memory structures: Storage

and retrieval of sequences in a chain of tournaments

Learning and retrieval of temporal sequences in neural networks are fundamental
properties of human intelligence. This study [99] proposed a structure for saving
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5.4 Paper D: On neural associative memory structures: Storage and retrieval of
sequences in a chain of tournaments

Fig. 5.2: After preparing the table of brain volume extracted from T1-weighted images
(a), we found a robust min and max for each ROI and replaced the upper and lower
outliers with them (b). Then we scaled the volume in each column based on its robust
min and max between 0 and 255. Therefore each longitudinal subject (with at least
three scans) had scaled trajectories of volumes for all ROIs (c). For each subject, we
presented a matrix that contains ROIs volume and age at all time points (here 11
points), in addition to gender and education level (d). This matrix was mapped to a
two-dimensional gray-scale image so that pixel intensity represents the changes in the
values (e). The images that can be input into image classification models.

a sequence, inspired by associative memory in the brain, and several methods for
retrieving the whole sequence from corresponding incomplete versions of a previously
stored sequence. The term associative here, as in brain studies, refers to the linkage of
some pieces of information.

A tournament-based neural network (TNN) [72] is an associative memory that has
directed clockwise connections, and therefore the ability to store sequential information
(see Section 2.2.2 for the definition). In this paper, the TNN architecture was improved
by proposing a more general structure for the learning procedure by adding some
counterclockwise connections between elements of a sequence during learning. We
refer to this new architecture feedback TNN.
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This new structure supports retrieving a sequence, from any of its sufficiently large
segments in two directions, regardless of where the segment is located. It makes the
model more biologically plausible since it is known that the brain is able to follow the
previously stored sequences, from any given point, both forwards and backwards (see
e.g. [62]).

On the basis of human behaviour, two new retrieval techniques proposed in this
study are have been called “Cache” and “Explore”. Cache retrieval reconsiders some
previous randomly selected elements in a sequence in case an error is detected during
the retrieval process. The idea behind the Cache technique can be simply depicted in a
human decision-making procedure: imagine a person who quickly makes a decision,
then if realises it is a mistake and tries to resolve it by revising past decisions. The
results confirm that Cache techniques improved retrievals compare to the original
retrieval algorithm. On the other hand, the Explore technique reduces the randomness
in decisions by exploring the consequences of each decision while retrieving a sequence.
Explore can be seen as a rather careful decision-maker who evaluates the consequences
of all possible decisions at the time and then makes the best decision. Both Cache
and Explore improved the results in terms of retrieving the correct sequence. Explore
achieves the best results.

5.5 Paper E: Enhanced equivalence projective simulation: A

framework for modeling formation of stimulus equivalence

classes

This study was motivated by projective simulation [15] and equivalence projective
simulation [100] models, which have an episodic memory that resembles the internal
representation in the brain. Within these models, the agent can project itself into
potential future situations before the real action is taken.

Study E [101] proposes an enhanced model for equivalence projective simula-
tion [100]. This model can form and develop indirect connections during learning. In
other words, the enhanced model is able to derive equivalence relations in a network
without receiving feedback and information from the environment, and it links the
field of equivalence in behaviour analysis to a machine learning context (i.e. a new
type of reinforcement learning).

In the learning (training) phase, the derived relations are formed after completion
of the training phase through an iterative diffusion process called network enhance-
ment [155] (see Section 2.2.4). During this phase, the network structure (episodic
memory) is updated and a noisy, indirect, weighted network is transformed into a
new network with the same nodes but with updated connections and weights. This
new memory is retrieved during the testing phase. The proposed model can be inter-
preted as resembling the brain’s learning procedure, which has formed connections
and relations in its memory networks without directly being trained for them.

Although this model is of course far less complex than a brain neural network, it
can simulate behaviour seen in some real experiments, including the formation of
equivalence relations in typical participants and non-formation of equivalence relations
in atypical groups such as among autistic children. Since the network enhancement
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is a denoising method, we can interpret the model as considering a typical memory
as a less noisy memory, but a disabled memory as a noisy memory that cannot form
equivalence relations.

In the model it is possible to adjust various factors such as learning rate, forgetting
rate, formation of symmetry, and transitivity relations.The results of this approach are
in line with recent findings in behavioural and neuroscience studies.

Chapter 5 37





CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

The common core of this thesis is an exploration of memory and brain cognition. In
Part I, the main goal is extracting the characteristic features from longitudinal data to
be used together with standard machine learning techniques. In Part II, the main focus
is on constructing computational models of memory and learning.

In Part I, we analyse neuroimaging data and psychometric tests to experimentally
follow the changes in the brain and its functionality during aging andneurodegenerative
disease. The predictive frameworks in this part allowus to derive biomarkers that detect
alterations in brain volume and cognitive behaviour over time and to use standard
machine- and deep learning techniques to predict the risk of dementia and highlight
the model’s most significant features. In the approach taken in Part II, brain networks
and cognitive behaviour are modelled to improve knowledge about the connectivity
and formation of relations in the brain, as well as to develop the technology of learning
and retrieving in artificial memories, aiming to make them more efficient and realistic.

6.2 Future work

Some possible future directions for research based on this thesis include:

• Investigating the inclusion of further longitudinal data containing other types of
neuroimaging sources such as functional MRI (fMRI), genetic profiles such as
the APOE4 gene, and values from cerebrospinal fluid analyses, as well as other
cognitive and biochemical measures in the studies of Part I.

• Applying the framework in Paper C to construct images from longitudinal fMRI
time series that can then be used to predict interesting outcomes, e.g. dementia.

• Applying the frameworks in Part I to other kinds of data (in biomedical or non-
medical fields) to check their efficacy for deriving features and making prediction
based on longitudinal data.

• Investigating whether the diffusion network enhancement in Paper E, a method
for denoising models for biological networks, can be applied to the adjacent
matrices of functional MRI to reduce the noise, comparing their results with other
denoising approaches.
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• Developing the parameters of themodel in Paper E formodelingmemory disorder
in patients with mild cognitive impairment and Alzheimer’s disease by including
longitudinal data from cognitive tests and fMRI.

• Taking the stimulus equivalence class presented in Paper E as a clique linking
the stimuli. This will make it possible to connect the clique-based associative
networks (Paper D) to the episodic memory in Paper E.

40 Chapter 6



BIBLIOGRAPHY

[1] P. S. Albert. Longitudinal data analysis (repeated measures) in clinical trials.
Statistics in medicine, 18(13):1707–1732, 1999. 3.1

[2] E. Arntzen, L.-B. Halstadtro, E. Bjerke, K. J. Wittner, and A. Kristiansen. On the
sequential and concurrent presentation of trials establishing prerequisites for
emergent relations. The Behavior Analyst Today, 14(1-2):1, 2014. 2.2.3

[3] E. Arntzen and H. S. Steingrimsdottir. Electroencephalography (EEG) in the
study of equivalence class formation. An explorative study. Frontiers in human
neuroscience, 11:58, 2017. 2.2.3

[4] A. Association. 2019 Alzheimer’s disease facts and figures. Alzheimer’s & dementia,
15(3):321–387, 2019. 2.1.2

[5] A. P. Association. Diagnostic and statistical manual of mental disorders (DSM-5).
Pilgrim Press, Washington, 2013. 2.1.2, 4.1

[6] A. Baddeley. Working memory, thought, and action, volume 45. Oxford University
Press, 2007. 2.1.1

[7] A. D. Baddeley. The influence of acoustic and semantic similarity on long-term
memory for word sequences. The Quarterly journal of experimental psychology,
18(4):302–309, 1966. 2.1.1

[8] S. Bandyopadhyay, B. Ganguli, and A. Chatterjee. A review of multivariate
longitudinal data analysis. Statistical methods in medical research, 20(4):299–330,
2011. 3.1, 3.2.1

[9] D. Barrett and H. Noble. What are cohort studies? 22(4):95–96. Publisher: Royal
College of Nursing Section: Research made simple. 3.1

[10] A. Bell and K. Jones. Age, period and cohort processes in longitudinal and
life course analysis: a multilevel perspective. A life course perspective on health
trajectories and transitions, pages 197–213, 2015. 3.1

[11] C. Berrou, O. Dufor, V. Gripon, and X. Jiang. Information, noise, coding,
modulation: What about the brain? In 2014 8th International Symposium on Turbo
Codes and Iterative Information Processing (ISTC), pages 167–172. IEEE, 2014. 2.2

[12] R. D. Blanchard, J. B. Bunker, and M. Wachs. Distinguishing aging, period and
cohort effects in longitudinal studies of elderly populations. Socio-Economic
Planning Sciences, 11(3):137–146, 1977. 3.1

[13] P. Boyle, R. Wilson, N. Aggarwal, Y. Tang, and D. Bennett. Mild cognitive
impairment: risk of Alzheimer disease and rate of cognitive decline. Neurology,
67(3):441–445, 2006. 2.1.2



BIBLIOGRAPHY

[14] M. Brand and H. J. Markowitsch. The principle of bottleneck structures. In
Principles of learning and memory, pages 171–184. Springer, 2003. 2.1.1

[15] H. J. Briegel and G. De las Cuevas. Projective simulation for artificial intelligence.
Scientific reports, 2(1):1–16, 2012. 1.2, 2.2, 2.4, 2.2.3, 2.5, 5.5

[16] R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. M. Arrighi. Forecasting
the global burden of Alzheimer’s disease. Alzheimer’s & dementia, 3(3):186–191,
2007. 2.1.2

[17] C. by Dhp1080. Derived Neuron schema with no labels.svg. https://commons.
wikimedia.org/wiki/File:Derived_Neuron_schema_with_no_labels.svg.
Accessed: 2021-06-01. 2.1

[18] J. S. W. Campbell and G. Bruce Pike. Diffusion Magnetic Resonance Imaging. In
R. Narayan, editor, Encyclopedia of Biomedical Engineering, pages 505–518. Elsevier,
Oxford, 2019. 2.1.3

[19] E. J. Caruana, M. Roman, J. Hernández-Sánchez, and P. Solli. Longitudinal
studies. Journal of thoracic disease, 7(11):E537, 2015. 3.1

[20] A. Chandra, G. Dervenoulas, M. Politis, A. D. N. Initiative, et al. Magnetic
resonance imaging in Alzheimer’s disease and mild cognitive impairment.
Journal of Neurology, 266(6):1293–1302, 2019. 2.1.3

[21] J. Choi, K. Park, M. Kim, and S. Seok. Deep reinforcement learning of navigation
in a complex and crowded environment with a limited field of view. In 2019
International Conference on Robotics and Automation (ICRA), pages 5993–6000. IEEE,
2019. 2.2.3

[22] N. Chomsky. Language and thought. 1993. I

[23] E. T. Chou and J. A. Carrino. chapter 10 - Magnetic Resonance Imaging. In S. D.
Waldman and J. I. Bloch, editors, Pain Management, pages 106–117. W.B. Saunders,
Philadelphia, 2007. 2.1.3

[24] R. M. Cichy and D. Kaiser. Deep neural networks as scientific models. Trends in
cognitive sciences, 23(4):305–317, 2019. 1.1

[25] R. M. Cichy, A. Khosla, D. Pantazis, A. Torralba, and A. Oliva. Comparison of
deep neural networks to spatio-temporal cortical dynamics of human visual
object recognition reveals hierarchical correspondence. Scientific reports, 6(1):1–13,
2016. 2.2.1

[26] J. Cleary and A. Guimarães. Magnetic Resonance Imaging. In L. M. McManus
and R. N. Mitchell, editors, Pathobiology of Human Disease, pages 3987–4004.
Academic Press, San Diego, 2014. 2.1.3

[27] J. H. Cole and K. Franke. Predicting age using neuroimaging: innovative brain
ageing biomarkers. Trends in neurosciences, 40(12):681–690, 2017. 4.1

42 Bibliography

https://commons.wikimedia.org/wiki/File:Derived_Neuron_schema_with_no_labels.svg
https://commons.wikimedia.org/wiki/File:Derived_Neuron_schema_with_no_labels.svg


BIBLIOGRAPHY

[28] J. R. Crawford, A. Venneri, and R. E. O’Carroll. 7.07 - Neuropsychological
Assessment of the Elderly. In A. S. Bellack and M. Hersen, editors, Comprehensive
Clinical Psychology, pages 133–169. Pergamon, Oxford, 1998. 2.1.4

[29] N. D. Daniel Mathews. The beauty of mathematics shows itself to
patient followers. https://www.danielmathews.info/2018/05/21/
the-beauty-of-mathematics-shows-itself-to-patient-followers-the-work-of-maryam-mirzakhani/.
Accessed: 2021-06-01. 4.2

[30] N. A. Dennis, I. C. Turney, C. E. Webb, and A. A. Overman. The effects of item
familiarity on the neural correlates of successful associative memory encoding.
Cognitive, Affective, & Behavioral Neuroscience, 15(4):889–900, 2015. 2.1.1

[31] X. Di, M. Wolfer, S. Kühn, Z. Zhang, and B. B. Biswal. Estimations of the weather
effects on brain functions using functional MRI–a cautionary tale. bioRxiv, page
646695, 2019. 4.1

[32] R. Diez. A glossary for multilevel analysis. Journal of epidemiology and community
health, 56(8):588, 2002. 3.2.1

[33] P. Diggle, P. J. Diggle, P. Heagerty, K.-Y. Liang, P. J. Heagerty, S. Zeger, et al.
Analysis of longitudinal data. Oxford University Press, 2002. 3.1, 3.1

[34] R. Dodel, A. Rominger, P. Bartenstein, F. Barkhof, K. Blennow, S. Förster, Y.Winter,
J.-P. Bach, J. Popp, J. Alferink, et al. Intravenous immunoglobulin for treatment
of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind,
placebo-controlled, dose-finding trial. The Lancet Neurology, 12(3):233–243, 2013.
2.1.2

[35] N. Dvornik, J. Mairal, and C. Schmid. On the importance of visual context for
data augmentation in scene understanding. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2019. 3.2.3

[36] J. Elliott, J. Holland, and R. Thomson. Longitudinal and panel studies. The SAGE
handbook of social research methods, pages 228–248, 2008. 3.1

[37] K. A. Ellis, A. I. Bush, D. Darby, D. De Fazio, J. Foster, P. Hudson, N. T. Laut-
enschlager, N. Lenzo, R. N. Martins, P. Maruff, et al. The Australian Imaging,
Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline char-
acteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s
disease. International Psychogeriatrics, 21(4):672–687, 2009. 4.1

[38] M. S. Fanselow and A. M. Poulos. The neuroscience of mammalian associative
learning. Annu. Rev. Psychol., 56:207–234, 2005. 2.1.1

[39] E. K. Fard, J. L. Keelor, A. A. Bagheban, and R. W. Keith. Comparison of the Rey
Auditory Verbal Learning Test (RAVLT) and digit test among typically achieving
and gifted students. Iranian journal of child neurology, 10(2):26, 2016. 2.1.4

[40] S. Fieuws and G. Verbeke. Pairwise fitting of mixedmodels for the joint modeling
of multivariate longitudinal profiles. Biometrics, 62(2):424–431, 2006. 3.2.1

Bibliography 43

https://www.danielmathews.info/2018/05/21/the-beauty-of-mathematics-shows-itself-to-patient-followers-the-work-of-maryam-mirzakhani/
https://www.danielmathews.info/2018/05/21/the-beauty-of-mathematics-shows-itself-to-patient-followers-the-work-of-maryam-mirzakhani/


BIBLIOGRAPHY

[41] K. R. T. Fink and J. R. Fink. 4 - Principles of Modern Neuroimaging. In R. G.
Ellenbogen, L. N. Sekhar, N. D. Kitchen, and H. B. da Silva, editors, Principles
of Neurological Surgery (Fourth Edition), pages 62–86.e2. Elsevier, Philadelphia,
fourth edition edition, 2018. 2.1.3

[42] B. Fischl. FreeSurfer. NeuroImage, 62(2):774–781, 2012. 4.2

[43] G. M. Fitzmaurice, N. M. Laird, and J. H. Ware. Applied longitudinal analysis,
volume 998. John Wiley & Sons, 2012. 3.1

[44] C.Garbin, X. Zhu, andO.Marques. Dropout vs. batchnormalization: an empirical
study of their impact to deep learning. Multimedia Tools and Applications, pages
1–39, 2020. 3.2.3

[45] G. Gavidia-Bovadilla, S. Kanaan-Izquierdo, M. Mataró-Serrat, A. Perera-Lluna,
A. D. N. Initiative, et al. Early prediction of Alzheimer’s disease using null
longitudinal model-based classifiers. PloS one, 12(1):e0168011, 2017. 4.1

[46] Y. E. Geda. Mild cognitive impairment in older adults. Current psychiatry reports,
14(4):320–327, 2012. 2.1.2

[47] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.
2.2.1, 3.2.3

[48] G. H. Glover. Overview of functional magnetic resonance imaging. Neurosurgery
Clinics, 22(2):133–139, 2011. 2.1.3

[49] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep Learning. MIT Press,
2016. 3.2.3

[50] G. Green and R. R. Saunders. Stimulus equivalence. In Handbook of research
methods in human operant behavior, pages 229–262. Springer, 1998. 2.2.3

[51] D. A. Grimes and K. F. Schulz. Cohort studies: marching towards outcomes. The
Lancet, 359(9303):341–345, 2002. 3.1

[52] V. Gripon and C. Berrou. Sparse neural networks with large learning diversity.
IEEE transactions on neural networks, 22(7):1087–1096, 2011. 2.2.2

[53] V. Gripon, J. Heusel, M. Löwe, and F. Vermet. A comparative study of sparse
associative memories. Journal of Statistical Physics, 164(1):105–129, 2016. 2.2.2

[54] P. Gupta and N. K. Sinha. CHAPTER 14 - Neural Networks for Identification of
Nonlinear Systems: An Overview. In N. K. Sinha and M. M. Gupta, editors, Soft
Computing and Intelligent Systems, Academic Press Series in Engineering, pages
337–356. Academic Press, San Diego, 2000. 2.2.1

[55] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring Network Structure,
Dynamics, and Function using NetworkX. In G. Varoquaux, T. Vaught, and
J. Millman, editors, Proceedings of the 7th Python in Science Conference, pages 11 –
15, Pasadena, CA USA, 2008. 4.2

44 Bibliography



BIBLIOGRAPHY

[56] J. Haile. Toward technical understanding: Part 2. Elementary levels. Chemical
Engineering Education, 31(4):214–219, 1997. 2.1.1

[57] J. Haile. Toward technical understanding: Part 3. Advanced levels. Chemical
Engineering Education, 32(1):30–39, 1998. 2.1.1

[58] S. Hammond. Using psychometric tests. Research methods in psychology, 3:182–209,
2006. 2.1.4

[59] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwĳk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362,
Sept. 2020. 4.2

[60] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick. Neuroscience-
inspired artificial intelligence. Neuron, 95(2):245–258, 2017. 1.1, 2.2.1

[61] M. E. Hasselmo. How we remember: brain mechanisms of episodic memory. MIT
press, 2011. 2.2.3

[62] J. Hawkins and S. Blakeslee. On intelligence: How a new understanding of the brain
will lead to the creation of truly intelligent machines. Macmillan, 2007. 5.4

[63] S. Haykin. CHAPTER 4 - Neural Networks: A Guided Tour. In N. K. Sinha
and M. M. Gupta, editors, Soft Computing and Intelligent Systems, Academic Press
Series in Engineering, pages 71–80. Academic Press, San Diego, 2000. 2.2.1

[64] H. Hippius and G. Neundörfer. The discovery of Alzheimer’s disease. Dialogues
in clinical neuroscience, 5(1):101, 2003. 2.1.2

[65] J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):2554–
2558, 1982. 2.2.2

[66] G. Hornung and N. Barkai. Noise propagation and signaling sensitivity in
biological networks: a role for positive feedback. PLoS Comput Biol, 4(1):e8, 2008.
2.2.4

[67] J. Howard and S. Gugger. Fastai: A layered API for deep learning. Information,
11(2):108, 2020. 4.2

[68] S. A. Huettel, A.W. Song, G.McCarthy, et al. Functional magnetic resonance imaging,
volume 1. Sinauer Associates Sunderland, MA, 2004. 2.1.3

[69] S. B. Hulley. Designing clinical research. Lippincott Williams & Wilkins, 2007. 3.1

[70] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007. 4.2

Bibliography 45



BIBLIOGRAPHY

[71] C. R. Jack Jr and D. M. Holtzman. Biomarker modeling of Alzheimer’s disease.
Neuron, 80(6):1347–1358, 2013. 4.1, 5.2

[72] X. Jiang, V. Gripon, C. Berrou, and M. Rabbat. Storing sequences in binary
tournament-based neural networks. IEEE transactions on neural networks and
learning systems, 27(5):913–925, 2016. 1.3, 2.2.2, 2.3, 5.4

[73] D. K. Jones. Diffusion MRI. Oxford University Press, 2010. 2.1.3

[74] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015. 3.2.2

[75] A. J. Kell, D. L. Yamins, E. N. Shook, S. V. Norman-Haignere, and J. H.McDermott.
A task-optimized neural network replicates human auditory behavior, predicts
brain responses, and reveals a cortical processing hierarchy.Neuron, 98(3):630–644,
2018. 1.1

[76] K. M. Keyes and G. Li. Age–period–cohort modeling. In Injury research, pages
409–426. Springer, 2012. 3.1

[77] S.-M. Khaligh-Razavi and N. Kriegeskorte. Deep supervised, but not unsuper-
vised, models may explain IT cortical representation. PLoS computational biology,
10(11):e1003915, 2014. 1.1

[78] J. H. King, J. D. Gfeller, andH. P. Davis. Detecting simulatedmemory impairment
with the Rey Auditory Verbal Learning Test: Implications of base rates and study
generalizability. Journal of clinical and experimental neuropsychology, 20(5):603–612,
1998. 2.1.4

[79] T. Kohonen. Associative memory: A system-theoretical approach, volume 17. Springer
Science & Business Media, 2012. 2.2.2

[80] I. Kononenko and M. Kukar. Chapter 11 - Artificial Neural Networks. In
I. Kononenko and M. Kukar, editors, Machine Learning and Data Mining, pages
275–320. Woodhead Publishing, 2007. 2.2.1

[81] I. Kononenko and M. Kukar. Machine learning and data mining. Horwood
Publishing, 2007. 2.2.1

[82] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25:1097–1105, 2012. 1.1

[83] J. K. Kueper, M. Speechley, and M. Montero-Odasso. The Alzheimer’s disease
assessment scale–cognitive subscale (ADAS-Cog): modifications and respon-
siveness in pre-dementia populations. a narrative review. Journal of Alzheimer’s
Disease, 63(2):423–444, 2018. 2.1.4

[84] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
2015. 1.1

46 Bibliography



BIBLIOGRAPHY

[85] R. L. Leong, J. C. Lo, S. K. Sim, H. Zheng, J. Tandi, J. Zhou, and M. W. Chee.
Longitudinal brain structure and cognitive changes over 8 years in an East Asian
cohort. NeuroImage, 147:852–860, 2017. 2.1.3

[86] D. E. Lilienfeld, D. E. Lilienfeld, P. D. Stolley, A. M. Lilienfeld, et al. Foundations
of epidemiology. Oxford University Press, USA, 1994. 3.1

[87] X. Liu. Chapter 1 - Introduction. In X. Liu, editor, Methods and Applications of
Longitudinal Data Analysis, pages 1–18. Academic Press. 3.1

[88] X. Liu. Methods and applications of longitudinal data analysis. Elsevier, 2015. 3.1

[89] A. J. Lundervold, A. Vik, and A. Lundervold. Lateral ventricle volume trajectories
predict response inhibition in older age—A longitudinal brain imaging and
machine learning approach. Plos one, 14(4):e0207967, 2019. 3.2.3

[90] A. S. Lundervold and A. Lundervold. An overview of deep learning in medical
imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2):102–127, 2019.
2.2.1

[91] M. R. S. Marques, G. B. Hacene, C. E. R. K. Lassance, and P.-H. Horrein. Large-
Scale Memory of Sequences Using Binary Sparse Neural Networks on GPU. In
2017 International Conference on High Performance Computing & Simulation (HPCS),
pages 553–559. IEEE, 2017. 2.2.2

[92] P. M. Matthews and P. Jezzard. Functional magnetic resonance imaging. Journal
of Neurology, Neurosurgery & Psychiatry, 75(1):6–12, 2004. 2.1.3

[93] L. E. Matzen, M. C. Trumbo, R. C. Leach, and E. D. Leshikar. Effects of non-
invasive brain stimulation on associative memory. Brain research, 1624:286–296,
2015. 2.1.1, 2.1.3

[94] A. A. Melnikov, A. Makmal, V. Dunjko, and H. J. Briegel. Projective simulation
with generalization. Scientific reports, 7(1):1–14, 2017. 2.2.3

[95] S.Menard. Longitudinal Studies, Panel. In K. Kempf-Leonard, editor, Encyclopedia
of Social Measurement, pages 601–607. Elsevier. 3.1, 3.1

[96] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural and
statistical classification. 1994. 2.2.1, 3.2.2

[97] B. R. Mitchell. Chapter 3 - Overview of advanced neural network architectures.
In S. Cohen, editor, Artificial Intelligence and Deep Learning in Pathology, pages
41–56. Elsevier, 2021. 2.2.1

[98] A. A. Mofrad. When Behavior Analysis Meets Machine Learning; Formation of
Stimulus Equivalence Classes and Adaptive Learning in Artificial Agents. 2021.
2.2.1, 2.2.3

[99] A. A. Mofrad, S. A. Mofrad, A. Yazidi, and M. G. Parker. On Neural Asso-
ciative Memory Structures: Storage and Retrieval of Sequences in a Chain of
Tournaments, 2021. Accepted. 1.2, 2.1.1, 2.2.1, 2.2.2, 2.2.2, 2.3, 5.4

Bibliography 47



BIBLIOGRAPHY

[100] A. A. Mofrad, A. Yazidi, H. L. Hammer, and E. Arntzen. Equivalence projective
simulation as a framework for modeling formation of stimulus equivalence
classes. Neural computation, 32(5):912–968, 2020. 2.2.3, 2.2.3, 5.5

[101] A. A. Mofrad, A. Yazidi, S. A. Mofrad, H. L. Hammer, and E. Arntzen. Enhanced
Equivalence Projective Simulation: A Framework for Modeling Formation of
Stimulus Equivalence Classes. Neural computation, 33(2):483–527, 2021. 2.2, 2.2.3,
2.2.4, 5.5

[102] S. A. Mofrad, H. Bartsch, A. S. Lundervold, and A. D. N. Initiative. From
longitudinal measurements to image classification: application to longitudinal
MRI in Alzheimer’s disease. Under review, 2021. 3.2.2, 5.3

[103] S. A. Mofrad, A. Lundervold, A. S. Lundervold, A. D. N. Initiative, et al. A
predictive framework based on brain volume trajectories enabling early detection
of Alzheimer’s disease. Computerized Medical Imaging and Graphics, page 101910,
2021. 3.2.2, 4.1, 4.2, 5.1

[104] S. A. Mofrad, A. J. Lundervold, A. Vik, and A. S. Lundervold. Cognitive and MRI
trajectories for prediction of Alzheimer’s disease. Scientific Reports, 11(1):1–10,
2021. 2.1.4, 4.1, 5.2

[105] S. A. Montgomery, L. Thal, and R. Amrein. Meta-analysis of double blind
randomized controlled clinical trials of acetyl-L-carnitine versus placebo in
the treatment of mild cognitive impairment and mild Alzheimer’s disease.
International Clinical Psychopharmacology, 18(2):61–71, 2003. 2.1.2

[106] G.Moore. Big data. https://en.wikiquote.org/wiki/Geoffrey_Moore. 3.2.3

[107] E. Moradi, I. Hallikainen, T. Hanninen, J. Tohka, A. D. N. Initiative, et al. Rey’s
Auditory Verbal Learning Test scores can be predicted from whole brain MRI in
Alzheimer’s disease. NeuroImage: Clinical, 13:415–427, 2017. 2.1, 2.1.4

[108] P. Müller and D. R. Insua. Issues in Bayesian analysis of neural network models.
Neural Computation, 10(3):749–770, 1998. 2.2.1

[109] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012. 2.2.1

[110] R. Narayan. Encyclopedia of biomedical engineering. Elsevier, 2018. 2.1.3

[111] E. Nichols, C. E. Szoeke, S. E. Vollset, N. Abbasi, F. Abd-Allah, J. Abdela, M. T. E.
Aichour, R. O. Akinyemi, F. Alahdab, S. W. Asgedom, et al. Global, regional,
and national burden of Alzheimer’s disease and other dementias, 1990–2016:
a systematic analysis for the Global Burden of Disease Study 2016. The Lancet
Neurology, 18(1):88–106, 2019. 2.1.2

[112] T. pandas development team. pandas-dev/pandas: Pandas, Feb. 2020. 4.2

[113] D. C. Park and P. Reuter-Lorenz. The adaptive brain: aging and neurocognitive
scaffolding. Annual review of psychology, 60:173–196, 2009. 2.1.2

48 Bibliography

https://en.wikiquote.org/wiki/Geoffrey_Moore


BIBLIOGRAPHY

[114] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019. 4.2

[115] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. 4.2

[116] R. C. Petersen. Mild cognitive impairment or questionable dementia. Archives of
neurology, 57(5):643–644, 2000. 2.1.2

[117] R. C. Petersen. Mild cognitive impairment as a diagnostic entity. Journal of
internal medicine, 256(3):183–194, 2004. 2.1.2

[118] R. C. Petersen, G. E. Smith, S. C.Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen.
Mild cognitive impairment: clinical characterization and outcome. Archives of
neurology, 56(3):303–308, 1999. 2.1.2

[119] J. Pinheiro and D. Bates. Mixed-effects models in S and S-PLUS. Springer Science &
Business Media, 2006. 3.2.1

[120] K. Popper. The logic of scientific discovery. Routledge, 2005. 2.2.4

[121] M. J. Prince. World Alzheimer Report 2015: the global impact of dementia: an analysis
of prevalence, incidence, cost and trends. Alzheimer’s Disease International, 2015.
2.1.2

[122] E. R. Ranschaert, S. Morozov, and P. R. Algra. Artificial intelligence in medical
imaging: opportunities, applications and risks. Springer, 2019. 3.2.2, 3.2.3

[123] N. Raz. Aging of the brain and its impact on cognitive performance: Integration
of structural and functional findings. In F. Craik and T. Salthouse, editors, The
handbook of aging and cognition. Lawrence Erlbaum Associates Publishers, 2000.
2.1.3

[124] M. Reuter and B. Fischl. Avoiding asymmetry-induced bias in longitudinal image
processing. NeuroImage, 57(1):19–21, 2011. 4.2

[125] P. A. Reuter-Lorenz and C. Lustig. Brain aging: reorganizing discoveries about
the aging mind. Current opinion in neurobiology, 15(2):245–251, 2005. 2.1.2

[126] B. A. Richards, T. P. Lillicrap, P. Beaudoin, Y. Bengio, R. Bogacz, A. Christensen,
C. Clopath, R. P. Costa, A. de Berker, S. Ganguli, et al. A deep learning framework
for neuroscience. Nature neuroscience, 22(11):1761–1770, 2019. 1.1, 2.2.1, 2.2.1

Bibliography 49



BIBLIOGRAPHY

[127] K. M. Rodrigue and N. Raz. Shrinkage of the entorhinal cortex over five years
predicts memory performance in healthy adults. Journal of Neuroscience, 24(4):956–
963, 2004. 2.1.3

[128] E. T. Rolls and A. Treves. Neural networks in the brain involved in memory and
recall. Progress in brain research, 102:335–341, 1994. 2.1.1, 2.1.3

[129] W. G. Rosen, R. C. Mohs, and K. L. Davis. A new rating scale for Alzheimer’s
disease. The American journal of psychiatry, 1984. 2.1.4

[130] M. Roser, E. Ortiz-Ospina, and H. Ritchie. Life expectancy. Our World in Data,
2013. 2.1.2

[131] M. Rubinov and O. Sporns. Complex network measures of brain connectivity:
uses and interpretations. NeuroImage, 52(3):1059–1069, 2010. 2.1

[132] J. Sacramento, R. P. Costa, Y. Bengio, andW. Senn. Dendritic cortical microcircuits
approximate the backpropagation algorithm. arXiv preprint arXiv:1810.11393,
2018. 1.1

[133] M. Schmidt et al. Rey auditory verbal learning test: A handbook. Western Psycholog-
ical Services Los Angeles, CA, 1996. 2.1.4

[134] S. Seabold and J. Perktold. statsmodels: Econometric and statistical modeling
with Python. In 9th Python in Science Conference, 2010. 4.2

[135] L. Sherwood. Human physiology: from cells to systems. Cengage learning, 2015.
2.1.1

[136] M. Sidman, O. Cresson Jr, and M. Willson-Morris. Acquisition of matching to
sample via mediated transfer. Journal of the Experimental Analysis of Behavior,
22(2):261–273, 1974. 2.2.3

[137] M. Sidman and W. Tailby. Conditional discrimination vs. matching to sample:
An expansion of the testing paradigm. Journal of the Experimental Analysis of
behavior, 37(1):5–22, 1982. 2.2.3

[138] A. Skrondal and S. Rabe-Hesketh. Generalized latent variable modeling: Multilevel,
longitudinal, and structural equation models. Crc Press, 2004. 3.1, 3.2.1

[139] D. Sloan and C. Norrgran. A neuroscience perspective on learning. Chemical
Engineering Education, 50(1):29–37, 2016. 1.1, 2.1.1

[140] G. Smith. Essential statistics, regression, and econometrics. Academic press, 2015.
3.1

[141] S. Smith. Linking cognition to brain connectivity. Nature neuroscience, 19(1):7–9,
2016. 2.1.3

50 Bibliography



BIBLIOGRAPHY

[142] H. Sompolinsky and O. White. Course 8 - Theory of Large Recurrent Networks:
From Spikes to Behavior. In C. Chow, B. Gutkin, D. Hansel, C. Meunier, and
J. Dalibard, editors,Methods and Models in Neurophysics, volume 80 of Les Houches,
pages 267–340. Elsevier, 2005. 2.1.1

[143] W. Sossin, J. Lacaille, V. Castellucci, and S. Belleville. Associative learning signals
in the brain. Essence of Memory, page 305, 2008. 2.1.1

[144] O. Sporns. Networks of the Brain. MIT press, 2010. 1.4

[145] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018. 2.2.3

[146] E. Suzuki. Time changes, so do people. Social science & medicine, 75(3):452–456,
2012. 3.1

[147] D. Svozil, V. Kvasnicka, and J. Pospichal. Introduction tomulti-layer feed-forward
neural networks. Chemometrics and intelligent laboratory systems, 39(1):43–62, 1997.
2.2.1

[148] A. Trefler, N. Sadeghi, A. G. Thomas, C. Pierpaoli, C. I. Baker, and C. Thomas. Im-
pact of time-of-day on brain morphometric measures derived from T1-weighted
magnetic resonance imaging. NeuroImage, 133:41–52, 2016. 2.1.3, 4.1

[149] E. Tulving. Episodic memory: From mind to brain. Annual review of psychology,
53(1):1–25, 2002. 2.1.1

[150] J. W. Twisk. Applied longitudinal data analysis for epidemiology: a practical guide.
cambridge university press, 2013. 3.1

[151] D. o. E. United Nations and S. Affairs. World population ageing 2017: highlights,
2017. 2.1.2

[152] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugurbil,
W.-M. H. Consortium, et al. The WU-Minn human connectome project: an
overview. NeuroImage, 80:62–79, 2013. 2.1.3

[153] B. Vandeginste, D. Massart, L. Buydens, S. D. Jong, P. Lewi, and J. Smeyers-
Verbeke. Chapter 44 - Artificial Neural Networks. In B. Vandeginste, D. Massart,
L. Buydens, S. De Jong, P. Lewi, and J. Smeyers-Verbeke, editors, Handbook of
Chemometrics and Qualimetrics: Part B, volume 20 of Data Handling in Science and
Technology, pages 649–699. Elsevier, 1998. 2.2.1

[154] K. B. Walhovd, A. M. Fjell, and T. Espeseth. Cognitive decline and brain
pathology in aging–need for a dimensional, lifespan and systems vulnerability
view. Scandinavian journal of psychology, 55(3):244–254, 2014. 4.1

[155] B. Wang, A. Pourshafeie, M. Zitnik, J. Zhu, C. D. Bustamante, S. Batzoglou, and
J. Leskovec. Network enhancement as a general method to denoise weighted
biological networks. Nature communications, 9(1):1–8, 2018. 2.6, 2.2.4, 5.5

Bibliography 51



BIBLIOGRAPHY

[156] S.-C. Wang. Artificial neural network. In Interdisciplinary computing in java
programming, pages 81–100. Springer, 2003. 2.2.1

[157] M. L. Waskom. seaborn: statistical data visualization. Journal of Open Source
Software, 6(60):3021, 2021. 4.2

[158] B. T. West, K. B. Welch, and A. T. Galecki. Linear mixed models: a practical guide
using statistical software. Chapman and Hall/CRC, 2014. 3.2.1

[159] M. Wiering and M. Van Otterlo. Reinforcement learning. Adaptation, learning,
and optimization, 12(3), 2012. 2.2.3

[160] J.-A. Witt, R. Coras, A. J. Becker, C. E. Elger, I. Blümcke, and C. Helmstaedter.
When does conscious memory become dependent on the hippocampus: The role
of memory load and the differential relevance of left hippocampal integrity for
short-and long-term aspects of verbal memory performance. Brain Structure and
Function, 224(4):1599–1607, 2019. 2.1.4

[161] World Health Organization. Dementia. https://www.who.int/news-room/
fact-sheets/detail/dementia, 2019. Accessed: 2020-09-10. 2.1.2

[162] T. Yagi, M. Kanekiyo, J. Ito, R. Ihara, K. Suzuki, A. Iwata, T. Iwatsubo, K. Aoshima,
A. D. N. Initiative, J. A. D. N. Initiative, et al. Identification of prognostic factors
to predict cognitive decline of patients with early Alzheimer’s disease in the
Japanese Alzheimer’s Disease Neuroimaging Initiative study. Alzheimer’s &
Dementia: Translational Research & Clinical Interventions, 5:364–373, 2019. 2.1.2

[163] S. L. Zeger andK.-Y. Liang. Longitudinal data analysis for discrete and continuous
outcomes. Biometrics, pages 121–130, 1986. 3.1

[164] S. Zhang, S. M. H. Bamakan, Q. Qu, and S. Li. Learning for personalized
medicine: a comprehensive review from a deep learning perspective. IEEE
reviews in biomedical engineering, 12:194–208, 2018. 2.2.1

52 Bibliography

https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia


Part II

ARTICLES





PAPER A
A PREDICTIVE FRAMEWORK BASED ON BRAIN
VOLUME TRAJECTORIES ENABLING EARLY
DETECTION OF ALZHEIMER’S DISEASE

Mofrad, Samaneh A., Lundervold, Arvid and Lundervold, Alexander S. 1 June, 2021.
A predictive framework based on brain volume trajectories enabling early detection of
Alzheimer’s disease. Computerized Medical Imaging and Graphics. Elsevier.





Computerized Medical Imaging and Graphics 90 (2021) 101910

Available online 2 April 2021
0895-6111/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A predictive framework based on brain volume trajectories enabling early 
detection of Alzheimer’s disease 

Samaneh Abolpour Mofrad a,c,*, Arvid Lundervold b,c, Alexander Selvikvåg Lundervold a,c, for 
the Alzheimer’s Disease Neuroimaging InitiativeData used in preparation of this article were 
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc. 
edu). As such, the investigators within the ADNI contributed to the design and implementation 
of ADNI and/or provided data but did not participate in analysis or writing of this report. A 
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/ 
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf, for the Australian Imaging Biomarkers 
and Lifestyle Flagship Study of AgeingData used in the preparation of this article was obtained 
from the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) funded 
by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which was made 
available at the ADNI database. The AIBL researchers contributed data but did not participate in 
analysis or writing of this report. AIBL researchers are listed at www.aibl.csiro.au. 
a Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Postbox 7030, 5020 Bergen, 
Norway 
b The Neural Networks and Microcircuits Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway 
c The Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway   

A R T I C L E  I N F O   

Keywords: 
Mixed effects models 
Machine learning 
Longitudinal data analysis 
Alzheimer’s disease 
Mild cognitive impairment 
MRI 

A B S T R A C T   

We present a framework for constructing predictive models of cognitive decline from longitudinal MRI exami-
nations, based on mixed effects models and machine learning. We apply the framework to detect conversion from 
cognitively normal (CN) to mild cognitive impairment (MCI) and from MCI to Alzheimer’s disease (AD), using a 
large collection of subjects sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the 
Australian Imaging, Biomarkers and Lifestyle Flagship Study of Aging (AIBL). We extract subcortical segmen-
tation and cortical parcellation from corresponding T1-weighted images using FreeSurfer v.6.0, select bilateral 
3D regions of interest relevant to neurodegeneration/dementia, and fit their longitudinal volume trajectories 
using linear mixed effects models. Features describing these model-based trajectories are then used to train an 
ensemble of machine learning classifiers to distinguish stable CN from converters to MCI, and stable MCI from 
converters to AD. On separate test sets the models achieved an average of accuracy/precision/recall score of 
69/73/60% for converted to MCI and 75/74/77% for converted to AD, illustrating the framework’s ability to 
extract predictive imaging-based biomarkers from routine T1-weighted MRI acquisitions.   

1. Introduction 

About 50 million people world-wide suffer from dementia (World 
Health Organization, 2019), with a new case appearing every 

3.2 seconds (Prince, 2015). The total cost of dementia care has risen to 
above one trillion US dollars after 2018 (World Health Organization, 
2019; Prince, 2015). The most common form of dementia is Alzheimer’s 
disease (AD), responsible for up to 60 − 70% of cases (Prince, 2015). AD 
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is aging-related, mostly inflicting people above 60 years. This is a 
steadily growing age group: in the 20th and 21st centuries, both the 
overall population levels and life expectancy increased drastically, a 
trend that shows no sign of stopping. In 2018, for the first time recorded 
in history, people aged 65 and older outnumbered children five years or 
younger. Currently, about one in 11 people in the world are above 65, 
and this is expected to increase to one in six by 2050. The number of 
people above 80 years is projected to rise from 143 million in 2019 to 
426 million in 2050 (United Nations Department of Economic and Social 
Affairs Population Division, 2017). 

There has been extensive research into biological and neurological 
alterations with aging. It is well-known that aging causes a decline in 
processing speed, working memory and inhibitory function, as well as 
atrophy in several brain structures (Park and Reuter-Lorenz, 2009; 
Brookmeyer et al., 2007). These normally-appearing damages intensify 
with aging-related diseases, making the discrimination between normal 
and disease-related aging both challenging and important (Reuter--
Lorenz and Lustig, 2005). 

Alzheimer’s disease is a chronic neurodegenerative disease causing 
the death of neurons. As neurons commonly do not reproduce or get 
replaced, preventing damage in the first place is crucial to slow its 
progression. There is no cure for AD – even moderate forms refuse 
treatment – but medication can affect patients with mild forms of the 
disease (Dodel et al., 2013; Montgomery et al., 2003). For this reason, as 
well as optimizing treatment plans, early disease detection and predic-
tion is crucial (Siemers et al., 2016; Guerrero et al., 2016). 

In aging, brain atrophy is normal. However, in dementia certain 
regions of the brain have increased speed of atrophy (Park and 
Reuter-Lorenz, 2009; Leong et al., 2017; Rodrigue and Raz, 2004; 
Lundervold et al., 2019; Chandra et al., 2019). While the distinction 
between the neurodegenerative changes by normal aging and those that 
characterise AD is not evident, studies have shown that greater 
shrinkage in specific brain regions is linked to AD (Leong et al., 2017; 
Raz, 2000; West et al., 1994). For example, hippocampal volume re-
ductions and ventricular expansions show different patterns in healthy 
aging and in dementia (Thompson et al., 2004), and both can be 
considered as imaging biomarkers to investigate the rate of brain dete-
rioration (Leong et al., 2017; West et al., 1994; Raz, 2000). The change 
in the brain has been quantified with different methods and techniques, 
such as counting neuronal cell loss in brain regions (West et al., 1994) 
and by calculating the changes in the volume of the brain regions from 
neuroimaging data (Leong et al., 2017; Raz, 2000). 

Such imaging findings, and the uncertainty in the clinical diagnosis 
of AD, leads to both a need and a potential for further quantitative and 
indicative imaging biomarkers. In recent years, researchers have con-
structed a variety of analysis tools and approaches to investigate the 
aging process in the brain using MRI data, often including machine 
learning methods (Falahati et al., 2014; Guerrero et al., 2016; Jack et al., 
2008; Klöppel et al., 2008; Scheltens et al., 1992; Shi et al., 2009). 

While there have been many promising results, there are several 
limitations in these methods and approaches. For example, an assump-
tion underlying many of the proposed machine learning approaches is 
that the data instances in follow-up MRI examinations are independent 
and identically distributed. However, in longitudinal data there are 
certainly correlations (Falahati et al., 2014; Ngufor et al., 2019; Lei 
et al., 2017), and using proper longitudinal analysis designs have some 
important advantages, such as reducing the confounding effect of 
between-subject variability and making it possible to use non-
independent data. Some recent works have taken this into account 
(Ngufor et al., 2019; Lei et al., 2017; Huang et al., 2016; Zhang et al., 
2012; Lim and van der Schaar, 2018), but additional limitations remain. 
One limitation that the present study aims to overcome is an assumption 
underlying many other approaches: that all subjects have the same 
number of measurements, and, even, that the measurements are recor-
ded over the same time interval lengths for the entire sample set. In 
practice, these assumptions are often invalid, leading other studies to 

remove instances from their data set (Zhang et al., 2012). 
In the present study, we propose a pipeline that is better adapted to 

such situations. It is a framework based on a combination of mixed ef-
fects models (LME) and an ensemble machine learning model (Fig. 2). 
We used linear time-dependent mixed effects model parameters to 
derive representative features from the MRI measurements in the pre-
dictive machine learning models. Our approach applies to situations 
where subjects have varying number of MRI examinations, potentially 
recorded at different scan intervals. It is also possible to include subjects 
that were examined at a single time-point. The mixed effects modelling 
is applied to the volumetry of brain regions computed by FreeSurfer 
v.6.0 (Fischl, 2012), enabling extraction of subject- and region-specific 
longitudinal volume trajectories (Fig. 1). The instability and fluctua-
tions observed when analysing brain structure volumes from MRI over 
time, caused by e.g. computational instabilities, noise, hydration status, 
scanner upgrades, time-of-day at scanning (Trefler et al., 2016) or slight 
variation in the acquisition protocol, and not changes in the brain pa-
renchyma per se, become less influential by using a LME model (Fig. 1b). 
This makes the representation of individual volume trajectories more 
robust, and the prediction of longitudinal group differences more precise 
(Bernal-Rusiel et al., 2013). 

Our results show the ability of this framework to make early pre-
diction of AD, prior to clinical diagnosis, and, to a certain extent, 
distinguish between cognitively normal (CN) subjects and those who are 
at risk of MCI. Such a model-based predictive framework, together with 
assessments of risk factors, could have great potential in monitoring 
natural progression and to evaluate effect of possible therapeutic in-
terventions. It can also help the clinician in prognostics and advice 
regarding lifestyle changes and preparing patients for likely life events 
of neurodegenerative disease. In a related work by the authors (Mofrad 
et al., 2021) we have demonstrated the proposed framework’s ability to 
incorporate any kind of longitudinal measure, in that case cognitive 
measures from psychometric testing, and also that the MRI-derived 
measures provide additional information to the predictive model. 

2. Methods 

We applied mixed effects models to derive features from longitudinal 
MRI examination, and used the features in machine learning models 
aiming at predicting MCI and AD prior to the clinical events. Our 
approach has two key parts: (i) feature selection, model development 
and validation, and (ii) model-evaluation. We used data from ADNI for 
the first part, and a combination of ADNI and AIBL data for the second, 
making sure no subjects were used for both model training and evalu-
ation of predictive performance. The use of the AIBL data for evaluation 
ensured that our models were evaluated on an independent data set, 
sourced from different institutions and subjects than those represented 
in the training set. This is a crucial part of evaluating predictive models 
as one can otherwise easily overestimate such models’ generalization 
abilities. Fig. 2 illustrates our framework, further explained in this 
section. 

2.1. Data 

Data used in the preparation of this work were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni. 
loni.usc.edu). The ADNI was launched in 2003 as a public-private 
partnership, led by principal investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial MRI, positron 
emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the pro-
gression of MCI and early AD (Gavidia-Bovadilla et al., 2017). We also 
used data collected by the Australian Imaging, Biomarker & Lifestyle 
Flagship Study of Ageing (AIBL) database (https://aibl.csiro.au). 
Launched in 2006, AIBL is the largest study in Australia to discover 
biomarkers, cognitive characteristics, health and lifestyle factors 
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determining the development of symptomatic AD. It comprises more 
than 1000 participants with a minimum age of 60 years and contains 
healthy volunteers, MCI and AD subjects. AIBL study methodology has 
been reported previously by Ellis et al. (Ellis et al., 2009). 

From these cohorts we used longitudinal brain MRI data from sub-
jects scanned multiple times (at least twice) over a period of 15 years. 
Our data collection consisted of 1673 subjects (with a total of 8002 
scans) from ADNI (7764 scans from 1603 subjects) and AIBL (238 scans 

Fig. 1. Aging causes morphometric changes in the brain and dementia accelerate these changes. (a) Here we illustrate volume reduction of the hippocampi: 
left + right hippocampus (A) and expansion of the lateral ventricles (B) with surface renderings from three scans in the series of eight examinations of the same 
subject. (b) A LME model was used to derive representations (i.e. random effects) of such volume trajectories. The blue lines are observed volume trajectories and the 
red lines are the estimated random effects, based on the eight measurements. Note the small fluctuations or instabilities in the measurements connected by the blue 
line segments. See the Methods section for more details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 2. a) Predictive framework for longitudinal data: we first put aside a test set from the longitudinal data. Each mixed effects model is applied separately on the 
entire data set and on the training set. The features associated with the test set were computed based on constructing the mixed effects models from the entire data 
set. We used cross-validation on the training set for machine learning model selection. b) Prediction of dementia: we first ran FreeSurfer v.6.0 on the longitudinal 
data from ADNI and AIBL. Then we prepared a table of volumes for brain regions and other information of the subjects. For detecting MCI in task 1, described in 
Section 3.1, we selected HC and cMCI subjects and removed scans labelled as MCI for all subjects. For detecting AD in task 2, described in Section 3.2, we selected 
sMCI and cAD subjects and removed scans labelled AD. Finally, a pipeline based on linear time-dependent mixed models was applied. 

S.A. Mofrad et al.                                                                                                                                                                                                                               

Paper A 59



Computerized Medical Imaging and Graphics 90 (2021) 101910

4

from 70 subjects). 

2.2. Volumetric biomarkers 

The ADNI data release contains derived subcortical and cortical 
measures computed using FreeSurfer on the T1-weighted MR images. 
FreeSurfer is a powerful, widely used software package providing 
automated analyses of structural and functional neuroimaging data from 
cross-sectional or longitudinal studies (Fischl, 2012). 

However, the FreeSurfer data released by ADNI is based on two 
different software versions, v.4.3 (from March 2009) and v.5.1 (May 
2011), both of which are superseded by v.6.0 released in January 2017. 
Previous studies have demonstrated significant discrepancies between 
different versions of FreeSurfer (Chepkoech et al., 2016; Gronenschild 
et al., 2012; Klauschen et al., 2009), and our own exploratory data an-
alyses based on the ADNI data also demonstrate such an effect. For 
example, Fig. 3a indicates the dissimilarity of volume measurement with 
the two versions of FreeSurfer the ADNI consortium used on their data, 
v.4.3 and v.5.1. The results in Fig. 3 show clear discrepancies between 
hippocampus volumes derived from scanners of field strengths 1.5 Tesla 
and 3.0 Tesla. This highlights the importance of not changing the 
version of FreeSurfer during longitudinal studies, especially those 
involving scanners of different field strengths. 

To get more precise information about the potential negative impact 
of the varying FreeSurfer versions, we conducted an experiment using 
FreeSurfer v.5.3 and v.6.0 (the newest version at the time of experi-
ment). We selected 80 subjects, controlling for disease status (CN/De-
mentia, 40/40), gender (F/M, 40/40), scanner field strength (1.5T/3T, 
40/40), and age ([75,80)/[80,85), 40/40). One of the results is shown in 

Fig. 4, indicates that the effect of FreeSurfer versions differs between CN 
and Dementia subjects. We concluded that the FreeSurfer version is an 
important factor for studying atrophy, especially in the small regions of 
the brain (e.g. the hippocampus), and therefore reprocessed all the ADNI 
and AIBL data using FreeSurfer v.6.0 on Ubuntu 18.04 GNU/Linux 
workstations. This gave us the data set used in the remainder of this 
work. 

2.3. Mixed effects models 

Our framework is based on linear mixed effects models (LME), a 
well-established approach to longitudinal data analysis, used to derive 
regression models from dependent data. In contrast to simpler linear 
models, LME provides a combination of fixed and random effects as 
predictor variables (Bell and Jones, 2015; Harrison et al., 2018; Lind-
strom and Bates, 1990; Müller et al., 2013; West et al., 2014). Mixed 
effects models allow the collection of relatively simple, robust, 
noise-free, and subject-specific representations of brain change over 
time, as illustrated by the red lines in Fig. 1b, based on age at scan as the 
covariate. 

As some brain ROI volumes versus time show linear cohort behavior 
while others behave nonlinearly (cf. Fig. 5), we were motivated to use 
LME models with both linear and nonlinear (quadratic) covariates. Our 
models are based on the model presented by West et al. (West et al., 
2014), also used in our previous work (Lundervold et al., 2019): 

Volr
ij = βr

0 + βr
1Ageij

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
fixedeffect

+ br
0i + br

1iAgeij + εr
ij

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
randomeffect

, (1) 

Fig. 3. Plotting the hippocampi volumes for all ADNI subjects across age indicates a discrepancy between (a) the volumes calculated by different versions of 
FreeSurfer and (b) the volumes recorded from MRI scanners having different field strengths. 

Fig. 4. Box-plots illustrating the importance of 
FreeSurfer version and magnetic field strength 
on measuring the volume of the left hippo-
campus. Each paired box-plot, blue and yellow, 
contains the same T1w volumes processed with 
FreeSurfer v. 6.0 and v. 5.3, respectively. a) 
shows volume difference for subjects diagnosed 
with dementia. b) shows volume difference for 
CN subjects. For dementia the volume discrep-
ancies between FreeSurfer versions are both 
large and statistically significant (paired t-test, 
p <0.05) for both 1.5 and 3 Tesla scanners. For 
CN the version-related differences are insignif-
icant. Note that while we have controlled the 
gender and age in these groups (1.5 and 3 
Tesla) the subjects are different, which makes a 
precise conclusion of the impact of varying 
scaner versions difficult. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the web version of this 
article.).   
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where r denotes the brain region, Volrij is the volume of region r for 
subject i : 1,…,N at scan j : 1,…,ni. In our case, ni varies between 2 and 
11. Ageij is age (in years) of subject i at scan j. This is the only predictor 
variable in the model. The βr

0 and βr
1 are fixed effect parameters, while 

br
0i and br

1i are random effects parameters and εr
ij denotes the random 

residual errors. 
As seen in Fig. 5, the cohort volume change in the lateral ventricles 

demonstrate a quadratic behavior, likely due to atrophy over time in 
multiple brain regions leading to an enlargement of the cerebrospinal 
fluid-filled lateral ventricles, compensating the tissue loss (i.e. total 
intracranial volume is preserved). To model this behaviour, we assume 
the rates of volume change are covariant with both age and age2. 
Accordingly, our mixed effect models are: 

Volr
ij = βr

0 + βr
1Ageij + βr

2Age2
ij

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
fixedeffect

+ br
0i + br

1iAgeij + br
2iAge2

ij + εr
ij

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
randomeffect

, (2)  

where (βr
0, β

r
1, βr

2) are fixed effect parameters and (br
0i, br

1i, br
2i) are 

random effect parameters. 
We used the mixedlm function in the Python statsmodels library 

(Seabold and Perktold, 2010) (version 0.11.0) to construct and fit the 
LME models to the data, extracting a mean cohort trajectory (fixed ef-
fect) and the subject-specific trajectories (random effects). In this setting 
the model is linear in the parameters, but can be nonlinear in the 
covariates. The model parameters (βs and bs) were estimated and stored 
for each subject, according to Eq. (1) and Eq. (2). 

Fig. 5 shows fixed and random effects regressions computed by Eq. 
(2) for subjects split into two groups: healthy (HC, n = 407, f/m = 215/ 
192) and non-healthy (sMCI, cAD and sAD, n = 1185, f/m = 492/693). It 
shows a difference between normal age-related atrophy (blue) and 
increased atrophy in the case of neurodegenerative disease (purple). 
This figure indicates the potential of our approach of deriving features 
from LME models for classifying our different subgroups defined in 
Table 1a. 

We used the volume increase of the ventricles as a measure of total 
brain atrophy and the volume change in the hippocampi, as it is a well- 
known structure affected by dementia. 

Derived features 
From the mixed effects models we derived four features for each 

individual ROI trajectory: (i) For the linear models (Eq. (1)), a vector of 
random effect covariates, (br

0i,br
1i), containing the intercept of the group 

and the slope of the random effects line. For the nonlinear models (Eq. 
(2)) we used the vector (br

0i,br
1i,br

2i), the intercept for the group and the 
coefficients of age and age2; (ii) and (iii) The deviation measured at the 
first scan, d0

i , and at the last scan, dni
i , respectively. In other words, the 

derived random effects values at the first and the last scans, (illustrated 
in Fig. 6), as given by 

dj
i = Volij − (β0 + β1Ageij) (3)  

and, for the nonlinear models, d0
i and dni

i given by 

dj
i = Volij − (β0 + β1Ageij + β2Age2

ij); (4)  

where j is either 0 or ni. (iv) The difference of volumes at the first and last 
scans, divided by the number of years between them (Eq. (5), i.e. the 
slope of atrophy from the first to the last measurement): 

Atrophyslope
i =

Vini − Vi0

Ageini
− Agei0

(5)  

where Vi0 and Vini are the volumes at the first and last scans for subject i, 
respectively. Feature (iv) is motivated by the varying number and timing 
of scans for the subjects, and that the atrophy seen over e.g. 10 years for 
one subject can be equal to the atrophy in two years for another (see 
Fig. 6). 

2.4. Predictive models 

As input features to our machine learning models we used the sub-
jects’ sex, average age at scans, age at last scan, and the above four 
features from mixed effects models, scaled according to 

Fig. 5. Longitudinal trajectories for the eTIV- 
normalised volumes of ventricles (a) and 
hippocampi (b) versus age at scan. Healthy 
subjects are marked in blue, non-healthy in 
purple. The thick black curve is the cohort fixed 
effect regression line. The random effects 
computed by Eq. (2) are shown as thin grey 
lines for each subject. Note the steady decrease 
in the hippocampal volumes with time in the 
age range 55–95 years, and the concomitant 
nonlinear increase in the lateral ventricle vol-
umes. The plot indicates that the most extensive 
tissue losses are found among subjects labelled 
as not cognitively normal. (For interpretation of 
the references to color in this figure legend, the 

reader is referred to the web version of this article.).   

Table 1 
a) The original ADNI class labels and the longitudinal labels used in the present 
study with their descriptions. b) Total number of subjects and number of T1- 
weighted MR images according to class label in our study, selected from ADNI 
and AIBL.  

a) 
Source Class Class description 

ADNI 

CN Cognitively normal at visit 
MCI Mild cognitive impairment at visit 
Dementia Alzheimer’s disease at visit 
HC CN at all visits 

Our study 

cMCI Initially CN, later converted to MCI 
rHC Risky CN: cMCI with MCI scans removed 
sMCI MCI at all visits 
cAD Initially MCI, later converted to Dementia 
rMCI Risky MCI: cAD with Dementia scans removed 
sAD Dementia at all visits  

b) 

Class 
ADNI AIBL 

ID #Images  ID #Images  

HC 407 1994 24 90 
cMCI 109 596 24 80 
sMCI 509 2500 11 34 
cAD 269 1540 11 34 
sAD 298 1055 - - 
ALL 1603 7764 70 238  
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standardscaling :
x∼= x − x

σ , ormax − minscaling : x∼=
x − min(x)

max(x) − min(x)
,

where x is a vector of features, x is the mean value of vector x, and σ is 
the standard deviation for x. We trained an ensemble of a logistic 
regression and a support vector machine, based on a soft voting strategy, 
i.e. using the weighted average probabilities from each model in the 
ensemble. Rather than using single models, with their own specific de-
cision logic, an ensemble constructed from multiple diverse, 
individually-tuned models can result in a more robust, higher- 
performing model (Dietterich, 2000; Saeys et al., 2008). We used 
recall and accuracy scores to assess our models during development and 
hyper-parameter selection, using subject-level cross-validation on the 
training set. For each model we set up a grid search through sets of 
hyperparameters, attempting to find the models with the best general-
ization abilities. 

For the support vector classification model (SVC) we evaluated the 
regularization parameter C, polynomial, sigmoid and radial basis func-
tion kernels, and the kernel coefficient. In scikit-learn, the kernel 
coefficient γ is either set to scale or auto. For training data with length n, 
the scale setting means that the model uses 1/(#features × variance(x)) as 
the value of γ and auto means it uses 1/(#features). For the logistic 
regression model we evaluated whether to include an l2 penalty and the 
strength of this regularization (C). For both SVC and logistic regression 
we fixed a random seed, to ensure reproducibility, and set the maximum 
number of iterations to 500. 

We performed feature selection and model development using T1- 
weighted images from the ADNI dataset, and model evaluation with 
data from non-overlapping subjects sourced from both ADNI and AIBL. 
When constructing predictive models for conversion from healthy to 
MCI and from MCI to AD, we removed all MRI measures taken from the 
time of conversion and after. 

We considered two predictive tasks, described using the subject 
classes of Table 1:  

1 HC subjects (n = 133, f/m = 56/77) versus converted to MCI subjects 
(cMCI, n = 133, f/m = 55/78), 

2 stable MCI subjects (sMCI, n = 279, f/m = 114/165) versus con-
verted to AD subjects (cAD, n = 279, f/m = 111/168). 

In task 1 we removed the MRI scans that corresponded to clinical 
diagnoses of MCI from the cMCI subjects. We call the resulting collection 
risky HC (rHC). In task 2 we removed MRI scans corresponding to AD 
from the cAD subjects, calling the resulting collection risky MCI (rMCI). 
Details about diagnosis labels and the number of subjects are given in 
Table 1. 

3. Results 

3.1. Task 1: Prediction of MCI 

We applied our model to two groups of subjects: the subjects marked 
as cognitively normal at all visits (HC) and the risky HC (rHC, i.e. MRI 
data from cMCI subjects obtained by removing the scans clinically 
labelled as MCI). The goal was to investigate whether regular MRI scans 
can separate HC from rHC, as early detection of MCI based on brain 
morphometry is an important but also a very challenging task. The 
subject trajectories for ventricles and hippocampi (Fig. 7) found using 
LME model show atrophy in the hippocampi and volume increase in the 
ventricles during aging, while also showing similarity in the trajectories 
of HC and cMCI. In addition, Fig. 8 shows similar behavior for the 
average volume of ventricles and hippocampi in HC and cMCI groups of 
participants, indicating the difficulty of the classification task. 

We used data from ADNI for training and data from AIBL for model 
evaluation. After optimizing the model based on leave-one-out cross 
validation over the entire training data set (details of hyper-parameters 
are shown in Table 2 and also in the accompanying code repository1), 
we performed a 15 fold cross validation experiment on the training data 
set, controlling for labels, age, and gender in the hold-out folds. The 
mean accuracy and standard deviation obtained by the 15 folds for 
ventricles and hippocampi ranged from 69 ± 6% to 73 ± 7% (see Table 3 
for more details). We then applied the model on the main test set from 
AIBL for evaluation. 

We evaluated the model with eight different feature vectors. First, we 
extracted four sets of features from the ventricles and the hippocampi 
volumes, using linear and quadratic LME models. Then we applied the 
ensemble model on each set of features to find the ones with the highest 
classification performance. We obtained the best accuracy (71%) for 
quadratic features extracted from hippocampi. See Table 3 for details 
about these results. 

Next, we combined the extracted features of ventricles and hippo-
campi to see whether this would improve the classification. The results 
are shown in Table 3. 

3.2. Task 2: Prediction of AD 

The ability to predict AD before the symptoms are caught by the 
clinician is the main objective for our study. We selected sMCI and cAD 
subjects from ADNI and AIBL to investigate to what extent the atrophy 
trajectories can distinguish the stable MCI from the risky MCI (subjects 

Fig. 6. a) Estimated values for random effects at first and last scans (d0
i , dn

i ) are considered as features (ii) and (iii), respectively. b) The linear slop of atrophy (Eq. 
(5)) calculated based on volumes at first and last scans. The time points are different, and therefore the amount of atrophy in 10 years for a subject can be the same as 
a 5 years atrophy for another subject (see the red arrow). Therefore, the slope of total atrophy in each ROI is considered as a feature, (iv), for each subject. 

1 https://github.com/MSamane/A-predictive-framework-for-Alzheimers-d 
isease 

S.A. Mofrad et al.                                                                                                                                                                                                                               

62 Paper A



Computerized Medical Imaging and Graphics 90 (2021) 101910

7

obtained by removing scans clinically labelled as AD from the cAD 
subjects). On average, the trajectories for ventricles and hippocampi 
show a clear atrophy in the hippocampi and a volume increase of the 
ventricles (Fig. 9). Furthermore, the blue subject trajectories (sMCI) in 
Fig. 9b are on average above the purple trajectories (cAD). 

As for task 1, we first optimized the ensemble machine learning 
model using leave-one-out cross validation over the entire training data 
set from ADNI (details of hyper-parameters are in Table 4 and in the 
accompanying code repository), and then performed a 15 fold cross 
validation experiment on the training data set, controlling for labels, 
age, and gender in the hold-out folds, before evaluating the model on a 
test set. The mean accuracy and standard deviation ranged from 77 ±

4% to 79 ± 6% (see Table 5). 
As there are few cAD subjects in AIBL, the test set was constructed 

using subjects from ADNI (n = 99) and AIBL (n = 22). As for task 1, we 
applied the ensemble models on eight sets of features extracted by linear 

Fig. 7. Task 1: Longitudinal trajectories for the eTIV-normalised volumes of the lateral ventricles (a) and hippocampi (b) versus age at scan. The thick black curve is 
the cohort nonlinear regression line. The random effects computed by Eq. (2) are shown as thin grey lines for each subject. The volume of the hippocampi decreases 
over time, likely contributing to the increase in the lateral ventricle volumes. 

Fig. 8. Ventricles and hippocampi volumes (mm3) versus our longitudinal subjects from the ADNI dataset, labelled according to Table 1a, show a similarity between 
HC and cMCI subjects. The sMCI and cAD show a difference in their ventricle volume expansions and their hippocampi atrophy. The difference between ROIs 
volumes for males and females indicates that gender is an important factor when comparing brain volumes. 

Table 2 
Model hyperparameters for task 1, for different ROIs-feature combinations, 
obtained by applying leave-one-out cross validation on the training set.  

HC vs. rHC LME 
covariates 

Logistic regression SVC 

ROI  scaler C scaler C kernel  

Ventricles 
linear standard 3.13 standard 4.0 poly 
nonlinear standard 7.78 standard 15.56 poly  

Hippocampi 
linear standard 6.7 minmax 7.525 poly 
nonlinear standard 11.16 standard 10 rbf  

Combination 

linear standard 5.6 minmax 6.7 poly 
nonlinear standard 4.5 minmax 8.9 poly 
nonlin vent, 
lin hipp 

standard 4.5 minmax 20 poly 

lin vent, 
nonlin hipp standard 20 minmax 6.7 poly  

Table 3 
Classification results for task 1 for the different ROI features. Note that the accuracy obtained in the 15 fold cross validation experiment is on average better than the 
accuracy in the final test set sourced from AIBL. As the training and hold-out data in the cross validation are both sourced from ADNI, while the test set is based on AIBL, 
this is perhaps not surprising.  

HC vs. rHC LME covariates CrossVal Acc (%) Accuracy (%) Precision (%) Recall (%) F1 score (%)  

ROI    HC rHC HC rHC HC rHC  

Ventricles 
linear 69 ± 4  69 65 76 83 54 73 63 
nonlinear 69 ± 6  69 67 71 75 62 71 67  

Hippocampi 
linear 73 ± 7  67 64 70 75 58 69 64 
nonlinear 71 ± 6  71 67 78 83 58 74 67  

Combination 

linear 70 ± 7  73 69 79 83 62 75 70 
nonlinear 70 ± 8  65 64 65 67 62 65 64 
nonlin vent, lin hipp 71 ± 8  65 64 65 67 62 65 64 
lin vent, nonlin hipp 72 ± 8  73 69 79 83 62 75 70  
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and quadratic LME from ventricles and hippocampi. The results are 
presented in Table 5 and in the confusion matrices in Fig. 10 and Fig. 11. 
The highest accuracy, 78%, was obtained when combining the quadratic 
features from the hippocampi and ventricles. 

4. Discussion 

We have developed a flexible and simple framework for extracting 
features and constructing predictive models from longitudinal MRI in 
relation to cognitive aging and dementia, based on mixed effects models 
and ensemble machine learning methods. A strength of the approach is 
its inherent ability in tackling longitudinal data sets, including situations 
with sets of subjects with a varying number of scans, taken at different 
time intervals, which is a common occurrence in longitudinal studies. 

We applied the framework to predict dementia, using a large data set 
sourced from ADNI and AIBL for training and testing. Based on mea-

Fig. 9. Task 2: Longitudinal trajectories for the normalised volumes of ventricles (a) and hippocampi (b) versus age at the scan. The thick black curve is the cohort 
nonlinear regression line. The random effects computed by Eq. (2) are shown as thin grey lines for each subjects. The volume of hippocampi decreases over time 
contributing to the increase in ventricular volume. The plot indicates that, the most extensive losses are found among cAD subjects. 

Table 4 
Model hyper parameters for task 2, for different ROIs-feature combination, ob-
tained by applying leave-one-out cross-validation using the training set.  

sMCI vs. 
rMCI 

LME 
covariates 

Logistic 
regression 

SVC 

ROI  scaler C scaler C kernel  

Ventricles linear standard 19.9 standard 6.72 rbf 
nonlinear minmax 8.9 minmax 4.5 poly  

Hippocampi 
linear standard 8.89 minmax 11.12 poly 
nonlinear standard 7.78 minmax 2.23 poly  

Combination 

linear standard 6.7 minmax 2.3 poly 
nonlinear standard 4.5 minmax 5.6 poly 
nonlin vent, 
lin hipp 

standard 7.8 minmax 3.4 poly 

lin vent, 
nonlin hipp 

standard 4.5 minmax 1.2 poly  

Table 5 
Classification results for task 2, related to different ROI’s features. The 15-folds validation results are based on only ADNI dataset (subset of training set) while the other 
results are based on final test set, a combination of subjects from ADNI and AIBL data.  

sMCI vs. rMCI LME covariates CrossVal Acc(%) Accuracy(%) Precision(%) Recall(%) F1 score(%)  

ROI    sMCI rMCI sMCI rMCI sMCI rMCI  

Ventricles 
linear 77 ± 4  74 77 71 67 80 72 75 
nonlinear 77 ± 4  73 78 69 64 82 70 75  

Hippocampi 
linear 79± 5  74 78 70 66 82 71 75 
nonlinear 78 ± 5  77 77 77 77 77 77 77  

Combination 

linear 79 ± 5  75 76 74 74 77 75 75 
nonlinear 79 ± 4.5  78 74 82 85 70 79 76 
nonlin vent, lin hipp 78 ± 5  76 78 75 74 78 76 76 
lin vent, nonlin hipp 79 ± 6  74 73 76 79 70 76 73  

Fig. 10. Confusion matrices for classification of sMCI vs. rMCI based on features extracted from LME model (Eq. (1)) for the ventricles (a), the hippocampi (b), and 
the combination of ventricles and hippocampi (c). 
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surements of hippocampal and lateral ventricle volumes in single sub-
jects over time, we were able to make predictions of conversion from 
cognitively normal (CN) to mild cognitive impairment (MCI) and from 
stable MCI to AD, ahead of the corresponding clinical diagnoses, with 
accuracies of 73% and 78%, respectively. The task of predicting con-
version from healthy to MCI is inherently difficult, as it is very chal-
lenging to differentiate cognitive decline related to MCI symptoms from 
cognitive decline with stable cognitive performance at the baseline (Yue 
et al., 2021). Therefore, our above chance level results at this task is 
notable. Since the subjects in our study vary with respect to the number 
of MRI scans and number of years between scans, it is not straightfor-
ward to state how early we can predict the risk of MCI or AD prior to 
diagnosis. In our sample the average time interval between the MRI 
scans for each subject is 0.53 years (HC: 0.58, cMCI: 0.62, sMCI: 0.48, 
cAD: 0.53). Therefore, we cannot expect to obtain predictions of con-
version to MCI or AD earlier than half a year ahead of the actual 
conversion. 

There are a few studies that predict the conversion from HC to MCI 
using multi-domain features, including MRI scans (Mofrad et al., 2021; 
Yue et al., 2021; Albert et al., 2018). Albert et al. (2018) employed 
imaging-biomarkers related to the hippocampus and the entorhinal 
cortex in a sample of 224 subjects (178 HC vs. 46 cMCI) obtaining a 
sensitivity of 64% in predicting the conversion to MCI. Yue et al. (2021) 
obtained an accuracy/sensitivity of 63%/42% in predicting decline to 
MCI using MRI-derived features only, improving their results to 70% 
accuracy and 63% sensitivity when incorporating multi-domain fea-
tures. Regarding conversion from MCI to AD, Young et al. (2013) pre-
dicted this conversion within three years with a 74% accuracy using a 
Gaussian process classification. This is on par with our results of 78% 
accuracy. Interestingly, using a deep learning approach (CNN and RNN) 
and longitudinal MRI data Cui et al. (2019) obtained 72% classification 
accuracy and 76% sensitivity in their experiments to predict pMCI vs. 
sMCI. 

There are several limitations related to the available data material in 
our study and in our methods. For example, the group of patients with 
MCI is highly diverse (Cole and Franke, 2017; Walhovd et al., 2014; 
Nyberg and Pudas, 2019), and a clinical diagnosis of Alzheimer’s disease 
is inherently uncertain, as the disease is only definite post-mortem 
(Association, 2013). This is not captured by the labels in ADNI and 
AIBL, and also holds for similar studies mentioned above. 

Furthermore, variability of non-biological origin in MRI measure-
ments, occuring between subjects and in subject examinations over 
time, will take place (different scanners, calibration issues and scanner 
drift, different head positions, head motion during scan, etc.) (Trefler 
et al., 2016; Di et al., 2019). There are also instabilities and uncertainties 
in the algorithms, libraries and numerical schemes used to compute 
brain region-specific measures that will lead to sources of variation 
affecting predictive models and their performance. In this context, we 

used FreeSurfer v.6.0 and v.5.3 to compute the volumes of the hippo-
campi and lateral ventricles, exploring some of the inherent variation 
when using different version of the software and when the images are 
recorded on scanners of different magnetic field strength (Fig. 3 and 
Fig. 4). Based on this exploration, we re-computed the volumes in the 
ADNI and AIBL data sets using the same version of FreeSurfer (v.6.0) to 
reduce some of the variability. But some instability issues surely remain. 

In this work we focused on establishing a framework using only MRI- 
based morphometric measurements of the hippocampi, as a brain region 
well-known to be impacted by dementia (Leong et al., 2017; Chandra 
et al., 2019; Rodrigue and Raz, 2004; Raz, 2000), and the lateral ven-
tricles, as a global measure (proxy) of brain atrophy (Leong et al., 2017; 
Chandra et al., 2019). Other regions are also impacted by aging and 
dementia, and inclusions of measures from those ROIs could potentially 
lead to improved predictions (Rodrigue and Raz, 2004; Raz, 2000; Leong 
et al., 2017; Hensel et al., 2005; Poulin et al., 2011). 

Another approach taken by some researchers (Cui et al., 2019) is to 
train convolutional and recurrent neural networks to make predictions 
directly from subjects’ MRI recordings (see e.g. Wen et al., 2020, for an 
overview). This has the possible advantage of bypassing a lot of careful 
feature engineering and feature selection with its inherent issues, while 
still making as accurate or more accurate predictions. But it suffers from 
the disadvantage of leading to less explainable models (Lundervold and 
Lundervold, 2019). 

A major opportunity and motivation for applying machine learning 
to neuroimaging examinations in middle aged or elderly subjects that 
are at risk of cognitive decline, mild cognitive impairment or full blown 
AD, is the ability to make predictions for single individuals. Such im-
aging procedures and data analysis will thus support personalized medi-
cine, and with detailed quantification of image-derived features in 
combination with subject-specific information obtained from other 
sources, one can also aim for precision medicine. A contribution of the 
present work is the design and testing of an expressive and flexible 
machine learning framework that supports both longitudinal image- 
derived features as well as cognitive scores (Mofrad et al., 2021), 
where biochemical measures, genetic profiles and other clinical or lab-
oratory measurements can be included. In the context of the present 
work and available data in the used data repositories, further im-
provements could potentially be made by including features from 
multi-modal MRI, such as functional BOLD MRI (Sperling, 2011; Lajoie 
et al., 2017) and diffusion MRI (Doan et al., 2017), or the presence of the 
APOE4 gene variant (Kim et al., 2009; Safieh et al., 2019), or values 
from CSF analyses (Janelidze et al., 2020). Including results from clin-
ical examinations would also be valuable (Holleran et al., 2020), as the 
present authors have reported in (Mofrad et al., 2021). Challenges for 
clinical use include the trade-off between locally available measurement 
techniques and infrastructure (e.g. scanners and protocols), the need for 
feasible patient examination times, the quality and management of 

Fig. 11. Confusion matrices for classification of sMCI vs. rMCI based on features extracted from quadratic mixed effects model (Eq. (2)) for the ventricles (a), the 
hippocampi (b), and the combination of ventricles and hippocampi (c). 
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model predictions in single individuals, and the consideration of avail-
able options for therapy and interventions. 
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Cognitive and MRI trajectories 
for prediction of Alzheimer’s 
disease
Samaneh A. Mofrad1,3*, Astri J. Lundervold2, Alexandra Vik3 & Alexander S. Lundervold1,3

The concept of Mild Cognitive Impairment (MCI) is used to describe the early stages of Alzheimer’s 
disease (AD), and identification and treatment before further decline is an important clinical task. 
We selected longitudinal data from the ADNI database to investigate how well normal function (HC, 
n= 134) vs. conversion to MCI (cMCI, n= 134) and stable MCI (sMCI, n=333) vs. conversion to AD (cAD, 
n= 333) could be predicted from cognitive tests, and whether the predictions improve by adding 
information from magnetic resonance imaging (MRI) examinations. Features representing trajectories 
of change in the selected cognitive and MRI measures were derived from mixed effects models and 
used to train ensemble machine learning models to classify the pairs of subgroups based on a subset 
of the data set. Evaluation in an independent test set showed that the predictions for HC vs. cMCI 
improved substantially when MRI features were added, with an increase in F

1
-score from 60 to 77%. 

The F
1
-scores for sMCI vs. cAD were 77% without and 78% with inclusion of MRI features. The results 

are in-line with findings showing that cognitive changes tend to manifest themselves several years 
after the Alzheimer’s disease is well-established in the brain.

Ageing is associated with cognitive changes characterised by phenotypic diversity in both pace and severity. This 
diversity is a result of the many biological and life-style factors influencing an individual throughout his or her 
life-time1,2. Some individuals preserve their cognitive function into old age, so-called “superagers”3, while others 
experience a decline at a younger age due to a neurodegenerative  disease4. Along this wide dimension of cognitive 
function, it becomes difficult to define the fine line between normal and pathological ageing.

Alzheimer’s disease (AD) is a common neurodegenerative disease characterised by a cognitive impairment 
that gradually worsens over  time5. A lot of effort has been put into the identification and development of treat-
ment options that can stop this degenerative process at an early stage. Early on, the cognitive symptoms tend to 
be minor and the condition is referred to as a Mild Cognitive Impairment (MCI)6. Not all patients with MCI will 
develop AD. Although studies have shown that a patient with MCI has up to a tenfold increased risk to develop 
the  disease4,7, a subgroup of individuals with MCI are left with a stable condition or may even revert to normal 
 function8. The search for predictors of conversion from MCI to AD is therefore an important field of  research6,9.

Impaired performance on psychometric tests of memory  function10,11 and on more global measures of cog-
nitive  function9 have been recognized as early cognitive predictors of AD. However, this impairment tend not 
to be uncovered until years after the condition is well-established in the  brain12. This is documented by several 
previous studies relating early changes in cognitive function to changes in specific regions and structures of the 
brain, including an expansion of the ventricles and volume loss in the hippocampus and entorhinal  cortex13,14. A 
more precise prediction of AD is therefore expected if information from results on cognitive tests are combined 
with information from magnetic resonance imaging (MRI) of the  brain15,16.

The present study was motivated by the challenge to predict AD at an early stage of the disease. Based on 
data available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) we investigated how well a set of 
machine learning models could predict conversion from normal function through MCI to AD. In a first set of 
analyses we defined features characterising longitudinal changes in memory function (Rey Auditory Learning 
Test (RAVLT))11 and in a more global measure of cognitive function (ADAS-Cog-13 (ADAS13))9,17. Expecting 
more precise predictions by including information from MRI  examinations15,16, we investigated the add-on 
effect of including morphometric brain measures associated with memory function (entorhinal cortex and 
 hippocampus14) and a global measure of cognitive function (the volume of the ventricles as a proxy for a global 
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tissue  loss18). More specifically, we used a pipeline proposed by Mofrad et al.19 based on a combination of mixed 
effects and machine learning models for analysis of longitudinal data. This approach is useful when faced with 
a set of subjects with a varying number of scans and test results, examined at different time intervals. This is a 
common challenge in longitudinal studies, including studies based on the ADNI dataset.

Materials and methods
Data set. Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD, with an overall goal to validate biomarkers for use in clinical treatment 
trials for patients with AD. The study was approved by the Institutional Review Boards at each ADNI site (see 
full list here: http://adni.loni.usc.edu). Informed consent was obtained from all subjects prior to enrollment. All 
methods were carried out in accordance with relevant guidelines and regulation. The present study was approved 
by ADNI Publication Committee (ADNI DPC).

In the present study we included subjects from the ADNI dataset defined as cognitively normal (CN) or as 
patients with an MCI or AD diagnosis. According to the ADNI protocol, MCI was defined if a participant or 
caregivers reported cognitive problems, if the patient showed impairment on the logical memory-II subtest from 
Wechsler memory scale-R, a mini-mental state examination score equal to or above 24, and a clinical dementia 
rating = 0.5. None of the participants with MCI should meet the diagnostic criteria for dementia. AD was diag-
nosed according to the NINCDS-ADRDA Alzheimer’s Criteria for probable AD (see http://adni.loni.usc.edu/
metho ds/docum ents for details).

We defined four subgroups from the ADNI sample, with a restriction to subjects with MRI scans at least at 
two time-points and results on two selected psychometric tests of cognitive function. We labelled subjects as 
healthy controls (HC) if they were classified as CN at all ADNI visits. The subjects who converted from CN to 
MCI during the observation period were labelled converted MCI (cMCI). Subjects who were defined with MCI 
at all visits were labelled stable MCI (sMCI) and those converting from MCI to AD were labelled converted AD 
(cAD) (see Table 1). We balanced the number of subjects in each pair of subgroups, (HC, cMCI) and (sMCI, 
cAD), controlling for age and gender, and ended up with a total of 934 subjects. See Tables  2 and 3 for details.

Cognitive and MRI measures. 
The RAVLT was included as a measure of memory function. In this test, the participants are asked to recall 
words from a list of 15 nouns immediately after each of five learning trials and after a short and a long delay. 
Two measures known to be sensitive to cognitive changes in patients with  AD11 were included in the present 
study: Immediate recall (RAVLT-Im): the number of correct responses across the immediate recall of the five 

Table 1.  The original ADNI labels and the longitudinal labels used in the present study. a The sAD subgroup 
was not included in the present study as we focused on converters.

Labels in ADNI and our longitudinal labels

Labels Subgroup Description

ADNI

CN Cognitively normal at visit

MCI Mild cognitive impairment at visit

Dementia Alzheimer’s disease at visit

Our study

HC CN at all visits

cMCI Initially CN but later converted to MCI

sMCI MCI at all visits

cAD Initially MCI but later converted to AD

sADa Dementia at all visits

Table 2.  Total number of subjects, T1-weighted MR images, and gender distribution within each of the four 
subgroups. The table also shows the average number of MRI scans (mri) and cognitive tests (cog) per subject, 
available in each subgroup, and the average time (in years) between the MRI scans and cognitive tests per 
subgroup.

Information about the subgroups

Subgroups #Subjects #Images Gender (f/m) Average #visits (mri/cog) Average time (mri/cog)

HC 134 642 57/77 4.8/6.0 0.58/0.78

cMCI 134 731 55/79 5.5/7.0 0.62/0.80

sMCI 333 1696 143/190 5.1/6.0 0.48/0.63

cAD 333 1871 130/203 5.6/6.5 0.53/0.62

ALL 934 4904 385/549 5.3/6.3 0.54/0.67
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learning trials; percent forgetting (RAVLT-PF): the score on the fifth learning trial minus the score on the long 
delayed recall, divided by the score obtained on the fifth learning trial. The lower the scores, the more severe 
impairment of cognitive function.

The ADAS13 was included as a global measure of cognitive function. ADAS13 is a test battery developed to 
assess severity of cognitive impairment associated with AD and includes subtests and clinical evaluations assess-
ing memory function, reasoning, language function, orientation and praxis. The ADAS13 is a modified version 
of the original ADAS-Cog-1120, adding a cancellation task and a delayed free recall  task21. The higher the scores, 
the more severe impairment of cognitive function.

We used Freesurfer v.6.022 to derive measures from the T1-weighted MR images, extracting the lateral ven-
tricle volumes, the volumes of the hippocampus and the thickness of the entorhinal cortex in the left and right 
hemisphere. To reduce the effect of individual and gender differences in brain sizes, the volumes were normalized 
using a total intracranial volume measure estimated by Freesurfer (eTIV).

Figure 1 shows the age-dependent volume changes in the hippocampus (left hemisphere) and ADAS13 test 
scores across age. The severity of the volume loss and impairment on the ADAS13 are gradually increased from 
the HC through MCI to AD in the ADNI dataset. Figure 2 illustrates that the more severe scores in patients with 
AD compared to the other groups are found in both males and females, with a trend towards higher scores (i.e., 
better results) in females than males on the memory test in the CN and the MCI groups. Means and standard 
deviations for the RAVLT and the ADAS13 test scores are presented in Table 3.

Features. To construct subject specific trajectories for each measure we used linear mixed effects  models23,24, 
a class of models able to produce regression models from dependent  variables25. Our models are based on the 
one presented  in24 and similar to the ones employed in our previous  works19,26. As the ventricles show quadratic 

Table 3.  Means and standard deviations of age, education level, and scores on the included cognitive tests for 
each subgroup, given separately for the training and test sets. The information for the converted subgroups 
(cMCI and cAD) is calculated after removing the measurements from point of conversion and onward. The 
p-values for pairs of subgroups are presented separately for females and males; ∗: p < .05; ∗∗: p < .01; ∗ ∗ ∗: p < 
.001; −non-significant at 0.05 level.

Variables

Subgroups p-values

HC cMCI sMCI cAD (HC-cMCI)/(sMCI-cAD)

Age

Train (f/m) 77.4±7/77.7±7 75.2±7/77±7 75.2±8/77±7 75.6±8/77.6±7 (∗ ∗ ∗/−)/(− /−)

Test (f/m) 77.2±7/78.3±6 76.6±9/77.2±6 72.6±6/76±7 72.3±8/77.2±7 (−/−)/(−/−)

Education

Train (f/m) 15.1±3/ 17.5±2 16±2/17±2 15.6±3/16.5±3 15.1±3/16.2±3 (∗ ∗ ∗/∗ ∗ ∗)/(∗∗/−)

Test (f/m) 16.1±3/17.2±3 17±2/15.8±4 13.1±3/15.8±3 15.9±3/16.4±3 (∗/∗∗)/(∗ ∗ ∗/∗)

RAVLT-Im

Train (f/m) 47.4±10/43.8±11 47.3±10/39.6±10 38.7±11/33.2±10 29.4±9/28.2±7 (−/∗)/(∗/∗)

Test (f/m) 48.3±8/40.8±8 51.3±14/35.5±7 38.4±12/32.8±10 30.1±10/26.4±6 (−/∗ ∗ ∗)/(∗ ∗ ∗/∗ ∗ ∗)

RAVLT-PF

Train (f/m) 30.8±27/36±30 33.1±26/43±27 54.7±33/58.4±32 81.8±28/77.1±27 (−/∗∗)/(∗ ∗ ∗/∗ ∗ ∗)

Test (f/m) 31.4±25/35.9±25 33.8±28/48.3±29 51.9±35/56.1±32 81.6±30/81.4±25 (−/∗∗)/(∗ ∗ ∗/∗ ∗ ∗)

ADAS13

Train (f/m) 8.2±4/9.9±5 8.6±4/10.9±5 14.3±7/15.3±7 21.8±7/19.7±6 (−/∗∗)/(∗ ∗ ∗/∗ ∗ ∗)

Test (f/m) 8.1±4/8.1±3 8.3±5/12.2±3 13.8±8/15.7±6 22.1±7/20.4±6 (−/∗ ∗ ∗)/(∗ ∗ ∗/∗ ∗ ∗)

Figure 1.  Mean values for (a) the volume of the left hippocampus, and (b) the ADAS13 score over age, based 
on the cross-sectional ADNI labels.
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cohort behaviour (Fig. 5), likely caused by the accumulation of cerebrospinal fluid due to atrophy in multiple 
brain regions, we used linear mixed effects models both with and without a quadratic covariate term:

where c denotes the brain region or cognitive test score, Mc
ij is the measurement of volume of region c or score 

of cognitive test c for subject i = 1, . . . ,N at referral j = 1, . . . , ni . ni is the number of MRI scans or cognitive 
tests for subject i. Ageij is age of subject i at referral j. Age is the only predictor variable in the mixed model. 
The βc

0 , β
c
1 , and βc

2 are fixed effect parameters while bc0i , b
c
1i , and bc2i are random effect parameters. ǫcij denotes the 

random residual errors.
For constructing the mixed effects models we used the mixedlm function from the statsmodels Python 

library (v. 0.9.0). For each cognitive and MRI measure we derived the following features for each subject: (i) 
r-slope: the model-based random effects slope, thus taking the cohort effects for all subjects, and duration of 
study for each individual into account (the slope of the red lines in Fig. 3a). For both the linear model (Eq. 1) 
and the quadratic mixed models (Eq. 2), r-slope is bc1i , but for the Eq. 2 we used the coefficient of the quadratic 
term, bc2i , as an additional feature. (ii) dev: the distance (deviance) between the random effect line and the fixed 
effect line at the first time point ( Mi1 − (β0 + β1Agei1) ), thus taking the results at entry point into account (green 
dashed lines in Fig. 3a); (iii) d-slope: the slope obtained by dividing the difference of the measure at the first and 
last measurements by the duration between them, i.e. the slope of change from the first to the last measurement:

(1)
Mc

ij =βc
0 + βc

1Ageij︸ ︷︷ ︸
fixed effect

+ bc0i + bc1iAgeij + ǫcij︸ ︷︷ ︸
random effect

,

(2)
Mc

ij =βc
0 + βc

1Ageij + βc
2Age

2
ij︸ ︷︷ ︸

fixed effect

+ bc0i + bc1iAgeij + bc2iAge
2
ij + ǫcij︸ ︷︷ ︸

random effect

,

(3)d − slopei =
Mini −Mi0

Ageini − Agei0

Figure 2.  Box plot showing the gender specific results on RAVLT immediate recall and the ADAS13 for each of 
the longitudinal labels defined for the present study (Table 1).

Figure 3.  (a) Trajectories of age-related changes in a volumetric MRI measure (i.e., left-hippocampus) and 
random effects in four subjects for each of the four subgroups. The distance between the cohort effect and 
random effect (dev) of each subject (the green vertical lines) was included as one of the features in our statistical 
models. (b) The time-span was different between the participants in the present study. The change in ROI 
volume may therefore be the same for a participant with a short and long participation time, here illustrated by 
the red and blue line, respectively. The d-slope feature is included to capture this  phenomenon19.
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where Mi0 and Mini are the measurement at the first and last visits for subject i, respectively. This slope was used 
because identical changes in brain measurements or test scores can occur over different time spans, and the 
period of participation in the study varies for different  subjects19 (Fig. 3b). We also added sex and age at last visit 
(Current-Age) before conversion, if applicable (MCI in cMCI, and AD in cAD), as features for the predictive 
models.

Machine learning models and feature importance. We investigated the following experiments: 

1. Classifying subjects with stable MCI (sMCI, n = 333, f/m = 143/190) vs. those who converted from MCI to 
AD (cAD, n = 333 , f/m = 130/203).

2. Classifying healthy controls (HC, n = 134 , f/m = 57/77) vs. those who converted from being a healthy control 
to MCI (cMCI, n = 134 , f/m = 55/79).

No features based on information from the point of conversion and onward were made available to the models, 
as they were tasked with making predictions about future diagnostic status.

In mixed effects models each group (i.e. each subject) influence the fixed effect model, and therefore impacts 
all the other subjects’  trajectories27. To avoid data leakage caused by the resulting influence on the derived 
features, we put aside a test set containing 20% of the subjects before creating the mixed effects models. We bal-
anced the number of subjects in each class and controlled for gender and age. No subjects were present in both 
the train- and test set.

We trained an ensemble model based on a soft voting strategy, i.e. based on a weighted vote taking the mod-
els assigned probabilities into account, containing the following five models: logistic regression, support vector 
machine, K nearest neighbors, random forest, and a gradient boosting model. We used an ensemble approach 
as this tend to result in more robust classifiers that are less reliant on specific properties in the data set when 
compared to single  classifiers28,29. We used confusion matrices, precision, recall and F1 scores to assess our models 
during development and hyperparameter selection, using subject-level, leave-one-out cross-validation on the 
training set. For each model we set up a grid search through hyperparameters to select models that generalized 
well. For the logistic regression model we evaluated whether to include l2 penalty and the strength of regulariza-
tion. For the support vector machine model we assessed various kernels (polynomial, sigmoid and radial basis 
function), the kernel coefficient and regularization parameter. For the K nearest neighbor model we tried multiple 
combinations of the number of neighbors and distance metrics. For the random forest model we searched for a 
good combination of the number of trees and the maximum tree depth allowed, while for the gradient boosting 
model we searched through both complexity and sampling parameters. To ensure fair comparison among the 
models trained on different sets of features, we ran new grid searches for each feature set.

To evaluate the feature importance in the classification model, we used permutation importance, also called 
mean decrease accuracy, as implemented in the ELI5 Python library. This is a data-driven approach to feature 
importance, based on measuring the decrease in model accuracy when randomly shuffling each feature sepa-
rately multiple times (we used five trials for each feature). The idea is that the negative impact on performance 
of permuting an important feature is larger than for less important  features30.

Results
Experiment 1: Prediction of sMCI vs. cAD. The change in performances on the RAVLT-Im and ADAS13 
tests are illustrated in Fig. 4. Note the age-related decline in both the sMCI and the cAD subgroups, with the 
most severe impairments shown within the cAD group.

Figure 4.  The trajectories for performances on the RAVLT-Im test (a) and the ADAS13 test (b), with age at 
testing on the x-axis. The thick black curve is the cohort regression line, and thin grey lines are random effects 
for each subject. Severity of impairment is reflected by a lower score on the RAVLT test and a higher score on 
the ADAS13.
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Figure 5 illustrates age-related tissue loss in the brain, with an almost linear shrinkage of the hippocampus 
volumes (Fig. 5a) and a non-linear increase in the volume of the lateral ventricle (Fig. 5b). Overall, the most 
extensive losses are found among subjects in the cAD subgroup.

Inclusion of the cognitive trajectory features (r-slope, dev and d-slope for each test measure) in the ensemble 
model gave 77% for the accuracy, precision, recall and the F1 scores. These scores changed to 77% , 76% , 80% and 
78% , respectively, when the longitudinal MRI features were added. The confusion matrices in Fig. 6 show a mis-
classification rate of 23% for the subjects in both the cAD and the sMCI group when only the cognitive features 
were included, with a reduction to 20% for the cAD subgroup and an increase to 26% in the sMCI subgroup 
when the MRI features were added.

To further study these findings we performed a 15-fold cross validation experiment on the training data 
set, controlling for labels, age, and gender in the hold-out folds. The classifier trained on only cognitive features 
obtained a mean accuracy of 76%± 4% and the MRI features resulted in mean accuracy of 77%± 3.7% . Note 
that the models tested on the original hold-out test set were optimized based on leave-one-out cross validation 
over the entire training data set.

The part a) of Fig. 7 shows the weights of the features in our model classifying sMCI vs. cAD. The model-based 
random slope (r-slope) of the ADAS13 trajectory provided the strongest weight among the cognitive features. 
When the MRI features were included in the analysis, the weight of ADAS13 decreased substantially, and became 
stronger for features characterising the entorhinal cortex (d-slope and dev-RH entorhinal).

Experiment 2: Prediction of HC vs. cMCI. With the longitudinal cognitive features as inputs to our 
ensemble model, we obtained an accuracy, precision, recall and F1 score of 62% , 62% , 58% and 60% , respectively. 
Adding the MRI features increased the accuracy, precision, recall and F1 scores to 77% for all. The part a) of the 
confusion matrix in Fig. 8 shows a somewhat lower misclassification rate for HC subjects ( 35% ) than for cMCI 
( 42% ) subjects when only the cognitive features were included in the analysis. The rate decreased to 23% for both 
subgroups when the MRI features were added (Fig. 8b).

Figure 5.  The trajectories for the normalized volumes of the hippocampus and the lateral ventricle in the left 
hemisphere with age at scan at the x-axis. The thick black curve is the cohort regression line, and the thin grey 
lines are random effects for each subject.

Figure 6.  Confusion matrices for classification of sMCI vs. cAD from the cognitive features (a) and the 
combination of MRI and cognitive features (b).

76 Paper B



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2122  | https://doi.org/10.1038/s41598-020-78095-7

www.nature.com/scientificreports/

To assess the robustness of the findings we again performed a 15-fold cross validation experiment on the 
training data. The classifier trained on only cognitive features gave a mean accuracy of 56%± 6% , while the MRI 
features resulted in mean accuracy of 61%± 5.7%.

The part (b) of Fig. 7 shows the feature importance for our model classifying HC vs. cMCI. The model-based 
random slope (r-slope) from a measure of memory function (RAVLT-PF) provided the strongest weight among 
the cognitive features. When the MRI measures were included, the d-slope of the entorhinal cortex in the left 
hemisphere and a measures of immediate memory function (dev-RAVLT-im) showed the strongest weights.

Discussion
The present study used mixed effects models to define features characterising individual trajectories of change 
in a set of cognitive and MRI measures. These features were then used as predictors to classify subgroups with 
stable MCI (sMCI) vs. converters to AD (cAD) in one experiment, and to classify subgroups of healthy controls 
(HC) vs. converters to MCI (cMCI) in a second experiment. Visual inspections showed an age-related decline 
in cognitive performance and volumetric MRI measures in all subgroups. Using the features to train ensemble 
machine learning models gave classifications that were clearly better than chance level. For the prediction of 
sMCI vs. cAD, the mean classification F1-score was 77% when only the features characterising the trajectories 
of cognitive changes were included, with only one percentage point improvement when the MRI features were 
added. When restricted to the cognitive features, the model-based slope of the ADAS13 trajectory was given a 
relatively strong weight, while it was dramatically reduced and outperformed by features characterising the vol-
ume change in the entorhinal cortex when information from MRI was added. For the HC vs. cMCI predictions, 

Figure 7.  Feature weights when classifying sMCI vs. cAD (a) and HC vs. cMCI (b), based on cognitive features 
(in red) and the combination of MRI and cognitive features (in blue). For convenience, the plots only show a 
selection of the most important features after adding the MRI features to the analyses. Weights near zero and 
features for which the permutation importance had standard deviations greater than the estimated mean weight 
are not plotted. The most important features, when predicting from only the cognitive tests, were kept in the plot 
to illustrate the main changes observed after adding the MRI features.

Figure 8.  Confusion matrices for classifying HC vs. cMCI from cognitive features (a) and the combination of 
cognitive and MRI features (b).
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the F1-score was substantially improved from 60% to 77% when the MRI features were included. Among the 
cognitive features, a feature characterising change in memory function was given the strongest weight, followed 
by ADAS13. When the MRI features were added, information about the changes in the volume of the entorhinal 
cortex, hippocampus and the immediate memory function were given the strongest weights. The confusion 
matrices showed results above chance level, with the largest drop in misclassification rate when both the cogni-
tive and MRI features were included.

The results confirmed the expected age-related change in cognitive function. Furthermore, the weight given to 
longitudinal features of memory function (in the HC vs. cMCI experiment) supports the sensitivity of memory 
tests to the early symptoms of a path leading towards a neurodegenerative  disorder10,11, and that symptoms of an 
amnesic MCI may indicate a high risk of a path towards  AD6. In a stage closer to an AD diagnosis, the results on 
a more global measure of cognitive function (ADAS13)9 are given stronger weight. Still, the contribution from 
MRI measures was substantial when classifying HC vs. cMCI. The design of the present study was inappropriate 
for identifying the exact time-point where information about MRI measures would increase the accuracy of the 
prediction. However, the results are still in line with studies showing that cognitive changes associated with AD 
tend to manifest themselves several years after the condition is well established in the  brain12. The importance 
of the trajectory of change in the volume of the entorhinal cortex is also worth a comment. Entorhinal cortex 
acts like a relay station, with widespread connections to cortical and subcortical  areas31. Several studies have 
documented that volume changes in the entorhinal cortex can be detected in an early stage of AD, and that there 
are strong correlations between different parts of the entorhinal cortex and memory  function32. The present study 
should therefore be followed by studies on the predictive values of subcomponents of entorhinal, hippocampus 
and other related brain structures.

Although we obtained correct classifications above chance level, the misclassifications are too high to enable 
prediction on an individual level from the selected features. For converters to MCI, consideration should be 
given to the high number of individuals misclassified as healthy controls when the algorithms were based only on 
cognitive features. This illustrates the challenge in defining the fine line between healthy and pathological cogni-
tive ageing, and the phenotypic diversity characterising the group of patients with  MCI1,2,33. Furthermore, it may 
also reflect a limitation of the ADNI protocol. Although MCI is defined from the presence of subjective memory 
complaints, objective memory impairment, normal general cognitive function and intact activities of daily liv-
ing/absence of dementia, studies have described heterogeneous subtypes, including a subgroup demonstrating 
intact cognitive  function34 and MRI  findings35. The prediction was more accurate for classification of patients 
converting to AD than in those with a stable MCI. This indicates the challenge in classifying an individual as 
AD, a diagnosis that is only definite after a post-mortem  confirmation5. Future studies including such a definite 
outcome measure are therefore warranted.

The high number of participants included in the present study and the inclusion of predictive models and 
methods from modern machine learning  frameworks36 are main strengths of the present study. The results in the 
study must, however, be interpreted in the light of several limitations. As already mentioned, this includes how 
we defined the subgroups. Inclusion of a small number of cognitive and MRI measures among the ones available 
in the ADNI dataset is another limitation. We have not provided sufficient information to specify whether the 
impairments in the MCI group affect single or multiple cognitive domains. And even the ADNI dataset miss out 
some important  biomarkers37 and information about cognitive reserve factors (e.g.38,39), factors that certainly 
are essential to understand the phenotypic diversity of trajectories from normal function to AD. The results are 
also restricted by our analytic approach. The choice of models not only influence the predictive performance, 
but also the feature weights indicating feature importance. Furthermore, as the method used to assess feature 
importance is based on permuting single features, it doesn’t give a precise way to assess how combinations of 
features are weighed by the models. Finally, information about mean time between MRI scans and cognitive 
testing and number of visits, presented in Table 2, was not controlled for in the statistical models.

Conclusion
We showed that a set of mixed effects-derived features from psychometric tests of cognitive function and an MRI 
examination gave predictions of healthy controls vs. MCI and stable MCI vs. AD that were above chance level. 
The results confirmed the importance of early changes in memory function and the role of entorhinal cortex as 
an imaging-based biomarker of normal and pathological ageing in older adults. Our major contributions are the 
application of (i) measures from the rich ADNI dataset, (ii) features defining trajectories of change in relevant 
cognitive and MRI measures, and (iii) a data-driven machine learning approach to assess the measures’ weights 
in classification models. Future studies should further investigate this avenue of brain-behaviour relationships 
in older age. They should consider inclusion of the wider range of  genetic40 and  environmental41 variables, and 
thus probably reduce the misclassifications shown in the present study, as well as other predictive models and 
methods within modern machine learning  frameworks36,42.
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From longitudinal measurements to image
classification: application to longitudinal MRI in

Alzheimer’s disease
Samaneh A. Mofrad, Hauke Bartsch, Alexander S. Lundervold, and

for the Alzheimer’s Disease Neuroimaging Initiative

Abstract— We propose a novel method of constructing
representations of multiple one-dimensional longitudinal
measurements as two-dimensional grey-scale images. This
can be used to turn classification problems from longitu-
dinal settings into simpler image classification problems,
allowing for the application of newer deep learning methods
on longitudinal measurements. To evaluate our approach,
we apply it to an important and challenging task: the pre-
diction of dementia from brain volume trajectories derived
from longitudinal MRI. We construct an ensemble of con-
volutional neural network models to classify two groups of
subjects: those diagnosed with mild cognitive impairment
at all examinations (stable MCI) versus those starting out as
MCI but later converting to Alzheimer’s disease (converted
AD). Models were trained on image representations derived
from N = 736 subjects sourced from the ADNI database
(471/265 sMCI/cAD). We obtained an accuracy of a resulting
ensemble model of 76%, measured on an independent test
set. Our approach is competitive (in terms of accuracy) with
results reported in other machine learning approaches with
similar classification on comparable tasks. This indicates
that our approach can lead to useful representations of
longitudinal data.

Index Terms— Deep learning, Longitudinal data, Trajecto-
ries, Alzheimer’s disease, Mild cognitive impairment, MRI.

I. INTRODUCTION

Deep neural networks form the basis for a wide range of
state-of-the-art medical image analysis tasks and has drawn a
lot of interest over the past years [1], [2]. While deep learning
techniques are behind successful applications in various fields,
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in many cases it is difficult to find an appropriate representa-
tion of the input data used to train deep learning models, that
highlights the useful predictive features in the data.

Longitudinal data is one such case. Here measurements are
taken repeatedly through time with multiple outcomes at each
time point. Some of these difficulties are due to the inherent
properties of longitudinal data, like inter-correlation between
the set of observations of one subject [3] and the unbalanced
observations for subjects [4].

Motivated by studies where time-series or speech recog-
nition data were represented as images [5]–[7], we propose a
pipeline for producing two-dimensional (2D) images from lon-
gitudinal data. This enables the use of well-studied techniques
from deep learning for two-dimensional image classification.

First, we gathered all the data collected from each subject in
a matrix so that one axis is associated with time points and the
other to the corresponding values of those time points. Then,
we scaled the columns’ values separately to get a standard
range for each variable. Next, we mapped each scaled matrix
to a gray-scale image, so that the pixel intensity represents the
matrix values (Fig. 1 illustrates the steps). The 2D images can
then be used to train a deep neural network classifier.

To evaluate our proposed pipeline in a concrete setting, we
used a longitudinal data source with a large number of sub-
jects, which contains ascending, descending, and categorical
data, where the number of time points and the length between
them varies significantly. We used data from subjects diag-
nosed with various levels of dementia: Alzheimer’s Disease
(AD), which is a common irreversible neurodegenerative dis-
order characterized by a cognitive impairment that gradually
worsens over time [8], [9], and Mild Cognitive Impairment
(MCI), which is a transitional state from normal cognition
to dementia [10]. We ran the experiment on two subgroups
labeled as stable MCI (sMCI), who were diagnosed as MCI
at all scans, and converged AD (cAD), who were diagnosed
as MCI at the beginning but later developed AD.

After preparing 2D images for sMCI and cAD subjects,
we investigated the effect of data augmentation techniques,
model architectures, and hyper-parameter selection. We used
the results from these investigations to construct an ensemble
model that can classify conversion to AD versus stable MCI
with an average accuracy of 76%. This is a competitive
result when compared with other approaches, indicating the
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usefulness of the proposed pipeline also for other problems
related to longitudinal measurement.

II. METHODS

A. Data
Data were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD, with an
overall goal to validate biomarkers for use in clinical treatment
trials for patients with AD. The study was approved by the
Institutional Review Boards at each ADNI site (see full list
here: http://adni.loni.usc.edu). Informed consent was obtained
from all subjects prior to enrollment. All methods were carried
out in accordance with relevant guidelines and regulation. The
present study was approved with ADNI Publication Committee
(ADNI DPC).

We constructed a longitudinal data set by selecting the
ADNI subjects that had at least three MRI scans. Our data set
consists of 1460 subjects (female/male: 642/818) with a total
of 7421 MRI scans (see Table I for details). We considered
five longitudinal labels based on the ADNI diagnoses, which
were defined in our previous work [11]. If subjects were
labeled as normal controls (CN) at all scans, we labeled as
healthy controls (HC). The subjects who converted from CN to
MCI during the study were labeled as converted MCI (cMCI).
Subjects who were defined with MCI at all visits were labeled
as stable MCI (sMCI), those converting from MCI to AD were
labeled as converted AD (cAD), and those who were defined
with AD at all visits were labeled as stable AD (sAD). This
differentiates subjects into stable and progressive groups, and
can be used to find the features associated with developing the
conditions.

Group Subjects MRI Gender (f/m)
HC 368 1916 187/181

cMCI 106 590 45/61
sMCI 471 2424 195/276
cAD 265 1532 104/161
sAD 250 959 111/139

1460 7421 642/818

TABLE I: Longitudinal subjects and MR images: total number
of subjects, MR images, and gender distribution within each
of the five subgroups.

B. Image preparation
We used the measured volumes of all the regions in the

brain that are extracted by Freesurfer [12] v.6.0 from the
T1-weighted MR images. For each individual, we obtained
such measurements at all time points, and thereby a two-
dimensional matrix for each subject containing the volumes
of brain regions at the time points. Further, to include their
possible influence in our study, we added three more rows
to the matrix: gender (male = 0, female = 1), the level of
education (varies between 4 years and 20 years), and age of

subject at MRI examinations (between 54 to 96). Therefore,
for subject i (i = 1, . . . , 1460) we had a matrix xi, so that
xi ∈ Rm×ni , where m = 125 (number of ROIs + 3), and
3 ≤ ni ≤ 11 is the number of scans for subject i. The goal was
then to construct a two-dimensional image for each subject
based on its matrix.

We first selected 20% of subjects for the final test set at
random, controlling for class labels (to have 20% of each label
in the test set), gender (to have 20% of both male and female in
the test set), and age (to have a similar range of age in both the
training and test set). Then for the rest of the data (including
subjects with less than three MRI scans), we assigned the ROIs
and the three additional variables: age, gender, and education
level as columns in a table, and inserted the extracted volumes
from images into its rows (see Fig. 1a).

Next, we scaled the volumes to get them into a similar
range. More specifically, volumes for regions of interest is
measured in cubic millimeters and the way the calculation
is done prevents negative values. However, in the regions
of interest data, we observe a trend that exhibits a lower
mean to be skewed toward few participants with very large
volumes. In order to better utilize the limited resolution of
the intensity values (8-12bit), we opted to perform a single
sided winsorizing operation where the largest 2.5% of all the
volumes values are replaced with less extreme values (Fig. 1b).
We call these upper limits robust max. Then, we scaled each
column of the table based on its minimum value and its robust
max, xi − min

robust max − min .
Note that the scaling of one subject is affected by all the

other subjects in the table. To avoid data leakage, it was
therefore important to separate a test set before scaling. The
test set subjects, and potentially other new, previously unseen
subjects, are scaled using the minimum and (robust) maximum
computed using the training data.

After scaling the values in all columns, we selected the
longitudinal subjects for which at least three MRI scans were
available (Fig. 1c). Every subject has a volume-trajectory for
each ROI (Fig. 1d) which we mapped to an image where
the pixels’ intensity in the image represents the ROI’s scaled
values at time points (see Fig. 1e, for one ROI). Then, we add
the images of all ROIs on top of each other, plus the intensity
images of age, education, and gender (Fig. 1h). This resulted
in one image per participant, based on the volume extracted
from the longitudinal MRI scans.

To determine if we can identify the differences between
the prepared images in subgroups by their pixels’ intensity
we constructed the images in Fig. 2. For all subjects we
linearly interpolated the values of ROIs to have the same image
dimension for all subjects, and then we calculated the average
of the matrices associated to all images in each subgroup.
These average images (Fig. 2) highlight the differences in the
intensities of more severe dementia (cAD and sAD) compared
to healthy and MCI cases (HC, cMCI and sMCI).

C. Regularization techniques

During training of our models (Section II-D below), we
used multiple regularization techniques. Both general explicit

84 Paper C



3

Fig. 1: Here we illustrated an example of preparing images from brain regions volumes extracted from MR images. The left
part of the figure is for all ROIs, where on the right side, we explain a specific ROI. Note that we should first detach the test
set. a) We assign the ROIs to the columns of a table where each row corresponds to the volumes of ROIs for one image. The
number of MR images varies from one ID to another. b) For each ROI, we find a robust max and replace the upper outliers
with this value. Then, we scale the volumes in the column by the min and robust max between 0 and 255. c) Next, we select
the longitudinal subjects which have at least three images. The graph in (d) shows the left-Amygdala scaled volumes versus
age. e) This graph maps to a gray-scale image so that pixel intensity represents the changes in the values. f) Finally, we attach
the gray images of all ROIs on top of each other to get an image for each subject.

techniques such as dropout, batch normalization, and weight
decay, and data augmentation tailored to our specific data set,
as described here.

Aiming to balance the class sizes and to use a source of
variance in our data set to boost our models’ generalization
ability, we augmented the data set by adding Gaussian noise to
the existent images. We presume that the obtained volumes for
ROIs contain noise (confer the instability in trajectory graph in
Fig. 1d), which likely are related to the physical and biological
situation during scanning, uncertainly concerning the quality
of T1 weighted images, and our chosen segmentation tool
(FreeSurfer). To estimate how the variability in the volumes of
the ROIs produced by repeated scans in a short time affects our
constructed 2D images, we identified 14 subjects in ADNI who
had at least two MRI scans within a month or less. It’s natural
to assume that the volumes of one’s brain regions change very
little over one month, but comparing the extracted volumes of
ROIs for these two repeated MRI scans showed differences in
volume (from ±5.3 mm3 for Left-vessel to ±5563.2 mm3 for
Cerebral White Matter volume ). For each ROI, we averaged

14 standard deviations, measured separately for two collected
volumes of each subject, and called it σroi. Then, we added
Gaussian noise with zero mean and the measured standard
deviation for each ROI (Proi(µ = 0, σroi)) to the training
set until we collected 600 subjects for each class. Then
we incorporated the noisy data in one table. Afterward, we
normalized the new table by using the min and robust max
saved for each ROI (Fig. 1b) and then prepared images based
on the noisy versions of existing subjects by following the
steps in Fig. 1(c) to 1(f).

D. Model selection
Since model performance is typically very sensitive to

hyper-parameter tuning, we performed an extensive search
over a wide set of hyper-parameters. To find the optimized
values for learning rate, weight decay, dropout, and the CNN
structures, we selected 10 different training-validation sets
(hereafter 10 folds). For each label, we randomly selected 18%
of the training set in order to keep the same percent of gender
and the same range of age in both training and validation sets
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Fig. 2: The average image for all subjects in five longitudinal
subgroups after normalization and interpolation.

when possible. Note that we put the test set aside before this
step. A grid search over model architectures and these hyper-
parameters was conducted by varying the following:

• CNN model: we considered ResNet18 and ResNet34,
18-layer and 34-layer residual networks [13], as imple-
mented in the Torchvision library [14].

• Probability of dropouts on the hidden layers (ps): we
passed eight values for ps: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
and 0.7.

• Weight decay (wd): for wd we passed four values:
10−1, 10−2, 10−3, 10−4.

• Maximum learning rate (max-lr): these five values were
tested for max-lr: 3× 10−2, 3× 10−3, 3× 10−4, 1.5×
10−4 and 1× 10−4.

To construct and train our binary CNN classifiers we used
fastai [15] version 1.0.61, a deep learning library based on
PyTorch. Instead of training all layers with a constant learning
rate or decreasing the learning rate with a fixed or exponential
value, we applied the cyclical learning rates method [16]
as implemented in fastai, which varies the learning rate
cyclically between a reasonable set of minimum and maximum
boundaries [15]. The batch size was set to eight for all models.

We also compared the performance of the ResNet models
with and without pretraining, using the pretrained ResNet18
and ResNet34 models available in PyTorch, fine-tuning them
on our data using fastai. Further, we investigated whether
batch normalization had a significant effect on the performance
of models.

During model selection, we monitored the training and
validation loss, error rates, accuracy, precision, recall, and
F1 score on the validation set. For each combination of
parameters, we estimated the optimal number of epochs by
finding the epochs associated with the smallest validation loss
separately for all 10 folds and computing their average.

After the grid search, we selected the top performing models
in terms of accuracies over the 10 validation sets, and we

got our final results by ensembling these models using both
soft and hard voting strategies. In hard voting the ensemble
predicts the majority vote among the individual models, while
soft voting is based on averaging the class probabilities of the
models.

There are several sources of randomness in the PyTorch
CNN models, leading to slightly different results every time
a model is used. To limit the effect of such randomness, we
fixed the random seed in both Numpy and Pytorch. Further,
to also reduce the effect of other sources of randomness, such
as dropout layers, we trained the ensemble models 20 times
with both hard and soft voting and reported the average and
standard deviation for the final results.

Finally, to investigate whether spatial relationships reflected
in the ordering of the various ROI measurements influence the
model, we randomly shuffled the order of ROIs in the images
ten times. We then applied the same ensemble model to the
identical pair of training and test sets for these ten different
image sets.

III. RESULTS

Our results are based on the steps described in Section II-
D applied to two subgroups of subjects, sMCI and cAD (see
Fig. 2).

A. Model selection

Fig. 3a shows the similarity in the performance (accuracy)
of the models with and without batch normalization (A and
B, respectively), and also the significant decline in the perfor-
mance when using the pretrained ResNet18/ResNet34 models
with batch normalization (C). As our images are quite different
from the images used for pre-training, the low performance of
this model is perhaps to be expected. During the grid-search,
we saved the number of epochs associated with the average
of lower validation loss for 10 validation sets. Fig. 3b shows
the similarity in the number of epochs for models with and
without batch normalization (A and B) while the number of
epochs for the case with transfer learning (C) is significantly
smaller. Thus, while transfer learning speeds up the training
step, the accuracy is not as high as cases A and B. We chose
to use model A in the following, i.e. without pretraining and
with batch normalization.

To explore the value of our data augmentation approach,
we repeated the experiment once again by duplicating the
existing images instead of adding Gaussian noise. Fig. 4
compares the performance of the models when augmentation
is according to the Gaussian noise (µ = 0, σroi) with the case
of duplicating the available images. There is an insignificant
difference between the accuracies (Fig. 4a) and the number of
epochs associated with the average of lowest validation loss
(Fig. 4b).

B. Ensemble model

Based on the results of the previous section we selected the
top 19 models (see Table II) to investigate whether construct-
ing an ensemble model improves the results compared to the
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a) b)

Fig. 3: Comparing the effect of batch-normalization and transfer learning during grid-search; A: Batch-normalization and
non-pretraining ResNet18/ResNet34) models, B: without batch-normalization and non-pretraining, C: batch-normalization and
pretraining. The average accuracies a) and epochs associated with the lower validation loss b) over validation sets show the
similarity between A and B, while in C are reduced significantly. P-value; ns: p > 0.05 and ****: p < 0.0001.

a) b)

Fig. 4: The comparison between grid-search over data with Gaussian noise and duplicating the existing images shows an
insignificant difference between the accuracy a) and the number of epochs associated with the lowest validation loss b).
P-value; ns: p > 0.05.

Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ResNet 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 34 34 34
epoch 13 15 21 14 15 14 13 16 17 16 16 19 16 17 17 20 16 13 17
ps 1e-1 2e-1 2e-1 2e-1 4e-1 4e-1 4e-1 5e-1 5e-1 5e-1 5e-1 6e-1 6e-1 6e-1 6e-1 7e-1 3e-1 3e-1 5e-1
wd 1e-4 1e-1 1e-2 1e-3 1e-1 1e-1 1e-4 1e-1 1e-2 1e-3 1e-1 1e-2 1e-1 1e-2 1e-3 1e-2 1e-1 1e-3 1e-4
max-lr 3e-4 3e-4 3e-3 3e-4 3e-4 1.5e-4 1.5e-4 3e-4 3e-4 3e-4 1e-4 3e-4 1e-4 1.5e-4 1e-4 3e-4 3e-4 1.5e-4 3e-4

TABLE II: 19 selected models based on: network architectures (ResNet18 and ResNet34), hyper-parameters (ps: probability of
dropout layers, wd: weight decay, max-lr: maximum learning rate), and number of epochs.

individual models in terms of accuracy and robustness. Fig. 5a
shows the average of receiver operating characteristic (ROC)
curves of all models for a specific validation set. The mean
and standard deviation of areas under the ROC curves (ROC
AUC) for each validation set was computed. These curves
(Fig. 5a) highlight the differences in model performance over
the validation sets.

For each model, we averaged the ROC curves across ten

validation sets (Fig. 5b). Based on the curves in Fig. 5b, the
differences between the ROC AUC mean and standard devia-
tion of the 19 models are insignificant (between 0.79 ± 0.04
and 0.81 ± 0.04). Therefore, while the models differ in their
performance on single validation sets (Fig. 5a), their averages
over all the validation sets are quite close (Fig. 5b).

Further, the mean ROC AUCs for the ensemble model,
applied separately to each validation set, is plotted in black
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a) b)

Fig. 5: a) Averaged ROC curve and standard deviation of AUC based on a specific validation set (color) for top 19 selected
models. b) Averaged ROC curve and standard deviation of AUC based on a specific model (color) for all validation sets. While
the models have different performance on each specific validation set (a), the average of performance on all the validation sets
have similarities (b). The average ROC for the ensemble model is in black.

in Fig. 5a and b. The ROC AUC mean value and standard
deviation for the ensemble model are 0.83 ± 0.04, which is
higher than the top individual ROC AUC on seven validation
sets (Fig. 5a), and higher than all ROC AUC for individual
models when averaged over ten validation set (Fig. 5b).

C. Classification of sMCI versus cAD

The final evaluation of our models was conducted by
training the 19 selected models on the combined training and
validation sets and forming two ensemble models, based on
soft and hard voting. Their performance on the separate test set
was then computed. To reduce the effect of randomness, we
repeated the computations 20 times and averaged the results.
Fig. 6 shows the final results for the soft and hard voting
ensembles. The averages of accuracy, weighted precision,
recall, and F1score for hard voting are as follows: 75.9%,
77.1%, 75.9%, and 76.1% respectively (Fig. 6a). The averages
for soft voting are as follows: 76.3%, 77.5%, 76.3%, and
76.6% respectively (Fig. 6b). Fig. 6c represents the accuracies
of 20 runs for both hard and soft voting.

Finally, we randomly shuffled the order of ROIs in the
images 10 times, and evaluated the same 19 models on these
images. The accuracies ranged from 72% to 80%, with an
average of 75.5%.

IV. DISCUSSION

We proposed a method to represent the information of
longitudinal metadata as two-dimensional images, enabling the
construction of image-based machine learning classifiers.

We evaluated the method in an experiment based on the
ADNI data set, aiming to classify stable MCI versus converged
AD subjects using convolutional neural network models. We
achieved higher-than-chance results, with an average accuracy
of 76%. Our results show that our proposed method is compet-
itive with other CNN-based approaches in the literature [17],
where the reported accuracies range from 62% to 83% in

similar setups, based on varying machine learning methods
and multi-modal data sources ( [11], [17]–[21]).

Our study has some limitations related to the chosen source
of data. As shown in Fig. 1, the trajectories of brain volume
exhibit some instability. This instability affects pixel intensity,
and therefore makes the classification more challenging. An-
other limitation of this study is the difficulty in diagnosing
MCI and AD. Some studies have shown the establishment of
AD in the brain years before cognitive impairments appear in
the behavioral functionality of the brain [22]. In the data from
ADNI, the time span between visits for subjects are half a
year on average, and we potentially have some sMCI that are
almost AD. A possibility to make the model more robust is
to drop one or two last visits of the sMCI subjects since they
may be showing AD symptoms in less than six months.

Our results indicate that the proposed approach to longitu-
dinal data analysis can be suitable as a supplementary analysis
method next to more established statistical and machine learn-
ing analysis streams. Further assessment requires applying the
method to multiple different data sources with more diversity
in the form of data, such as ascending, descending, categorical,
cyclical, or heterogeneous trends over time. An interesting
area to explore would be time-series of resting-state functional
MRI or longitudinal data of other progressive diseases such
as schizophrenia or Parkinson’s disease, which has different
patterns of changes in brain volumes [23]–[25].

We hope that this integration of newer machine learning
methods will create additional avenues for researchers to work
on longitudinal data.
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a) b) c)

Fig. 6: a) The confusion matrix after hard voting over 19 models obtained the average accuracy, precision, recall, and F1score
of 76%,77%, 76%, and 76% respectively. b) Soft voting over 19 models obtained accuracy, precision, recall, and F1score of
76.%, 78%, 76%, and 77% respectively. c) Boxplot for accuracy of 20 runs of ensemble models.
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Abstract

Associative memories enjoy many interesting properties in terms of error correction
capabilities, robustness to noise, storage capacity and retrieval performance and their
usage spans over a large set of applications. In this article, we investigate and extend
Tournament-Based Neural Networks, originally proposed by Jiang et al. (2016), which
is a novel sequence storage associative memory architecture with high memory effi-
ciency and accurate sequence retrieval. We propose a more general method for learning
the sequences which we call Feedback Tournament-Based Neural Networks. The re-
trieval process is also extended to both directions: forward and backward, i.e. any
large-enough segment of a sequence can produce the whole sequence. Furthermore,
two retrieval algorithms, Cache-Winner and Explore-Winner are introduced to increase
the retrieval performance. Through simulation results, we shed light on the strengths
and weaknesses of each algorithm.
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1 Introduction
Neural associative memory is a type of neural networks which is capable of memoriz-
ing (learning) a set of patterns and retrieving them from their corresponding noisy or
incomplete versions. The term association refers to the linkage of two or more pieces
of information. Hopfield neural network (Hopfield, 1982) was among the first designed
artificial neural network with auto-associative memories which is able to retrieve infor-
mation given only some partial clues as well as reconstruct perturbed patterns. Hopfield
neural networks have some drawbacks such as being biologically implausible, due to
the fully connected structure, low efficiency and spurious memories (see, e.g., Hoff-
mann, 2019, and references therein). To improve Hopfield network many variants of
it have been proposed in the literature (see, e.g. Maurer et al., 2005; Berrou & Gripon,
2010; Krotov & Hopfield, 2016; Kim et al., 2017). Due to the sparse coding in the
brain (for sparse coding see, e.g, Olshausen & Field, 2004; Rinkus, 2010), sparse as-
sociative memories are considered more biologically plausible models (Gripon et al.,
2016; Hoffmann, 2019).

Gripon & Berrou (2011) proposed novel sparse neuro-inspired associative mem-
ories that organize neurons into clusters and memorize patterns using the concept of
cliques (see also, Hopfield, 2008, for another clique-based network model of associa-
tive memory). This model, also referred to as GB model or Clustered Cliques Networks
(CCNs), has fundament in information theory (Gripon & Berrou, 2012) and bears sim-
ilarity to the Willshaw-type model (Willshaw et al., 1969) where sparse patterns and
binary connections are considered. These models have been further developed in the lit-
erature (e.g. Aliabadi et al., 2014; Boguslawski et al., 2014; Jarollahi et al., 2014, 2015;
Jiang et al., 2015, 2016; Mofrad et al., 2015, 2016; Mofrad & Parker, 2017; Berrou &
Kim-Dufor, 2018), and used in many applications, such as solving feature correspon-
dence problems (Aboudib et al., 2016), devising low-power content-addressable mem-
ory (Jarollahi et al., 2015), oriented edge detection in image (Danilo et al., 2015), im-
age classification with Convolutional Neural Networks (Hacene et al., 2019), finding all
matches of a probe in a database (Hacene et al., 2017), to mention a few. Furthermore,
they were implemented on a general purpose graphical processing unit (GPU) (Yao
et al., 2014), in 65-nm CMOS (Larras et al., 2018), and in distributed smart sensors
architectures (Larras & Frappé, 2020). Therefore, CCN models can be referred to as an
important brain-inspired memory system (Berrou et al., 2014) that became a basis for a
wide range of research in associative memory models.

Learning and retrieval of temporal sequences in neural networks is a fundamen-
tal property of human intelligence which is studied through different approaches (see,
e.g., Brea et al., 2011; Hawkins et al., 2009; Maurer et al., 2005; Jiang et al., 2016).
Tournament-based Neural Network (TNN) (Jiang et al., 2016) is an extension of the
clique-based approach to associative memories which have oriented connections, and
therefore the ability to store sequential information (see also, Marques et al., 2017, for
an implementation on the GPU). The novel structure of TNN is not only a sequence stor-
age with high memory efficiency, but also a more compatible model with the neuronal
signal propagation in the brain via oriented connections (see also Hawkins et al., 2009;
Hawkins & Ahmad, 2016, for biologically plausible memory sequence structures).

In this paper, we improve the TNN architecture by proposing a more general struc-
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ture, named Feedback TNN, as well as more accurate retrieval algorithms. The original
TNN can be considered as a special case of Feedback TNN, with zero feedback con-
nections. For retrieval, obviously, a less number of random selections during retrieval
results into less component and sequence error at the end. The Cache-Winner retrieval
revisits and changes some previous randomly selected components, in case an error is
detected during retrieval. On the other hand, Explore-Winner reduces the randomness
in decisions by considering the consequences of each decision. The idea behind the
Cache-Winner technique can be illustrated in simple terms by drawing analogy with
human decision making: imagine a person who makes a decision fast and then, if he
realizes a mistake, tries to resolve it by manipulation of past decisions. On the other
hand, Explore-Winner has the analogy with a rather careful decision-maker who inves-
tigates the consequences of all possible decisions at the time and then makes the best
possible decision. In terms of achieving accurate sequence retrieval, both proposed re-
trieval techniques are superior to the Winner, which literally makes a random decision
in the case of equal chance situations, and continues without further actions even when
realizing a mistake later.

It is also known that the brain is able to follow the previously stored sequences,
from any given point forward, and somewhat, also backwards (see, e.g. Hawkins &
Blakeslee, 2007). The other contribution of this paper is introducing Feedback-Backward
retrieval method which makes our model more biologically plausible. Using Feedback-
Backward retrieval, the model gains the capability of retrieval of the whole sequence,
given a sub-sequence, no matter its location. The Feedback-Backward retrieval is more
compatible with the Feedback TNN, but works well with the original TNN as shown
in the results. Backward retrieval, therefore, adds more capabilities to these types of
sequence storage structures, and makes them more similar to brain functioning.

The paper is organized as follows: in section 2 we briefly survey the CCN and TNN
structures. In section 3, different learning and retrieval algorithms are explained. The
simulation results are provided in section 4, and afterwards, in section 5, discussion and
concluding remarks are presented.

2 Background
In this section, first the clustered clique-based neural network structure is described
in section 2.1. These types of networks are able to store and retrieve the fixed length
patterns. Next, in section 2.2, tournament-based neural networks which have the ability
to store and retrieve sequences is surveyed.

2.1 Clustered Clique Networks (CCNs)
In Clustered Clique Networks (CCNs) the way the neurons are organized within clus-
ters, and the sparsity of the encoding used for storing patterns in cliques, result into
large storage diversity, i.e. number of storable patterns, high capacity, i.e. the amount
of storable information, and strong robustness against erasures and errors (Gripon &
Berrou, 2011; Jarollahi et al., 2015; Gripon et al., 2016).
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Formally, the structure of CCNs consists of n neurons divided into c clusters with
possibility of different sizes. The input patterns are formed from a pre-defined alphabet
A where the number of neurons in each cluster matches the size of used alphabet |A|.
For simplicity all clusters are considered to have the same number of neurons, say
l = n/c, and therefore the same alphabet size |A| = l. The jth neuron in the ith cluster
is denoted by nij and it has an associated value, v(nij), equals one if it is activated, and
zero otherwise; where 1 ≤ i ≤ c and 1 ≤ j ≤ l. Let P be the set of patterns to be
stored where pattern p ∈ P contains c sub-patterns, i.e. p = p1p2 · · · pc; for pi ∈ A.

The learning process starts by assigning a unique set of neurons -one per cluster- to
each p ∈ P:

p = p1p2 · · · pc → (f(p1), f(p2), · · · , f(pc))
where f : {pi} → {nij|1 ≤ j ≤ l}.

Learning proceeds by activation of the selected neurons, i.e. v(nij) = 1, and forming a
clique by connecting the selected c active neurons to each other through binary edges.
As a result, the learning process generates a set of binary edges

W = {ω(ij)(i′j′)| if i 6= i′ and ∃ p ∈ P s.t. f(pi) = nij and f(pi′) = ni′j′},

where ω(ij)(i′j′) is an edge between nij and ni′j′ .
The edge ω(ij)(i′j′) belongs to W independently from the number of patterns that use
both nij and ni′j′ neurons, but only if there exists such a pattern. Figure 1 illustrates the
storing process in clique-based networks.
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Figure 1: The learning process of three patterns, in a network with c = 4 clusters and
l = 16 neurons per cluster. Node ni,j refers to the jth neuron in the ith cluster. Each
clique represents one of the three (4, 1, 8, 12), (10, 2, 8, 1), and (10, 12, 6, 11) patterns
with yellow, green, and purple respectively. Coloured nodes refer to the activation of
neurons for at least one pattern. The red nodes, n1,11 and n3,9, belong to two patterns.
Note that it is not possible to retrieve the patterns by finding a unique clique using only
one of these red nodes.

The recall or retrieval phase of a possibly distorted version of a learnt pattern, p̂, is
based on finding the closest match from P . Depending on the type of distortion, var-
ious retrieval methods might be used (see, Aboudib et al., 2014), however, in general
the recall procedure consists of local and global phases. The local phase aims to find
the most probable neurons in different clusters, using information from p̂ or incoming
connections from previously activated neurons, and activate them, i.e. v(nij) = 1. The
global phase is to recall the established edges inW that have an end in activated neu-
rons. This procedure alternate between global and local retrieval to gradually complete
the clique and therefore the pattern.

It is noteworthy that other sparse structures were presented by Aliabadi et al. (2014),
according to which, c � χ where χ = n/l denotes the number of clusters and c was
used to denote a smaller set of clusters for which a sparse pattern is mapped into. Re-
trieval, in this case, would be more complicated and various scenarios could be consid-
ered (see, e.g., Aboudib et al., 2014; Jiang, 2014). For instance, the winner-take-all rule
activates neurons with the highest activity (or maximum score), whilst Losers Kicked-
Out rule (LsKO) eliminates active neurons with less activity using a threshold filter (see
Jiang, 2014, for details).
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2.2 Tournament-Based Neural Network (TNN)
An extension of the CCNs (Jiang et al., 2016) is proposed by using directed edges
between clusters in such a way that the network can store sequential information in a
tournament-based1 neural network. In a chain of tournaments of order c and degree r,
denoted by Tr(c), each node is directed clockwise to its r consecutive neighbors; see
Figure 2 with c = 8 and r = 3 for a sample chain of tournaments. A TNN can then be
seen as a concatenation of tournaments of size r + 1.

Figure 2: An illustration of a chain of tournaments, T3(8), for storing sequences of
length 20. The eight clusters are represented by colored circles, and each arrow rep-
resents a set of possible connections between nodes within the clusters. The clusters
construct eight tournaments of size r + 1 = 4. For instance, clusters that have been
shown with 1, 2, 3, 4 make one tournament starting from cluster 1, and clusters labeled
with 7, 8, 1, 2 involve in another tournament starting from cluster 7. A sequence of
length 20 and the assigned clusters for each component si are represented around the
network. Given the first r components (s1, s2, s3) with solid circles, the retrieval algo-
rithm could retrieve the rest sequentially using the tournament connections. This figure
is based on (Jiang et al., 2016, Fig. 5).

In order to store a set of sequences, S, in a chain of tournaments, we suppose that
each sequence s ∈ S contains L component, i.e. s = s1s2 · · · sL; for st ∈ A, t =
1, 2, . . . , L, and |A| = l.

By labeling clusters from 1 to c, the learning process could be explained as follows.
First a unique sequence of neurons must be assigned to each s ∈ S by using function

1In graph theory, by assigning direction to all edges of a complete graph, a tournament can be
achieved.
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f = (f1, · · · , fc), where fi, i = (t− 1 mod c) + 1, maps a component st, to a unique
neuron nij in cluster i:

fi : {st} → {nij|1 ≤ j ≤ l, }, 1 ≤ i ≤ c,

therefore,

f(s) = (f1(s1), f2(s2), · · · , fc(sc), · · · , f(L−1 mod c)+1(sL))

Learning continues by connecting neuron nij to neuron ni′j′ at passage π as follows

nij → ni′j′ , if:
{
fi(s(i+(π−1)c)) = nij
fi′(si′+(π−1)c) = ni′j′

and, 1 ≤ δi(i
′) ≤ r (1)

where δi(i′) = (i′ − i) mod c, and 1 ≤ π ≤ bL
c
c.

In general, for s ∈ S, if the above conditions are satisfied for a given π such that
nij → ni′j′ , we set Ns,π(nij, ni′j′) = 1, which means that nij is connected to ni′j′ , in
sequence s, otherwise we set Ns,π(nij, ni′j′) = 0. In Figure 2, s2 is connected to s3 in
passage π = 1, but not to s11 (in passage π = 2), and s19 (in passage π = 3) in the same
sequence s, for instance. So the neighboring connections are defined based on both s
and π values.

At the end of learning or storing process, the network has the following connections:

W = {ω(ij)(i′j′)| if ∃ s ∈ S, and ∃ π ∈ [1 : bL
c
c] s.t. Ns,π(nij, ni′j′) = 1} (2)

where ω(ij)(i′j′) is a directed edge from nij to ni′j′ and 1 ≤ i, i′ ≤ c, 1 ≤ j, j′ ≤ l (see
Algorithm 1 for the learning process).

A stored sequence retrieval process could start with any subsequence of r consec-
utive components and the activation of a component in the following cluster relies on
the connections of r previous clusters. If the given subsequence is not the first r com-
ponents of the sequence, the retrieval algorithm requires the information of the location
of clusters. In Figure 2, the first three components s1, s2, and s3 are shown with solid
circles, and the components to be retrieved are shown with dashed circles.

The proposed retrieval procedure is sequential using a Winner-Takes-All (WTA)
decision at each step. For brevity, we call this retrieval Winner in the rest of paper (see
Algorithm 2).

3 Structures and Algorithms
The original learning and retrieval algorithms for TNN that were proposed by (Jiang
et al., 2016) are reported in section 3.1. In sections 3.1.1 and 3.1.2, the newly proposed
retrieval algorithms Winner-Cache and Winner-Explore are provided respectively. Feed-
back TNN structure along with its corresponding learning and retrieval algorithms,
Feedback-Forward and Feedback-Backward, are presented in section 3.2. Finally, the
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error types that are used for evaluation of structures are addressed at the end of this
section (section 3.3).

3.1 Learning and Retrieval Algorithms in TNN
TNN structure, which is explained in section 2.2, is summarized by Algorithm 1 and
Algorithm 2 for the learning and retrieval phases respectively.

Algorithm 1: Learning in TNN
input : c, k, r, L & S
initialization

l = 2k,

Generate directed graph G with n = c× l nodes structured in c clusters of size

l.

Assign clusters indices from 1 to L cyclically (similar to Figure 2)

begin

for s ∈ S do

Activate the corresponding neurons to the sequence components;

Connect each active neuron to the consecutive r active neurons.

output: G

Algorithm 2: Winner Retrieval in TNN
input : G & [s1 : sr]

initialization

Activate r neurons in the first r clusters using [s1 : sr]

begin

for i ∈ [r + 1 : L] do
Establish the output edges from previous r active neurons in the

sequence;

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
activate one of the candidate nodes randomly as winner and record

it as si;

output: s[s1:sr] // Retrieved sequence given [s1 : sr]

8

100 Paper D



For retrieval, the first r components of a previously learnt sequence, [s1 : sr] and the
learnt graph, G, are given and the complete sequence starting with [s1 : sr] is expected.

In Algorithm 2, first each of the given r components are mapped to their related
neurons in the first r clusters. Note that each component value is a number from 0 to
l − 1. Then, the retrieval algorithm establishes the output edges from these r active
neurons. The neurons in the destination cluster with highest input score will form the
candidate set for the next component of the sequence. If there is just one candidate it
will be added to the retrieved sequence and activated for retrieving the next component.
Otherwise, the component must be chosen randomly among the candidates.

3.1.1 Winner-Cache Retrieval in TNN

In the case of Winner-Cache algorithm, the learning phase is similar, but the retrieval
is more advanced. As reported in Algorithm 3, a temporary cache memory is used in
the cases where random selection among winners results into an error which is detected
later (see Figure 3 for an illustration).

Figure 3: The mechanism of using temporary cache memory in the Winner-Cache re-
trieval is illustrated. The component si, with yellow color, represents the point in the
retrieval where none of the nodes in cluster i has a score equal to r = 3 from last three
previous activated neurons. This means that si−1, si−2, and si−3 do not belong to any of
previously stored sequences. Starting from cache memory in cluster i − 3 for compo-
nent si−3, if there is an alternative candidate to be activated, we change the component,
and start retrieving the sequence from that point. If in si−3 the cache memory is empty,
the algorithm checks for si−2 and then si−1. At the end, if there is no alternative, or
using the alternatives does not help, the candidate set for component si will be one of
the winners, i.e. a node with maximum score.

The Cache-Winner algorithm proceeds as follows: whenever there is no unique
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candidate, the component is chosen randomly among the candidates and other candi-
dates will be recorded temporarily (up to assignment of the next r components). If
the algorithm can not find a candidate connected to all the previous r active neurons,
the algorithm starts retrieval from the earliest non-empty cache memory by randomly
choosing another member. For the sake of brevity, we refer to this retrieval as Cache in
the rest of paper.

Algorithm 3: Winner-Cache Retrieval in TNN.
input : G & [s1 : sr]

initialization

Activate r neurons in the first r clusters using [s1 : sr]

begin

i = r

while i < L do

i+ = 1

Establish the output edges from last r active neurons in the sequence;

Create a candidate set of nodes with maximum score in cluster i.

if maximum score < r then
search in the cache data of last r neurons ([i− r : i− 1]), find the

first non-empty cache (j) and select a new member randomly.

Update the cache by removing the new member and start retrieval

from that point (j) again by putting i = j.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
activate one of the candidate nodes randomly as winner and record

it as si;

Put the remaining members of the candidate set into a temporary

cache;

keep the cached data until the next r neurons are assigned.

output: s[s1:sr] // Retrieved sequence given [s1 : sr]

3.1.2 Winner-Explore Retrieval for TNN

At this juncture, we introduce a retrieval technique which performs exploration within
the forthcoming clusters to find a more accurate solution. As reported in Algorithm 4,
whenever the candidate set in a cluster is not unique, by using the previous activated
neurons, we produce possible candidates in the next clusters and consequently try to
eliminate the current candidates by exploring the connections to the generated candidate
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sets (see Figure 4 for an illustration). The maximum number of clusters that can be
investigated (rexplore) is upper bounded by r − 1. However, as will be discussed in
section 4.1.1 one could limit the retrieval algorithm to explore shorter distances. For
instance setting rexplore < c− r in order to reach each cluster at most once for a specific
component. Exploration involves searching for candidate sets in the following clusters
and then trying to eliminate the number of candidates in the current cluster. The two
techniques for this part are called Forward technique and Clique technique. In Forward
technique, any candidate which is not connected to at least one node in the following
clusters will be deleted from candidate set. Therefore, it is possible to find a unique
candidate by reducing the size of candidate set. Clique technique is more advanced
since it removes the candidates that are not in a tournament of largest possible size. We
use term Clique for this technique to differentiate this technique from the learning on
chain of tournaments.

Figure 4: Using exploration technique to eliminate the number of components that
are chosen randomly among the winners in Winner-Explore retrieval algorithm is il-
lustrated. Suppose that by using the edges from r = 3 previous nodes equivalent to
si−3, si−2, and si−1 to find si component, more than one option is found for the candi-
date set in cluster i. In this case, rexplore = r − 1 = 2 previous components, i.e. si−2
and si−1 are used to create a candidate set in cluster i + 1. In the Forward technique,
the algorithm checks which candidates for component i are connected to at least one
of the nodes in the candidate set in cluster i + 1 (using links labeled with 1). If there
is still more than one option, a candidate set in cluster i + 2 will be constructed using
si−1. Again, using Forward technique, the connections between candidates in cluster i
and the candidate sets in the following i+ 1 and i+ 2 clusters are used to eliminate the
options (labeled with 1 and 2). If still no unique option is available, Clique technique
will be used which searches for the possible cliques of size 3 (using all the links labeled
with 1, 2, and 3). Since rexplore = 2, if there is no unique candidate in cluster i within
the cliques, the process stops and the winner will be chosen randomly.
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The retrieval process, as reported in Algorithm 4, searches for a candidate set in
one cluster at each iteration: first by using the Forward technique, and then applying
Clique technique. In the case of a non-unique option, algorithm proceeds by adding a
new candidate set in the following cluster, and so on. The search for unique candidate
stops whenever a unique option is found or all the clusters for exploration are taken into
computation.
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Algorithm 4: Winner-Explore Retrieval in TNN
input : G & [s1 : sr], rexplore

initialization

Activate r neurons in the first r clusters using [s1 : sr]

begin

for i ∈ [r + 1 : L] do

Establish the output edges from last r active neurons in the sequence;

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then

for j ∈ [1 : rexplore] do
Create a candidate set in cluster i+ j using the r − j activated

nodes prior to i;

Construct a sub-graph of G with nodes of candidate sets in

cluster i up to cluster i+ j;

Update the candidate set in cluster i by keeping nodes with

maximum output edges in sub-graph

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as

si. // Forward technique worked.

else if len(candidate set) > 1 then
Find all tournaments in the sub-graph including nodes from

candidate set in cluster i with size j + 1;

Update the candidate set in cluster i so that only candidates

in such tournaments remain;

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as

si. // Clique technique worked.

else if len(candidate set) == 0 or j == r − 1 then
Return the last non-empty candidate set as the final

candidate set for cluster i;

output: s[s1:sr] // Retrieved sequence given [s1 : sr]
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3.2 Feedback TNN Structure
In this structure, the learning phase sets tournaments with forward and backward con-
nections. Each node in a tournament of size r + 1, has rfwd links to the forthcoming
clusters and receives rfbk links from the forthcoming [rfwd + 1 : r] active neurons,
where 0 ≥ rfbk ≥ rfwd and r = rfwd + rfbk (see Figure 5).The original TNN can be
seen as a Feedback TNN with zero feedback links (rfbk = 0).

Figure 5: In the chain of tournament structure with feedback connections, the first
rfwd connections of each tournament are clockwise and the next rfbk connections are
counterclockwise. In this illustration, rfwd = 2 and rfbk = 1.

For storing sequence s ∈ S, where s = s1s2 · · · sL, the clockwise connections in
the network will be as follows:

nij → ni′j′ , if:
{
fi(si+(π−1)c) = nij
fi′(si′+(π−1)c) = ni′j′

and, 1 ≤ δi(i
′) ≤ rfwd, (3)

and for counterclockwise connections:

nij ← ni′j′ , if:
{
fi(si+(π−1)c) = nij
fi′(si′+(π−1)c) = ni′j′

and, rfwd ≤ δi(i
′) ≤ r (4)

where 1 ≤ π ≤ bL
c
c. In general, for s ∈ S , if the above conditions are satis-

fied for a given π such that nij → ni′j′ , we set Ns,π(nij, ni′j′) = 1. Similarly we
set Ns,π(ni′j′ , nij) = 1, if nij ← ni′j′; otherwise we set Ns,π(nij, ni′j′) = 0, and
Ns,π(ni′j′ , nij) = 0.

At the end of learning or storing process, the network has the following connections:

W = {ω(ij)(i′j′)| if ∃ s ∈ S, and ∃ π ∈ [1 : bL
c
c] s.t. Ns,π(nij, ni′j′) = 1} (5)

where ω(ij)(i′j′) is a directed edge from nij to ni′j′ and 1 ≤ i, i′ ≤ c, 1 ≤ j, j′ ≤ l
(see Algorithm 5 for the learning process). In Figure 5, activated neurons in cluster i
are connected to the activated neurons in clusters i + 1 and i + 2 clockwise, whereas
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activated neurons in cluster i + 3 are connected to the activated neurons in cluster i
counterclockwise.

Algorithm 5: Learning in Feedback TNN
input : c, k, r, rfwd, L & S
initialization

l = 2k, rfbk = r − rfwd

Generate directed graph G with n = c× l nodes structured in c clusters of size

l.

Assign clusters indices from 1 to L cyclically (see Figure 5 for labeling)

begin

for s ∈ S do

Activate the corresponding neurons to the sequence;

Connect each active neuron (say in cluster i) to the active neurons in

the next rfwd clusters ([i+ 1 : i+ rfwd]);

Connect each active neuron to the previous rfbk active neurons in

clusters [i− r : i− rfwd − 1];

output: G

3.2.1 Retrieval in Feedback TNN

Here we introduce two retrieval algorithms, Feedback-Forward (Algorithm 6) and Feedback-
Backward (Algorithm 7), which can retrieve a complete sequence from any given seg-
ment. To do so, we need a pre-matching process to find the clusters on which the given
sequence segment was stored (see Figure 6 for an illustration of Feedback-Forward and
Feedback-Backward processes).
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(a) For Forward retrieval in Feedback TNN,
first a candidate set in cluster i is created using
the connections from active neuron in clusters
i − 1 and i − 2 (since rfwd = 2). If there is a
unique winner candidate, the algorithm stops,
otherwise a sub-graph is constructed with the
candidate set and the active neuron in cluster
i − 3 (since rfbk = 1). The candidate set will
be updated by keeping nodes with maximum
score.

(b) For Backward retrieval in Feedback TNN,
first a candidate set in cluster i is created using
the connections from active neuron at cluster
i+3 (since rfbk = 1). If there is a unique win-
ner candidate, the algorithm stops, otherwise a
sub-graph is constructed with the candidate set
and the active neurons in clusters i+1 and i+2
(since rfwd = 2). The candidate set will be up-
dated by keeping nodes with maximum score.

Figure 6: Consider the structure in Figure 5 where rfwd = 2 and rfbk = 1. Given a
segment of r = 3 components, Forward and Backward retrieval processes are illustrated
respectively in (a) and (b).

Feedback-Forward algorithm (hereafter Forward) retrieves the sequence given the
first r components of it. This retrieval is performed in two phases: first, by using the
rfwd connections, and then if the winning candidate is not unique, the rfbk connections
are used to eliminate the number of candidates, as reported in Algorithm 6.

Feedback-Backward algorithm (hereafter Backward), retrieves the sequence given
the last r components of a sequence. As reported in Algorithm 7, the algorithm first
uses the rfbk input edges to make an initial candidate set, and then the output edges
from the candidate set is used to eliminate the number of candidates.
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Algorithm 6: Feedback-Forward Retrieval in Feedback TNN
input : G & [s1 : sr]

initialization

Activate r neurons in the first r clusters using [s1 : sr]

Assign clusters indices from 1 to L cyclically

begin

for i ∈ [r + 1 : L] do
Establish the output edges from previous rfwd active neurons in the

sequence;

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
A sub-graph of G with nodes from candidate set in cluster i, and

previous rfbk active neurons in clusters [i− r : i− rfwd] is

constructed;

The new candidate set for cluster i is updated by keeping the nodes

which have maximum output edges in the sub-graph;

Select one node from the updated candidate set as winner and

record it as si;

output: s[s1:sr] // Retrieved sequence given [s1 : sr]

17

Paper D 109



Algorithm 7: Feedback-Backward retrieval in Feedback TNN.
input : G & [sL−r+1 : sL]

initialization

Activate r neurons in the related r clusters using [sL−r+1 : sL]

Assign clusters indices from 1 to L cyclically

begin

for i ∈ [L− r : 1;−1] do
Establish the output edges from rfdk active neurons in clusters

[i+ rfwd : i+ r];

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
A sub-graph of G with nodes from candidate set in cluster i, and the

next rfwd active neurons is constructed;

The new candidate set for cluster i is updated by keeping the nodes

with maximum score (maximum output edges) in the sub-graph;

Select one node from the updated candidate set as winner and

record it as si;

output: s[sL−r+1:sL] // Retrieved sequence given [sL−r+1 : sL]

Note that Winner (Algorithm 2) can be seen as a special case of Forward (Algo-
rithm 6) when rfwd = r and rfbk = 0. In Figure 6a, only the first step that uses rfwd is
applicable. On the other hand, in the case of the original TNN, the Backward algorithm
starts with a candidate set of size l and makes a sub-graph with the given rfwd = r
components, since rfbk = 0 and there is no input connection. In Figure 6b, only the
second step that uses rfwd is applicable.

3.3 Error Types
Based on the argument of Jiang et al. (2016), two different error types could be distin-
guished; an error type that is due to prior retrieval errors in simulation, and an error type
that is structural and which is caused by an excessive network density. The structural
error type could happen even if all the previous r components are given correctly.

Component Error Rate (CER) and Sequence Error Rate (SER) address the simu-
lation error; CER is defined as the ratio of the number of incorrect components over
the number of total retrieved components, whereas SER is defined as the number of
sequences that are failed to be retrieved correctly over the total number of sequences.
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Structural Component Error Rate (S-CER) and Structural Sequence Error Rate (S-
SER) address the structural error. According to Jiang et al. (2016), the S-CER can
be estimated as the error rate at a single retrieval step when the provided previous r
components are correct.

PS−CER = 1− (1− dr)l−1 (6)

where d is the network density which is the ratio of number of established connec-
tions during the storage process over all possible connections that the network structure
allows. The density is calculated (in Jiang et al., 2016, equation 7) as:

d = 1−
(
1− 1

l2

) |S|L
c

(7)

At the sequence level, S-SER is estimated (in Jiang et al., 2016, equation 9) as:

PS−SER = 1− (1− dr)(l−1)(L−r) (8)

Please note that the density in the Feedback TNN structure is the same as the density
of the original TNN structure (equation 7). This is due to the fact that the density is
calculated based on the probability of having a connection between two nodes, and in
the case of Feedback TNN just the directions of some connections are changed while
their number remains the same. Moreover, based on the definition of structural errors,
equations 6 and 8 are valid for Cache, Explore and Feedback TNN retrievals.

4 Simulation Results
In this section, the simulation results for different algorithms are presented in order to
show the robustness of storage and to compare different structures. Learning processes
for TNN and Feedback TNN structures (Algorithm 1 and Algorithm 5, respectively)
are considered when c = 20, k = 8, l = 28 = 256, r = 12, rfwd = 6, rfbk = r −
rfwd = 6, and L = 100. Regarding the retrieval, four scenarios; Winner (Algorithm 2),
Cache (Algorithm 3), Explore (Algorithm 4), Forward (Algorithm 6), and Backward
(Algorithm 7) are simulated and compared.

The sequences in the learning set are different in at least one of the first r compo-
nents. For instance, a learning set of size 1000 is a set of 1000 sequences that all are
different in at least one component in the 12 first components. To see if the memorized
sequences can be retrieved, 100 of the learnt sequences are randomly chosen from each
learning set. To reduce randomness effect, we fixed the 100 choices of sequences in the
learning set of each size (varies between 10 to 15000), in simulations for all the retrieval
algorithms.

4.1 TNN Retrieval Results
Figure 7 depicts the error rate for a range of learning set sizes, for different retrieval al-
gorithms, namely, Winner (Algorithm 2), Cache (Algorithm 3) , Explore with rexplore =
3, and rexplore = 7 (Algorithm 4). To illustrate the power of the algorithms with respect
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to the structure of the network, the calculated density and structured error are also plot-
ted. It is clear from the results that retrieval with the exploration when rexplore = 7
is far better than the rest of scenarios. For instance, when the learning set is com-
posed of 10000 sequences, each of size 100, the SER (Figure 7a) for the Winner is one,
which means that no sequence can be retrieved correctly with the original algorithm.
While this value is about 0.7 for the algorithm with cache memory and about 0.6 when
the exploration technique is used with rexplore = 3, and the SER for exploration with
rexplore = 7 is less than 0.2. This superiority of exploration algorithm can easily be
tracked in the CER results (Figure 7b). For instance, for the same learning set, the CER
for Winner is 0.75, for Cache it is 0.4, for Explore with rexplore = 3 it equals to 0.3, and
for Explore with rexplore = 7 it is near zero.

(a) Sequence error rate (SER) (b) Component error rate (CER)

(c) Running time ratio for Explore-r7 and
Cache over Winner.

Figure 7: Comparison between retrieval algorithms on the TNN structure; Winner (Al-
gorithm 2), Cache (Algorithm 3) , Explore with rexplore = 3, and rexplore = 7 (Algo-
rithm 4). The running time ratios of Explore (with rexplore = 7) and Cache over Winner
are reported in 7c.

In Figure 7a, the simulated error value for all retrieval methods are less than S-SER
which is obtained from equation 8. This can be explained by the fact that the S-SER
error estimation is based on the probability of having at least two nodes in a cluster that
all the previous r components are connected to. In this case, for the simplest version of
retrieval algorithms, Winner, one candidate will be chosen randomly. In other words,
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S-SER is an upper bound for SER and in the case that all the choices are unique (S-
SER = 0), there will be no error (SER = 0). Although there is no guarantee that
the randomly chosen candidate is the desired one, the SER value is slightly less than
the S-SER. Obviously, the more sophisticated retrieval algorithms, Cache and Explore,
reduce the random selections and therefore, the number of errors. The structure error
is a function of network density and as can be seen in Figure 7, higher density leads to
higher structure error.

For S-CER (Figure 7b), the argument is different and the simulated error values in
retrieval process are higher than S-CER. To calculate S-CER, the assumption is that the
previous retrieved components are correct and S-CER estimates the probability of hav-
ing at least two nodes that are fully connected to the previous r components. However,
in the simulation, the values of some of r previous components are faulty and as a result
the decision is not based on correct components. Therefore, in a sequence retrieval, er-
rors at each component could be propagated to the rest of retrieval and simulated error
CER will be higher than S-CER which assumes the r components are correct.

The reported results in Figure 7 suggest Explore retrieval with higher number of
steps. Cache algorithm is also promising, but for large learning sets it has a low speed.
When the network density increases, Cache retrieval process creates larger candidate
sets for each component and therefore larger cache memory, and the algorithm might
go through all the options to find the correct component. Explore, on the other hand,
must explore longer distances that is the source of complexity in Explore. Figure 7c
compares the simulation running time between Explore-r7 and Cache with Winner for
different learning set sizes. The running time up to a learning set size of 8000 for all
the three algorithms is the same, while Explore-r7 and Cache perform far better than
Winner; compare the low performance of Winner (SER = 0.52) with the performance
of Cache (SER = 0.08) and Explore-r7 (SER = 0.02). As another example, for
learning set size 10000, SER = 1 for Winner; while Explore-r7 has SER = 0.18 and
running time ratio 1.2, and Cache has SER = 0.86 and running time ratio 1.7.

This shows that for reasonable error values (say less than 0.1), the running time ratio
is at the same level of Winner in both cases. Interestingly, the running time for Cache
reaches a peak for a learning set of size 14000 and thereafter starts to decline for larger
learning sets as shown in Figure 7c. This can be explained by the excessive density so
that the probability of having full score candidate at each step increases and therefore
the algorithm can not detect an error which reduces the processing time for checking
the Cache memory.

In Figure 7b, only Explore algorithm with rexplore = 7 that investigates further
clusters shows lower error than S-CER until the density about 0.6 and learning set
of size 12000. We will have a closer look at the simulation results for the Explore
algorithm below.

4.1.1 More Investigation on Explore Retrieval Algorithm

In Explore retrieval, by starting from distance one, the algorithm uses Forward and
Clique techniques consecutively and increases the exploration distance until a unique
candidate is found or rexplore limit is met. Clique technique is more powerful but it
is more computationally expensive than Forward technique. Figure 8a shows that by
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using the Clique technique alone (red dashed line) the exploration performance does
not change, whilst Forward technique alone (blue dashed line) is far less effective than
the achieved results by exploration algorithm. This is an expected result since Clique
technique is endowed with Forward technique.

Figure 8b and 8c show the number of components that Forward and Clique tech-
niques successfully retrieved (unique winner), respectively in the course of retrieving
each sequence. The columns show the exploration distance and the rows show the size
of learning sets. It is noteworthy that the first column in Figures 8c is all zero since for
a distance one, a forward connection and a tournament of size 2 are the same, and the
Forward technique is prior to the Clique technique in Algorithm 6.

As reported in Figure 7b, the Winner handles the retrieval when the learning set
sizes are up to 7000. Until this point, no exploration is demanded. But with larger sizes
of learning set and whenever it comes to the exploration phase, most of the cases can be
retrieved with exploration of distance one. This, however, does not mean that the best
choice, in terms of time/accuracy trade off, is rexplore = 1. When the size of learning
sets gets higher, the Clique technique gets more involved. Because the higher sizes
of candidate sets in under exploration clusters increases the searching domain, which
results Forward technique to be failed in retrieval and Clique technique starts to retrieve.
Let us consider for instance the learning set sizes around 12000 − 13000 which is the
highest number of successful retrievals per sequence using Explore retrieval (Figure
7a). For these sizes the CER error is high, for example it is about 0.46 for learning
set of size 12000 and equals 0.85 when the learning set size is 13000 and therefore the
overall retrieval is not successful. Interestingly, the S-CER also beats CER at around
12000 (Figure 7b) which shows that high density can not be managed with exploration
technique as well.

For learning sets of size 11000, the CER for Explore-r7 is 0.074 (Figure 7b) while
without exploration technique the CER value equals one for learning set sizes larger
than 10000. Figure 8b and 8c show decrease in the successful cases at exploration
with higher distances, say 6 or 7 which suggests that extra exploration is not worth the
computation. We found rexplore = 7 as a suitable choice for this setting of parameters.
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(a) CER for Explore algorithm compared with the cases that either Forward
technique or Clique technique is used.

(b) Number of unique winner components
which are found at [1 : 7] exploration distances
using Forward technique.

(c) Number of unique winner components
which are found at [1 : 7] exploration distances
using Clique technique (with tournament sizes
[1 : 7] + 1)

Figure 8: Analysis of Explore retrieval; Forward technique vs. Clique technique and
the required exploration distance for finding a unique component. Results of learning
set sizes between 6000 and 15000 are depicted.

4.2 Feedback TNN Retrieval Results
Figure 9 shows the retrieval error of Feedback TNN learning when r = 12 & rfwd = 6
(Forward-r6 and Backward-r6) together with the retrieval error of original learning
method (TNN) with Winner and Backward-r0 retrievals when r = 12. We start the
Winner and Forward-r6 retrievals when the first r = 12 components are given, and
Backward-r6 and Backward-r0 when the last r = 12 components are given.

Figure 9a confirms that the sequence retrieval results in Feedback TNN can be as
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accurate as the original TNN memories. It is almost the same for CER (Figure 9b),
however the results for the original TNNs are slightly better. We can explain this as
a result of errors in recent previous rfwd = 6 components. Consider the case that the
algorithm finds a unique candidate for the current component based on last rfwd = 6
components, without considering the other rfbk = 6 links, and selects it as the only
winner, while it can be incorrect candidate due to some errors in previous steps. How-
ever, if the algorithm uses all the rfwd and rfbk links the candidate set might composed
of more components, which are not necessarily of full score. In this case, the final
candidate will be chosen randomly, and therefore there is a chance of correct compo-
nent selection. The above argument could similarly explain why CER for Backward-r0
are slightly better than Backward-r6. Note that the errors in Feedback TNN retrievals
might cause more random choices in retrieval of the rest of components (see section 4.3
for an analysis of randomly chosen components). Indeed, such errors do not increase
SER but CER could be affected as seen in Figure 9b.

(a) Sequence error rate (b) Component error rate

Figure 9: Comparison between the original TNN learning method and the learning in
Feedback TNN using Winner, Forward and Backward retrievals.

In summary, in Feedback TNN the retrieval is faster than TNN, the SER perfor-
mance is the same for both, but TNN could be slightly better in CER performance.

4.3 Randomness in Simulated Retrievals; an Overall Look
Figure 10 provides a general overview on the number of cases in average that retrieval
algorithms select the final component randomly from the candidate set. The success in
policy of reducing the number of cases with random decision in Cache and Explore re-
trievals to achieve better retrieval performance is clearly shown in the last three columns
related to these retrievals. For instance, when the learning set size equals 11000, nearly
50 components out of L − r = 88 are chosen randomly for Winner, as the original
retrieval algorithm, but it is about 20 for Cache, 15 for Explore with rexplore = 3, and
almost zero for Explore with rexplore = 7. The number of random choices for Feed-
back TNN structure, both Forward and Backward, is slightly higher than Winner and
Backward-r0. The argument is that the errors that appear due to the wrong unique
retrieval, produce more error afterwards in the sequence, and therefore more random
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winner retrieval cases in total. We also can observe a slightly higher number of random
winner selection in the Backward-r0. This could be related to the learning set genera-
tion in our simulations. The sequences in a learning set, are forced to be different in at
least one of the first r components. Therefore, the Winner can start the retrieval with
the unique sequence, while in the Backward-r0 more than one sequence can match with
the given last r components.

Figure 10: A comparison between number of random selection of winner candidate in
different scenarios.

5 Discussion and Concluding Remarks
In this study, two-fold contributions within the field of TNN structures were presented;
first, we proposed a more general learning and retrieval structure called Feedback TNN,
and second, we devised two more accurate retrieval algorithms in comparison with the
Winner algorithm.

In Feedback TNN, each segment of sequence of length r + 1 is mapped into a
tournament in r + 1 consecutive clusters where each neuron has rfbk input edges and
rfwd = r − rfbk output edges. The proposed retrieval for the Feedback TNN operates
in two phases, in a faster manner than TNN retrieval, and generates the same sequence
error rate while producing a slightly weaker component error rate.

The original TNN can be considered as a special case of Feedback TNN with zero
feedback connections. Using feedback connections, we obtained results of sequence
retrieval as precise as the original structure, with the possibility of faster retrieval. One
might also divide the r forward connections into two parts, say r1 and r2, and try to
retrieve the component using the most recent r1 active neurons, and if it is not possible
to uniquely retrieve, use the rest of r2 neurons. More generally, one can try to retrieve
by starting from the last active neuron and reduce the size of the candidate set (losers-
kicks-out), and adding more active neurons to the retrieval process, until either one
winner candidate remains or all the r active neurons are used.

By introducing Backward retrieval in this paper, we showed that it is possible to
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get a part of a sequence, no matter its location, and retrieve the rest. In this case,
the retrieval algorithm must be able to first locate a tournament matching the given
sub-sequence, and later retrieve the whole sequence from both directions. Backward
retrieval is compatible with both TNN and Feedback TNN structures, but Feedback
TNN with non-zero feedback links is preferable since the Backward retrieval algorithm
can start with a smaller size candidate set.

In order to improve the retrieval accuracy for a given network, we suggested two
algorithms with the overall strategy to limit the number of random selections during
retrieval. The Cache retrieval (Algorithm 3) uses a temporary cache memory for the
last r components to record the candidate set of winners whenever the chosen winner is
not unique. These cached alternatives are used whenever the algorithm detects an error
by observing no candidate having a full score. The reported results in section 4 confirm
the usefulness of this method. The more advanced, and successful, retrieval algorithm
(Algorithm 4) explores the forthcoming clusters to find a unique candidate in the cur-
rent cluster. This algorithm somehow investigates the consequence of choosing each
candidate by checking its connections to the possible future components and decides
more judiciously. This algorithm produces the best results.

Explore-Winner is a more reliable retrieval method than Cache-Winner since it lim-
its the number of random choices using the data in the forthcoming clusters, while
Cache-Winner tries to correct the errors by testing other possibilities. Cache-Winner
might be computationally expensive in higher densities where candidate sets of win-
ners are larger and therefore, larger sets are cached. Finding an optimal rexplore, for
exploration distance limit, as shown in section 4.1.1, is a trade-off between time and
accuracy. Although not reported in the simulations, both Cache-Winner and Explore-
Winner can be used in Feedback TNN and for Backward retrieval.

Similar to the double-layer structure proposed by Jiang et al. (2016), it is possible
to consider a hierarchical structure by adding an extra connectivity level. Moreover,
similar to the technique used in (Mofrad et al., 2016) a precoding could dramatically
increase the storage and retrieval capacity by forcing patterns to be well separated and
therefore reducing the common tournaments in different patterns.
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Gripon, V., Heusel, J., Löwe, M., & Vermet, F. (2016). A comparative study of sparse
associative memories. Journal of Statistical Physics, 164(1), 105–129.

Hacene, G. B., Gripon, V., Farrugia, N., Arzel, M., & Jezequel, M. (2017). Finding all
matches in a database using binary neural networks. COGNTIVE 2017, (pp.6̃7).

Hacene, G. B., Gripon, V., Farrugia, N., Arzel, M., & Jezequel, M. (2019). Budget
restricted incremental learning with pre-trained convolutional neural networks and
binary associative memories. Journal of Signal Processing Systems, 91(9), 1063–
1073.

27

Paper D 119



Hawkins, J. & Ahmad, S. (2016). Why neurons have thousands of synapses, a theory
of sequence memory in neocortex. Frontiers in neural circuits, 10, 23.

Hawkins, J. & Blakeslee, S. (2007). On intelligence: How a new understanding of the
brain will lead to the creation of truly intelligent machines. Macmillan.

Hawkins, J., George, D., & Niemasik, J. (2009). Sequence memory for prediction,
inference and behaviour. Philosophical Transactions of the Royal Society of London
B: Biological Sciences, 364(1521), 1203–1209.

Hoffmann, H. (2019). Sparse associative memory. Neural computation, 31(5), 998–
1014.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8),
2554–2558.

Hopfield, J. J. (2008). Searching for memories, sudoku, implicit check bits, and the
iterative use of not-always-correct rapid neural computation. Neural Computation,
20(5), 1119–1164.

Jarollahi, H., Gripon, V., Onizawa, N., & Gross, W. J. (2015). Algorithm and archi-
tecture for a low-power content-addressable memory based on sparse clustered net-
works. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(4),
642–653.

Jarollahi, H., Onizawa, N., Gripon, V., & Gross, W. J. (2014). Algorithm and archi-
tecture of fully-parallel associative memories based on sparse clustered networks.
Journal of Signal Processing Systems, 76(3), 235–247.

Jiang, X. (2014). Storing sequences in binary neural networks with high efficiency. PhD
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Formation of stimulus equivalence classes has been recently modeled
through equivalence projective simulation (EPS), a modified version
of a projective simulation (PS) learning agent. PS is endowed with an
episodic memory that resembles the internal representation in the brain
and the concept of cognitive maps. PS flexibility and interpretability
enable the EPS model and, consequently the model we explore in this
letter, to simulate a broad range of behaviors in matching-to-sample ex-
periments. The episodic memory, the basis for agent decision making, is
formed during the training phase. Derived relations in the EPS model
that are not trained directly but can be established via the network’s con-
nections are computed on demand during the test phase trials by like-
lihood reasoning. In this letter, we investigate the formation of derived
relations in the EPS model using network enhancement (NE), an iterative
diffusion process, that yields an offline approach to the agent decision
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making at the testing phase. The NE process is applied after the train-
ing phase to denoise the memory network so that derived relations are
formed in the memory network and retrieved during the testing phase.
During the NE phase, indirect relations are enhanced, and the structure
of episodic memory changes. This approach can also be interpreted as the
agent’s replay after the training phase, which is in line with recent find-
ings in behavioral and neuroscience studies. In comparison with EPS, our
model is able to model the formation of derived relations and other fea-
tures such as the nodal effect in a more intrinsic manner. Decision mak-
ing in the test phase is not an ad hoc computational method, but rather
a retrieval and update process of the cached relations from the memory
network based on the test trial. In order to study the role of parameters
on agent performance, the proposed model is simulated and the results
discussed through various experimental settings.

1 Introduction

Stimulus equivalence (SE), a phenomenon that Sidman (1971) identified
and explored, refers to the condition that members of an equivalence class
evoke the same response in human and animal subjects. The SE methodol-
ogy uses a matching-to-sample (MTS) procedure to train arbitrary relations
between unfamiliar stimuli and test derived relations through mathemati-
cal relations in equivalence sets: reflexivity, symmetry, and transitivity. The
SE framework, as an efficient learning method, has been widely studied
by employing humans or animals as experimental participants (see Sid-
man, Cresson, & Willson-Morris, 1974; Sidman et al., 1982; Sidman & Tailby,
1982; Sidman, Willson-Morris, & Kirk, 1986; Devany, Hayes, & Nelson, 1986;
Hayes, 1989; Fields, Adams, Verhave, & Newman, 1990; Spencer & Chase,
1996; Groskreutz, Karsina, Miguel, & Groskreutz, 2010; Steingrimsdottir &
Arntzen, 2011; Arntzen & Mensah, 2020, to mention a few). Computational
models constitute another alternative for understanding SE and studying
variables that are challenging to examine on humans or animals due to
time constraints or ethical issues (see, e.g., Barnes & Hampson, 1993; Culli-
nan, Barnes, Hampson, & Lyddy, 1994; Lyddy, Barnes-Holmes, & Hampson,
2001; Lew & Zanutto, 2011; Tovar & Westermann, 2017; Ninness, Ninness,
Rumph, & Lawson, 2018, for some computational models of the learning of
equivalence relations).

In our previous model (Mofrad, Yazidi, Hammer, & Arntzen, 2020),
we proposed equivalence projective simulation (EPS) for computationally
modeling the SE phenomenon. In brief, EPS has modeled the formation of
SE classes through an MTS procedure. A projective simulation (PS) frame-
work (Briegel & De las Cuevas, 2012) was the basis of the model, and we
have proposed several methods to address the test phase and derived rela-
tions, including max-product, memory sharpness, and random walk on the
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memory network with absorbing action sets. The EPS model, similar to the
original PS model, has an internal episodic memory that is updated dur-
ing the training phase, which is used to cope with new, derived relations
in the testing phase. The PS model, and therefore the EPS model, is flexible
and easy to interpret, which allows modeling a broad range of behaviors in
MTS experiments, including typical participants or participants with some
disabilities. Many parameters of the model can be controlled, such as the
learning rate, forgetting rate, and nodal effect.

The EPS model relies on the assumption that the relations are derived on
request, that is, when they appear in an MTS trial during the testing phase
and updated during the training phase. We slightly change this assumption
and form those relations at the end of the training phase; thus, the output
network from the training phase of EPS is assumed to be a noisy version of
the agent’s memory network that is supposed to contain all trained and de-
rived relations. Using a denoising approach, we could produce a new, less
noisy clip network that contains information regarding equivalence class
formation. The trained relations in the training phase are mapped into a
transition matrix whose values describe the strength of the trained relations.
By resorting to network enhancement (Wang et al., 2018), we address the
formation of SE classes using an iterative update of the transition matrix. In-
terestingly, the updating process permits naturally denoising the transition
matrix and enhancing indirect relations1 while preserving the initial direct
relations learned during the training phase. The denoised network can be
assimilated to an updated clip network, used later in the testing phase. It
can also be used to assess overall agent performance on eventual equiva-
lence tests. In summary, the contribution of this letter is as follows:

1. Instead of using reasoning, that is, computing the likelihood of the
different alternatives during testing by following some indirect paths
over the clip network, we update memory and retrieve the updated
memory at the testing phase.

2. As in the EPS model, we still control symmetry relations with a
multiplicative parameter. We are able to control the ability to derive
transitivity relations using parameter α. This turns out to be of great
importance when modeling subjects with learning disabilities.

3. We further enhance the NE and propose DNE in which we can con-
trol the agent’s ability to derive symmetry and also control its ability
to derive transitivity.

4. A comparison of PS, EPS, and E-EPS, together with supporting stud-
ies from the neuroscience literature, is provided that justifies the pro-
posed model.

1
According to the theory of SE, indirect relations are derived through reflexivity, sym-

metry, transitivity, and equivalence.
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5. From a computational point of view, the new updating rule has fewer
parameters to fine-tune in comparison with the EPS. The approach
to deriving relations in EPS model can be seen as routing in the clip
network, with action sets as destination points. In the E-EPS model,
a diffusion model explores the clip network by simultaneous propa-
gation of flow without a specific target.

6. The updated clip network can be considered as a cognitive map
of stimuli that can be used in analyzing the results of different
settings.

7. The testing phase in the E-EPS model involves less computation on
the decision time in comparison with EPS. E-EPS uses the updated
network during the testing phase rather than processing the trained
relations to compute derived relation links at each test trial.

8. Using a simulation of several configurations, we study the parame-
ters in detail.

9. We compare three training procedures—linear series (LS), many-to-
one (MTO), and one-to-many (OTM)—in the final experiment. In line
with the mainstream literature in behavior analysis (see Arntzen,
Grondahl, & Eilifsen, 2010; Arntzen & Hansen, 2011; Arntzen, 2012),
the model yields better performance in OTM and MTO cases in com-
parison with LS, which is a qualitative property of our model con-
firming that it is a realistic model.

10. We provide theoretical analysis of the model and a convergence guar-
antee in appendix A.

We provide a brief overview of SE, EPS, and network enhancement in
section 2. We provide the architecture of the enhanced equivalence projec-
tive simulation (E-EPS) model in section 3, where we also compare the pro-
posed approach to the original PS model and recent EPS model. We consider
seven experimental scenarios to study the parameters of the model in sec-
tion 4. Section 5 offers a summary of the letter discussion, and concluding
remarks.

2 Background and Related Work

In section 2.1, we review the concept of SE from a behavior analysis
perspective. In section 2.2, we briefly explain the EPS model and pro-
vide a brief section about network enhancement (Wang et al., 2018) in
section 2.3.

2.1 Stimulus Equivalence (SE). SE is a research method on complex
human behavior, including memory and problem solving (Sidman, 1990).
In the MTS or conditional discrimination procedure, which is used in SE, a
given stimulus, say A1, must be paired with B1 among a given comparison
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stimuli set, say B1, B2, and B3. The discrimination happens through pro-
grammed consequences.

The MTS procedure has two phases: the training phase, when the partic-
ipant learns some relations, and the testing phase, when the participant is
tested with derived relations. Trial types in the testing phase include base-
line, symmetry, transitivity, and equivalence. It is noteworthy that equiv-
alence relations are sometimes referred to as combined transitivity and
symmetry.

The evaluation of participant learning is usually through a threshold
or mastery criterion ratio (e.g., 0.95 to 1). If the participant passes the cri-
terion, the derived relations are tested. In the testing phase, there are no
programmed consequences, and usually the criterion ratio in this phase is
lower than in training phase (e.g., 0.9 to 1). Whenever the evidence (passing
the criterion for testing) shows the emergence of all relations, the equiva-
lence class is considered to be formed (Sidman & Tailby, 1982).

In the equivalence literature, three training structures have been used in
establishing conditional discrimination with the MTS procedure: linear se-
ries (LS), many-to-one (MTO), and one-to-many (OTM) (see Arntzen, 2012,
for more details about MTS training and testing procedures and parameters
in SE formation). Generally, a class with n stimuli, requires training of only
(n − 1) stimulus-stimulus relations. The condition is that each component
of these relations needs to be present in at least one trained relation, and
none of the trained relations can have the same two stimuli as components.
Even with these constraints, many possible ways for structuring training
relations remain, some of them possibly more efficient than the others (see
Fields et al., 1990; O’Mara, 1991; Arntzen & Holth, 1997; Hove, 2003; Ly-
ddy & Barnes-Holmes, 2007; Arntzen et al., 2010; Arntzen & Hansen, 2011;
Fienup, Wright, & Fields, 2015, for instance). Appendix B formally analyzes
the size of the training design space, which is shown to be exhaustive even
for a small number of categories and number of classes. Therefore, it is com-
plex to design and run experiments involving human subjects that explore
different training and testing scenarios. Computational models, however,
could be used for exploring new ideas through simulation. For instance, one
could try several configurations and find the optimum scenario according
to some design criterion in the computational model before running a real
experiment. Moreover, components of the computational model can be eas-
ily manipulated, disrupted, impaired, and removed to see the effect of those
components on the results. Having more control over the experimental vari-
ables, including a controllable environment, is a considerable advantage of
these models over real experiments (Barnes & Hampson, 1993; McClelland,
2009; Ninness, Ninness, Rumph, & Lawson, 2018).

2.2 Equivalence Projective Simulation (EPS). EPS is based on PS,
which can be seen as an reinforcement learning (RL) model that can be
embodied in an environment, perceive stimuli, execute actions, and learn
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through trial and error (see, e.g., Briegel & De las Cuevas, 2012; Melnikov,
Makmal, Dunjko, & Briegel, 2017, for details of PS model).

The PS agent, and therefore the EPS agent, has an episodic memory that
is literally a directed, weighted network of clips, where each clip repre-
sents a remembered percept or action (stimulus in EPS). Memory can be
described as a probabilistic network of clips, the so-called clip network.2

The learning in PS is realized by updating weights and structure through
adding new clips and new transition links.

The simulation of the MTS procedure via EPS has two phases: the train-
ing phase, when the memory network will be formed through trials and
guided feedback, and the testing phase, when no new memory clips are
created. Although there is no guided feedback in the testing phase, con-
nection weights might be updated. The testing phase is the main part of
the model. In Mofrad et al. (2020) three different approaches dealing with
the derived relations are discussed: max-product, memory sharpness, and
absorbing action sets.

At the beginning of an MTS training phase, the agent memory space,
which is shown by C = {c1, . . . , cp}, is empty. Based on trial settings, a mem-
orized clip could play the role of either a percept clip or an action clip.
At each time step, the environment (the experimenter in the real experi-
ments) shows a sample stimulus and some comparison alternatives, which
are referred to as percept and actions. The percept and actions belong to the
percept set S and action set A, respectively. The sample stimulus (percept,
s ∈ S) and the comparison stimuli (actions a ∈ At) belong to different cat-
egories (e.g., category A or B), where At denotes the action space at time t
and consists of a set of comparisons at the given trial. The training phase
will be as follows:

1. The agent perceives stimulus s ∈ S from the environment. Clip cs ∈ C
is either created (the first time) or activated.

2. Perceiving action set At from the environment, the agent estab-
lishes and initializes connections between the sample and compar-
ison stimuli the first time with h-values equal to h0. If there exist
connections from previous trials, there is no need for initialization.

3. The agent computes p(t)(ca|cs), a ∈ At based on the h-values using the
softmax distribution function,

p(t)(c j|ci) = eβh(t) (ci,c j )∑
k eβh(t) (ci,ck )

, (2.1)

where at this stage, clip ci = cs and clip c j ∈ At . Alarger value of β ≥ 0
creates a probability distribution that is more biased to the choice of

2
The terms episode and clip are used interchangeably.
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the largest h-value, and therefore parameter β can be used for tuning
the learning rate as well.

4. The agent selects one of the actions based on the computed probabil-
ity distribution and receives a positive or negative reward from the
environment, say, λ(t) ∈ � = {−1, 1}.3

5. The connection weights, h-values, will be updated as a result of the
environment feedback as follows:

h(t+1)(cs, ca) = h(t)(cs, ca) − γ (h(t)(cs, ca) − 1) + λ(t). (2.2)

Moreover, the opposite link, (ca, cs), will be updated in a similar way,
but with the parameter 0 < K ≤ 1:

h(t+1)(ca, cs) = h(t)(ca, cs) − γ (h(t)(ca, cs) − 1) + Kλ(t). (2.3)

6. The environment provides new trials until all training relations meet
the mastery criterion.

It is noteworthy that parameter K was used in the learning rule of the orig-
inal PS model (Briegel & De las Cuevas, 2012) to determine the growth rate
of associative or compositional connections relative to the direct connec-
tions. This parameter, for instance, enables the PS agent to learn faster by
recognizing similarity among the existing clips in memory and new percep-
tual input (see Figures 11 and 12 in Briegel & De las Cuevas, 2012, for more
detail on associative learning in the PS agent). The parameter K in the EPS
model, however, quantifies the relative growth of symmetry relations com-
pared to the direct, or baseline, relations.4 This parameter is different from
the original PS in the sense that the stimuli in EPS (and E-EPS) are arbitrary,
that is, they have no physical similarity, and therefore the parameter K does
not capture similarity. The notion of associative memory, however, can be
added to the EPS model by introducing compound stimuli, which we do
not address in this letter.

After that agent passes the training phase, the testing phase, in which
the formation of derived relations is tested starts. At this stage, no feedback
is provided from the environment.

1. The agent perceives s ∈ S , activates the memory clip cs ∈ C, and tries
to choose the best action among the given action set At based on its
memory as follows.

3
It is noteworthy that � could have any positive or negative values, including

asymmetric rewards. For instance, negative feedback might have greater impact (see
Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001, as an example of a positive-negative
asymmetry effect).

4
In Mofrad et al. (2020), we use K1, K2, K3, and K4, which play the same role as K in

this letter but with a higher level of control.
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2. If connections between the sample and comparisons exist, the agent
computes the p(t)(ca|cs), a ∈ At based on the h-values using a prob-
abilistic distribution achieved by either softmax or a normalized
vector of h-values (called “standard” in PS and EPS). If such connec-
tions do not exist in the transitivity or equivalence relation cases, the
agent computes the transition probabilities using a max-product sce-
nario or an absorbing states scenario and selects one of the possible
actions:
• In the max-product case, the agent finds the most probable paths

between cs and each action ca, a ∈ At . There are many possible
paths that might link cs to a particular action ca, and thus the
procedure might be computationally exhaustive.

• The absorbing state scenario can be considered as a random clip
network, starting from cs and ending with a clip in At . So, unlike
the max-product method, the probability of reaching each action
from cs is important but not the path itself. These probabilities
can be computed when actions ca ∈ At are set to be absorbing
states of the underlying Markov chain at time t.

3. Memory sharpness, 0 ≤ θ ≤ 1, functions as a mechanism to con-
trol the formation of transitivity relations and consequently controls
equivalence relations and the effect of the nodal number (see, e.g.,
Sidman, 1994, for nodal number), in line with the baseline relations
training. Mofrad et al. (2020) discuss memory sharpness as a sep-
arate method. However, it can be used in combination with either
max-product or the concept of absorbing states.

For the sake of brevity, we review just the parts of the EPS model that
are necessary for understanding the new perspective on derived relations.
Moreover, an overview of some other behavior-analytic computational ap-
proaches to the formation of SE classes is provided in Mofrad et al. (2020),
which provides a detailed version of EPS model.

2.3 Network Enhancement (NE). Wang et al. (2018) proposed network
enhancement (NE), a computational approach for denoising biological net-
works. NE converts a noisy, undirected, weighted network into a new
network possessing the same nodes but with different connections and
weights. It assumes that nodes that are connected through paths with high
weight edges have a high chance of being directly connected with a high-
weight edge. The NE diffusion process uses random walks of length 3
or less and a regularized information flow in order to produce new edge
weights.

For a formal description of NE, let W be the matrix of edge weights and
Ni be the K-nearest neighbors of the ith node, including node i itself. The
localized network T is constructed from W as follows:
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Pi, j ← Wi, j∑
k∈Ni

Wi,k
I{ j∈Ni}, Ti, j ←

n∑
k=1

Pi,kPj,k∑n
v=1 Pv,k

, (2.4)

where I{.} is the indicator function. Then the diffusion process is defined as
an iterative relation,

Wt+1 = αT × Wt × T + (1 − α)T , (2.5)

where α is a regularization parameter, t shows the iteration step, and W0

can be initialized with the input matrix W . The update rule in equation 2.5
for each entry is

(Wt+1)i, j = α
∑
k∈Ni

∑
l∈N j

Ti,k(Wt )k,lTl, j + (1 − α)Ti, j. (2.6)

The many theoretical properties for this diffusion process are discussed in
Wang et al. (2018). It is shown that Wt remains a symmetric, doubly stochas-
tic matrix (DSM) for each iteration t, and Wt converges to a nontrivial equi-
librium network. Moreover, NE does not change eigenvectors of the initial
DSM T , but the spectrum of the eigenvalues is changed nonlinearly so that
the eigengap is increased. This effect of the NE process on the eigenspec-
trum improves the network to achieve a more accurate detection of clusters.
Although this method produces promising results in our model, as we will
explain in section 4, it is not the main approach for formation of equivalence
classes in the EPS model, but NE and discussions in Wang et al. (2018) are
the main motivation for the update rule. The method we use does not have
all the properties that NE has, and we refer to the theoretical aspect of the
diffusion process we used in appendix A. In the rest of this letter, we refer to
the NE method due to Wang et al. (2018) as symmetric network enhancement
(SNE).

3 Enhanced Equivalence Projective Simulation (E-EPS)

The training phase of the proposed E-EPS model is generally the same as
the original PS and the EPS in the sense that the clip network is formed
by adding new clips and updating the h-values based on the environment
feedback. However, since in this letter, the probability distribution over the
action set is modeled using the softmax function, we let the network have
negative h-values and simplify the training by removing some parameters
associated with positive h-values. However, the approach to the formation
of SE classes and the testing phase is quite different compared to the EPS
model (Mofrad et al., 2020). As we explained in section 2.2, after the training
phase, we have a network of h-values for baseline relations and the sym-
metry relations. To add reflexivity to the clip network, we can consider an

Paper E 133



492 A. Mofrad et al.

updating method either during the training phase5 or after the training
phase. In order to keep the model simple, we add a self-loop to each clip
after the training phase and assign it an h-value equal to the maximum
h-value of input or output connections. The argument is that in the case
where the agent can identify the members of a class (say, A1, B1,C1), it must
be able to differentiate members of each category (say, A1 from A2 and A3).
We refer to the adjacency matrix of this network of h-values as Wh.

In this work, we are proposing a new NE model called directed network
enhancement (DNE) that can be used for the testing phase, including base-
line, reflexivity, symmetry, transitivity, and equivalence relations. Consider
the following rule as the update rule (or diffusion process),

Wt+1 = αP × Wt × P + (1 − α)P, (3.1)

where W0 is a right stochastic matrix achieved from Wh. (By a “right stochas-
tic matrix,” we mean a real square matrix in which each row sums to one.)
We put W0 = P where P is the transition probability matrix of Wh apply-
ing softmax function on nonzero values at each row using βh parameter.
P is not symmetric, and P1 = 1, where 1 represents the all-one eigenvector
of P associated with eigenvalue one. In other words, P is a right stochas-
tic matrix, so it can be used as the initial matrix in the DNE process. In the
theoretical analysis of the SNE process provided by Wang et al. (2018), and
supplementary note 3, the converged network is proved to be

Wt→∞ = (1 − α)T (I − αT 2)−1. (3.2)

As we discuss in appendix A, the convergence in the DNE process remains
valid for a network where we substitute T with P in equation 3.2:

Wt→∞ = (1 − α)P(I − αP2)−1. (3.3)

This post-processing phase transforms the h-value network obtained by
training into a new network that can represent the agent predictive repre-
sentations in a cognitive map (or successor representation similar to Mo-
mennejad, Russek et al., 2017).

The Wt→∞ matrix can be seen as the memory representation where we
ignore the effect of context (or actions) and assume all the transitions in
the network are based on the random walk on the graph (or diffusion). For
instance, we can interpret the (i, j) entry of theWt→∞ matrix as the transition
probability from clip i to clip j when there is no external control.

5
For instance, this can simply be achieved by adding a self-loop edge initialized with

h0 to each clip the first time it is perceived by the agent and update it whenever it gets
involved in a trial.
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When it comes to the testing phase, the softmax function with βt is ap-
plied to calculate the probability distribution for each test trial. In order
to accommodate the controlling effect of the test trials, the input values to
the softmax function are set to be conditional probabilities given the trial,
which can be calculated using Bayes’ rule. As an example, if the test trial
consists of A1 as the sample stimulus and F = {F1, F2, F3} as the comparison
stimuli, input values for the softmax function are P(A1F1|A1F), P(A1F2|A1F),
and P(A1F3|A1F) where event A1F is either A1F1, A1F2, or A1F3. These con-
ditional values can be calculated due to Bayes’ rule, for instance,

P(A1F1|A1F)

= P(A1F1)P(A1F|A1F1)
P(A1F1)P(A1F|A1F1) + P(A1F2)P(A1F|A1F2) + P(A1F3)P(A1F|A1F3)

= P(A1F1)
P(A1F1) + P(A1F2) + P(A1F3)

,

which can be seen as a normalization. Note that all the conditional proba-
bilities on the right-hand side are equal to one and therefore are removed.
Parameter βt in the softmax function can characterize the agent’s memory
and ability to link an internal representation to the real action. When a test
trial is given to the agent, the memory is conditioned based on the test tri-
als (sample and comparison stimuli), and Bayes’ rule is used to characterize
the environment effect.

Another way to formalize the behavior of the agent in the testing phase
is to use a trial-based βt for the softmax function, which is defined as βt di-
vided by the summation over weights for comparison stimuli. The above
example, with A1 as the sample stimulus and F = {F1, F2, F3} as the compari-
son stimuli, uses βt

P(A1F1 )+P(A1F2 )+P(A1F3 ) as the β in softmax function. As is clear
from the example, in this formalization, the results remain exactly the same
but they open up room to interpret the agent behavior differently. Using
Bayes’s rule and a fixed βt approach emphasizes the effect of environment
and the agent characteristics separately, but the variable βt approach avoids
the interpretation that the agent probabilities are calculated twice.

Before comparing the E-EPS to the original PS and the EPS model and re-
lating it to other studies, we summarize the parameters of the agent model:

1. Parameter 0 < K ≤ 1 controls the formation of symmetry relations.
K = 1 means that the relations are bidirectional and the h-value net-
work is symmetric (see experiment 2).

2. Parameter 0 ≤ γ < 1 represents the forgetting rate during the train-
ing phase. The training structure (order of relations to be trained) is
more important when the forgetting rate is high (see experiment 4).
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3. Parameter βh > 0 converts h-values to probabilities during the train-
ing trials and generates the input matrix W0 for the NE process (see
experiments 1 and 3).

4. Parameter 0 ≤ α < 1 controls to what extent the NE affects the ini-
tially trained network when there is no test trial in place. α could
characterize the amount of abstract mental process or replay that the
agent performs. Even a small value of α could form derived rela-
tions that are weak compared to direct relations, but the ratio or con-
ditional probabilities (used as an input to the softmax function) are
strong. A value close to one for α means too much diffusion, which
can erase the trained relations. One might find the appropriate diffu-
sion based on the expected agent abilities and the training criterion
(see experiment 5 and appendix A for more details)

5. Parameter βt > 0 controls the agent’s performance in a test trial (see
experiment 6).

3.1 PS, EPS, and E-EPS: Discussion and Comparison. As Briegel and
De las Cuevas (2012) mentioned, the idea of a clip network in PS is similar
to the idea of Tolman’s (1948) cognitive maps, which refers to a rich inter-
nal model of the world that represents relationships between events and
simulates the consequences of actions. Although cognitive maps are mostly
used for modeling spatial behavior (O’Keefe & Nadel, 1978), they are more
general and cover the organization of knowledge in other types of behav-
iors, including flexible behavior. Cognitive maps can be constructed from
abstract representations to describe relational knowledge, and new cogni-
tive problems can then be considered as inference in this relational basis
(Behrens et al., 2018).

Brain studies suggest multiple solutions to predicting long-term reward
in RL problems (Daw, Niv, & Dayan, 2005). Learning a model of the envi-
ronment, or a cognitive map of the environment, and using it to simulate fu-
ture states step-by-step to predict long-term reward are different solutions,
which we refer to as model-based RL (Daw et al., 2005; Daw, Gershman,
Seymour, Dayan, & Dolan, 2011; Sutton & Barto, 2018). Forming simple
world models in the human hippocampus for relational knowledge sorting
and value spreading across associated stimulus representations is shown
to directly influence behavior in a novel decision-making situations (Wim-
mer & Shohamy, 2012). Repeating patterns during both awake experiential
states and nonengaged states and reshaping neural circuits has been stud-
ied in both the hippocampus and the neocortex (see Liu & Watson, 2020, for
a review). Functional magnetic resonance imaging (fMRI) similarity mea-
sures in the hippocampus and entorhinal cortex (Stachenfeld, Botvinick, &
Gershman, 2017; Garvert, Dolan, & Behrens, 2017) suggest the existence of
statistical transitions of discrete state-spaces. The use of precompiled tran-
sition distances, rather than simulating all possible transitions online, is
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studied by Momennejad, Russek et al. (2017), where these precompiled dis-
tances depend on offline activity, or replay, in the hippocampus and ventral
frontal cortex (Momennejad, Otto, Daw, & Norman, 2017). Caching of mul-
tistep predictive representations is also referred to as a “predictive map”
(Stachenfeld et al., 2017). These predictive representations link model-based
RL to model-free mechanisms through offline replay mechanisms (Russek,
Momennejad, Botvinick, Gershman, & Daw, 2017) resembling Dyna-style
planning (Sutton, Szepesvári, Geramifard, & Bowling, 2008).

PS is much more primitive than Dyna-style planning. It only changes the
weights of the clip transition and performs a random walk on the clip net-
work (for a detailed comparison, see Mautner, Makmal, Manzano, Tiersch,
& Briegel, 2015). The multiple reflection in the PS model is different from
“experiment replay” (Lin, 1992) in the sense that PS uses short-term mem-
ory, or emotional tags, to evaluate the result of a simulation and repeat the
random walk if the remembered reward for the chosen action in the pre-
vious round was negative. So repeatedly presenting its experiences to its
learning algorithm is not performed just for the sake of memory consolida-
tion. (See also Momennejad, 2020, for a review on the role of replay on how
the brain learns and generalizes relational structures with a focus on the RL
approach.)

In the EPS model (Mofrad et al., 2020), two scenarios, called “standard”
and “softmax,” were used for the training phase, and various ways for de-
riving relations in the test phase were studied and discussed due to the aim
to define EPS as a general and flexible model. The EPS (and E-EPS) training
phase is similar to the PS model with extra links and update rule for sym-
metry relations. In this letter, we survey just the training method that uses
the softmax function in order to calculate probability distributions over the
action sets. Although the training phase in this letter could be similar to
EPS, for simplicity, we just consider the softmax scenario where negative
h-values are allowed, so we can formalize the learning with just one pa-
rameter, K, to control the growth ratio of symmetry relations in comparison
with the direct relations.

The main difference with PS, the most important part of the EPS (E-
EPS) model, is the testing phase where there is no feedback. In the EPS
model, the derived relations were calculated on demand at the decision
time whenever they appear in a test trial. The probabilities are either calcu-
lated based on the probabilities of the paths with maximum values, using
a max-product algorithm, or the probability of reaching each of the action
points having a random walk on the episodic memory started at a sample
stimulus. The symmetry relations are controlled via a multiplicative param-
eter, and the transitivity can be controlled with a parameter called memory
sharpness.

In the EPS testing phase, the only change to the clip network h-values is
related to the parameter γ , the forgetting factor, and all the computations
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for the test trials are performed at the decision time, which can be seen as an
ad hoc computational tool rather than an intrinsic feature of the model. The
perspective to the derived relation in E-EPS, is quite different where NE, an
iterative diffusion process, is used after the training phase. This alternative
approach updates the structure of clip network by adding new connections
between the clips and updating connection weights. In other words, the
approach to derive relations in the EPS model can be seen as routing in the
clip network, where the action sets play the role of destination, while in
the E-EPS model, in the absence of test trials, the approach involves a diffu-
sion model to explore the clip network by simultaneous propagation of flow
without a specific target. The NE process is in line with the random walk-
based decision making in the PS approach. It is noteworthy that diffusion
models have been successfully used in various cognitive tasks involving de-
cision making (Shrager, Hogg, & Huberman, 1987; Ratcliff, Smith, Brown,
& McKoon, 2016). Stella et al. (2019) show that hippocampal circuits can re-
activate random trajectories of varying lengths and timescales that resem-
ble Brownian diffusion. The NE process can also be interpreted as a kind
of replay similar to the offline replay that contributes to generalization via
multistep predictive representations of upcoming clips (or the successor
representation; see Momennejad, Otto et al., 2017; Momennejad, Russek
et al., 2017; Russek et al., 2017. It is different from online replay or multi-
ple reflection in the PS model and closer to the offline replay that accom-
modates planning based on inferential piecing data together and multistep
dependencies. The REMERGE (recurrency and episodic memory results in
generalization) model of memory trace activation (Kumaran & McClelland,
2012) also uses replay and iterative updating of episodic memory for mod-
eling rapid generalization in, for example, transitive inference task.

The final abilities of the E-EPS agent to master derived relations strongly
depends on two parameters: α, which controls how much the NE affects the
initially trained network, and βt , which generates the probability distribu-
tion over the comparison stimuli. The post-processed network, Wt→∞, can
be seen as an unconditioned network that a test trial can bias it. To account
for the environment effect, we use a Bayesian approach and then apply the
softmax function (see McClelland, 2013, for different models of contextual
effects on perception). It is noteworthy that the PS model uses Bayesian
updating, and therefore this update is in harmony with the PS agent (see
Schwöbel, Kiebel, & Marković, 2018, and Parr, Markovic, Kiebel, & Friston,
2019, for modeling goal-directed behavior as an inference process).

The approach to the testing phase in the E-EPS model needs less compu-
tation at the decision time since it uses the cached updated network rather
than processing the trained relations to compute derived relation links at
each test trial.

In the rest of the letter, we discuss and conduct experiments on both mod-
els SNE and DNE, but the emphasis will be on the DNE, which we show is
more effective than the SNE for the E-EPS model.
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Table 1: Training Stages in Spencer and Chase (1996) Study: Number and Type
of Training Trials.

Number of Trials per Relation

Training AB BC CD DE EF FG

AB 48
BC 24 24
CD 12 12 24
DE 9 9 9 24
EF 6 6 6 6 24
FG 3 3 3 6 9 24
Baseline maintenance 3 3 3 3 3 3

4 Simulation Results

In this section, we study the model parameters in order to offer insights
into how parameters can be tuned to simulate various behaviors, including
typical human behavior or the behavior of people with some disabilities.
To study the model in more detail, we consider a similar training setting as
in the experiment by Spencer and Chase (1996), which Mofrad et al. (2020)
address as well.

Spencer and Chase (1996) address the relatedness or nodal number using
three seven-member stimulus classes. Stimuli are nonsense figures, and the
training order is A → B → C → D → E → F → G. The training consists of
seven stages as summarized in Table 1.6 The first training block contains
48 trials of AB relations. Since there are three classes, the block for training,
AB, contains 16 trials with the correct match A1B1, 16 trials with the correct
match A2B2, and 16 trials with the correct match A3B3. The order of pre-
sented trials is random in the block, and the order of comparison stimuli,
in this case B1, B2, B3, is also randomly changed. If we consider the training
of the EF relation, for instance, the training block contains six AB relations
(which means each trial with A1B1, A2B2, and A3B3 as the correct pair ap-
pears twice), 6 BC relations (each trial with B1C1, B2C2, and B3C3 as the cor-
rect pair appears twice), 6 CD relations and 6 DE relations, and finally the
new relation EF with 24 relations (i.e., each trial with E1F1, E2F2, and E3F3 as
the correct pair appears eight times). In the baseline maintenance stage, no
new relation is provided and each correct relation appears only once. The

6
It is noteworthy that in Spencer and Chase (1996), each stage of training has 48 tri-

als. To ease the simulation, the fourth stage for DE training is changed, so we consider 9
instead of 8 trials for AB, BC, and CD relations. Therefore, this stage has 51 trials in the
simulation instead of the original 48.
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mastery criterion is set to 0.9, and if the agent passes the mastery criterion
for all stages and the final baseline maintenance, then we can test the agent
for formation of derived relations.

The reported simulation results are the average over 1000 simulations.

4.1 Experiment 1: Step-by-Step Process. In this experiment, we illus-
trate the computation steps. In Figure 1a, the network h-values after the
training phase (based on Table 1) is depicted where the parameters are
set to γ = 0.001, K = 1, βh = 0.1, βt = 4, and α = 0.7. Note that the sym-
metry and reflexivity connections in addition to the baseline connections
appear in Figure 1a. The reflexivity h-values are the maximum h-value at
each row (input-output connections). Moreover, since K = 1, the Wh matrix
is symmetric—for instance, A1B1 = B1A1 = 51.82. To compute the transi-
tion probability matrix, a softmax function with parameter βh = 0.1 is used.
Note that the transition probability matrix is just row-normalized and not
symmetric. All the reported values are rounded by two or three decimal
places.

We set W0 = P as the input matrix to the NE. We might use P (Figure 1b)
for the iterative updates (DNE) or T matrix (SNE). In Figure 2, we address
DNE when α = 0.7. The convergence criterion is that

∑
i, j |Wt+1 − Wt |i, j <

0.0001. One can also compute the converged network Wt→∞ using the the-
oretical converged formula provided in equation 3.3.

Figure 2a shows the general internal map of the network clip before the
testing phase. One can interpret these values as how the stimuli are prior-
itized in the agent memory when there is no external trial that measures
the accuracy of answers in MTS trials. Figure 2b shows the performance
of the agent when it comes to the testing phase. For instance, if the sam-
ple stimulus is A3 and the comparison stimuli are F1, F2, and F3, then the
agent chooses F1 and F2 with probability 0.092 and selects F3 with probability
0.815.

To calculate these category-based probability distributions, first the con-
ditional probability for any specific category is calculated based on Bayes’
rule, and then the softmax function transfers these vectors to the desired
probabilities based on the chosen parameter βt . The conditional input can
show the context, or environment, effect, and therefore we can apply the
same βt as a characteristic of the agent for all the categories.

If we use SNE, first we have to compute T , which is reported in Fig-
ure 3a and then update the network using α = 0.7 parameter. The localized
network T adds weights to the one-node relations, and we have two more
diagonals in T in comparison with P.

The goal of this experiment is to illustrate how both DNE and SNE are
working. In experiment 2, we compare the two updating methods for sym-
metry and transitivity relations and discuss why DNE could be a more ap-
propriate option for enhancing the EPS model.
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Figure 1: A sample configuration of network h-values after training A → B →
C → D → E → F → G when γ = 0.001, K = 1, and βh = 0.1.
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Figure 2: The new network adjacency matrix when the regularization param-
eter is α = 0.7 with the input matrix W0 = P, which is given in Figure 1b. The
test phase probabilities in Figure 2b are calculated by normalizing the weights
for the specific category and then using the softmax function with parameter
βt = 4.
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Figure 3: The new network adjacency matrix using an SNE update when the
regularization parameter is α = 0.7 and the input matrix W0 = P, which is given
in Figure 1b. The test phase probabilities in Figure 3c are calculated by normal-
izing the weights for the specific category and then using the softmax function
with parameter βt = 4.

4.2 Experiment 2: Isolating Symmetry and Transitivity. Two main dif-
ferences between DNE and SNE are shown in this experiment. In this
regard, we consider two extreme cases to isolate the symmetry and tran-
sitivity effects.

First, we isolate the effect of symmetry relations; in other words, we sup-
pose that the agent is able to answer the transitive relations but unable to
derive symmetry relations. For this, we set the parameters to γ = 0.001,
K = 0.01, βh = 0.1, βt = 4, and α = 0.05.

As illustrated in Figure 4a, the symmetry relations, and therefore the
equivalence relations, can be altered by parameter K. However, in Figure 4b,
due to the symmetric behavior of updates, the symmetry relations are ex-
actly the same as the baseline relations, and the transitive and equivalence
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Figure 4: The probability of choosing correct pairs between categories when
γ = 0.001, K = 0.01, βh = 0.1, βt = 4, and α = 0.05. The reported values are cal-
culated by taking the average over all relations in each category.

Figure 5: The probability of choosing correct pairs between categories when
γ = 0.001, K = 1, βh = 0.1, βt = 4, and α = 0.

relations are altered by setting K = 0.01. We can conclude that a DNE-type
agent can handle nonsymmetric relations, but the SNE agent is unable to
control symmetry relations independently.

Next, we simulate a scenario in which the agent learns the baseline rela-
tions, but no transitive relation is derived. Suppose the symmetry relations
are derived perfectly, so that we only isolate the transitive relations. Let the
parameters of such an agent be γ = 0.001, K = 1, βh = 0.1, βt = 4, and α = 0.

In Figure 5a, which uses the DNE method, the transitive and therefore
equivalence relations are not formed, while the symmetry relations are
strong. In Figure 5b, we see that the one-node relations such as AC and BD
are derived in SNE. This is expected due to the definition of T . In the EPS
model, though, we are seeking to control all the transitive and equivalence
relations.
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Table 2: The Average of Required Repetition of Training Blocks until Reach-
ing Mastery Criterion Ratio 0.9 When γ = 0.001, K = 1, βt = 4, and α = 0.05 for
Three Values of βh = 0.2, 0.1, and 0.05.

Number of Trials per Relation Time

Training AB BC CD DE EF FG βh = 0.2 βh = 0.1 βh = 0.05

AB 48 2.133 3.423 5.907
BC 24 24 2.885 4.757 8.751
CD 12 12 24 2.959 4.977 9.641
DE 9 9 9 24 2.791 4.661 9.469
EF 6 6 6 6 24 2.992 5.208 11.736
FG 3 3 3 6 9 24 3.008 5.339 12.978
Baseline maintenance 3 3 3 3 3 3 1.038 1.407 7.561

Therefore, since SNE is not an appropriate method for controlling sym-
metry and transitivity completely, we consider DNE as the main approach
in this letter to cover more general cases, such as those with weak symme-
try relations or weak transitivity relations. In the rest of the simulations, we
report just the results for the DNE method.

4.3 Experiment 3: Effect of the βh Parameter. The softmax function pa-
rameter βh is used in the training phase for checking the mastery criterion
as well as computing the transition matrix from Wh. As reported in Table 2,
a higher value of βh causes the agent to be able to pass the training phase
faster, while for smaller values of βh, it takes many more iterations to pass
the training phase and learn baseline relations. Table 2 presents the learn-
ing speed for three values of βh = 0.2, 0.1, and 0.05 when γ = 0.001, K = 1,
βt = 4, and α = 0.05.

Table 2 shows that parameter βh can be used to control the learning
speed. For instance, an agent with βh = 0.2 learns AB relations by repeating
the training blocks 2.1 times on average. This value will be 3.4 for βh = 0.1
and 5.9 for βh = 0.05.

Another effect of βh appears in computing the probability matrix and,
consequently, the final network shape. In Figure 6, we report the P matrix
and the computed nodal effect in the test phase for two choices of βh = 0.2
and βh = 0.05 when we keep all parameters similar: γ = 0.001, K = 1, βt =
4, and α = 0.05.

By comparing Figures 6a and 6b, we notice that the probability of direct
relations are weaker when βh = 0.05. Since this matrix is considered as W0,
the input matrix to the NE iterative method, the final results will be altered.
In Figure 6c, the nodal effect is negligible, and all the transitive and equiv-
alence relations are formed equally well as baseline relations. Figure 6d,
however, shows the nodal effect and the agent’s weak performance in
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Figure 6: Comparison of probability matrix out of training and final category-
based probability of correct choice in the test phase for two choices of βh = 0.2
and βh = 0.05, when γ = 0.001, K = 1, βt = 4, and α = 0.05.
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Table 3: The Average of Required Repetition of Training Blocks until Reaching
Mastery Criterion Ratio 0.9 When K = 1, βh = 0.1, βt = 4, and α = 0.05 for Three
Values of γ = 0, 0.001, and 0.005.

Number of Trials per Relation Time

Training AB BC CD DE EF FG γ = 0.0 γ = 0.001 γ = 0.002

AB 48 3.318 3.452 3.580
BC 24 24 4.391 4.703 5.088
CD 12 12 24 4.570 4.951 5.584
DE 9 9 9 24 4.200 4.654 5.514
EF 6 6 6 6 24 4.649 5.190 6.951
FG 3 3 3 6 9 24 4.637 5.324 7.884
Baseline maintenance 3 3 3 3 3 3 1.089 1.414 7.281

relations with a higher nodal number. We conclude that βh can be used for
controlling both the speed of learning and the nodal effect. In other words, if
we fix all other parameters than βh, the smaller value of βh results in slower
learning and a lower chance of forming transitive and equivalence relations
with a higher nodal number. It is noteworthy that the effects of βh and γ are
somehow intertwined. As we see in experiment 4, γ also controls the learn-
ing speed and nodal effect. Indeed, if the agent does not forget at all, that
is, γ = 0, then βh controls just the speed of learning. However, γ = 0 is not
a plausible choice for replication of human behavior.

4.4 Experiment 4: Effect of the γ Parameter. Mofrad et al. (2020) stud-
ied, the effect of γ in the training phase of EPS agents, where learning speed
can be adjusted via γ . In Table 3, the average number of repetitions at each
stage is provided for three choices: γ = 0, 0.001, and 0.005. There is a gen-
eral trend that increasing the forgetting factor will increase the repetition
times in all stages. But the rates of increase for later stages and the base-
line maintenance are different. The explanation is that the forgetting factor
affects the initial learned relations more since at the final blocks, we have
fewer of them. In other words, in the final blocks, we have fewer trials of
them, and thus the forgetting factor will cause a stronger adverse impact.
This is why we need around seven iterations of the maintenance phase
when γ = 0.002, while we need just one iteration by removing the forget-
ting factor, γ = 0.

The forgetting factor will affect the final shape of h-values network Wh,
and therefore for similar parameters, we have different probability matri-
ces and final outcomes in the test phase. Figure 7 provides the final re-
sults of the testing phase for three different values of the forgetting factor:
γ = 0, 0.001, 0.002.

When γ = 0 (see Figure 7a), there is no forgetting, and therefore the train-
ing order does not matter and all the relations are considered equally the

Paper E 147



506 A. Mofrad et al.

Figure 7: Probability of choosing correct pairs between categories when K = 1,
βh = 0.1, βt = 4, and α = 0.05 for three forgetting factor values: γ = 0, 0.001, and
0.002.

same. In Figure 7b, all the relations are formed but we can easily notice the
nodal effect. For instance, if we test the AB relation, the probability of a cor-
rect choice by the agent is 0.96, while it is about 0.85 for AG with five nodes
in between. Figure 7c shows that a higher forgetting factor can be used to
model impaired equivalence class formation. If we test the agent with the
AB relation, the probability of a correct choice would be 0.89, while it is
about 0.48 for AG. Comparing the correct choice probabilities for AB and
FG (0.89 for AB versus 0.95 for FG) shows the importance of training order
in this setting. The agent forgets the initial stage relations, and these rela-
tions need to be repeated. If the training trial blocks are totally separate,
as in experiment 1 in Mofrad et al. (2020), the initial trained relations drop
dramatically with a high forgetting factor.

To show the importance of testing order in the model, similar to the SE
literature, we simulate the testing phase with different test orders so the
trials that appear late in the testing phase have weaker results when the
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forgetting factor is high. Here, for simplicity, we calculate the probability
distribution for different test trials and evaluate the agent behavior based
on them. This means the forgetting factor is not effective on the test results
in the current simulations. However, the forgetting factor can be used by
defining βt as a function of time and γ to model the forgetting in the testing
phase of E-EPS. Another argument is that the forgetting might affect the
network; in this case, the network weights must be updated in a way to
keep each row summing to one. Therefore, it is not as straightforward as
the EPS where the matrix with h-values is the basis for the testing phase.

4.5 Experiment 5: Effect of the α Parameter. This parameter shapes
the final representation of the clip network (see appendix A for a theoreti-
cal discussion). A smaller value of α biases the converged matrix Wt→∞ to
keep the connections from W0 stronger, while a larger value of α enhances
transitive relations. In the case of α = 0, as represented in Figure 5a, there
is no enhancement in the network using DNE. Figures 8a and 8b, respec-
tively, represent the connection values from A1 and G1 to other stimuli in
the converged network for α = 0, 0.05, 0.35, 0.7, 0.9, 0.95, and 0.99, when
γ = 0.001, K = 1, and βh = 0.1.

As depicted in Figure 8, smaller values of α keep the relations in the in-
put network (i.e., trained relations together with symmetry and reflexivity)
stronger. On the other hand, a higher α value reinforces the transitive and
equivalence relations. For each α value, the connection weights for all re-
lations must sum to one; for instance, the values for α = 0.9 in all subplots
of Figure 8a sum to one as they show the transition probability from A1 to
all other points when using α = 0.9. As a result, increasing the values for
transitive relations means a decrease in initial relations (see the decrease
in A1A1, A1B1 relation weights and the increase in other values, say, A1C1

and A1G1). Along with construction and enhancing the desired relations
(see the first columns in Figures 8a and 8b), the undesired relations are also
constructed and enhanced to some extent. This can be explained by the fact
that the values for undesired relations such as A1B2, A1B3, G1F2, and G1F3 are
not zero in the initial matrix since the training criterion was set to 0.9. These
values could enhance undesired relations, especially when α is higher. For
instance, as depicted in Figure 8c, the connection weight for the A1C1 rela-
tion, which is a desired relation, decreases for α values higher than 0.9. Sim-
ilarly, the connection weight for the A1D1 relation decreases at α = 0.99 in
comparison with α = 0.9, 0.95. The connection weight for the A1B3 relation,
which has a very small weight in the beginning (i.e., when α = 0), increases
with α with acceleration in the rate of change for α values greater than 0.7.
A1C3 and A1E2 are two sample relations that are undesirable and get en-
hanced during the diffusion process as a function of α value. The same kind
of behavior can be observed for relations from G1. In Figure 8d, the relation
G1D1 increases as desired, but when α is too high (α = 0.95, 0.99), it starts
to decrease. Undesired relations such as G1F3 and G1D2 are enhanced with
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Figure 8: The connection weights in the converged matrix Wt→∞ for A1 and G1

for α = 0, 0.05, 0.35, 0.7, 0.9, 0.95, 0.99, when γ = 0.001, K = 1, and βh = 0.1.

a higher rate when α approaches one. Therefore, an inappropriate choice of
α could be destructive; in this example, a higher value of α than 0.9 sounds
inappropriate.
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Figure 9: Probability of choosing correct pairs between categories when γ =
0.001, K = 1, βh = 0.1, and βt = 4 for α = 0.05, 0.35, 0.7, and 0.95.

Different α values and therefore different configurations of theWt→∞ ma-
trix result in different testing performance. In Figure 9, we report the test-
ing results for α = 0.05, 0.35, 0.7, 0.95 when γ = 0.001, K = 1, βh = 0.1, and
βt = 4.

We observe that the probabilities of choosing correct relations in Fig-
ures 9c and 9d, respectively, for α = 0.05 and α = 0.35 are almost the same.
In Figure 9a, when α = 0.7, the transitive and equivalence relations are af-
fected negatively. In Figure 9d, we see from the converged transition matrix
that values for all the relations have decreased. Moreover, for smaller val-
ues of α, the convergence of the network needs fewer iterations; compare 4,
9, 23, and 102 for, respectively, α = 0.05, 0.35, 0.7, and 0.95. For more details
in α parameter effect, see Table 4, where the connection weights of AB and
AG in Wt→∞ for different α choices, along with the calculated probabilities
based on three choices of βt = 1, 4, 8, are reported.
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Table 4: The Simultaneous Effect of α and βt Values on the Test Results for AB
and AG Relations.

Baseline Relation AB Derived Relation AG

(α, βt ) A1B1 A1B2 A1B3 A1G1 A1G2 A1G3

α = 0 Wt→∞ 0.49837 0.00163 0.00163 0 0 0
Wt→∞C 0.99350 0.00325 0.00325 0 0 0
βt = 1 0.57134 0.21419 0.21447 0.33333 0.33333 0.33333
βt = 4 0.9619 0.01904 0.01906 0.33333 0.33333 0.33333
βt = 8 0.99925 0.00037 0.00037 0.33333 0.33333 0.33333

α = 0.05 Wt→∞ 0.49686 0.0017 0.0017 4.1276e−08 5.6875e−09 8.6627e−09

Wt→∞C 0.9932 0.0034 0.0034 0.74202 0.10225 0.15573
βt = 1 0.57115 0.21429 0.21456 0.48349 0.25909 0.25743
βt = 4 0.96178 0.01909 0.01912 0.83865 0.08146 0.07989
βt = 8 0.99925 0.00037 0.00037 0.99049 0.00509 0.00442

α = 0.9 Wt→∞ 0.39782 0.02119 0.0223 0.003 0.00092 0.00112
Wt→∞C 0.90145 0.04802 0.05053 0.59524 0.18254 0.22222
βt = 1 0.51983 0.24069 0.23948 0.4146 0.29794 0.28746
βt = 4 0.91757 0.04108 0.04135 0.69558 0.17058 0.13384
βt = 8 0.99726 0.00137 0.00136 0.96297 0.02154 0.01549

α = 0.95 Wt→∞ 0.34433 0.03844 0.04031 0.00464 0.00185 0.00212
Wt→∞C 0.81387 0.090858 0.095278 0.53891 0.21487 0.24623
βh = 1 0.47784 0.2627 0.25945 0.39334 0.31058 0.29608
βh = 4 0.85289 0.0733 0.0738 0.61673 0.22268 0.16059
βh = 8 0.99183 0.0041 0.00407 0.92776 0.04397 0.02827

Notes: The Wt→∞ row reports the weights in the converged network. Wt→∞C refers to the
input weights conditioned based on the category that softmax function uses to generate
the probability distribution. The C in the index of Wt→∞C refers to the conditional weights
for the category calculated with Bayes’ rule.

4.6 Experiment 6: Effect of the βt Parameter. To study the effect of βt ,
first we keep other parameters fixed (γ = 0.001, K = 1, βh = 0.1, α = 0.05)
and simulate the agent behavior for βt = 1, 4, 8 (see Figure 10).

We see a decrease in all types of relations by decreasing the value of βt . In
Figure 10a, when βt = 1, all relations, including baseline relations, become
weaker. When βt = 4 in Figure 10b, we see that the relations are well formed
across all nodal numbers. Figure 10c shows that with a higher value of βt =
8, all the relations are almost completely formed. This experiment illustrates
that by changing βt , one can control the agent performance in the testing
phase and even impair the baseline relations. In Table 4, we take a closer
look at the simultaneous effect of α and βt when γ = 0.001, K = 1, βh = 0.1.

In Table 4, baseline relation AB and transitive relation AG with nodal
number five are addressed. We use the conditioned weights (row Wt→∞C )
as the input vector to the softmax function to generate the probability dis-
tribution for the test phase. When α = 0, there is no NE, and any choice
of βt results in an equal probability of all relations in AG. However, βt
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Figure 10: Probability of choosing correct relations between categories when
γ = 0.001, K = 1, βh = 0.1, and α = 0.05 for βt = 1, 4, 8.

could affect the AB relation so that the performance of the agent is very
poor (it chooses A1B1 with probability 0.57134 for βt = 1) or very strong (it
chooses A1B1 with probability 0.99925 for βt = 8). When α = 0.05, Wt→∞
is achieved after about just four iterations. We observe an insignificant
reduction in the A1B1 weight in Wt→∞ (from 0.49837 to 0.49686) and an
insignificant increase in A1B2, A1B3, A1G1, A1G2, and A1G3. Interestingly,
since we use conditioned weights and apply a softmax function, very
tiny values for AG in Wt→∞ transfer into noticeable values when condi-
tioned, which could show the formation of derived relations. For instance,
with βt = 4, (A1G1, A1G2, A1G3)Wt→∞ = (4.1276e−08, 5.6875e−09, 8.6627e−09)
is transformed to (0.74202, 0.10225, 0.15573) and when softmax is used, it is
converted into (0.83865, 0.08146, 0.07989), that is, an A1G1 relation is formed
for the agent. This means a small value of α and, consequently, a few steps
of NE could produce the desired network with an appropriate choice of βt .
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Table 5: The Training Order for OTM.

Number of Trials per Relation

Training AB AC AD AE AF AG

AB 48
AC 24 24
AD 12 12 24
AE 9 9 9 24
AF 6 6 6 6 24
AG 3 3 3 6 9 24
Baseline maintenance 3 3 3 3 3 3

If we consider higher values of α, we see that the weight of baseline relation
A1B1 in Wt→∞ is reduced, but all other relations are enhanced.

It is also noteworthy that increasing the value of A1G1, which happens
with a higher choice of α, is not equivalent to better performance in the
testing phase as reported in Table 4.

The reason is that NE changes the proportion of weights in Wt→∞, which
affects the conditioned vector in favor of undesired options (see the Wt→∞C

values), and, finally, the probability of a correct choice computed through
the softmax function is reduced. For instance, when α = 0.05, the A1G1

weight is 4.1276e−08, but its proportion in the conditioned vector is 0.74202.
For α = 0.95, the A1G1 weight is 0.00464, which is much higher than α =
0.05, but its proportion in the conditioned vector is 0.53891, which is less
than the case with α = 0.05. So different configurations of α and βt could
produce different behaviors on request.

4.7 Experiment 7: Studying the Training Order: Comparing LS, MTO,
and OTM. There are many studies on the differences between LS, OTM,
and MTO training structures (see, e.g., Arntzen et al., 2010; Arntzen &
Hansen, 2011; Arntzen, 2012). In this experiment, we rearrange the train-
ing blocks from LS in Table 1 to similar training stages for OTM and MTO
training structures, represented in Tables 5 and 6, respectively. For the OTM
training structure, the training relations in order are AB, AC, AD, AE, AF,

and AG. For the MTO training structure, the training relations in order are
AG, BG,CG, DG, EG, and FG.

The LS, OTM, and MTO training structures can be studied in various lev-
els and with several parameter assemblies. But the aim of this experiment is
to show the potential of the proposed E-EPS model in reflecting the differ-
ences between the LS, OTM, and MTO training structures reported in the
literature. Figure 11 reports the results of the final testing phase of the three
cases for an agent with parameters γ = 0.001, K = 1, βh = 0.05, α = 0.05,
and βt = 4.
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Table 6: The Training Order for MTO.

Number of Trials per Relation

Training AG BG CG DG EG FG

AG 48
BG 24 24
CG 12 12 24
DG 9 9 9 24
EG 6 6 6 6 24
FG 3 3 3 6 9 24
Baseline maintenance 3 3 3 3 3 3

Figure 11: Probability of choosing the correct relations between categories
when γ = 0.001, K = 1, βh = 0.05, α = 0.05, and βt = 4 for LS, MTO, and OTM.

According to Figure 11a, the agent performance when the LS is used is
not satisfactory for higher nodal numbers. The weakest value, 0.47, belongs
to AG. The equivalence classes are not formed in this case. Figure 11b shows
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better performance where the weakest connections are for CD and DC and
equal 0.71. This minimum value is also found in Figure 11c but for relations
BC and CB. So in this experiment, the overall results in terms of formation
of equivalence classes are the same for MTO and OTM, but due to the or-
der of training, the agent might exhibit different performance for specific
relations in MTO and OTM training structures. For instance, the calculated
probability for an FA relation in OTM is 0.94, and in MTO it is 0.86. Cal-
culated probability for the DE relation in OTM is 0.75, while in MTO it is
0.85.

It is noteworthy that the training times—that is, the numbers of rep-
etitions of each block before mastery in all three cases for all training
procedures—are similar. This can be explained by the independence of de-
signing baseline relations. The reported results in Figure 11 confirm that our
model shows better performance in the OTM and MTO cases in comparison
with LS (Arntzen et al., 2010; Arntzen & Hansen, 2011; Arntzen, 2012).

5 Conclusion

The main contribution of this letter is to offer a new perspective in the for-
mation of SE classes in a recently introduced model, EPS. EPS is a modified
version of the PS model (Briegel & De las Cuevas, 2012) and can be seen as
an RL agent that has a directed, weighted network of clips. Each clip repre-
sents a remembered stimulus that is added to the clip network during the
training phase.

To replicate the test phase of SE by examining the agent’s ability to en-
counter new relations that can be derived from baseline relations, the EPS
model relies on some type of likelihood reasoning whenever tested via an
MTS trial. In other words, in the EPS model, derived relations were calcu-
lated on demand in the testing phase trials, but the new approach to the
testing phase is offline and relies on memory retrieval during the testing
phase rather than on complex logical processing. Derived relations in the
new model, E-EPS, are achieved by applying an iterative diffusion process,
network enhancement (NE; Wang et al., 2018). During the NE phase, the
structure of the clip network changes where indirect relations get enhanced.
The NE is a denoising method, and one way to interpret the model is to
consider a typical memory as a less noisy memory, while a disabled mem-
ory is a noisy memory that cannot form equivalence relations. Since in the
NE, connections are bidirectional, we refer to it is as symmetric network en-
hancement (SNE) in this letter. We further modify the SNE and propose di-
rected network enhancement (DNE) in which the connections are directed
and where we can control the agent’s ability to derive transitivity and sym-
metry. One might use SNE in studying SE formation with the assumption
that all the relations are bidirectional and transitive and equivalence rela-
tions are formed. DNE is a better option to replicate real experiments with
the possibility of nonformation of classes and nonsymmetric relations.
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In the simulation part, we study the role of parameters on agent perfor-
mance and show that the model is able to replicate either a typical mem-
ory or a disabled memory with different learning and forgetting rates and
accomplish the trial tasks in the testing phase. We also compare the main
training structures, LS, MTO, and OTM, and notice the better outcome of
MTO and OTM training structures than that of LS, which is consistent with
evidence from the behavioral analysis literature. Many other configurations
can be considered in simulations. For instance, we consider K = 1 to reduce
the variety of results, and to study each parameter, we fixed all the other
parameters.

Another alternative is to execute the NE phase during training rather
than merely at the end of the training. The argument would be that brain
does not wait until the end of training to start the process of formation of
these relations. Although this might sound a like plausible argument and
can be easily added to the model, we avoid NE during training. The most
obvious reason is to keep the model simple, with fewer computations. Be-
cause we are studying agent behavior, the timing of events inside the brain
is not our priority. Moreover, baseline relations are independent and not de-
rived from each other, so there is no need to update them earlier when the
formation of relations is tested in the testing phase. However, as discussed
in section 3.1, these updates could be analogous to the replay in the brain
that generates a predictive map in an offline process.

The probability distribution over comparison stimuli in the test trial is
calculated based on the direct links in the updated clip network. It is simi-
lar to the EPS in the sense that whenever there are links between the sam-
ple stimulus and comparison stimuli, the probabilities are calculated based
on the h-values by averaging or using a softmax function. In E-EPS, how-
ever, there are links through the entire network updated by the NE process,
and therefore no extra calculation is made. Although one might still con-
sider the random walk on the network similar to the PS model, the cyclic
nature of the network in E-EPS might generate problems, and extra condi-
tions (such as gating) might be necessary. We avoid this scenario, since the
calculated weights are based on the random walk and diffusion, and we
consider these cached links at the decision time. The EPS and E-EPS could
be developed further to model more complex tasks with more sophisticated
structures as the PS model offers. For instance, we might use compound
stimuli and benefit from a PS model with associative learning (Briegel &
De las Cuevas, 2012), or a multilayer memory clip where the agent is able
to generate and add wildcard to the memory (Melnikov et al., 2017). Such
multi-layer PS agent has been further developed to address abstract com-
positional concepts which is closer to the concept of SE (Ried, Eva, Müller,
& Briegel, 2019). The mathematical understanding of the properties of the
converged network that guarantees the converged solution is an advantage
of NE over other network denoising methods. DNE maintains many prop-
erties of SNE with the advantage of controlling the formation of symmetry
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and transitivity in the E-EPS model. Finally, it is worth mentioning that we
choose NE as the source of inspiration for updating the network clip, since
in the updates, there is no requirement for supervision or prior knowledge.
After the training phase, we have a clip network without further feedback
or supervision. Hence, NE provides a proper solution with an emphasis on
the indirect paths, which is what we have in derived relations.

Appendix A: Theoretical Analysis of Directed Network Enhancement

In this appendix, we explain why the proposed diffusion process in equa-
tion 3.1 improves the results and can be used to form equivalence classes.
Our theoretical analysis is mostly based on supplementary note 3 of Wang
et al. (2018). However, since Wt in the DNE is not a symmetric doubly
stochastic matrix, the proofs and discussions need to be revised for DNE.
It is noteworthy that the largest eigenvalue of each right stochastic matrix,
such as P, is 1, associated with eigenvector 1. We first prove that Wt remains
right stochastic in each iteration of DNE and converges to a nontrivial equi-
librium matrix. Then we show that DNE preserves the eigenvectors of the
stochastic matrix W0, but increases the gap between large eigenvalues and
reduces the gap between small eigenvalues (see Figure 13). The larger eigen-
gap in the final converged matrix Wt→∞, is associated with better equiva-
lence class formation.

A.1 The Convergence of the DNE Process. We show that Wt remains
stochastic during the updates. By definitionW01 = 1, for all-one eigenvector
1 associated with eigenvalue 1. We assume that Wt−11 = 1 and show that the
rows of Wt remain normalized:

Wt1 = αPWt−1P1 + (1 − α)P1

= αPWt−11 + (1 − α)P1

= αP1 + (1 − α)P1

= P1

= 1. (A.1)

Now we show that Wt converges to a nontrivial equilibrium graph.
A closed-form solution for the final, converged network can be achieved
through induction. Consider the following expression for the network at
iteration t:

Wt = αtPtW0Pt + (1 − α)P
t−1∑
k=0

(αP2)k. (A.2)
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This formula is similar to equation 6 of supplementary note 3 by Wang et al.
(2018) where T is replaced by P and can be guessed by iterating the process
for the first few steps:

1. Define W0 = Wt=0. For t = 1, equation A.2 holds true:

Wt=1 = αPW0P + (1 − α)P

2. We assume equation A.2 holds true for iteration t. Then:

Wt+1 = αPWtP + (1 − α)P

= αP

(
αtPtW0Pt + (1 − α)P

t−1∑
k=0

(αP2)k

)
P + (1 − α)P

= αt+1Pt+1W0Pt+1 + (1 − α)P
t−1∑
k=0

(αP2)k+1 + (1 − α)P

= αt+1Pt+1W0Pt+1 + (1 − α)P
t∑

k=0

(αP2)k,

which satisfies equation A.2. Using geometric series when t → ∞,
we have this nontrivial equilibrium matrix:

Wt→∞ = (1 − α)P(I − αP2)−1. (A.3)

A.2 Spectral Analysis of DNE. We show that the DNE process does
not change eigenvectors of the input matrix W0 = P but maps eigenvalues
through a nonlinear function.

Suppose (λ, v ) is the eigenpair of P. We know that the absolute value
of eigenvalues of any stochastic matrix satisies the |λ| ≤ 1 relation. Let the
eigendecomposition of P be VDV−1, where D is a diagonal matrix formed
from eigenvalues of P and the columns of V are the corresponding eigen-
vectors of P. We have

Wt→∞ = (1 − α)P(I − αP2)−1

= (1 − α)VDV−1(I − αVDV−1VDV−1)−1

= (1 − α)VDV−1(VV−1 − αVDV−1VDV−1)−1

= (1 − α)VDV−1 (
V (I − αD2)V−1)−1

= (1 − α)VDV−1 (
V (I − αD2)−1V−1)

= (1 − α)V
(
D(I − αD2)−1)V−1

= V
(
(1 − α)(D(I − αD2)−1)V−1

= VD′V−1.
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Figure 12: Role of α on the nonlinear transformation of eigenvalues using fα (λ)
in the DNE process.

This testifies that the DNE process keeps the eigenvectors unchanged, but
the eigenvalues become D′

ii = (1−α)λi

1−αλ2
i

. Therefore, the DNE process functions
nonlinearly on the eigenvalues of the input matrix, that is, the final con-
verged matrix, Wt→∞, transforms (λ, v ) to ( fα (λ), v ), where fα (λ) = (1−α)λ

1−αλ2 .
It is trivial that fα (λ)(0) = 0, fα (λ)(1) = 1. The following relations show that
the DNE always decreases the absolute value of eigenvalues,

1 ≥ |λ|,
1 ≥ λ2,

α ≥ αλ2,

1 − α ≤ 1 − αλ2,

|λ|(1 − α) ≤ |λ|(1 − αλ2),

|λ|(1 − α)
1 − αλ2 ≤ |λ|,

where the rate of this decrease is higher for eigenvalues with greater ab-
solute values. Figure 12 depicts the behavior of fα and how this nonlinear
function can be regularized with an α parameter. Increasing the eigengaps
between large eigenvalues enhances the robustness of the converged net-
work, which in our case means a better formation of classes (for details on
the spectral eigengap, see Joseph & Yu, 2016; Wang et al., 2018; Mavroeidis
& Bingham, 2010).
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Figure 13: The effect of α on the eigenvalues of the transition matrix of a clip
network obtained from experiment 1 in section 4 (see Table 1 for the training
structure).

Figure 12 shows that by increasing the regularization parameter, higher
eigengaps are achieved. In Figure 13, the associated eigenvalues of a sam-
ple network clip7 and the new eigenvalues of the converged network with
different α values are represented.

Appendix B: Training Structure Design Complexity

Here we provide some mathematical calculations to show how complex
the design of different training structures could be in real experiments and
artificial EPS or E-EPS agents.

Let the set of all classes be C, where each class has m members. Each
member of the classes belongs to a separate category, usually labeled by let-
ters A, B, C, and so on. As a result, there are m categories, each with n = |C|
members, so the total number of stimuli equals m|C| = mn. In an arbitrary
MTS procedure, the experimenter usually decides how to label categories
(among m! possibilities) and which stimuli sets form classes (among mn!
possibilities). In real-life experiments, changing the order of two categories
(or labels) or how the members of the same class are assembled across dif-
ferent categories might have an impact on the learning and testing outcome.

However, in the computational model, all the categories and stimuli are
abstract symbols and are literally the same. We just use the category labels
and class indices to differentiate the stimuli. When there is differentiation

7
The training order is represented in Table 1, and the experiment is clarified in

section 4.
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Figure 14: C1 to C7 refers to the seven categories and the number of possible
maps from categories to Cis, i = 1, · · · 7 is 7!. At each time step, shown by green
dashed lines, a category is added to the previously trained relations. At time
t = 1, theC1 toC2 relation, which is shown via a directed connection, is trained as
the first relation. This can be any relation. Then at each time step, a new category
is connected to the previously trained relations.

between categories in a real-life experiment, the total number of baseline
relation configurations, defined as T, would be

T =
(

m
1

)(
m − 1

1

) (
2
(

2
1

)(
m − 2

1

)) (
2
(

3
1

)(
m − 3

1

))
· · ·

(
2
(

m − 1
1

)(
1
1

))

= 2m−2m!(m − 1)! (B.1)

In the EPS model, we can remove the repetitions by assuming the cate-
gory label describes the order of adding a category. For instance, the first re-
lation for training would be AB, the next training could be one of AC, BC,CA
or CB, and so on. The number of different training configurations for the
agent in this case is

T = 1 ×
(

2
(

2
1

))
×

(
2
(

3
1

))
· · ·

(
2
(

m − 1
1

))
= 2m−2(m − 1)! (B.2)

To make these calculations more intuitive, consider the case with seven cat-
egories, that is, m = 7, with labels A, B,C, D, E, F, and, G, each with three
members n = 3. In Figure 14, C1 to C7 refers to the seven categories where
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Figure 15: A possible training structure is shown in red—AB,CB, AD, EA, DF,

GE—when the order of categories in the training structure is not important.

at each time step, one relation to a new category will be added. The first
training stage contains the C1 to C2 relation, which is shown via a directed
connection. C1 could be any of seven categories, and C2 could be one of the
remaining six categories. The next stage, represented with t = 2 is to add
C3, which is one of the remaining five categories. There are four options to
train: C1C3, C3C1, C2C3, and C3C2, shown with undirected connections. Sim-
ilarly, we see that for t = 3, there are four choices for categories and 2 × 3
ways to choose the relation that connects C4 to previous categories. There-
fore, we can easily see that the number of possible maps of categories to
C1 to C7 is 7! and the possibility them with six relations is 25(6!). In total,
if we distinguish between categories and therefore their order, the number
of possible training procedures based on equation B.1 and our explanation
equals 25(7!)(6!) = 32 × 5040 × 720 = 116, 121, 600.

If we consider the order of categories to be the same and map C1 → A,
C2 → B, C3 → C, C4 → D, C5 → E, C6 → F, and C7 → G, different configu-
rations will be reduced to 25(6!) = 32 × 720 = 23,040, according to equa-
tion B.2. This one-to-one mapping is shown in Figure 15, along with a
sample training order in directed red connections that is not LS, OTM, or
MTO (see Table 7 for a summary of the training).
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Figure 16: Graphical representation of training order for OTM and MTO,
shown in red.

In Figures 16a and 16b, respectively, the order of adding new relations to
the training blocks for OTM and MTO is depicted. Both training structures
are addressed in experiment 1 and reported in Tables 5 and 6.

Although our argument and equations B.1 and B.2 show the complexity
of studying the effect of a training structure in an MTS procedure on the
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Table 7: Training Order for the Training Structure Depicted in Figure 15.

Time Step New Relation Possible Previous Relations

t = 1 AB
t = 2 CB AB
t = 3 AD CB AB
t = 4 EA AD CB AB
t = 5 DF EA AD CB AB
t = 6 GE DF EA AD CB AB

Note: A training block can be formed by only new relation at
each stage or a combination of new and previously trained
relations.

participant/agent performance, the training structure and training block
design are much more complex. We have addressed the order of adding
new training relation to the previously trained relations. Many other pa-
rameters can be included in the analysis, such as the number of trials in
each block, the combination of previously trained relations together with
the new relation, testing derived relations during training or not, testing
order, and number of classes (members of each category). Moreover, the
possibility of training a mixture of relations between two categories, say,
A1B1, B2A1, A3B3, will increase this number. An example of such training
is simulated in our previous work (Mofrad et al., 2020). Therefore, finding
some optimal training structure either theoretically or via simulation with
EPS or E-EPS is an interesting problem in its own right, but it is out of the
scope of this letter.

Abbreviations

DNE Directed Network Enhancement.
DSM doubly stochastic matrix.

E-EPS Enhanced Equivalence Projective Simulation.
EPS Equivalence Projective Simulation.

fMRI Functional Magnetic Resonance Imaging.
LS linear series.

MTO many-to-one.
MTS matching-to-sample.

NE Network Enhancement.
OTM one-to-many.

PS Projective Simulation.
RL reinforcement learning.
SE Stimulus Equivalence.

SNE Symmetric Network Enhancement.
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