

BACHELOROPPGAVE

Berggrunnsgeologisk analyse av Gula-Fundsjøgrensen i Trondheimsdekkekomplekset

Geological bedrock analysis of the Gula-Fundsjø boundary in the Trondheim Nappe Complex

Marte Jørstad Uthus (205) og Emma Aase Stenberg (213)

Geologi og Geofare Fakultet for ingeniør- og naturvitenskap (FIN) - HVL Veileder: Deta Gasser Innleveringsdato 03.06.2021

Jeg bekrefter at arbeidet er selvstendig utarbeidet, og at referanser/kildehenvisninger til alle kilder som er brukt i arbeidet er oppgitt, *jf. Forskrift om studium og eksamen ved Høgskulen på Vestlandet, § 12-1.*

Sammendrag

I dag er kun ca. 60% av Norge dekket av berggrunnskart i målestokk 1:50 000. Trondheimsdekkekomplekset i Midt-Norge er et av de dårligst dekkede områdene i målestokk 1:50 000, og Norges Geologiske Undersøkelse (NGU) er i gang med å kartlegge berggrunnen i Trøndelag i denne målestokken (MERØ-prosjektet). Foreliggende bacheloroppgave har blitt gjennomført i samarbeid med MERØ-prosjektet, hvor målet var å kartlegge grensen mellom Gulakomplekset og Fundsjøgruppen i Tverråtjønnan-området i Holtålen kommune.

Arbeidet med denne oppgaven har resultert i et berggrunnskart over Tverråtjønnan-området i målestokk 1:40 000. I Gulakomplekset ble det kartlagt glimmerskifer, metasandstein, marmor, konglomerat, tonalitt og en granat- og magnetitt-rik bergart som utgjør en magnetisk anomali. I Fundsjøgruppen ble det kartlagt amfibol-biotitt-skifer, amfibolitt med keratofyr, gabbro, biotitt-kvarts-skifer, tonalitt og doleritt. Gulakomplekset har en foliasjon som heller moderat til bratt mot vest. Fundsjøgruppen består av en stor-skala foldestruktur, en antiform, med sjenkler som heller mot vest og øst, og en foldeakse som stuper mot sør.

To prøver ble analysert for detrital zirkon: en kvarts-rik metasandstein fra Gulakomplekset og en brunlig, kvarts-rik metasandstein fra Fundsjøgruppen. Den maksimale avsetningsalderen til Gula sandsteinen er 935 ± 29 millioner år, og den maksimale avsetningsalderen til Fundsjø sandsteinen er 511 ± 6 millioner år. Begge prøvene har en stor populasjon av zirkoner i alderen ca. 900 - 1800 millioner år, men det er ingen zirkonpopulasjon fra arkeikum. Fundsjøgruppen har også en populasjon i alderen 511 - 747 millioner år. Mulige kildeområder for aldrene 511 - 747 millioner år er den timanske fjellkjeden eller mikrokontinenter løsrevet fra Gondwanaland.

Det er mulig at Gulakomplekset ble avsatt på eller rett ved et mikrokontinent i Iapetushavet, og det er sannsynlig at avsetningsmiljøet var kalk- og leirrikt. Fundsjøgruppen ble mulig avsatt i et kalk- og leirholdig havbasseng med lokale vulkanutbrudd med mafisk sammensetning i nærheten av den baltiske kontinentalranden. For ca. 440 - 430 millioner år siden ble Gulakomplekset og Fundsjøgruppen skjøvet sammen, og senere ble dekkekomplekset skjøvet oppå Baltika under den kaledonske fjellkjededannelsen.

Abstract

Only about 60% of Norway is today covered by bedrock maps at a scale of 1:50 000. One of the poorest covered areas at 1:50 000 scale is the Trondheim Nappe Complex in Central Norway, and the Geological Survey of Norway (NGU) is in the process of mapping the bedrock in Trøndelag (the MERØ-project). This thesis has been completed in collaboration with the MERØ-project by mapping the boundary of the Gula Complex and the Fundsjø Group in the Tverråtjønnan area in Holtålen municipality.

The work done for this thesis has resulted in a bedrock map of the Tverråtjønnan area at a 1:40 000 scale. In the Gula Complex, mica schist, metasandstone, marble, conglomerate, tonalite and a garnet- and magnetite-rich rock which forms a magnetic anomaly were mapped. In the Fundsjø Group, amphibole-biotite-schist, amphibolite with keratophyre, gabbro, biotite-quartz-schist, tonalite and dolerite were mapped. The Gula Complex has a foliation that dips steeply to the west. The Fundsjø Group consists of a large-scale fold structure which is interpreted to be an antiform with limbs that dip toward the west and east. The fold axis plunges toward the south.

Two samples were analyzed for detrital zircon: a quartz-rich metasandstone from the Gula Complex and a brownish, quartz-rich metasandstone from the Fundsjø Group. The maximum depositional age of the metasandstone in the Gula Complex is 935 ± 29 million years, and the maximum depositional age of the sandstone in the Fundsjø Group is 511 ± 6 million years. Both samples have a large population of zircons aged approximately 900 - 1800 million years, but they do not contain an Archean zircon population. The Fundsjø group also has a zirkon population aged 511 - 747 million years. Possible source areas for the ages 511 - 747 million years are the Timanian Orogen or detached microcontinents from Gondwanaland.

It is possible that the Gula Complex was deposited on or near a microcontinent in the Iapetus ocean, and it is most likely that the depositional environment was rich in calcium carbonate and clay. The Fundsjø Group was possibly deposited in a calcium carbonate rich and clayey ocean basin with local volcanic eruptions with mafic composition close to the Baltic margin. For 440 - 430 million years ago, and the Gula Complex and the Fundsjø Group were thrusted together. The Nappe Complex was later thrusted on top of Baltica during the Caledonian orogeny.

Forord

Det har vært en sann fryd å studere Geologi og Geofare ved Høgskulen på Vestlandet i Sogndal med fantastiske medstudenter og lærere. Takk for et bra studiemiljø!

Denne oppgaven har vært lærerik og interessant med en svært bratt læringskurve. Arbeidet har lært oss mye om den geologiske historien og at det fortsatt er mange hull som må tettes. Vi vil takke NGU som lot oss være med på MERØ-prosjektet, og da særlig Gurli Meyer, Anna Ksienzyk og Deta Gasser som vi var i felt med. Vi lærte mye!

I tillegg vil vi takke instituttet for geofag ved Universitet i Oslo og Gunborg Bye Fjeld, Magnus Kristoffersen og Siri Simonsen for hjelpen. Vi vil også bruke denne anledningen til å takke Vilde Alstad for korrekturlesing. En spesiell takk til veilederen vår Deta Gasser. Vi har satt utrolig stor pris på ditt engasjement for oppgaven. Du har alltid vært hjelpsom og vi har lært så utrolig mye, tusen takk Deta!

Med mindre noe annet er nevnt, er bildene i oppgaven tatt av oss.

Emma Stenke

Marke J. Uth

Emma Aase Stenberg

Marte Jørstad Uthus

Sogndal, 3. juni 2021

Innholdsfortegnelse

Figurliste	1
Tabelliste	2
1 Innledning	3
1.1 Problemstillinger	7
1.2 Oppbygning av oppgaven	8
2 Områdebeskrivelse	8
2.1 Geografisk beliggenhet	8
2.2 Tidligere arbeid	9
2.3 Berggrunnsgeologi	
2.4 Kvartærgeologi	
3 Bakgrunn	12
3.1 Den kaledonske fjellkjeden - geologisk utvikling	
3.2 Kaledonsk dekkestratigrafi	14
3.3 Trondheimsdekkekomplekset	
3.3.1 Størendekket	
3.3.2 Gulakomplekset	19
3.3.3 Meråkerdekket	20
3.4 Luftbårende magnetiske undersøkelser	21
3.5 Aldersdatering av detrital zirkon	22 23
4 Metode	24
4.1 Datainnsamling	24
4.2 Dataanalyse	
4.2.1 Berggrunnskart og berggrunnsprofil	25
4.2.2 Tynnslip	26
4.2.3 Aldersdatering	27
5 Resultater	33
5.1 Feltresultater	
5.1.1 Berggrunnskart og berggrunnsprofil	
5.1.2 Litologi	
5.1.2 Litologi 5.1.3 Strukturer	
5.1.2 Litologi 5.1.3 Strukturer 5.2 Petrografisk analyse av tynnslip	
5.1.2 Litologi 5.1.3 Strukturer 5.2 Petrografisk analyse av tynnslip 5.2.1 Gulakomplekset	
 5.1.2 Litologi	
 5.1.2 Litologi 5.1.3 Strukturer 5.2 Petrografisk analyse av tynnslip	
 5.1.2 Litologi 5.1.3 Strukturer	
 5.1.2 Litologi 5.1.3 Strukturer	

6.1 Nye funn i kartleggingen	64
6.2 Avsetningsmiljø	65
6.2.1 Gulakomplekset	
6.2.2 Fundsjøgruppen	
6.3 Strukturer	71
6.3.1 Gulakomplekset	71
6.3.2 Fundsjøgruppen	72
6.4 Intrusjonshistorien	74
6.5 Aldersdatering med detrital zirkoner	
6.5.1 Kildeområde	76
6.5.2 Maksimal avsetningsalder	79
6.6 Den geologiske utviklingen i Tverråtjønnan-området	
6.7 Feilkilder	
7 Konklusjon	82
7.1 Forslag til videre arbeid	
Referanser	85

Figurliste

Figur 1. Berggrunnskart over Norges fastland og kontinentalsokkel	4
Figur 2. Kart som viser utbredelsen av berggrunnskart i målestokk 1:50 000	5
Figur 3. Berggrunnskart over studieområdet	6
Figur 4. Oversiktskart over studieområdet	9
Figur 5. Løsmassekart	11
Figur 6. Oversiktsbilde over landskapet som ble kartlagt	11
Figur 7. Områder som viser hvor det er rester etter den kaledonske fjellkjeden	12
Figur 8. Kontinentenes tektoniske plassering ved ulike tider	14
Figur 9. Geologisk kart over Trondheimsdekkekomplekset	17
Figur 10. Ulike tolkninger av Trondheimsdekkekomplekset "	18
Figur 11. Kart med magnetiske anomalier	22
Figur 12. Eksempel på et concordia-diagram	24
Figur 13. a) En steinsag b) Mikroskop fra Leica	26
Figur 14. Separasjonsdelen av aldersdateringen som ble gjort ved HVL	28
Figur 15. Mineralseparasjonen som ble gjort ved UiO	30
Figur 16. Plukking av zirkoner	31
Figur 17. a) Massespektrometer b) Laser	32
Figur 18. Glimmerskifer	34
Figur 19. Metasandstein	35
Figur 20. Marmor	36
Figur 21. Konglomerat	37
Figur 22. Bergart med høyere magnetiske målinger enn områdene rundt	38
Figur 23. Tonalitt	39
Figur 24. Tonalittgang i Gulakomplekset med omliggende glimmerskifer	40
Figur 25. Amfibol-biotitt-skifer	41
Figur 26. Amfibolitt	42
Figur 27. Gabbro	43
Figur 28. Biotitt-kvarts-skifer	44
Figur 29. Doleritt	45
Figur 30. Målingene av kontaktflater mellom tonalittintrusjonen	46
Figur 31. Foliasjonsmålinger	47
Figur 32. Lineasjoner	48
Figur 33. Fold i amfibol-biotitt-skifer i Fundsjøgruppen	49
Figur 34. Målinger av foldeakser	50
Figur 35. Kart med resultat fra magnetiske undersøkelser	51
Figur 36. Tynnslip av EM_47	52
Figur 37. Tynnslip av EM_28	53
Figur 38. Tynnslip av EM_303	53
Figur 39. Tynnslip av EM_122	54
Figur 40. Tynnslip av EM_219	55
Figur 41. Tynnslip av DG_12	56
Figur 42. Tynnslip av EM_284	57
Figur 43. CL-bilder av zirkonkorn fra EM_28	58
Figur 44. Concordia-diagram for EM_28	59
Figur 45. Kernel tetthetsfordeling og aldershistogrammet for EM_28	60
Figur 46. CL-bilder av zirkoner fra DG_12	61
Figur 47. Bilder av et zirkon fra DG_12 med sprekk	61

Figur 48. Concordia-diagram for DG_12	62
Figur 49. Kernel tetthetsfordeling og aldershistogrammet for DG_12	63
Figur 50. De tidligere og det nye berggrunnskartet over studieområdet	64
Figur 51. Fasediagram for aluminiumsilikater	67
Figur 52. Stereoplott med foliasjonene og lineasjonene i Gulakomplekset	72
Figur 53. Stereoplott med foliasjonene, lineasjoner og foldeakser i Fundsjøgruppen	73
Figur 54. Kernel tetthetsfordeling og aldershistogrammet for EM_28 og DG_12	77
Figur 55. Mulige avsetningsmønstre fra den timanske fjellkjeden	78
Figur 56. Den paleogeografiske plasseringen til ulike kontinenter i sen kambrium	79

Tabelliste

Tabell 1. Den maksimale avsetningsalderen til EM_28 og DG_12 ifølge tre metoder80

1 Innledning

Kartlegging av berggrunnen er viktig for å lokalisere ressurser, identifisere farer, planlegge infrastruktur og for å lære mer om historien bak dannelsen av landskapet. Derfor er det avgjørende å ha oppdaterte berggrunnskart som dekker hele landet. I Norge har Norges Geologiske Undersøkelse (NGU) ansvaret for kartleggingen, og ut ifra kartleggingen blir det laget berggrunnskart som viser hva slags bergarter det er i området, hvor gamle bergartene er og hvilke strukturer som finnes (Engvik, 2017). Berggrunnen er en gjenspeiling av den geologiske historien som går tilbake nesten tre milliarder år i Norge (NGU, 2015). I løpet av den geologiske historien har fjellkjeder blitt til og erodert ned, og disse fjellkjedene kan rekonstrueres ved å kartlegge berggrunnen.

I Norge er det landsdekkende berggrunnskart i målestokk 1:250 000, men kun rundt 60% av landet er dekket av berggrunnskart i målestokk 1:50 000. Et av de dårligst dekkede områdene på 1:50 000 er Trondheimsdekkekomplekset, som strekker seg fra Otta og Dombås i syd til Skjekerfjellene i Snåsa i nord (figur 1 og 2) (Oftedahl, 1981). Trondheimsdekkekomplekset består av tre viktige enheter fra vest til øst: Størendekket, Gulakomplekset og Meråkerdekket (figur 2) (Nilsen, 1988). Den østlige delen av Meråkerdekket består av Fundsjøgruppen, og denne gruppen grenser mot Gulakomplekset i vest. Grensen mellom Gulakomplekset og Fundsjøgruppen er dårlig dekket ved at det er mangel på berggrunnskart i målestokk 1:50 000, med unntak fra et område øst for Trondheim (figur 2).

Figur 1. Berggrunnskart over Norges fastland og kontinentalsokkel. Rød firkant markerer hvor Trondheimsdekkekomplekset er (grønn farge) (NGU, 2020).

Figur 2. Kart som viser utbredelsen av berggrunnskart i målestokk 1:50 000 (grå, gjennomsiktige firkanter). Størendekket er markert i brunt, Gulakomplekset er markert i lysegrønt og Meråkerdekket er markert med mørk grønn. Studieområdet er i den røde firkanten.

Berggrunnskartleggingen som tidligere er gjort i Gulakomplekset og Fundsjøgruppen kommer frem i berggrunnskartene 1:250 000 Røros & Sveg (Wolff & Nilsen, 1989) og Trondheim (Wolff, 1989) (figur 3a). Overgangen mellom Gulakomplekset og Fundsjøgruppen passer ikke overens da det har vært ulik kartlegging i de to kartbladene (figur 3a). I 2020 gjorde NGU en oppdatering og harmoniserte kartgrensene slik at de passer sammen, men dette ble gjort uten å kvalitetssikre oppdateringen i felt (figur 3b).

Figur 3. Berggrunnskart over studieområdet. a) Berggrunnskartene 1:250 000 Røros & Sveg (Wolff & Nilsen, 1989) og Trondheim (Wolff, 1989). b) 1:250 000 berggrunnskart som ble harmonisert i 2020 av NGU. De tidligere kartgrensene er fjernet og Gula- Fundsjøkontakten er tolket som en skyvegrense vest for de vestligste grønnsteinforekomstene.

Målet med foreliggende bacheloroppgave var å gjennomføre feltarbeid for å kartlegge Gula-Fundsjøgrensen på tvers av den gamle kartbladgrensen for å kvalitetssikre og eventuelt tilpasse harmoniseringen av kartet som ble gjort av NGU. På grunn av dette ble det gjennomført feltarbeid i området rundt Tverråtjønnan, som er nord for Haltdalen i Trøndelag fylke (figur 4). Feltarbeidet ble gjennomført 27. juli - 2. august 2020 hvor det ble kartlagt forskjellige litologier, tatt strukturmålinger og tatt prøver til tynnslip og aldersdatering av bergarter. Denne oppgaven er i samarbeid med NGU-prosjektet MERØ. MERØ-prosjektet er en del av en større satsing for å kartlegge berggrunnen i Trøndelag. Kartleggingen skal sørge for bedre formidling av landskapet og geologien i fylket for forvaltning, undervisning og reiseliv, samt sørge for verdiskapning for mineralnæringen (Eian, 2019).

1.1 Problemstillinger

Ut ifra målet med oppgaven har vi formulert fire problemstillinger:

- Lage et mer oppdatert og detaljert berggrunnskart for grensen mellom Gulakomplekset og Fundsjøgruppen i området rundt Tverråtjønnan i Haltdalen, Trøndelag fylke
- Beskrive litologiene i en del av Gulakomplekset og Fundsjøgruppen i Tverråtjønnanområdet ved hjelp av håndstykker og tynnslip
- Forstå den strukturelle oppbyggingen og utviklingen av området ved å ta strukturmålinger
- Aldersdatere detrital zirkoner i metasedimentære enheter i Gulakomplekset og Fundsjøgruppen med hjelp av uran-bly metoden

Disse fire problemstillingene kombineres til å tolke den geologiske utviklingen i Tverråtjønnan-området, fra avsetningshistorien til den strukturelle utviklingen under den kaledonske fjellkjededannelsen.

1.2 Oppbygning av oppgaven

Den første delen av denne oppgaven består av områdebeskrivelse og tidligere arbeid som har blitt gjort i studieområdet. Deretter følger en litteraturgjennomgang av regionalgeologien. Videre vil metodene som vi har brukt bli forklart, og resultatene vil bli representert og diskutert. Til slutt vil vi komme med en konklusjon, samt forslag til videre arbeid. Vedlegg ligger bakerst i oppgaven, og til sammen er det syv vedlegg.

2 Områdebeskrivelse

2.1 Geografisk beliggenhet

Studieområdet ligger i Holtålen kommune i Trøndelag fylke i Midt-Norge (figur 4). Området ligger ved Tverråtjønnan og er på rundt 800 moh., og vest i studieområdet ligger fjellet Bukkhåmmåren som er 1066 moh. Området er ubebodd, men det er flere mindre hytter i området. Vi fikk låne to av dem for feltarbeidet.

Figur 4. Oversiktskart over studieområdet.

2.2 Tidligere arbeid

Den første geologiske beskrivelsen av Haltdalen-området ble gitt av Hørbye i 1861. I 1927 gjorde Aasgaard undersøkelser av geologien mellom Haltdalen og Meråker (Nilsen, 1971). Kartleggingen som har blitt gjort før vår kartlegging har ført til berggrunnskartene 1:250 000 Røros & Sveg (Wolff & Nilsen, 1989) og Trondheim (Wolff, 1989) som nevnt tidligere. I tillegg er det et harmonisert berggrunnskart fra 2020. Det finnes også løsmassekart for området.

2.3 Berggrunnsgeologi

De eksisterende geologiske berggrunnskartene for studieområdet er vist i figur 3. Berggrunnskartene for Røros & Sveg (Wolff & Nilsen, 1989) og Trondheim (Wolff, 1989) ble harmonisert i 2020 av NGU slik at de tidligere kartgrensene har blitt fjernet. Fundsjøgruppen (som er i den østre delen av studieområdet) består av grønnstein og amfibolitt i begge kartbladene fra 1989, samt i det harmoniserte berggrunnskartet fra 2020. I Gulakomplekset (vestlig del av studieområdet) viser det sørlige kartbladet (Røros & Sveg) at området består av sedimentære bergarter og amfibolitt/grønstein i sør, mens det nordlige kartbladet (Trondheim) har kartlagt migmatittgneis. De tidligere kartene viser begge at det er marmor- og konglomerat-linser i Gulakomplekset. I det harmoniserte kartet består Gulakomplekset hovedsakelig av glimmerskifer, men det er en sone med amfibolitt og grønnstein i tillegg til marmor- og konglomerat-linsene.

2.4 Kvartærgeologi

Landskapet i området er preget av erosjon fra isbreer, og området er relativt flatt og har avrundete fjelltopper. Mye av området er dekket av morenemateriale som har blitt avsatt av isbreer (figur 5). Morenematerialet i området er dårlig sortert og består av usorterte sedimenter i forskjellige størrelser (NGU, 2021b). Ifølge løsmassekartet i figur 5 er det betraktelig med bart fjell, men etter å ha vært i felt viser det seg at mye av dette arealet er dekket av morene, myr og torv. Det bare fjellet opptrer som spredte blotninger (figur 6). Det gjorde kartleggingen av berggrunnen mer krevende.

10

Figur 5. Løsmassekart fra NGU (NGU, 2021b).

Figur 6. Oversiktsbilde over landskapet som ble kartlagt. Ifølge NGU sine løsmassekart består området av mye bart fjell, men det bare fjellet opptrer som blotninger som ligger spredt mellom tynt morenedekke og enkelte små myrer. Bildet er tatt av Deta Gasser.

3 Bakgrunn

3.1 Den kaledonske fjellkjeden - geologisk utvikling

Den kaledonske fjellkjeden strekker seg gjennom hele Norge (figur 1 og 7), og de skandinaviske kaledonidene strekker seg 1500 km fra Stavanger og opp til Barentshavet (Corfu et al., 2014). De østlige delene av fjellkjeden går gjennom Irland, Skottland og Skandinavia, mens langs østkysten av Nord-Amerika og Grønland finnes motstykket (figur 7) (Ramberg et al., 2013). I dag er det kun rester igjen etter fjellkjeden som en gang lignet på dagens Himalaya (Ramberg et al., 2013).

Figur 7. De mørkegrå områdene viser hvor det er rester etter den kaledonske fjellkjeden. Rød stjerne viser hvor studieområdet er. Figuren er hentet fra (Grenne et al., 1999).

Den kaledonske Wilson-syklusen startet for rundt 600 millioner år siden med åpningen av Iapetushavet. Da begynte flere plater å bevege seg og det oppstod rifting og deling av Rodinia (Grenne et al., 1999). Rodinia var et superkontinent som ble dannet for ca. 1100 millioner år siden (Sigmond et al., 2013). For 1000 millioner år siden er det sannsynlig at Baltika, som er dagens Nord-Europa og Russland, og Laurentia, som omfatter dagens Nord-Amerika og Grønland, var plassert ved siden av hverandre innenfor Rodinia (Corfu et al., 2014). Etter delingen av Rodinia fulgte åpningen av Iapetushavet, som kan ses på som en forgjenger til Atlanterhavet. Baltika og Laurentia drev da fra hverandre. Prosessen ble etter hvert reversert, og det er trolig at platekonvergensen, som til slutt førte til kollisjon mellom de to kontinentene, begynte i sen kambrium (figur 8). En følge av platekonvergens mellom kontinenter er dannelsen av øybuer og vulkanske øyrekker ovenfor subduksjonssoner. Dette skjedde også da Baltika og Laurentia bevegde seg mot hverandre, og dateringer av øybuebergarter ved hjelp av uran-bly zirkon datering tilsier at de eldste umodne øybuene er ca. 500 millioner år gamle (Ramberg et al., 2013). Den pågående subduksjonen under Laurentia dannet batolitter som i dag er i den øverste dekkeserien, og batolittene ble dannet da havbunnskorpe ble subduksert under kontinentalranden. Mot slutten av ordovicium hadde Iapetushavet blitt så smalt at Baltika og Laurentia kolliderte med hverandre (figur 8d) (Grenne et al., 1999).

Figur 8. Kontinentenes tektoniske plassering ved ulike tider. a) Plasseringen i tidlig kambrium, ca. 540 Ma. b) Plasseringen i sen kambrium, ca. 500 Ma. c) Plasseringen i ordovicium, ca. 460 Ma. d) Plasseringen i silur, ca. 420 Ma. Rød stjerne markerer Norges posisjon. Hentet fra (DeepTimeMaps, 2020).

Kontinent-kontinentkollisjonen mellom Baltika og Laurentia begynte for ca. 430 millioner år siden (Corfu et al., 2014). Da ble den baltiske kontinentalranden skjøvet under Laurentia og en kollisjonssone oppstod (Grenne et al., 1999). Kollisjonen mellom kontinentene fortsatte til omtrent 400 millioner år siden, og under kontinentkollisjonen ble flere skyvedekker, som ble fraktet mot sør-øst fra hvor de opprinnelig kom fra, stablet oppå hverandre (Ramberg et al., 2013).

3.2 Kaledonsk dekkestratigrafi

Forståelsen av skyvedekker begynte på 1870-tallet etter at det hadde blitt observert bergarter som hadde blitt forskjøvet flere titalls kilometer i de skotske kaledonidene (Gee et al., 1985). I 1888 presenterte Törnebohm en tolkning av skyvedekkene i de svenske kaledonidene, mens i 1909 presenterte Högbom en hypotese om at de øvre dekkene kom fra utenfor den norske vestlandskysten (Gee et al., 1985). På grunn av detaljert kartlegging, modelleringer og bedre forståelse av de tektoniske prosessene har forståelsen om den kaledonske fjellkjededannelsen økt. Det har ført til at de skandinaviske dekkeseriene har blitt delt inn i nedre, midtre, øvre og øverste dekkeserie (Corfu et al., 2014; Gee et al., 1985).

I bunnen av dekkeseriene er det stedegne grunnfjellet, og det kalles for autokton (Fossen & Gabrielsen, 2005). Hvis bergartene har blitt transportert et kort stykke og lett kan korreleres med de autoktone bergartene, er bergartene parautoktone. Over de parautoktone bergartene er de alloktone bergartene. Alloktoner, også kalt dekkeserier, er tektoniske enheter som har blitt fraktet over flere titalls kilometer eller mer slik at de ikke korrelerer med berggrunnen under. Hvis flere skyvedekker hører sammen kalles de for et dekkekompleks (Fossen & Gabrielsen, 2005). De nederste dekkeseriene har blitt transportert kortest, mens de øverste har blitt transportert lengst (Ramberg et al., 2013). I de påfølgende avsnittene vil tektonostratigrafien i Trøndelag bli beskrevet.

Autokton og parautokton

Fronten til den kaledonske fjellkjeden er markert av en skyveforkastning som gjør at bergarter fra øvre proterozoikum og sen paleozoikum ligger oppå de autoktone skifrene fra midtre og øvre kambrium (Gee et al., 1985). Autoktone krystalline bergarter fra prekambrisk tid er eksponert på overflaten innenfor fjellkjeden ved vinduer, dvs. erosjonshull gjennom dekkene (Fossen & Gabrielsen, 2005).

Nedre dekkeserie

Bergartene i den nedre dekkeserien i Trøndelag er rester etter sedimentære avsetninger som ble avsatt på det baltiske skjold før kontinentkollisjonen for 430 millioner år siden (Ramberg et al., 2013). De lavere dekkeseriene er generelt dårligere eksponert (Gee et al., 1985).

Midtre dekkeserie

Den midtre dekkeserien består av kontinentale skyvedekker. Disse dekkene har blitt transportert lenger enn de nedre dekkeseriene som ligger strukturelt under, og de representerer randen fra Baltika og mikrokontinenter (Ramberg et al., 2013).

Øvre dekkeserie

Den øvre dekkeserien består av bergarter fra Iapetushavet (Ramberg et al., 2013), og det er både magmatiske og sedimentære bergarter (Gee et al., 1985). I den øvre delen av dekkeserien er det ofiolitter, som er gammel havbunnsskorpe som er skjøvet på land (Grenne et al., 1999). Det er funnet fossiler fra ordovicium og silur, og i de sentrale strøkene av Trøndelag er det antatt at den øvre dekkeserien er 8 - 12 km tykk (Gee et al., 1985). Det er i denne dekkeserien Trondheimsdekkekomplekset er.

Øverste dekkeserie

Den øverste dekkeserien består av kontinentalrandbergarter fra den laurentiske kontinentalranden. Dekkeserien opptrer i Nordland, Troms og kun i den ytterste delen av nordvestlige Trøndelag. De store intrusjonene, som er 480 til 430 millioner år, opptrer i denne dekkeserien (Grenne et al., 1999).

3.3 Trondheimsdekkekomplekset

Studieområdet er geologisk en del av Trondheimsdekkekomplekset (figur 2 og 9). Trondheimsdekkekomplekset tilhører den øvre dekkeserien og korrelerer med Kölidekkekomplekset i de svenske kaledonidene (Rui & Bakke, 1975). Trondheimsdekkekomplekset består av tre enheter fra vest til øst; Størendekket, Gulakomplekset og Meråkerdekket (figur 9). Mellom enhetene er det tektoniske kontakter som stort sett står steilt, og det er fortsatt uklart om hvilke enheter som ligger over hverandre. Trondheimsdekkekomplekset gikk gjennom metamorfose og deformasjon i midtre silur, og Gulakomplekset og Meråkerdekket har høyere metamorf grad enn Størendekket (Nilsen et al., 2007). Mot slutten av silur hadde alle bergartene i Trondheimsdekkekomplekset blitt skjøvet oppå det baltiske skjold (Grenne & Lagerblad, 1985).

Figur 9. Geologisk kart over Trondheimsdekkekomplekset. Hvit firkant viser hvor studieområdet er. b) Profil mellom A og A´ i figur 9a. Hentet fra (Stokke et al., 2018).

Gjennom hele Trondheimsdekkekomplekset er det ganger og plutoner av trondhjemitt. Trondhjemittene har tonalittisk sammensetning og består av en del Al₂O₃. Trondhjemitter med en høy andel aluminium kommer ofte fra kontinentalrander (Nilsen et al., 2007). I tillegg er det mindre granitt- og granodiorittkropper som har intrudert, og de er tolket til å komme fra metasedimentære kilder som har smeltet (Nilsen et al., 2007). Flere trondhjemitt- og gabbrokropper i Gulakomplekset er datert til ca. 440 til 430 millioner år siden (Nilsen et al., 2003). Noen av trondhjemittgangene kutter skifrigheten til bergartene (Olesen et al., 1973).

Det er flere tolkninger av Trondheimsdekkekomplekset med tanke på tektonostratigrafien og den strukturelle oppbygningen; den ene er at dekkekomplekset er en megasynform, mens den andre er at Gulakomplekset er en høygrads metamorf kjerne i en antiform (Grenne & Lagerblad, 1985). De ulike tolkningene er vist i ulike profiler av Gee et al. (1985) (figur 10).

INTERPRETATIONS OF TRØNDELAG STRUCTURE

Figur 10. Fire profiler som viser ulike tolkninger av Trondheimsdekkekomplekset langs VNV-ØSØ retning. Gulakomplekset er markert i mørkegrå mens dekkene under Trondheimsdekkekomplekset er markert med korte, svarte streker. Figuren er hentet fra (Gee et al., 1985).

3.3.1 Størendekket

Størendekket er av kambrosilursk alder (Oftedahl, 1981), og er tolket til å være løsrevet havbunnsskorpe med overliggende sedimentære og vulkanske bergarter (Ramberg et al., 2013). Dekket er sannsynligvis fra den laurentiske delen av Iapetushavet siden det er funnet fossiler som tilsier dette (Bergström, 1979; Corfu et al., 2014). I Størendekket er det gabbro, fyllitt, grønnstein, kvartsitt, båndet kvartsskifer og pute- og massive metabasalter (Grenne et al., 1999). Geokjemisk, geokronologisk og isotopisk data tilsier at ofiolittene ble dannet i et back-arc basseng bak en subduksjonssone nær en kontinental- eller mikrokontinentalrand (Slagstad et al., 2014). Ofiolittene er fra tidlig ordovicium (487 - 480 millioner år) (Slagstad et al., 2014), og det er ansett at de ble skjøvet over bergartene i Gulakomplekset i midtre ordovicium (Nilsen et al., 2003).

3.3.2 Gulakomplekset

Gulakomplekset består hovedsakelig av metasedimentære bergarter, dvs. sedimentære bergarter som har gått gjennom metamorfose til en viss grad, og lokalt er det forekomster av sillimanitt, kyanitt og staurolitt. I tillegg er det bergarter med vulkansk opprinnelse (Ramberg et al., 2013). Det antas at skiferen i Gulakomplekset er av kambrisk alder, men selve komplekset sin alder er ukjent (Rui, 1972). Derimot har Gulakomplekset tradisjonelt blitt regnet som å være fra kambrium med eventuelle prekambriske elementer (Engvik et al., 2014). Det er generelt antatt at Gulakomplekset er den eldste enheten i den stratigrafiske lagrekken i Trondheimsdekkekomplekset (Bøe, 1974). Metamorfose- og deformasjonsgraden varierer i komplekset (Nilsen, 1978), men generelt øker metamorfosegraden mot øst (Rui & Bakke, 1975).

I Gulakomplekset er det beskrevet tre formasjoner fra øst til vest; Undalformasjonen, Singsåsformasjonen og Åsliformasjonen (Engvik et al., 2014). Det kartlagte området ligger i Åsliformasjonen, som er en pelitisk enhet. I Haltdalen-området er det aluminiumsilikatførende skifre. I formasjonen er det en sekvens av kalkstein og konglomerat som kan følges over et stort område langs strøket (NGU, 2021a; Nilsen, 1978). Kisch (1962) har gitt konglomeratet navnet Bukkhammer-Usmadam metakonglomerat, og den inneholder klaster av kvartsitt (Wolff, 1964). Bukkhammer-Usmadam konglomeratet er en sørlig forlengelse av Gudåkonglomeratet (Nilsen, 1971), og Gudåkonglomeratet er også en kvartsittkonglomerat som er kraftig deformert. Områdene rundt består av staurolitt- og kyanittførende glimmerskifer, samt en sone med kalkstein vest for konglomeratet (Wolff, 1964).

Det er uklart hvor bergartene i Gulakomplekset stammer fra, men de representerer muligens et mikrokontinent som kom fra den baltiske siden (Nilsen et al., 2007). I tillegg er den tektoniske posisjonen i forhold til Meråker- og Størendekkene uavklart. En hypotese fra Horne (1979) tilsier at Gulakomplekset ligger imbrikert mellom de to andre dekkene på grunn av sammenskyvning i en tidligere subduksjonssone. Dette støttes ved at det er funnet tektonisk mélange mellom Gulakomplekset og Størendekket (Oftedahl, 1981).

Både Gulakomplekset og Fundsjøgruppen har gått gjennom minst fire faser av deformasjon. Den regionale skifrigheten kan bli relatert til da skyvedekkene ble skjøvet oppå Baltika (Grenne & Lagerblad, 1985).

3.3.3 Meråkerdekket

Meråkerdekket består av sedimentære og vulkanske bergarter (Gee et al., 1985). I dekket er det funnet svartskifer som er fra tidlig ordovicium, og den ligner kjemisk på skiferen som er i Oslo-området. På grunn av dette er det foreslått at Meråkerdekket er fra den baltiske siden (Corfu et al., 2014). Mesteparten av de vulkanske bergartene varierer fra typiske, primære basalter fra havbunnsrygger til ferrobasalter som er rike på TiO₂ (Grenne & Lagerblad, 1985). Tidligere arbeid har korrelert Meråker- og Størendekkene, men det er behov for mer arbeid for å løse denne problemstillingen (Corfu et al., 2014). Fundsjøgruppen er den laveste stratigrafiske enheten i Meråkerdekket (Gee et al., 1985).

3.3.3.1 Fundsjøgruppen

Fundsjøgruppen er en metavulkansk gruppe i Meråkerdekket. Gruppen består blant annet av grønnsteiner og keratofyrer som har intrusjoner av gabbro og doleritt (Erichsen et al., 1995), og gabbrokomplekset Fongen-Hyllingen ligger i gruppen (Oftedahl, 1981). I tillegg er det amfibolitter (Grenne & Lagerblad, 1985). Fundsjøgruppen er 7 - 9 km tykk, og kontakten mellom Gulakomplekset og Fundsjøgruppen er bratt og heller mot vest (Erichsen et al., 1995). En modell som baserer seg på blyisotoper antyder at Fundsjøgruppen ble avsatt på den baltiske kontinentalranden (Grenne et al., 1999). Vulkanittene er tolket til å komme fra umodne øybuer, samt å være fra sen kambrisk tid (Grenne & Lagerblad, 1985).

Den høyeste graden av metamorfose er i den vestre delen av Fundsjøgruppen. I dette området er det høy amfibolitt-facies, og granater er tilstede (Grenne & Lagerblad, 1985). Fundsjøgruppen har gjennomgått en høyere grad av metamorfose enn Størendekket, og dette indikerer at Fundsjøgruppen befant seg dypere enn Størendekket under orogenesen. Den høyeste metamorfosen ble nådd i silur (Grenne & Lagerblad, 1985). I Fundsjøgruppen er det dolerittganger som har en godt utviklet porfyrittisk tekstur, og disse gangene kutter eldre strukturer. I tillegg intruderte dolerittene før den regionale foliasjonen ble utviklet (Grenne & Lagerblad, 1985). Disse gangene er ikke funnet i Gulakomplekset, men noen av strukturene som er kuttet ligner på strukturer som opptrer i Gulakomplekset. Dette kan indikere at Gulakomplekset og Fundsjøgruppen lå nokså nærme hverandre da dolerittgangene intruderte slik at de kunne gjennomgå samme deformasjon (Grenne & Lagerblad, 1985).

3.4 Luftbårende magnetiske undersøkelser

Hele landet ble mellom 1950 - 1980 undersøkt med luftbårende magnetiske undersøkelser på en regional skala av NGU. Mellom mai og oktober 2019 ble det gjort nye luftbårende geofysiske undersøkelser i Haltdalen, Selbu og Tydal (Ofstad et al., 2019). Både de tidligere og nyere luftbårende magnetiske undersøkelsene viser så å si det samme; i vest er det generelt negative anomalier, mens det er positive anomalier i øst (figur 11). De nyere undersøkelsene har derimot bedre detaljnivå (figur 11b) (Ofstad et al., 2019).

Figur 11. Kart med magnetiske anomalier. Studieområdet er markert med hvit firkant. a) Et eldre magnetisk anomalikart. b) Mer nylige magnetiske undersøkelser. Hentet fra (Ofstad et al., 2019).

Beregninger av dybdene til de magnetiske anomaliene viser at anomaliene hovedsakelig er eksponert på overflaten eller nærme overflaten. Den langstrakte N-S positive anomalien i figur 11 (som går fra Haltdalen og nordover) er 0-50 meter under overflaten (Ofstad et al., 2019). Anomalien er ikke kontinuerlig, og det er områder innimellom med svakere magnetisk styrke (Ofstad et al., 2019). Denne anomalien ligger i Gulakomplekset like vest for Bukkhåmmåren i studieområdet.

3.5 Aldersdatering av detrital zirkon

Radiometrisk datering kan gi alderen til bergarter ved bruk av isotoper som er radioaktive (Lutgens et al., 2015). Ved radioaktiv nedbryting vil ustabile isotoper brytes ned til mer stabile isotoper med en konstant hastighet, og halveringstiden er den tiden det tar før halvparten av stoffet er brutt ned. Ved å se på forholdet mellom det ustabile radioaktive isotopet og det stabile datterisotopet, kan alderen til bergarten bli beregnet (Spjeldnæs, 2009a).

Isotoper som er hyppig brukt til å datere bergarter er 238 U / 206 Pb og 235 U / 207 Pb (Lutgens et al., 2015) hvor 238 U har en halveringstid på 4498 milliarder år og 235 U har halveringstid på

713 millioner år (Kearey, 2001). Zirkon (ZrSiO₄) er et mineral som er mye brukt til denne typen datering da det er et mineral som forekommer ofte (Mezger & Krogstad, 1997). I tillegg vil ikke zirkonene inneholde bly ved krystallisering, og dermed vil mengden bly komme fra nedbryting av uran (Vermeesch, u.å.). Zirkon er også et motstandsdyktig mineral, dvs. at det har en liten kjemisk endring og mekanisk slitasje (Corfu, 2013). Forholdet mellom uran og bly blir målt i et massespektrometer som måler massene og ladningene til atomene (Ramberg et al., 2013).

Analyser av detrital zirkoner blir brukt til å tolke blant annet: (1) Informasjon om kildeområdet og (2) Den maksimale avsetningsalderen (Fedo et al., 2003). Aldersdatering av en magmatisk bergart vil gi alderen til da bergarten størknet, og det er et direkte svar på når bergarten ble dannet. Om sedimentære bergarter dateres ved å separere ut zirkoner vil dette gi oss informasjon om de magmatiske bergartene som fantes i kildeområdet, og ikke den direkte alderen til de sedimentære bergartene. Det yngste zirkonkornet kan gi en indikasjon på den maksimale alderen for avsetningen, fordi avsetningen må være yngre enn den magmatiske kildebergarten til zirkonkornet. Dermed kan de være små tidskapsler som forteller den magmatiske og metamorfe historien til kildene (Vermeesch, u.å.). For å være sikker på at en større andel av zirkonene ikke har forsvunnet (ikke mer enn 0,05), bør minst 117 zirkonkorn bli datert hvis konfidensnivået skal være 95% (Vermeesch, 2004).

3.5.1 Konkordans

På 1950-tallet ble det påpekt av Kulp et al. (1954) at aldersdatering med ²³⁸U/²⁰⁶Pb og ²³⁵U/²⁰⁷Pb ga avvikende aldere (Corfu, 2013). For å kvalitetssjekke at de to gir det samme resultatet, blir de plottet sammen i et concordia-diagram (figur 12). Gode analyser, dvs. konkordante analyser, vil plotte på concordia-linjen, mens dårligere analyser, dvs. diskordante analyser, vil avvike. Analysen er konkordant når ²³⁸U/²⁰⁶Pb og ²³⁵U/²⁰⁷Pb systemene gir samme resultat. Generelt kan en konkordant analyse antas å representere alderen til den analyserte prøven, mens en diskonkordant analyse, dvs. som ikke plotter på concordia-kurven, vil være vanskeligere å interpretere (Corfu, 2013).

Figur 12. Eksempel på et concordia-diagram som viser hvor konkordante og diskordante analyser vil ligge i forhold til concordia- linjen.

4 Metode

4.1 Datainnsamling

For at denne oppgaven skulle få gode resultater var detaljert feltarbeid og innsamling av prøver fra de forskjellige litologiene en essensiell del. Vi kartla selv et mindre område enn det som endte opp som studieområdet, men for å få et større kart og en bedre forståelse, fikk vi tilgang til feltdata fra NGU som Deta Gasser, Anna Ksienzyk og Gurli Meyer har samlet inn. Dataen som vi fikk tilgang til er primært fra den østlige delen av studieområdet.

Feltarbeidet ble gjennomført i tidsrommet 27. juli - 2. august 2020. Under feltarbeidet var været bra med sol og/eller overskyet de fleste dagene. Derimot var det en dag med dårlig sikt og mye regn.

For å identifisere marmor ble saltsyre brukt. Strukturmålinger ble gjort med kompass hvor det var tydelige foliasjoner (fallretning og fallvinkel) og minerallineasjoner (stupretning og stupvinkel). For å måle magnetisk susceptibilitet ble en magnetisk susceptibilitetsmåler fra GF Instruments brukt. Det ble tatt bilder av lokalitetene for å dokumentere funnene, samt til å bruke som hjelp til å friske opp minnet da skrivingen av oppgaven startet. I tillegg ble det skrevet grundige feltnotater. Prøvene som ble tatt av bergartene er tatt ved blotninger hvor det var mulig å få prøver som er lite forvitret. Prøvene er viktige for å kunne datere og se på bergartene i tynnslip, og dermed få bedre forståelse av områdets geologi og historie. Det ble brukt en Samsung-tablett med programmet FieldMove under kartleggingen. FieldMove er et program som gir god oversikt i felt og viser alle lokalitetene med informasjon på et kart. Egentlig skulle det brukes en håndholdt GPS fra Garmin, men på grunn av at den hadde problemer med å lade batteriet fra aggregatet, ble den pakket bort etter den andre feltdagen. På grunn av dette måtte vi stole på GPSen fra tabletten. Totalt endte vi opp med 332 lokaliteter.

4.2 Dataanalyse

4.2.1 Berggrunnskart og berggrunnsprofil

Dataen som ble samlet inn og registrert i FieldMove ble overført til Google Earth og deretter manuelt satt inn i ArcGIS Desktop 10.7.1 slik at lokalitetenes posisjon ble vist på kartet i ArcGIS. Lokalitetene, strukturmålingene og bildene ble deretter lagt in i databaseprogrammet BGS SIGMA («System for Integrated Geoscience MApping»). Oversiktskartet og det nye berggrunnskartet ble laget i ArcGIS.

For strukturmålingene ble programmet Stereonett 10.2.9 benyttet for å plotte inn plan- og linjestrukturer. Inkscape 1.0.2 ble brukt til å lage berggrunnsprofilet. Høydedata.no ble benyttet for å få høydeprofilet for området inn i Inkscape, og det nye berggrunnskartet ble brukt til å se hvor de ulike litologiene skulle være. For å få helningene til litologiene, ble strukturmålingene som ble tatt i felt brukt. Hvis profilet ikke var vinkelrett på fallretningen, ble tilsynelatende fall brukt. Den tilsynelatende fallvinkelen (δ) vil være mindre enn det sanne fallet (α), og det sanne fallet er gitt ved formelen:

 $\alpha = \tan^{-1} * (\cos\beta * \tan\delta)$

hvor α er sann fallvinkel, β er vinkel mellom profilretning og fallretning og δ er tilsynelatende fallvinkel.

4.2.2 Tynnslip

Mineralene i bergartene kan bli studert i mikro-skala i tynnslip. Tynnslip er tynne skiver av bergarten med en tykkelse på 0,03 mm (Nesse, 2012). Mineraler har ulike egenskaper som gjør det mulig å skille dem fra hverandre i mikroskop, og både PPL lys (planpolarisert) og XPL lys (kryssende polarisatorer) har blitt brukt for å identifisere mineralene. Ved PPL kommer egenfargen og pleochroisme, dvs. at fargen til mineralet endrer seg når platen blir rotert på grunn av at lyset treffer forskjellige vinkler, frem. XPL derimot får frem interferensfargen, tvillinger og slukning. Isotrope mineraler, som for eksempel granat, vil alltid være svarte i XPL (Nesse, 2012).

Vi brukte en steinsag for å kutte bergartene opp i klosser for å sende dem til ABC-laboratoriet i Krakow, Polen (figur 13a). Klossene var 2 cm x 3 cm x 5 cm, og laboratoriet lagde tynnslip av klossene. Da tynnslipene var tilbake i Sogndal ble de undersøkt i et mikroskop fra Leica (figur 13b). Mikroskopet er av modellen DM750 P.

Figur 13. a) En steinsag ble brukt for å lage klosser av bergartene før de ble sendt til Krakow for å bli tynnslip. b) Mikroskop fra Leica som ble brukt til å studere tynnslipene.

4.2.3 Aldersdatering

For aldersdateringen ble tre prøver valgt: EM_28, EM_219 og DG_12, og det ble gjort som følgende:

Først ble bergartsprøvene knust med hammer for å få biter som var opptil 2 cm (figur 14a og b). Deretter ble fragmentene knust ytterligere i en mølle med 0,5 mm sikt. Skivemøllen som ble brukt er fra Retsch og er av typen SK 300 (figur 14c). For å sortere og fjerne finstoffet i prøven ble sikting med vann benyttet. Under siktingen ble 0,5 mm, 0,25 mm og 0,063 mm sikter brukt, og fragmentene med interesse la seg i 0,63 mm siktet. Etter å ha sortert prøven ble begerglasset med den aktuelle kornstørrelsen satt i et varmeskap med 39 grader for å tørke.

Etter tørkingen ble mineralene separert ved hjelp av tungvæske (figur 14d). Dette ble gjort på EM_28 og EM_219. Vi brukte LST som har en tetthet på $2,80 \pm 0,02$ g/ml. I denne væsken vil mineraler som kvarts og feltspat flyte, mens granat, pyritt, biotitt, zirkon og andre tunge mineraler synker. Mineralseparatene etter LST separeringen inneholdt fortsatt store mengder biotitt, granat og andre mineraler, og det var derfor vanskelig å finne zirkoner. På grunn av manglende utstyr for mer grundig separering ved HVL, fikk vi låne utstyr og ekspertise hos Universitetet i Oslo (UiO) for å gjøre den videre separeringen av prøvene.

Figur 14. Separasjonsdelen av aldersdateringen som ble gjort ved Høgskulen på Vestlandet. a) Prøven fra Fundsjøgruppen (DG_12) som er metasediment. b) Prøven fra Gulakomplekset (EM_28) som er kvartsrik metasandstein. c) Møllen fra Retsch som ble brukt for å knuse bergartsprøvene. d) Separasjon av mineraler ved hjelp av LST tungvæske. De lettere mineralene vil flyte mens de tyngre vil synke.

Mineralseparasjonen hos UiO foregikk mellom 19. april - 21. april 2021 med hjelp av Gunborg Bye Fjeld. Vi hadde forsøkt å separere mineralene med tungvæske på Høgskulen på Vestlandet på både EM_219 og EM_28 uten å oppnå et godt resultat. For å få mindre materiale til å plukke, ble magnetseparasjon brukt. For å få fjernet de magnetiske mineralene ble først free fall brukt hvor magneten står loddrett (apparatet er fra Frantz) (figur 15a). Prøvene ble kjørt gjennom to ganger, og strømstyrken ble skrudd opp den andre gangen. Deretter gikk EM_28 gjennom en ny magnetseparasjon, men denne gangen var magneten slakere enn ved free fall (figur 15b). Magneten var stilt inn på 15 grader tilt fremover og 15 grader nedover, og strømstyrken ble satt til 0,4 A. Etter dette ble prøven separert med tungvæske (figur 15c). Tungvæsken som ble brukt er fra GEOLIQUIDS og heter methylene iodid, og den har en original tetthet på 3,32 g/ml. På grunn av at tungvæsken har blitt resirkulert har væsken som ble brukt en tetthet på 3,28. For å minske risikoen for kontaminering, dvs. forurensning ved at zirkoner fra andre bergarter er med i dateringen, ble tungvæsken først filtrert gjennom et nytt filterpapir. Videre ble skilletrakten fylt opp til den største diameteren med tungvæske, og deretter ble prøven helt oppi for separeringen. For å være sikker på at de tyngre mineralene ikke lå over de lettere mineralene, ble skilletrakten rotert tre ganger slik at innholdet ble blandet. Mellom hver rotasjon ble materialet som hadde sunket til bunnen, dvs. tungfraksjonen, helt ut av skilletrakten og ned på et rent filterpapir (figur 15d). Da prøven var helt ferdig separert ble materialet og filterpapiret skyldt godt med aceton, som er et løsningsmiddel, for å fjerne tungvæsken. Til slutt ble filterpapiret med tungfraksjonen fra prøven lagt oppå en varmeplate for tørking.

EM_219 gikk gjennom samme prosess, men i motsatt rekkefølge; prøven ble først separert med tungvæske for så å bli magnetseparert i Frantz. I Frantzen ble strømstyrken først satt til 0,2 A for så å bli økt til 0,25 A og 0,3 A.

DG_12 ble ikke siktet på Høgskulen på Vestlandet, og ble derfor siktet på et vaskebord/Wilfleyboard hos UiO (figur 15e). UiO sin erfaring er at prøvene flyter bedre på Wilfleybordet når bordet har blitt vasket med såpe/zalo, og derfor ble det gjort. Det første steget av separasjonen var å starte vannet samt å regulere vannstyrken. Deretter ble bordet startet slikt at det beveget seg mot høyre og venstre gjentatte ganger. Siden prøven var tørr, ble det brukt en mater slik at det ikke ble for mye materiale på vaskebordet om gangen. Etter at hele prøven hadde blitt kjørt på Wilfleybordet, ble det tyngste materialet som havnet i en boks kjørt på nytt med økt vannstyrke. Da dette var gjort ble prøven satt inn i et tørkeskap for å tørke, og da prøven var tørr, gikk den gjennom nesten samme prosess som EM_28. Ved free fall ble strømstyrken satt til 0,5 A, men på grunn av at lite materiale festet seg til magneten, ble strømstyrken fort satt opp til 1,5 A. I motsetning til EM_28 ble DG_12 siktet med engangssikteduk på 250 µm for å fjerne de største mineralkornene siden zirkoner som oftest er mindre enn 250 µm (figur 15f). Etter siktingen ble Frantzen brukt til magnetseparering med en strømstyrke på 0,45 A. Deretter ble det gjennomført tungvæskeseparering på samme måte som for de tidligere prøvene.

Figur 15. Mineralseparasjonen som ble gjort ved UiO. a) Free fall. b) Magnetseparasjon. c) Tungvæskeseparasjon av EM_28. d) Tungvæskeseparasjon av DG_12. e) Wilfleybord/vaskebord. f) Sikting av DG_12 med engangssikteduk (250 μm).
Før noe av utstyret ble brukt til separering ble de nøye vasket og sjekket for å minimere sjansen for kontaminering. Avtakbare deler ble vasket i et ultrabad i ti minutter og så vasket i sprit før de ble tørket med trykkluft. Til slutt ble teflonhanen og skinnen hos Frantzen sjekket for zirkoner i et mikroskop for å være sikker på at utstyret var helt rent.

Materialet som ikke ble fjernet med vasking, sikting, magnetseparasjon og tungvæske ble lagt i petriskåler, og det er der zirkonene var. Deretter ble zirkonene plukket for å bli lagt i en ny petriskål med kun zirkoner (figur 16). Zirkonene ble plukket under et binokular med pinsett og flyttet til den nye petriskålen med en dråpeteller, og i hvert separat ble det plukket rundt 100 - 150 zirkonkorn. Det ble tilsatt sprit i petriskålene under plukkingen.

Figur 16. Plukking av zirkoner. a) Plukking av zirkoner med pinsett under et binokular. b) Et par av zirkonene som ble funnet i DG_12 (med 40x forstørrelse).

Etter at spriten i petriskålene hadde tørket inn, ble zirkonene på nytt plukket. Denne gangen ble de ulike prøvene plassert hver for seg på dobbeltsidig teip. Så ble en ring av plast som omslutter zirkonene satt på, og epoxy av typen EpoKwick ble helt oppi. Epoxyen størknet etter noen timer, og ringen av plast ble fjernet etter noen dager.

Den siste delen av aldersdateringsprosessen ble gjort ved UiO siden HVL Sogndal ikke har et massespektrometer (figur 17a). Hos UiO fikk vi hjelp av Magnus Kristoffersen. Massespektrometeret (ICP-MS) er en Aurora Elite med en Cetac LSX-213 G2 laser (figur 17b). Vi brukte programmet Quantum Elite, og innstillingene ble satt til: diameter på spot = 40 μm og frekvens = 10 Hz. Hvert zirkonkorn ble skutt en gang med laseren i et punkt, og vi unngikk inneslutninger og skallene som tyder på metamorfose. For å være sikre på at vi skulle få riktige målinger ble resultatene kalibrert med allerede kjente aldre fra andre zirkoner. Disse blir kalt standarder. Standardene vi brukte er GJ, 91500 og A382. GJ-standarden er 602 millioner år (Jackson et al., 2004), 91500-standaren er litt over 1060 millioner år (Wiedenbeck et al., 1995) og A382 er rundt 1870 millioner år gammel (Bevins et al., 2020). Alle standardene ble kjørt før vi startet og til slutt da vi hadde skutt alle zirkonene. I tillegg ble GJ brukt mellom hvert femtende zirkonkorn og 91500 ble brukt mellom hvert tredevte. Deretter ble alle resultater beregnet på nytt. For å visuelt se resultatene av aldrene til zirkonkornene ble en concordia-diagram og et søylediagram laget ved programmene IsoplotR (https://www.ucl.ac.uk/~ucfbpve/isoplotr/home/index.html) og detzrcr (https://cran.r-project.org/web/packages/detzrcr/vignettes/detzrcr-vignette.html).

Figur 17. a) Massespektrometer. b) Laser.

Det ble tatt bilder i et SEM-mikroskop av noen av zirkonene i hver prøve, og Siri Simonsen fra UiO gjorde dette for oss. Mikroskopet som ble brukt for å skanne elektronene (SEM) går under navnet Hitachi SU5000 FE-SEM (Schottky FEG) og inkluderer lav-vakuummodus og inlens SE detektor. Mikroskopet kan ta imot flere forskjellige signaler, men vi var ute etter CL-signalene (katodeluminisens). Delmic Sparc Advanced CL systemet ble brukt. Bildene ble sendt til oss i «.ome.tiff.» format og de inneholder tre lag. Det øverste laget er sekundær elektron (SE) med lav oppløsning, det mellomste er også et SE-lag men med høy oppløsning, og det siste laget er et CL-lag. For å få frem de ulike lagene på en god måte ble programmet Odemis Viewer 3.1.4 brukt.

5 Resultater

Resultatdelen er tredelt. Først vil feltresultatene bli gått gjennom før petrografiske analyser av tynnslip og aldersdateringen av detrital zirkoner blir presentert.

5.1 Feltresultater

Resultatdelen for feltresultatene er delt inn i det nye berggrunnskartet og profilet, litologi og strukturer.

5.1.1 Berggrunnskart og berggrunnsprofil

Berggrunnskartet og berggrunnsprofilet er vist i vedlegg 1, det er hovedkartet med litologier og strukturer. Vedlegg 2 viser hvor prøvene for tynnslip og aldersdatering er hentet og vedlegg 3 viser våre feltobservasjoner. Vedlegg 4 viser observasjonene til NGU fra SIGMA, mens vedlegg 5 viser hvor doleritt har blitt observert.

5.1.2 Litologi

Bergartene er beskrevet etter hyppighet, og de som opptrer hyppigst er beskrevet først.

5.1.2.1 Gulakomplekset

Gulakomplekset består hovedsakelig av glimmerskifer og metasandstein. En tynn sone med marmor kan følges langs foliasjonen gjennom hele studieområdet, og flere linser av konglomerat forekommer.

Glimmerskifer

Den største andelen av Gulakomplekset består av glimmerskifer (figur 18). Ved enkelte lokaliteter inneholder glimmerskiferen tynne kalksilikatlag som opptrer i linser (figur 18a). Glimmerskiferen er lokalt kyanitt-, granat- og staurolittførende, og enkelte lokaliteter har staurolittkrystaller som er flere cm lange. Derimot er de fleste krystallene i mm-skalaen (figur 18c). Noen steder har staurolittkrystallene blitt omdannet til finkornet muskovitt.

Figur 18. Glimmerskifer. a) Oversiktsbilde over glimmerskifer med kalksilikat-linser. Bildet er tatt av Deta Gasser. b) Kyanitt. c) Staurolittkrystaller i mm-skala. Krystallene er noen plasser opp til flere cm lange.

Metasandstein

Metasandsteinen, også kalt metapsammitt, i Gulakomplekset er sandstein som har gått gjennom metamorfose (figur 19). De er ofte kvartsrike. Enkelte lokaliteter består av vekslende lag mellom metasandstein og mer leirrike soner, hvorav metasandsteinslagene er opp til 10 cm tykke (figur 19b). Andre lag er mer kalsitt-rike og har en tydelig ruglete erosjonsoverflate (figur 19c).

Figur 19. Metasandstein. a) Oversiktsbilde av kvartsrik metasandstein som heller mot vest. b) Opp til 10 cm tykt sandsteinslag mellom mer leirrike soner. c) Kalsitt-rikt lag med tydelig erosjon på overflaten.

Marmor

Gjennom hele studieområdet kan en marmorenhet bli fulgt (figur 20). Marmoren varierer fra under en meter til flere meter i tykkelse, og ved enkelte steder opptrer marmoren som flere parallelle soner med glimmerskifer mellom. Enkelte av de tynne marmorsonene er for tynne til å bli skilt ut som egne soner på kartet, og derfor er marmorsonen tegnet inn som én sone på det nye berggrunnskartet.

Figur 20. Marmor. En marmorenhet som varierer fra 1 meter til flere meter kan bli fulgt gjennom studieområdet. a) Oversiktsbilde. b) En sone med marmor på rundt 1 meter. c) Marmor med fuchsitt, som er et grønt, krom-rikt glimmer. d) Kontaktsone mellom marmor og glimmerskifer.

Konglomerat

Konglomeratene opptrer i linser nær grensen mellom Gulakomplekset og Fundsjøgruppen på Gulasiden (figur 21). Konglomeratene er matriksbåret og har en amfibol-rik matriks. Klastene domineres av kvartsitt og ren årekvarts. Det er også klaster av metasediment og dermed er konglomeratet et polymikt konglomerat (figur 21b). Klastene er subangulære til rundet og de er normalt i cm-skala, men de kan være opp til 10 cm (figur 21c). Konglomeratene opptrer som rygger i varierende størrelse, hvorav de minste er noen meter store mens den største er over 1 km lang (se vedlegg 1).

Figur 21. Konglomerat. a) Oversiktsbilde over konglomeratrygger. b) Klaster av metasediment, kvartsitt og kvarts normalt i cm-skalaen, hvorav enkelte er opp til 4 cm. Klastene er subangulært til rundet. c) Klast (lagdelt sandstein) opp mot 10 cm som viser intern lagdeling.

Magnetisk anomali

Vest for Bukkhåmmåren er det en NNØ - SSV lineær liggende positiv magnetisk anomali (vedlegg 1, figur 11 og 22). Feltundersøkelser av magnetisk susceptibilitet ble gjort av bergartene på selve anomalien og ved siden av anomalien. Målingene viser verdier opp til 500 (10⁻³ SI enheter) for bergartene på anomalien (glimmerskifer og en bergart rik på granat), mens omkringliggende bergarter (hovedsakelig tonalittganger) har verdier mellom 0,01 og 0,65 (10⁻³ SI enheter). Der hvor flere av de høye magnetiske verdiene er, er det blant annet en spesiell bergart med granat og magnetitt, og granatene gjør at bergarten er rosa i fargen (figur 22). Den rosa bergarten opptrer kun i et lite område som en tynn linse (se plasseringen til EM_303 i vedlegg 3), men de høye verdiene fortsetter nord for dette punktet og er utholdende. De høye verdiene som ikke er målt på den rosa bergarten er målt i glimmerskifer. Jo lenger nord for punktet til EM_303, jo smalere ble sonen med de høye verdiene.

Figur 22. Bergart med høyere magnetiske målinger enn områdene rundt. a) og b) Det ble observert granat. I bilde b er magnetisk susceptibilitet-måleapparatet kun målestokk, og verdien er ikke gjeldene. c) Det ble også observert magnetitt i bergarten. Magnetitt-kornene er <1 mm store krystaller og ga utslag på kompasset.

5.1.2.2 Tonalitt

Kontakten mellom Gulakomplekset og Fundsjøgruppen består av en tonalittintrusjon. Intrusjonen er flere titalls meter bred og strekker seg i NS-retning (figur 23).

Figur 23. Tonalitt. a) Tonalittintrusjonen som er på grensen mellom Gulakomplekset og Fundsjøgruppen. Tonalittintrusjonen er flere titalls meter bred. b) Nærbilde av tonalitt. Prøven er hentet fra grensen mellom Gulakomplekset og Fundsjøgruppen.

Tonalitt finnes både i Gulakomplekset og Fundsjøgruppen. Det er flere tonalittganger i Gulakomplekset, mens det er større tonalittkropper i Fundsjøgruppen (vedlegg 1). Tonalittene har intrudert de eldre bergartene, og er dermed blant de yngre bergartene (figur 24).

Figur 24. Tonalittgang i Gulakomplekset med omliggende glimmerskifer. Gangen ligger nært tonalittintrusjonen som skiller Gulakomplekset og Fundsjøgruppen.

5.1.2.3 Fundsjøgruppen

Det viktigste kjennetegnet ved Fundsjøgruppen er dolerittgangene som har intrudert flere av litologiene, og disse dolerittgangene er fraværende i Gulakomplekset. Ellers består Fundsjøgruppen av amfibol-biotitt-skifer, gabbro, amfibolitt og biotitt-kvarts-skifer.

Amfibol-biotitt-skifer

Amfibol-biotitt-skifer er amfibol- og biotittførende (figur 25). Enkelte lokaliteter har også granat, men innholdet av granat varierer. Det er også observert kvarts og kvartsførende linser samt noen lag med sulfider, og bergarten er finkornet. Flere av lokalitetene har en rusten farge (figur 25b), og skiferen er ofte sterk foliert.

Figur 25. Amfibol-biotitt-skifer. a) Sterkt foliert amfibolrik skifer. Bildet er tatt av Deta Gasser. b) Rusten amfibol-biotitt-skifer med granat. Bildet er tatt av Gurli Meyer.

Amfibolitt og keratofyr

Ut ifra de eksisterende kartene var det forventet at Fundsjøgruppen består i stor grad av amfibolitt (figur 3). Vår kartlegging viser derimot at området inneholder mye amfibol-rik metasediment som tidligere har blitt kartlagt som amfibolitt, men ved noen lokaliteter er det funnet bergarter som vi tolker som amfibolitt (metamorf magmatisk bergart). Amfibolittene er finkornete og består mesteparten av hornblende og plagioklas. De er ofte sterkt foliert (figur 26). På grunn av foliasjonen var det ofte vanskelig å se forskjell på amfibolitter og amfibol-rike skifere. Fargen på amfibolittene varier fra lysere grå til mørkegrå. I studieområdet ble det ikke observert putestrukturer. I enkelte områder hvor det er amfibolitt er det også funnet keratofyr (figur 26a). Keratofyr er en lys, finkornet felsisk bergart som er vulkanske lag, og de ligger innimellom amfibolittene. Sonene med keratofyr varierer, men det er soner på opp til noen meter.

Figur 26. Amfibolitt. a) Lokalt et område hvor amfibolitt og keratofyr grenser til hverandre. b) og c) Bildene er tatt av Anna Ksienzyk og viser finkornet, foliert amfibolitt med en felsisk gang i c)

Gabbro

Gabbroene er medium- til grovkornet og består hovedsakelig av plagioklas og amfibol (figur 27). Gabbroene er sannsynligvis metagabbro, men den opprinnelige gabbroteksturen er fremdeles til stede, og dermed benytter vi kun ordet «gabbro». Det forekommer overganger til amfibolitter ved at det er observert mikro-gabbrostruktur. Enkelte lokaliteter har en rusten farge som indikerer at sulfider kan være til stede. Bergarten er ofte sterk foliert, og noen lokaliteter har intrusjoner av kvarts og granittiske ganger.

Figur 27. Gabbro. a) Gabbro med en rusten farge som indikerer at sulfider kan være til stede. b) og c) Nærbilde av gabbrotekstur.

Biotitt-kvarts-skifer

Biotitt-kvarts-skiferen består av en større andel biotitt og kvarts (figur 28). I tillegg er det observert granater ved flere lokaliteter, men granatmengden varierer. Hornblende har også blitt observert ved noen av lokalitetene, og enkelte lokaliteter er mer kvartsrike og kan nesten bli tolket som kvartsitt. Som de andre litologiene i Fundsjøgruppen er også denne sterkt foliert. Skiferen har ved flere lokaliteter en rusten farge. Det er også blitt observert kalksilikat-linser ved en lokalitet, og ved enkelte steder har dolerittganger intrudert. Områdene hvor denne litologien har blitt observert er godt dekket av vegetasjon, og dermed er det få lokaliteter som har blitt beskrevet.

Figur 28. Biotitt-kvarts-skifer. a) Oversiktsbilde av biotitt-kvartsitt-skifer med rusten farge som heller mot vest. b) Foliert biotitt-kvarts-skifer med tonalittgang til høyre. Bildet er tatt av Gurli Meyer. c) Nærbilde av biotittkvarts-skifer med små granat-korn. Bildet er tatt av Gurli Meyer.

Doleritt

Et kjennetegn på Fundsjøgruppen er doleritt, og i store deler av den kartlagte delen av Fundsjøgruppen er det observert dolerittganger (vedlegg 5). Dolerittene har idiomorfe plagioklaskrystaller som er opp til noen få cm i størrelse (figur 29). Matriksen er finkornet og mørk. Ved minst en lokalitet ble det observert aktinolitt, som er et grønt mineral i amfibolgruppen (Sigmond et al., 2013). Tykkelsen på gangene varierer fra noen cm til flere meter, og de opptrer både i svermer og som isolerte ganger. Dolerittgangene er ofte folierte, og har intrudert de eldre bergartene rundt. Derimot er det også observert at en dolerittgang er foldet sammen med glimmerskiferen som ligger rundt.

Figur 29. Doleritt. Dolerittgangene har idiomorfe plagioklaskrystaller i en mørk og finkornet matriks.

5.1.3 Strukturer

5.1.3.1 Feltobservasjoner

I felt ble det observert planstrukturer (foliasjoner og kontaktflater), foldestrukturer og lineasjoner (minerallineasjoner og strekningslineasjoner).

Kontaktflater

Kontaktflater er der hvor to bergarter møter hverandre, dvs. bergartsgrensene. Under feltarbeidet ble det kun tatt målinger av kontaktflater mellom tonalittintrusjonen som er mellom Gulakomplekset og Fundsjøgruppen og dens nabobergarter. Målingene viser at det er en helning moderat til bratt vest (figur 30). Siden det kun ble tatt fire målinger, er det ikke sikkert at målingene er representative.

Figur 30. Målingene av kontaktflater mellom tonalittintrusjonen, som er mellom Gulakomplekset og Fundsjøgruppen, og dens nabobergarter.

Foliasjon

Foliasjon er en planstruktur, og den gjennomsetter bergarten. I studieområdet er det en gjennomsettende duktil foliasjon som er utviklet i alle enhetene. I Gulakomplekset faller foliasjonen bratt mot vest (figur 31a), mens Fundsjøgruppen har foliasjon som både heller mot vest, sørvest, øst og nordøst (figur 31b). Foliasjonen som heller mot vest i Fundsjøgruppen er i den vestre delen, og foliasjonen som heller mot øst er i den østre delen av studieområdet (vedlegg 1 og 4). Vi har ikke skilt mellom penetrativ foliasjon og avstandsskifrighet.

Figur 31. Foliasjonsmålinger. Storsirklene viser helningene og orienteringene til foliasjonen. a) Foliasjonsmålinger i Gulakomplekset. b) Foliasjonsmålinger i Fundsjøgruppen. c) Glimmerskifer i Gulakomplekset med en foliasjon som heller bratt mot vest.

Lineasjoner

Lineasjoner er lineære elementer som enten fyller en flate eller som gjennomsetter en bergart, og lineasjonene som ble målt opptrådde som langstrakte mineralkorn. Lineasjonsmålingene er tatt i flere litologier, dvs. keratofyr, amfibolitt, metasandstein, glimmerskifer, amfibolrike bergarter og gabbro. Det er hovedsakelig en sterk lineasjon som heller moderat mot sørvest, men det er et par lineasjoner som også heller mot nordøst (figur 32), for både Gulakomplekset (17 målinger) og Fundsjøgruppen (33 målinger). Det er målt en lineasjon av trondhjemittintrusjonen mellom Gulakomplekset og Fundsjøgruppen, denne gir ikke en representativ indikasjon da det er bare en måling.

Figur 32. Lineasjoner. a) Lineasjonsmålingene som ble tatt i studieområdet. De grønne tilhører Gulakomplekset (17 stk), de brune er fra Fundsjøgruppen (33 stk) og den røde er fra tonalittintrusjonen som er på grensen mellom Gulakomplekset og Fundsjøgruppen (1 stk). b) Minerallineasjon i deformert gabbro i Fundsjøgruppen. c) Nærbilde av rød firkant i b) Lineasjonen er 214-34, men bildet er ikke orientert i forhold til nord.

Foldestrukturer

Foldestrukturer blir til ved at bergarten blir utsatt for spenning. Foldens orientering blir beskrevet ved foldeaksen, som er linjen som forbinder midtpunktene i en fold, og akseplanet, som er der akseflaten er planær (Fossen & Gabrielsen, 2005). Figur 33 viser en åpen foldestruktur i Fundsjøgruppen.

Figur 33. Fold i amfibol-biotitt-skifer i Fundsjøgruppen. a) Stereoplott som viser orienteringen til sjenklene og foldeaksen. Sjenkelen til venstre har målingen 124/30 og sjenkelen til høyre har målingen 226/25. Foldeaksen er 192-28. b) Bilde av folden. Bildet er tatt mot sør.

Det ble målt 12 foldeakser i studieområdet (figur 34). De fleste er i Fundsjøgruppen (11 stk), men det er også én måling fra Gulakomplekset. De fleste foldeaksene stuper svakt til moderat mot sør-sørvest. Da det kun er én måling fra Gulakomplekset, er det ikke sikkert at målingen er representativ.

Figur 34. Målinger av foldeakser. Foldeaksene er markert som prikker, og det er 11 målinger fra Fundsjøgruppen (brun) og en måling fra Gulakomplekset (grønn).

5.1.3.2 Stor-skala strukturer fra magnetisk kart

Magnetiske mønstre i bergarter kan brukes for å identifisere stor-skala strukturer. Grensen mellom Gulakomplekset og Fundsjøgruppen kommer godt frem på et magnetisk kart, og i Fundsjøgruppen er det et stort elliptisk mønster med lave verdier i kjernen (figur 35). Det er soner med høyere verdier rundt. Det kan se ut som om denne strukturen blir kuttet av grensen mot Gulakomplekset.

Figur 35. Kart med resultat fra magnetiske undersøkelser. Blå er lave verdier og rød er høye verdier. De svarte linjene er bergartsgrensene.

5.2 Petrografisk analyse av tynnslip

Totalt ble det laget ti tynnslip, men vi valgte å gå videre med syv av dem siden de representerer litologiene i studieområdet på best måte. Tre av dem er fra Gulakomplekset, en er fra tonalittintrusjonen mellom Gulakomplekset og Fundsjøgruppen og tre er fra Fundsjøgruppen. Lokalitetene til tynnslipene er vist i vedlegg 2.

5.2.1 Gulakomplekset

EM_47

EM_47 er en glimmerskifer med kvarts, granat, biotitt og staurolitter. Bergartsstykket som tynnslipet ble laget av representerer glimmerskiferen i Gulakomplekset godt. I mikroskopet ble det observert en god del kvarts og biotitt, og flere større staurolitt- og granatkrystaller (figur 36). I tillegg er det også en del zirkonkorn i biotitten (figur 36a) og noe plagioklas (figur 36b) observert.

Figur 36. Tynnslip av EM_47. Glimmerskifer med kvarts, granat, biotitt og staurolitt fra Gulakomplekset. I bergarten er det også zirkoner. a) PPL lys. b) XPL lys.

EM_28

EM_28 er en kvarts-rik metasandstein. Tynnslipet består hovedsakelig av kvarts, men det er også noen mindre feltspatkrystaller og zirkoner mellom kvartskornene (figur 37). Zirkonene er avlange og varier fra å være rundet til å ha en tydelig trekantspiss. Feltspatene er av typen plagioklas og har tydelige tvillingstriper i XPL (figur 37b).

Figur 37. Tynnslip av EM_28. Bergarten er en kvartsrik metasandstein fra Gulakomplekset. Den består hovedsakelig av kvarts med noe plagioklas. I bergarten er det zirkoner. a) PPL lys. b) XPL lys.

EM_303

EM_303 er fra den granat-rike bergarten med høy magnetisk anomali. I tynnslipet så vi mye granat, et par årer av kvarts og magnetitt, men granat er det dominerende mineralet (figur 38).

Figur 38. Tynnslip av EM_303. Ved Bukkhåmmåren ble det funnet en bergart med høyere magnetiske susceptibilitet enn områdene rundt. Bergarten består av granat, kvarts og magnetitt. a) og c) PPL lys. b) og d) XPL lys.

5.2.2 Tonalittintrusjonen mellom Gulakomplekset og Fundsjøgruppen

EM_122

I tynnslipet fra tonalittintrusjonen mellom Gulakomplekset og Fundsjøgruppen ble det hovedsakelig observert kvarts, plagioklas og en mindre mengde biotitt (figur 39).

Figur 39. Tynnslip av EM_122. EM_122 er fra tonalittintrusjonen som er mellom Gulakomplekset og Fundsjøgruppen. Mesteparten av bergarten består av kvarts, plagioklas og en mindre mengde biotitt. a) PPL Iys. b) XPL Iys.

5.2.3 Fundsjøgruppen

EM_219

EM_219 er en glimmerskifer med kvarts, granat og biotitt. En stor del av tynnslipet er kvarts og biotitt, men det er også en del granatkorn og litt plagioklas (figur 40). Utenom disse mineralene er det også en mindre mengde med muskovitt (figur 40c og d). Muskovittkornene viser en tydelig kløv i en retning.

Figur 40. Tynnslip av EM_219. EM_219 er fra en glimmerskifer med kvarts, granat og biotitt i Fundsjøgruppen. a) og c) PPL lys. b) og d) XPL lys.

DG_12

Denne bergarten er en brunlig, kvarts-rik sandstein. Det er observert mest kvarts, men også amfibol, plagioklas, muskovitt og magnetitt/pyritt/sulfid ble sett i mikroskopet (figur 41). Det er en god del amfibol, og dette mineralet ble identifisert via kløvet på 120 grader (figur 41a). Muskovitt ble tolket på grunn av sin lave interferens-farge og lave egenfarge/relieff. Med tanke på at HVL ikke har et mikroskop som er egnet på malm (reflektert lys), kan vi ikke skille mellom magnetitt, pyritt eller sulfider i tynnslipet.

Figur 41. Tynnslip av DG_12. Tynnslipet er fra en kvarts-rik metasandstein i Fundsjøgruppen. I tynnslipet ble det observert mest kvarts, men også amfibol, plagioklas, muskovitt og magnetitt/pyritt/sulfid. a) PPL lys. b) XPL lys.

EM_284

Dette tynnslipet er fra en gabbro. Tynnslipet inneholder større mengder med plagioklas, litt mindre amfibol og små mengder kvarts og titanitt (figur 42). I tillegg er det også flere mineralkorn som er helt svarte både i PPL og XPL, og de kan være rutil, magnetitt, pyritt eller sulfider. Da det brune mineralet mest sannsynlig er titanitt og er tilknyttet til flere av de sorte mineralkornene, er de svarte mineralene tolket til å være rutil. Det kan derimot være vanskelig å tolke siden mikroskopet ikke skiller disse sorte mineralkornene.

Figur 42. Tynnslip av EM_284. Dette tynnslipet er fra en gabbro i Fundsjøgruppen. Gabbroen består av plagioklas, amfibol, rutil/magnetitt/pyritt/sulfid og små mengder kvarts. a) og c) PPL lys. b) og d) XPL lys.

5.3 Aldersdatering av detrital zirkoner

For aldersdatering ble prøvene EM_28, DG_12 og EM_219 valgt. Hvor de ulike prøvene er hentet fra vises i vedlegg 2. LA-ICP-MS analysene som vi fikk oversendt fra Magnus Kristoffersen befinner seg i vedlegg 6 og 7.

Vi brukte \pm 10% sentral diskordans for å skille ut de prøvene som er vanskelig å interpretere. For zirkonkornene som er eldre enn 900 millioner år ble ²⁰⁷Pb/²⁰⁶Pb alderen brukt, mens for de som er yngre enn 900 millioner år ble ²⁰⁶Pb/²³⁸U alderen brukt.

CL-bildene som ble tatt kan gi informasjon om forskjellige soner i zirkonene da CLintensiteten er målt.

5.3.1 EM_28

Epoxyen som lå rundt EM_28-prøven var ikke perfekt noe som gjorde poleringen vanskelig og har gitt dårlig heft.

CL-bildene som er tatt av EM_28 viser zirkonkorn med en bevart indre del hvor ulike soner er tydelige og en forstyrret ytre del (figur 43a). Det er også observert zirkonkorn med inneslutninger, som vist i figur 43b, hvor laseren er skutt utenfor inneslutningen for å få et bedre resultat.

Figur 43. CL-bilder av zirkonkorn fra EM_28. Den sirkulære strukturen på bildene er hvor laseren traff, og analysene ble tatt. Bildene er tatt av Siri Simonsen. a) CL-bilde av et zirkonkorn med forstyrret ytterkant. b) CLbilde av to zirkonkorn, det øverste kornet har en inneslutning.

I EM_28 var det 115 zirkonkorn som ble analysert, og av dem var 69 konkordante (<10% diskordant). Figur 44 viser concordia-diagrammet for prøven. Det eldste konkordante zirkonkornet er 2899 \pm 36 millioner år gammelt med en diskordans på -8,21%. Det yngste kornet har en alder på 935 \pm 29 millioner år, og diskordansen er på 2%.

Figur 44. Concordia-diagram for EM_28. Den røde linjen er concordia-linjen. Konkordante analyser følger den, mens diskordante zirkonkorn avviker fra linjen.

Kernel tetthetsfordeling (svart linje) og aldershistogrammet (gråe bokser) over de konkordante analysene til EM_28 er i figur 45. Diagrammet har fire hauger hvorav den første og største er mellom 935 - 1339 millioner år, den andre er mellom 1418 - 1662 millioner og den tredje er mellom 1853 og 1910 millioner år. Den siste haugen er på 2899 millioner år, og består av en analyse.

Figur 45. Kernel tetthetsfordeling (svart linje) og aldershistogrammet (gråe bokser) for EM_28. Bindwidth=50, bandwidth=30 og x step=100. Kun analyser av korn som er <10% diskordant er brukt. Diagrammet er laget i detzrcr i R.

5.3.2 DG_12

CL-bildene av de analyserte zirkonkornene viser ulike soner. Det er stor forskjell i CLsignalene fra korn til korn, derfor er det noen korn som er mørkere enn andre (figur 46a). DG_12 har mange fine zirkonkorn, og de ulike sonene er tydelige (figur 46b og c). Et mindretall av zirkonkornene har inneslutninger og sprekker (figur 47a). Disse viser ikke de ulike sonene like tydelig (figur 47b) og er ofte mindre pålitelige til datering.

Figur 46. CL-bilder av zirkoner fra DG_12. Den sirkulære strukturen på bildene er hvor laseren traff og analysene ble tatt. Bildene tatt av Siri Simonsen. a) Viser fire ulike zirkon-korn med forskjellig CL-intensitet. b) og c) viser zirkon-korn med tydelig ulike lag med bruk av CL-signalene.

Figur 47. Bilder av et zirkon fra DG_12 med sprekk. Den sirkulære strukturen på bildene er hvor laseren traff og analysene ble tatt. Bildene er tatt av Siri Simonsen. a) SEM-bilde av zirkonkorn med sprekk. b) CL-bilde av zirkonkorn med sprekk.

Totalt ble 122 zirkoner analysert, og av disse er 85 konkordante (<10% diskordant) (figur 48). Det eldste zirkonkornet som er konkordant er 2040 ± 22 millioner år gammelt og har en diskordans på -7,27%, mens det yngste kornet er 511 ± 6 millioner år med en diskordans på - 6,17%.

Figur 48. Concordia-diagram for DG_12. Den røde linjen er concordia-linjen og konkordante analyser følger den, mens diskordante analyser plotter utenfor linjen.

Figur 49 viser Kernels tetthetsfordeling og aldershistogrammet for de konkordante analysene for DG_12. Diagrammet viser tre/fire hauger i aldersfordelingen, der den første er mellom 511 - 747 millioner år. Mellom 747 - 901 millioner år er det en hiatus, før det er en ny haug mellom 901 - 1835 millioner år hvor det er en hiatus på ca. 50 millioner år mellom 1250 og 1300 millioner år. Den siste haugen er mellom 1958 millioner år og 2040 millioner år.

Figur 49. Kernel tetthetsfordeling (svart linje) og aldershistogrammet (gråe bokser) for DG_12. Kun analyser av korn som er <10% diskordant er brukt. Diagrammet er laget i detzrcr i R. a) Bandwidth=50, bindwidth=40 og x step=100. b) Forstørrelse av analysene i aldrene 511 - 747 millioner år. Bandwidth=10, bindwidth=20 og x step=20.

Vi fikk ikke gode resultater fra EM_219. Under plukkingen viste det seg at det er få og små zirkoner i prøven, og derfor ble kun ~30 zirkoner plukket. Kun seks av zirkonene ga resultat i den videre analysen, og i tillegg er ikke analysene konkordante. På grunn av dette blir ikke resultatene fra denne prøven presentert.

6 Diskusjon

6.1 Nye funn i kartleggingen

Figur 50 viser de tre generasjonene av berggrunnskart som eksisterer for studieområdet.

Figur 50. De tidligere (til venstre og i midten) og det nye (til høyre) berggrunnskartet over studieområdet. Til venstre: 1:250 000 Røros & Sveg (Wolff & Nilsen, 1989) og Trondheim (Wolff, 1989). Midten: Harmonisert berggrunnskart fra NGU (2020) i 1:250 000. Til høyre: Det nye berggrunnskartet som vi har laget i målestokk 1:40 000. Tegnforklaringene til de eldre er i figur 3, mens det til venstre har figurforklaring i vedlegg 1.

Det er flere forskjeller mellom de eldre berggrunnskartene og det nye berggrunnskartet som vi har laget (figur 50). I det nye berggrunnskartet er det gjennomgående soner med marmor og metasandstein i Gulakomplekset. I berggrunnskartene 1:250 000 berggrunnskart Røros & Sveg (Wolff & Nilsen, 1989) og Trondheim (Wolff, 1989) er marmoren ikke gjennomgående, og det har ikke blitt kartlagt metasandstein. Dette gjelder også for det harmoniserte berggrunnskartet fra NGU. De eldre berggrunnskartene i figur 50 har heller ikke kartlagt tonalitt i Gulakomplekset, noe som vi har gjort. I det nye berggrunnskartet har kun større intrusjoner av tonalitt blitt markert selv om det er flere små tonalittganger gjennom den kartlagte delen av Gulakomplekset. Konglomeratene som vi har kartlagt opptrer som

mindre linser som følger strøket, mens de eldre kartene har kartlagt litologien i større, mer sammenhengende linser. I tillegg har berggrunnskartene fra Wolff og Nilsen kartlagt kvartsitt der hvor konglomeratene er, men vi har ikke observert kvartsitt. Derimot har metasandsteinen som vi har kartlagt inneholdt store mengder av kvarts, og dette tyder på at det muligens er denne bergarten de tidligere har kartlagt som kvartsitt. 1:250 000 kartblad Trondheim (Wolff, 1989) viser en større sone med migmatittgneis, som er en bergart som har opplevd delvis oppsmelting, noe som ikke stemmer overens med vår kartlegging da tegn på en så høy metamorfosegrad ikke er observert. Området med migmatittgneis består av glimmerskifer og metasandstein på vårt kart, og det stemmer godt med det harmoniserte berggrunnskartet fra NGU selv om metasandstein ikke er markert på kartet.

Grensen mellom Gulakomplekset og Fundsjøgruppen er tydelig i det nye berggrunnskartet med en gjennomgående tonalittintrusjon, noe som de eldre berggrunnskartene ikke har. I de tidligere kartbladene har grenseforløpet mellom Gulakomplekset og Fundsjøgruppen vært nokså uklart da kartbladene ikke stemte overens på grunn av den vestlige amfibolittsonen i det sørlige kartbladet. Vi kunne ikke finne denne amfibolittsonen og har kartlagt metasedimentære bergarter i dette området, hovedsakelig metasandstein. Fundsjøgruppen er i det eldre berggrunnskartet vist som et vulkansk område hovedsakelig bestående av grønnstein og amfibolitt, mens i det nye berggrunnskartet er det bare små soner med amfibolitt. Ellers består gruppen hovedsakelig av skifere med amfibol-biotitt-sammensetning. Det er også funnet større områder med gabbro og tonalitt. Gabbro og tonalitt i de eldre berggrunnskartene er vist som en mindre kropp, mens det nye berggrunnskartet er mer detaljert og viser flere områder med gabbro og et større område med tonalitt.

Selv om det er flere forskjeller mellom de tre berggrunnskartene med tanke på det litologiske, er den største forskjellen detaljnivået. Berggrunnskartet som vi har laget er i målestokken 1:40 000, mens de to andre er i 1:250 000. Dette gjør det nye berggrunnskartet mye mer detaljert enn forgjengerne.

6.2 Avsetningsmiljø

I de kommende avsnittene vil avsetningsmiljøene til bergartene bli diskutert. De litologiske observasjonene og beskrivelsene har blitt brukt til å tolke bergartenes avsetningsmiljøer.

6.2.1 Gulakomplekset

Alle de kartlagte litologiene i Gulakomplekset er nokså utholdende langs strøket. Bergartene opptrer konsekvent langs strøket med unntak av konglomeratene og den granat-rike bergarten da de opptrer som linser flere steder langs strøket. De to siste litologiene og marmoren kan følges sør- og nordover utover studieområdet på regionale kart. Det tyder på et omtrentlig likt avsetningsmiljø over et stort område.

Glimmerskifer

Glimmerskifer blir dannet ved regionalmetamorfose av leirsedimenter (Raade, 2009). Derfor er det tenkelig at glimmerskiferen i Gulakomplekset ble avsatt som leirsedimenter som senere gikk gjennom metamorfose. Ved flere lokaliteter er det observert kalksilikat-linser, noe som indikerer at avsetningsmiljøet i perioder har vært mer kalk-rikt. I tillegg er det lokalt kyanittog staurolittførende glimmerskifere, og både kyanitt og staurolitt er typiske for pelitiske bergarter som har gått gjennom regional metamorfose (Deer et al., 1992). Disse to mineralene er vanlige metamorfe mineraler som kan brukes til å bestemme metamorfosegraden til bergartene (Engvik et al., 2014). Siden det er kyanitt til stede ved flere lokaliteter, tyder det på at det har vært høyt trykk ved relative lave temperaturer (figur 51). Dette kommer også frem i kalkulasjonene til Engvik et al. (2014) ved at de har funnet ut at de metamorfe forholdene for en staurolitt-granat-kyanitt-biotitt-skifer var 0,86 ± 0,12 GPa og 663 ± 32 °C. I tillegg har det vært aluminium-rikt siden kyanitt er et aluminiumsilikat. Det kan antas at glimmerskiferen ble avsatt som leirsedimenter i et rolig basseng. Med tanke på at det har vært kalk til stede, har avsetningsmiljøet vært i et havbasseng i et sannsynligvis varmere klima og det har ikke vært for dypt.

Figur 51. Fasediagram for aluminiumsilikater. Diagrammet viser trykk- og temperaturforhold for kyanitt, andalusitt og sillimanitt. Figuren er modifisert etter (Nesse, 2012)

Metasandstein

Metasandsteinene i Gulakomplekset er ofte kvarts-rike. Det at det også har blitt observert mer leir-rike og kalsitt-rike soner i litologien tyder på at avsetningsmiljøet kan ha hatt innslag av leire og kalsitt. Kalsitt-innholdet henger sammen med kalk-produksjonen i havet på tiden avsetningen fant sted. Siden metasandsteinen har en god del kvarts, er det sannsynlig at det har vært en relativ lang transport og at det er et kontinentalt kildeområde. Med dette i bakhold er det rimelig å anta at metasandsteinene har blitt avsatt ved en kontinentalrand med et kvarts-rikt kildeområde.

Marmor

Marmor er dannet ved metamorfose av kalksteiner (Spjeldnæs, 2009b). Marmorenheten opptrer flere steder som parallelle soner med glimmerskifer imellom, og enheten kan tyde på at det har vært en kalksteinshorisont som var langstrakt og tynn. Det har sannsynligvis vært flere lag med kalkstein og glimmerskifer, og det tyder på at avsetningene varierte mellom å være pelitiske og kalk-rike. Kalksteiner er dannet av marine organismer, som har brukt kalsiumkarbonat til å bygge skjelett og skall, i grunne marine miljø som ofte er varmere (Nichols, 2009). Med grunne miljøer menes at det ikke er dypere enn 3000 - 4000 meter siden biogent kalsiumkarbonat begynner å løses opp ved dypere dyp, og dette kalles for kalsitt kompensasjonsdypet (CCD) (Nichols, 2009). Derfor kan avsetningsmiljøet ha vært en kontinentalrand til et mikrokontinent med kalk-rike marine organismer i perioder. Siden alderen til marmoren er ukjent, er det vanskelig å vite hvor kalksteinene ble avsatt i en paleografisk sammenheng. Med tanke på at deler av Iapetushavet lå nær ekvator er det mulig at kalksteinene ble avsatt der (figur 8).

Konglomerat

Konglomeratene opptrer som mindre linser ved Gula-Fundsjøgrensen. Klastene, som er subangulære til rundet, tyder på en varierende transportdistanse. Siden matriksen er rikelig på amfibol, kan det tyde på at det har vært en blanding av leirmineraler og kalk som gikk gjennom metamorfose slik at det ble dannet amfibol. Dermed kan avsetningsmiljøet ha vært delvis kalk-rikt med tilførsel av ulike klaster. Siden klastene er grove, må det ha vært en mer energikrevende transport, som eksempel turbiditetsstrøm. Turbiditetsstrømmer er blanding av sedimenter og vann i suspensjon, og de kan finne sted i alle vanndyp, men strømmene opptrer oftest i dyphavsmiljøer, som på kontinentalsokler (Nichols, 2009). Turbiditetsstrømmer kan derimot ikke brukes som en indikator på dype miljøer (Nichols, 2009). På grunn av at konglomeratene er omringet av glimmerskifer, kan det tyde på at massestrømmene ble avsatt i et finkornet, relativt rolig basseng.

Grunnet observasjonene våre og beskrivelsene til Kisch (1962) og Wolff (1964), er det høyst sannsynlig at konglomeratene i studieområdet er den samme som Bukkhammer-Usmadam konglomeratet og dermed også en sørlig forlengelse av Gudåkonglomeratet.

Magnetisk anomali

I felt ble det observert et svart mineral som ga utslag på kompasset, og det ble antatt at det var magnetitt. I tynnslipet til EM_303 er det flere mineralkorn som er helt svarte i både PPL og XPL, og det stemmer overens med magnetitt sine optiske egenskaper. Derfor kan vi ganske trygt anta at den magnetiske anomalien inneholder magnetitt, samt granat og kvarts.

Knut Åm har tidligere gjort noen geologiske analyser av den magnetiske anomalien i Gulakomplekset, og det viser seg at den trolig har en sammensetning av høyt jerninnhold og en mengde aluminium (Åm, 1967). En trodde før analysen at bergarten hadde spessartin og dermed var mangan-rik, men dette var ikke tilfellet (Tor Grenne, personlig kommentar). Grenne tror det er et delvis kjemisk utfelt sediment, men det har såpass mye aluminium og andre «detritale» komponenter at det må ha vært et svært «urent» kjemisk sediment (med mye klastisk materiale). En spesiell kjemi kan ha ført til at det ble dannet mye granat og magnetitt, og derfor skiller området seg ut som en tydelig magnetisk anomali. Siden anomalien kan følges over 55 km, må avsetningsmiljøet ha vært utholdende over en lengre strekning.

Avsetningsmiljøet til Gulakomplekset

Med tanke på at komplekset hovedsakelig består av glimmerskifer, er det sannsynlig at avsetningsmiljøet var pelitisk med kalk og aluminium med tanke på mineralene som er til stede. Et kalkholdig miljø støttes også av matriksen til konglomeratene og enkelte kalk-linser i glimmerskiferen, mens den magnetiske anomalien støtter at det har vært et aluminium-rikt miljø. I tillegg er det sannsynlig at det var et kontinentalt kildeområde siden det er en del kvartsrik metasandstein og konglomerat med klaster av kvarts og kvartsitt. Konglomeratene kan ha blitt avsatt av turbiditetsstrømmer. Marmoren indikerer at det må ha vært en utholdende og tynn sone med kalkstein. Dette indikerer et avsetningsmiljø i et relativt rolig havbasseng i et varmere klima med vekslinger mellom leire-, sand- og kalkavsetninger.

6.2.2 Fundsjøgruppen

Fundsjøgruppen består hovedsakelig av metasedimentære bergarter. I tillegg er det intrusive og vulkanske bergarter, men disse bergartene blir gjennomgått i kapittel 6.4 om intrusjonshistorien.

Amfibolitt og keratofyr

Amfibolitt er en bergart som oppstår ved metamorfose der protolitten kan være basalt eller gabbro. Siden det ikke er blitt observert putestrukturer i amfibolittene i studieområdet, er det uklart om akkurat disse har putelava/basalt som protolitt. Det er derimot blitt observert slike strukturer lenger øst for studieområdet, og dette kan tyde på at amfibolittene der kan ha vært putelava som har gått gjennom metamorfose. Siden de østliggende amfibolittene kan ha putelava som protolitt, er det mulig at amfibolittene i studieområdet også har det. Hvis dette stemmer, har lavaen størknet under vann og dermed er det et marint avsetningsmiljø. Det har blitt observert overganger fra gabbro til amfibolitt, som det vil stå mer om i kapittel 6.4 om

69

intrusjonshistorien. Basert på disse observasjonene er det mulig at det er to ulike amfibolitter med tanke på moderbergarten og avsetningsmiljøet:

- Amfibolitter som har basalt som protolitt og ble avsatt sammen med de sedimentære bergartene i et basseng
- Amfibolitter som er omdannete gabbroer og de intruderte i bassenget senere

Innimellom amfibolittene er det noen steder observert keratofyr, som er en felsisk vulkanitt. På grunn av plasseringene til keratofyrene kan en anta at de ble dannet samtidig som amfibolittene, som er en mer mafisk bergart. Både felsisk og mafisk magma kan bli generert ved subduksjonssoner hvor en havbunnsplate går under en kontinentalplate eller en havbunnsplate går under en annen havbunnsplate. Det siste alternativet er vanlig i tidlige faser av havbassenglukking. Grenne & Lagerblad (1985) har tolket at vulkanittene kom fra umodne øybuer, og det tyder på at det har vært en subduksjonssone mellom to havbunnsplater. Den felsiske magmaen som dannet keratofyr kan ha oppstått ved fraksjonert krystallisering i en slik subduksjonssone. Ved fraksjonert krystallisering kan det bli dannet felsisk restsmelte siden de mafiske krystallene blir krystallisert ut (Sigmond et al., 2013). På denne måten er det ikke nødvendig med kontinentalskorpe som blir assimilert for å danne felsisk magma. Dermed kan keratofyrene, og muligens amfibolittene sine protolitter, komme fra umodne øybuer med bimodal vulkanisme fra sen kambrisk tid (Bjerkgård & Bjørlykke, 1994; Grenne & Lagerblad, 1985).

Amfibol-biotitt-skifer

Store deler av studieområdet består av amfibol-rike metasedimentære bergarter. En amfibolrik sedimentær bergart kan tyde på at det har vært et tidligere basseng som inneholdt rikelig med urene kalkholdige og leir-rike sedimenter, som i ettertid har gått igjennom metamorfose hvor amfibol har blitt til. Amfibol opptrer hyppig i metamorfe kalkholdige sedimenter, og biotitt er et glimmermineral dannet fra leirmineraler. En annen avsetningsmulighet er at sedimentene kommer fra en mafisk kilde, som for eksempel basalt, og derfor ble bergarten amfibol-rikt.

Biotitt-kvarts-skifer

Biotitt-kvarts-skiferen tyder på at avsetningsområdet er et kontinentalbasseng da det er store deler kvarts, som kommer fra kontinentale bergarter. I tillegg har det vært leir-rike

70

sedimenter siden det er en skifer. Mengden med biotitt tyder på at bergarten har gjennomgått lavgrads metamorfose da mineralet krystalliseres ved lavere temperaturer. Siden det ikke er amfibol i bergarten har den ikke blitt avsatt i et kalkholdig miljø slik som det sannsynligvis var for amfibol-biotitt-skiferen.

Avsetningsmiljøet til Fundsjøgruppen

Avsetningsmiljøet til Fundsjøgruppen kan ha vært et havbasseng med lokale mafiske vulkanutbrudd. I bassenget kan det ha vært urene kalkholdige sedimenter og de ble sannsynligvis avsatt i et varmt klima, og dette støttes med at det er amfibol-skifer i området. På den andre siden kan amfibol-skifer også komme fra detritus, dvs. løsmateriale fra faste bergarter som har oppstått ved forvitring (Bryhni, 2009), fra basalt. Bassenget har hatt innslag av kvarts og leire, noe som tyder på at det har vært nært et kontinent, og at det er et relativt rolig basseng slik at leiren har blitt avsatt. Fundsjøgruppen har vært utsatt for vulkanutbrudd da det er observert keratofyr mellom lag av amfibolitt. Det er uklart om hvor mye av amfibolittene som kommer fra basalt, og dermed vulkanutbrudd, og hvor mye som er omvandlet gabbro.

Tidligere ble fyllitter i Nordaunevoll i den østre delen av Trøndelag tolket til å være en del av Gulakomplekset, men undersøkelser viser at fyllittene har blitt intrudert av doleritter (Gee, 1981). I tillegg viser geokjemiske undersøkelser at Nordaunevollformasjonen har blitt avsatt på den baltiske siden av Iapetushavet i sen kambrium/tidlig ordovicium (Gee, 1981). En tidligere bacheloroppgave konkluderte med at svartskiferen ved Blåhenbekken hører til Fundsjøgruppen og ikke Gulakomplekset, og at svartskiferen sannsynligvis ble avsatt nær den baltiske kontinentalranden (Tresselt et al., 2017). Dermed er det sannsynlig at Fundsjøgruppen ble dannet på den baltiske siden av Iapetushavet.

6.3 Strukturer

6.3.1 Gulakomplekset

Gulakomplekset i studieområdet har lite til ingen foldestruktur, men det er en tydelig duktil foliasjon som heller bratt mot vest og en stupende lineasjon mot sørvest (figur 52). Disse er konsekvente i hele området. Lineasjonen som stuper SV har sannsynligvis blitt utviklet under den kaledonske fjellkjedekollisjonen, enten da Gulakomplekset og Fundsjøgruppen ble sammenkoblet eller da de ble skjøvet oppå Baltika. Siden lineasjonen stuper svakt til moderat, tyder det på at det potensielt har vært en sidelengs komponent.

Figur 52. Stereoplott med foliasjonene og lineasjonene i Gulakomplekset. Foliasjonene er storsirklene (90 stk) og lineasjonene er prikkene (17 stk).

Det har blitt antydet at Gulakomplekset er en megasynform eller en metamorf kjerne i en antiform, men på grunn av at vårt studieområde ikke dekker en stor nok del av Gulakomplekset, vil ikke våre strukturmålinger kunne bidra noe særlig til denne diskusjonen. Derimot viser våre feltobservasjoner at tolkningene til Gee et al. (1985) i figur 9 kan stemme siden tolkningene heller vest i den østlige delen av Gulakomplekset.

6.3.2 Fundsjøgruppen

Foliasjonen i Fundsjøgruppen heller mot vest og øst, og det kan tyde på at det er en stor-skala foldestruktur (figur 31 og 53). Siden foliasjonen heller mot vest på vestsiden og øst på østsiden, tyder dette på at det er en antiform (se profilet i vedlegg 1). Foldeaksen til foldestrukturen heller svakt mot sør. Foldeaksene som er målt på mindre, åpne folder midt i ombøyningen (figur 33) forsterker denne teorien da de stuper i samme retning som folden (figur 53). Disse mindre foldene kan tolkes som parasittfolder til den større antiformen.

Figur 53. Stereoplott med foliasjonene, lineasjoner og foldeakser i Fundsjøgruppen. Foliasjonene er storsirklene (169 stk), lineasjonsmålingene er vist som oransje prikker (37stk) og foldeaksene er vist som brune prikker (11 stk).

Streknings- og minerallineasjonene som er målt i Fundsjøgruppen stuper i forskjellige retninger (figur 53). Lineasjonsmålingene stuper hovedsakelig i tre retninger; SV, S og NØ. Dette tilsier at det muligens er to generasjoner med lineasjoner. Lineasjonene som stuper mot SV og NØ er trolig eldre enn selve folden og har vært med på foldehendelsen siden de ikke er parallell med foldeaksene som har blitt målt. Disse målingene har likhetstrekk med Gulakomplekset sine lineasjoner og det kan potensielt ha vært en sidelengs komponent. Den yngre generasjonen av lineasjonene stuper mot sør og er parallell med foldeaksene, og de er sannsynligvis like gamle som antiformen.

Ombøyningen sett i de eldre kartene kan også bli sett i det nye berggrunnskartet (figur 50). Fundsjøgruppen sin foldestruktur er kuttet i vest på grensen til Gulakomplekset av en tonalittintrusjon (vedlegg 1). Det at tonalittintrusjonen kutter foldestrukturen i Fundsjøgruppen tyder på at Fundsjøgruppen har gått gjennom minst en fase med folding som Gulakomplekset ikke har. Da foldningen fant sted, hadde ikke Gulakomplekset og Fundsjøgruppen samme geografiske plassering eller hang sammen. Strukturene som kan ses på det magnetiske kartet (figur 35) stemmer godt med den store foldestrukturen i Fundsjøgruppen, og de lave verdiene korrelerer med en større tonalittkropp. I tillegg passer det magnetiske kartet og den brå overgangen mellom Gulakomplekset og Fundsjøgruppen godt. Dermed kan den stor-skala foldestrukturen forklare det elliptiske mønsteret i den magnetiske anomalien.

6.4 Intrusjonshistorien

Gabbro, doleritt og tonalitt intruderte etter at de andre bergartene ble avsatt.

(Meta)gabbro

Gabbro er en bergart som størkner i dypet, og det kan ses ved den velutviklede gabbroteksturen. I vårt studieområde finnes både gabbro og metagabbro, og de opptrer som kropper, men enkelte steder er de tilnærmet ganger. Gabbroene i Fundsjøgruppen følger ombøyningen som er tydelig på berggrunnskartet (vedlegg 1). Det kan dermed være to hendelsesforløp som har gjort at det ser slik ut:

- Gabbrointrusjonene intruderte før ombøyningen og gabbroene var sammen med de andre litologiene under foldehendelsen
- Gabbrointrusjonene intruderte etter ombøyningen, men intruderte mellom de forskjellige litologiske grensene og dermed følger ombøyningen

Gabbrokomplekset Fongen-Hyllingen ligger ca. 6,5 km unna Tverråtjønnan og kan være samme generasjon som gabbroen i studieområdet. Fongen-Hyllingen er datert til 437,8 \pm 2,3 millioner år (Nilsen et al., 2007), men det kan også ha vært flere generasjoner, dvs. at de intruderte ved forskjellig tid, siden noe av gabbroen kan ha blitt omvandlet til amfibolitt. Fongen-Hyllingen har ikke intrusjoner av doleritt, og det tyder på at dolerittene intruderte før gabbrokomplekset. Det kan tyde på at gabbroene i studieområdet er eldre enn dolerittene (som igjen er eldre enn Fongen-Hyllingen) siden de er observert i samme område. Derimot er det ingen tydelige observasjoner av at doleritt har intrudert gabbroen, da noen av gangene kan både være doleritt eller kraftig deformert metagabbro. Det må derfor gjøres flere undersøkelser for å løse denne problemstillingen.

Doleritt

Det er tolket at dolerittene er blant de yngre bergartene siden de har intrudert flere av de omliggende bergartene (også muligens gabbroene). Generelt kutter de fleste dolerittgangene de eldre bergartene som er rundt, men en dolerittgang er foldet sammen med glimmerskiferen som ligger rundt. Det kan bety at det kan være flere generasjoner av doleritt. Siden de idiomorfe plagioklaskrystallene er noen få cm-store, har gangene hatt en lenger størknetid enn hvis krystallene hadde vært mindre. Med tanke på at aktinolitt har blitt observert, tyder det på at dolerittgangene har gjennomgått en viss grad av metamorfose, siden mineralet er karakteristisk for lav- og middelmetamorfe bergarter (Selbekk, 2009) Siden doleritt ikke opptrer i Gulakomplekset, må de ha intrudert før Gulakomplekset og Fundsjøgruppen ble sammenkoblet.

Tonalitt

I vårt studieområde har tonalitten tidligere blitt omtalt som trondhjemitt, men en trondhjemitt er definert som en lys tonalitt med opptil 10% biotitt (Selbekk & Askheim, 2009), men etter mikroskoperingen av tynnslip og studering av håndstykker er konklusjonen at det vil være korrekt å kalle bergarten for en tonalitt siden det er >10% biotitt (figur 38).

I Gulakomplekset opptrer tonalittene som ganger som hovedsakelig følger strøket, og de største gangene har intrudert glimmerskifrene. Flere tonalittkropper i Gulakomplekset er datert til å være ca. 440 til 430 millioner år (Nilsen et al., 2003), noe som tyder på at intrusjonene intruderte rett før eller tidlig i kontinentkollisjonen mellom Baltika og Laurentia. Den regionale foliasjonen som heller mot vest i Gulakomplekset kan sannsynligvis relateres til kontinentkollisjonen (Grenne & Lagerblad, 1985), men noen av tonalittintrusjonene kutter også den regionale skifrigheten. Det kan tyde på at de intruderte etter hoveddeformasjonen av kontinentkollisjonen i studieområdet, og dermed kan det være ulike generasjoner av tonalitt i studieområdet.

I Fundsjøgruppen opptrer tonalittene hovedsakelig som en stor kropp, men også som enkelte ganger som for det meste følger foliasjonen og strukturene i bergartene rundt med noen få unntak. Den store tonalittkroppen og noen av tonalittgangene følger ombøyningen og det kan diskuteres om disse intrusjonene kom tidligere og var med på foldehendelsen eller intruderte ved laggrenser/strukturer etter foldingen. En av tonalittgangene ser også ut til å skjære igjennom tonalittintrusjonen som er observert mellom Gulakomplekset og Fundsjøgruppen.

75

Det kan derfor tyde på at tonalittene i studieområdet kan være av forskjellig alder/generasjoner. Det er tonalittganger som intruderer gabbro, men det er usikkert om alle tonalittene intruderte etter gabbroene eller om noen kom før/samtidig. Det kan igjen tyde på ulike generasjoner av tonalitt. Det er en tonalittintrusjon i Folldal som er eldre (~488 millioner år (Bjerkgård & Bjørlykke, 1994)), og hvis dette området også er Fundsjøgruppen siden det er observert dolerittganger, kan også noen av tonalittene i vårt studieområde være av samme alder og dermed være eldre enn de som opptrer i Gulakomplekset. Det er da forventet at en eldre generasjon av tonalitt vil være sterkt foliert (som bergartene rundt), men tonalittene observert i studieområdet er ufoliert til svakt foliert.

Dersom gabbroene er av samme generasjon som Fongen-Hyllingen (~437 millioner år), vil gabbroene være yngre enn tonalitten datert i Folldal. Hvis dette stemmer, er det ulike generasjoner av tonalitter siden en tonalittgang er datert til å være ~488 millioner år, mens andre tonalittganger har intrudert gabbro og er dermed en yngre generasjon. For å finne et svar på dette bør det gjøres dateringer og/eller geokjemiske analyser av de forskjellige tonalittene og gabbroene.

6.5 Aldersdatering med detrital zirkoner

For EM_28 ble det analysert 115 zirkoner, det er to mindre enn det Vermeesch (2004) anbefaler. Dette gjør at konfidensnivået er litt lavere enn 95%. For DG_12 ble det gjort tilstrekkelig med analyser (122 zirkonkorn) for å få et >95% konfidensnivå.

6.5.1 Kildeområde

EM_28, som er fra Gulakomplekset, har eldre zirkonkorn enn DG_12, som er fra Fundsjøgruppen (figur 54). EM_28 har zirkonkorn fra proterozoikum og arkeikum hvorav det er kun ett zirkon som er av arkeisk tid (2899 \pm 36 millioner år). DG_12 består hovedsakelig av zirkoner fra proterozoikum (2500 - 542 millioner år siden), men de yngste kornene er fra paleozoikum, som var for 542 - 250 millioner år siden (Sigmond et al., 2013). Det er kun to zirkoner som er yngre enn 542 millioner år, og de er fra midtre- og senkambrium (541 \pm 7 millioner år og 511 \pm 6 millioner år).

Figur 54. Kernel tetthetsfordeling (svart linje) og aldershistogrammet (gråe bokser) for EM_28 (øverst, Gulakomplekset) og DG_12 (nederst, Fundsjøgruppen). Kun analyser av korn som er <10% diskordant er brukt. Diagrammet er laget i detzrcr i R. Bandwidth=30, bindwidth=40 og x step=100.

I kaledonske bergarter fra Baltika eller Laurentia er det ikke vanlig å finne zirkonkorn på 500 - 700 millioner år, og derfor er zirkonene med disse aldrene i DG_12 uvanlige. Kildeområdet må ha vært et sted hvor det er magmatiske bergarter fra dette tidsrommet. Tidligere har det blitt diskutert at zirkoner med noenlunde lik alder kan komme fra den timanske fjellkjeden (figur 55) (Andresen et al., 2014; Ershova et al., 2019) hvorav Ershova et al. (2019) konkluderte med at detritus fra den timanske fjellkjeden har blitt transportert til den baltiske kontinentalranden. Den timanske fjellkjeden strekker seg over 3000 km fra Kazakhstan i sør til Varanger i Nord-Norge i nord, og er knyttet til tektoniske hendelser i neoproterozoikum (Gee & Pease, 2004).

Figur 55. Mulige avsetningsmønstre fra den timanske fjellkjeden i tidlig kambrium. Rød stjerne viser hvor studieområdet er. Hentet fra (Andresen et al., 2014)

En annen teori er at zirkonene kommer fra Gondwanaland (figur 8 og 56). I den kaledonske fjellkjeden er det indikasjoner på at kontinentalranden til Laurentia og mikrokontinenter fra Gondwanaland (Ganderia og Avalonia) nærmet seg hverandre, og at flere subduksjonssoner var aktive i midtre kambrium (514 til 501 millioner år siden) (Dalslåen et al., 2021). Øybuene til disse subduksjonssonene kan kun være et mulig kildeområde til det yngste zirkonet. De andre zirkonene i populasjonen 700 - 500 millioner år kan komme fra magmatiske bergarter langs de Gondwanske mikrokontinentene Ganderia og Avalonia, som kolliderte med den laurentiske kontinentalranden (figur 56) (Pollock et al., 2012). Avalonia har magmatiske bergarter som er i alderen 740 til 370 millioner år (Murphy et al., 2001), og det passer med den første toppen i Kernel tetthetsfordeling for DG_12 i figur 54. For Ganderia har eksempelvis Hibbard et al. (2007) foreslått at det er bergarter fra ca. 750 - 525 millioner år siden (Nance et al., 2008), noe som også passer med zirkonpopulasjonen på 500 - 700 millioner år. Derimot er det yngste zirkonkornet fra DG_12 på 511 ± 6 millioner år for ungt for Ganderia.

Figur 56. Den paleogeografiske plasseringen til ulike kontinenter i sen kambrium (490 millioner år siden). Figuren er hentet fra (Fyffe et al., 2009).

På grunn av dette er det mulig at avsetningsområdet til Fundsjøgruppen kan ha vært nær en øybue som fikk detritus enten fra den timanske fjellkjeden eller løsrevne mikrokontinenter fra Gondwanaland. Denne problemstillingen diskuteres fortsatt og mer detaljerte analyser av detrital zirkonene (for eksempel Hf-isotop-analyser) kan eventuelt gi svar.

Det er vanskelig å bruke detrital zirkoner for å finne ut om kildeområdet er Baltika eller Laurentia siden det generelt er akseptert at Laurentia og Baltika har ganske like signaturer fra detrital zirkoner (Dalslåen et al., 2021). Den vestlige delen av Trondheimskomplekset kommer fra Laurentia, og prøvene derfra inneholder flere arkeiske zirkoner (Dalslåen et al., 2021), noe som prøvene våre mangler. Dette kan indikere at Gulakomplekset og Fundsjøgruppen ikke kommer fra Laurentia eller den laurentiske siden av Iapetushavet.

6.5.2 Maksimal avsetningsalder

Den maksimale avsetningsalderen for metasandsteinen i Gulakomplekset (EM_28) er 906 -964 millioner år siden det yngste zirkonkornet har en alder på 935 ± 29 millioner år. Den maksimale avsetningsalderen for sandsteinen i Fundsjøgruppen (DG_12) er 505 - 517 millioner år da det yngste zirkonkornet er 511 ± 6 millioner år. Disse maksimale avsetningsaldrene kan stemme hvis en stoler på det yngste zirkonkornet. Flere analyser tilsier at det yngste zirkonet ofte er litt for ungt sammenlignet med fossiler eller vulkanske lag, og derfor er det også andre metoder for å regne ut den maksimale avsetningsalderen. En metode innebærer å bruke de tre yngste zirkonene som overlapper i alder med 2σ og bruke gjennomsnittet av dem. En annen metode bruker den yngste toppen i Kernel-kurven (Coutts et al., 2019). Hvis metoden som bruker de tre yngste zirkonene som overlapper med 2σ brukes, er den maksimale avsetningsalderen for EM_28 957 millioner år, mens DG_12 har en maksimal avsetningsalder på 545 millioner år. Den siste metoden gir en maksimal avsetningsalder på ca. 1080 for Gulakomplekset og ca. 580 for Fundsjøgruppen (figur 45 og 49). Alle de maksimale avsetningsaldrene ifølge de ulike metodene er i tabell 1.

Metode	EM_28	DG_12
	(Gulakomplekset)	(Fundsjøgruppen)
1) Det yngste kornet	906 - 964 millioner år	505 - 517 millioner år
2) De tre yngste kornene som overlapper 2σ	957 millioner år	545 millioner år
3) Den yngste toppen i Kernel-kurven	ca. 1080 millioner år	ca. 580 millioner år

Tabell 1: Den maksimale avsetningsalderen til EM_28 og DG_12 ifølge de tre metodene.

Uansett hvilken metode som blir brukt, tyder det på at Gulakomplekset potensielt kan være opptil ~400 - 500 millioner år eldre enn Fundsjøgruppen. Fundsjøgruppen kan være fra senkambrium (metode 1), neoproterozoikum (metode 2 og 3) eller yngre. Gulakomplekset kan være fra neoproterozoikum (metode 1 og 2) og mesoproterozoikum (metode 3), men komplekset kan også være yngre.

6.6 Den geologiske utviklingen i Tverråtjønnan-området

Det er sannsynlig at Gulakomplekset ble avsatt på eller rett ved et mikrokontinent i Iapetushavet. Miljøet var sannsynligvis kalk- og leir-rikt. Den maksimale avsetningsalderen til komplekset er 935 ± 29 millioner år, og det betyr at Gulakomplekset kan være avsatt i neoproterozoikum. Rui (1972) antar at Gulakomplekset er fra kambrium, men våre aldersdateringer viser at Gulakomplekset også kan være eldre. Fundsjøgruppen kan ha blitt avsatt nær den baltiske kontinentalranden med tanke på tolkningene av en svartskifer (Gee, 1981; Tresselt et al., 2017). Avsetningsmiljøet var i et kalk- og leirholdig havbasseng med mulig detritus fra mafiske vulkanske bergarter og aktiv vulkanisme. Siden den maksimale avsetningsalderen er 511 \pm 6 millioner år, tilsier det at Fundsjøgruppen kan være av senkambrisk alder. Det er derimot en tonalitt som er datert til å være ~488 millioner år (Bjerkgård & Bjørlykke, 1994), og dermed må Fundsjøgruppen ha blitt avsatt før intrusjonen hvis Folldal er en del av Fundsjøgruppen. Det er flere vulkanske bergarter i gruppen, og de er tidligere tolket til å komme fra umodne øybuer, samt å være av senkambrisk alder (Grenne & Lagerblad, 1985).

Fundsjøgruppen har en foldestruktur som ser ut til å være en antiform, og den blir kuttet ved grensen til Gulakomplekset. Siden den samme foldestrukturen ikke er på den andre siden av grensen, er det sannsynlig at Fundsjøgruppen har gått gjennom minst en foldefase før kontinentkollisjonen. I tillegg må dolerittgangene ha intrudert før kollisjonen siden de ikke er observert i Gulakomplekset. På grunn av lignende strukturer i Gulakomplekset, er det mulig at Gulakomplekset og Fundsjøgruppen ikke lå geografisk langt unna hverandre da dolerittene intruderte (Grenne & Lagerblad, 1985). Dette kan tyde på at dolerittgangene intruderte ikke så lenge før kontinentkollisjonen.

Etter avsetningen av de sedimentære bergartene har gabbro, doleritt og tonalitt intrudert Gulakomplekset og Fundsjøgruppen. Det er observert dolerittintrusjoner sammen med gabbroene i området, men de er ikke observert i Fongen-Hyllingen, og dermed kan det antas at gabbroen i studieområdet er eldre. Tonalittene i studieområdet kan tolkes til å være ulike generasjoner. Fundsjøgruppen har muligens tonalitter som er ~488 millioner år (Bjerkgård & Bjørlykke, 1994). Gulakomplekset har tonalitter som er datert til å være 440 - 430 millioner år (Nilsen et al., 2003), og disse intruderte rett før eller i begynnelsen av kontinentkontinentkollisjonen. Noen av tonalittintrusjonene følger den regionale skifrigheten, mens andre kutter den. Det kan derfor tolkes at tonalitt har intrudert Gulakomplekset og Fundsjøgruppen både før og etter sammenkoblingen. Tonalittene som muligens intruderte etter sammenkoblingen kan være av samme generasjon. Under kollisjonen ble Gulakomplekset og Fundsjøgruppen skjøvet sammen og etter hvert skjøvet oppå Baltika.

6.7 Feilkilder

Under arbeidet med innsamling av data og resultater kan det være flere feilkilder, og det er derfor viktig å ta mulige feilkilder i betraktning.

81

Det er mulig at det har hendt menneskelige feil under strukturmålingene med kompass og nedskriving av målinger. Det kan også ha vært problemer med utstyret, og eksempler på det er: feilmålinger av strukturer med kompass nær den magnetiske anomalien, tablettens GPS kan vise feil og magnetisk susceptibilitetsmåleren kan ha målt feil. Hvis det derimot er flere målinger som viser det samme forsterkes troverdigheten, og det er større sannsynlighet for at resultatet kan stoles på.

Under aldersdateringen kan kontaminering være en feilkilde. Vi anser derimot denne mulige feilkilden som minimal siden vi opplevde at UiO var veldig nøye på vasking av alt av utstyr mellom forskjellige bergartsprøver. De forskjellige dateringene kan også havne på concordialinjen selv om det er ødelagte korn da linjen ikke er lineær. Dette vil kunne gi feil datering og konkordans for et zirkonkorn, og dermed kan den maksimale avsetningsalderen bli feil for bergarten.

7 Konklusjon

Formålet med denne oppgaven var å lage et nytt og mer detaljert berggrunnskart av grensen mellom Gulakomplekset og Fundsjøgruppen i Tverråtjønnan-området i Trøndelag fylke, samt å tolke den geologiske utviklingen av området. For at dette skulle være mulig, har vi gjort grundig feltarbeid, studert håndstykker og tynnslip, og gjort aldersdatering av detrital zirkoner.

Berggrunnskartet som vi har laget avviker fra de to tidligere berggrunnskartene som eksisterer for vårt studieområde. De tidligere kartene for Røros & Sveg (Wolff & Nilsen, 1989), Trondheim (Wolff, 1989) og det harmoniserte fra NGU er i målestokk 1:250 000, mens vårt er i målestokk 1:40 000, og er dermed mer detaljert. I tillegg er det flere litologiske forskjeller. De tidligere kartene har ikke kartlagt metasandstein, og vår kartlegging viser at marmoren i Gulakomplekset er gjennomgående i hele studieområdet. Tidligere har Fundsjøgruppen blitt kartlagt som hovedsakelig bestående av vulkanske bergarter, men i det nye berggrunnskartet er det større områder med metasedimentære skifre rik på amfibol og biotitt. Gulakomplekset består av glimmerskifer som er lokalt kyanitt- og staurolittførende, kvartsrik metasandstein, en gjennomgående marmorenhet og konglomerat-linser nær grensen til Fundsjøgruppen, samt en magnetisk anomali som består av en granat- og magnetitt-rik bergart. I tillegg er det intrusjoner av tonalitt. Avsetningsmiljøet til de metasedimentære bergartene tolkes til å være et relativt rolig havbasseng i et varmt miljø som inneholdt leire, kvarts og kalkholdige sedimenter. Bergartene har sannsynlig et kontinentalt kildeområde da det er en del kvarts. Gulakomplekset ble mulig avsatt rett ved eller på et mikrokontinent i Iapetushavet. Foliasjonen i Gulakomplekset heller moderat til bratt vest gjennom hele studieområdet.

I Fundsjøgruppen er det amfibol-biotitt-skifer, amfibolitter med mellomliggende keratofyr, gabbro, biotitt-kvarts-skifer, tonalitt og doleritt. Dolerittgangene er et kjennetegn på gruppen da disse ikke opptrer i Gulakomplekset. De metasedimentære bergartene er tolket til å være avsatt i et basseng med vulkansk aktivitet i et varmt miljø rik på leire og urene kalkholdige sedimenter. Bergartene ble sannsynlig avsatt nær den baltiske kontinentalranden. Fundsjøgruppen har en foliasjon som heller mot vest i det vestlige området og mot øst i det østlige området. Strukturen er tolket som en stor-skala foldestruktur, en antiform, med en foldeakse som stuper svakt mot sør. Foldehendelen må ha skjedd før Gulakomplekset og Fundsjøgruppen ble sammenkoblet.

Ved hjelp av uran-bly forholdet i detrital zirkoner kan den maksimale avsetningsalderen til en sedimentær bergart bli bestemt. I Gulakomplekset ble detrital zirkon fra en kvartsrik metasandstein datert, og den har en maksimal avsetningsalder på 935 \pm 29 millioner år (basert på det yngste zirkonkornet). I Fundsjøgruppen ble detrital zirkon fra en brunlig og kvartsrik sandstein datert, og den maksimale avsetningsalderen er 511 \pm 6 millioner år (basert på det yngste zirkonkornet). Dermed tyder det på at Gulakomplekset kan være eldre enn Fundsjøgruppen. Gulakomplekset har et kildeområde som hovedsakelig er dominert av 900 - 1800 millioner år gamle zirkonkorn, mens Fundsjøgruppen har et kildeområde som er dominert av 500 - 700 og 900 - 2000 millioner år gamle zirkoner. De yngste zirkonene i Fundsjøgruppen kan ha den timanske fjellkjeden eller løsrevete mikrokontinenter fra Goudwanaland som kildeområder.

83

7.1 Forslag til videre arbeid

Det kan gjøres mer arbeid for å få en bedre forståelse over geologien i Trondheimsdekkekomplekset, og våre forslag er:

- Fortsette med kartleggingen i områder uten dekning på 1:50 000 målestokk for å få mer detaljerte og oppdaterte berggrunnskart
- Ta strukturmålinger i den midtre og vestre delen av Gulakomplekset for å forstå de regionale strukturene i komplekset
- Gjøre flere undersøkelser for å finne ut hvor zirkonene med aldrene 500 700 millioner år kommer fra
- Gjøre flere aldersdateringer for å få bedre tidsperspektiv, og da helst på vulkanske bergarter siden de gir den faktiske avsetningsalderen

Referanser

- Andresen, A., Agyei-Dwarko, N. Y., Kristoffersen, M., & Hanken, N.-M. (2014). A Timanian foreland basin setting for the late Neoproterozoic–Early Palaeozoic cover sequences (Dividal Group) of northeastern Baltica. *Geological Society, London, Special Publications, 390*(1), 157-175.
- Bergström, S. M. (1979). Whiterockian (Ordovician) conodonts from the Hølonda limestone of the Trondheim region, Norwegian Caledonides. *Norsk Geologisk Tidsskrift*, 59(4), 295-307.
- Bevins, R. E., Pirrie, D., Ixer, R. A., O'Brien, H., Pearson, M. P., Power, M. R., & Shail, R. K. (2020). Constraining the provenance of the Stonehenge 'Altar Stone': Evidence from automated mineralogy and U–Pb zircon age dating. *Journal of Archaeological Science*, 120, 105188.
- Bjerkgård, T., & Bjørlykke, A. (1994). Geology of the Folldal area, southern Trondheim Region Caledonides, Norway.
- Bryhni, I. (2009, 16.08.2020). *Detritus* Store norske leksikon. Retrieved 27.05.2021 from <u>https://snl.no/detritus</u>
- Bøe, P. (1974). Petrography of the Gula Group in Hessdalen, Southeastern Trondheim region, with special reference to the paragonitization of andalusite pseudomorphs.
- Corfu, F. (2013). A century of U-Pb geochronology: The long quest towards concordance. *Bulletin*, 125(1-2), 33-47.
- Corfu, F., Andersen, T., & Gasser, D. (2014). The Scandinavian Caledonides: main features, conceptual advances and critical questions. *Geological Society, London, Special Publications*, 390(1), 9-43.
- Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. *Geoscience Frontiers*, 10(4), 1421-1435.
- Dalslåen, B. H., Gasser, D., Grenne, T., Augland, L. E., & Andresen, A. (2021). Early– Middle Ordovician sedimentation and bimodal volcanism at the margin of Iapetus: the Trollhøtta–Kinna Basin of the central Norwegian Caledonides. *Geological Society, London, Special Publications, 503*(1), 251-277.
- DeepTimeMaps. (2020). Global series thumbnails https://deeptimemaps.com/global-series/
- Deer, W. A., Howie, R. A., & Zussmann, J. (1992). An Introduction to the Rock-Forming Minerals.
- Eian, R. (2019). *Vil kartlegge bedre i Trøndelag* NGU. Retrieved 04.04.2021 from <u>https://www.ngu.no/en/node/44693</u>
- Engvik, A. K. (2017). *Derfor trenger vi bedre kart over den norske berggrunnen* NGU. Retrieved 26.02.2021 from <u>https://www.ngu.no/blogg/derfor-trenger-vi-bedre-kart-over-den-norske-berggrunnen</u>
- Engvik, A. K., Grenne, T., Lutro, O. J., & Meyer, G. B. (2014). Metamorphic constraints on the Caledonian Upper Allochthon of Central Norway: the Gula Complex staurolite– garnet–kyanite mica schist. *Geological Society, London, Special Publications, 390*(1), 563-581.

- Erichsen, E., Sandstad, J. S., Grenne, T., Hertogen, J., Solli, A., & Birkeland, A. (1995). The sequential development of magmatic and ore-forming processes in the Fundsjø Group, Meråker district, Central Norway.
- Ershova, V., Ivleva, A., Podkovyrov, V., Khudoley, A., Fedorov, P., Stockli, D., Anfinson, O., Maslov, A., & Khubanov, V. (2019). Detrital zircon record of the Mesoproterozoic to Lower Cambrian sequences of NW Russia: implications for the paleogeography of the Baltic interior. *GFF*, 141(4), 279-288.
- Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. *Reviews in Mineralogy and Geochemistry*, 53(1), 277-303.
- Fossen, H., & Gabrielsen, R. H. (2005). Strukturgeologi. Fagbokforl.
- Fyffe, L. R., Barr, S. M., Johnson, S. C., McLeod, M. J., McNicoll, V. J., Valverde-Vaquero, P., Van Staal, C. R., & White, C. E. (2009). Detrital zircon ages from Neoproterozoic and Early Paleozoic conglomerate and sandstone units of New Brunswick and coastal Maine: implications for the tectonic evolution of Ganderia.
- Gee, D. (1981). The Dictyonema-bearing phyllites at Nordaunevoll, eastern Trøndelag, Norway. *Norsk Geologisk Tidsskrift*, 61(1), 93-95.
- Gee, D., Guezou, J., Roberts, D., & Wolff, F. (1985). The central-southern part of the Scandinavian Caledonides. *The Caledonide Orogen—Scandinavia and Related Areas*, 1, 109-133.
- Gee, D. G., & Pease, V. (2004). The Neoproterozoic Timanide Orogen of eastern Baltica: introduction. *Geological Society, London, Memoirs*, 30(1), 1-3.
- Grenne, T., Ihlen, P., & Vokes, F. (1999). Scandinavian Caledonide metallogeny in a plate tectonic perspective. *Mineralium Deposita*, *34*(5), 422-471.
- Grenne, T., & Lagerblad, B. (1985). The Fundsjoe Group, central Norway; a lower Palaeozoic island arc sequence; geochemistry and regional implications. *The Caledonide orogen-Scandinavia and related areas*, 745-762.
- Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. *Chemical geology*, 211(1-2), 47-69.
- Kearey, P. (2001). The new penguin dictionary of geology (2nd ed. ed.). Penguin Books.
- Lutgens, F. K., Tarbuck, E. J., & Tasa, D. (2015). *Essentials of geology* (12th ed., Global ed. ed.). Pearson.
- Mezger, K., & Krogstad, E. (1997). Interpretation of discordant U-Pb zircon ages: An evaluation. *Journal of metamorphic Geology*, 15(1), 127-140.
- Murphy, J., Pisarevsky, S., Nance, R., & Keppie, J. (2001). Animated history of Avalonia in Neoproterozoic-early Palaeozoic. *Journal of Virtual Explorer*, *3*, 45-58.
- Nance, R. D., Murphy, J. B., Strachan, R. A., Keppie, J. D., Gutiérrez-Alonso, G., Fernández-Suárez, J., Quesada, C., Linnemann, U., D'lemos, R., & Pisarevsky, S. A. (2008). Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. *Geological Society*, *London, Special Publications*, 297(1), 345-383.
- Nesse, W. D. (2012). Introduction to mineralogy (2nd ed. ed.). Oxford University Press.

- NGU. (2015). *Berggrunnsgeologi* NGU. Retrieved 25.01.2021 from <u>https://www.ngu.no/emne/berggrunnsgeologi</u>
- NGU. (2020). *Berggrunnskart*. NGU. Retrieved 24.01.2021 from https://www.ngu.no/sites/default/files/postkortkart_nyver_14.pdf
- NGU. (2021a). Database for geologiske enheter Åsliformasjonen NGU. Retrieved 16.04.2021 from https://aps.ngu.no/pls/utf8/geoenhet_SokIDb.Vis_enhet?p_spraak=N&p_id=147595
- NGU. (2021b). [Løsmasser nasjonal løsmassedatabase]. NGU. Retrieved 03.02.2021 from http://geo.ngu.no/kart/losmasse_mobil/
- Nichols, G. (2009). Sedimentology and stratigraphy (2nd ed. ed.). Wiley-Blackwell.
- Nilsen, O. (1971). Sulphide mineralization and wall rock alteration at Rødhammeren mine, SØr-Trøndelag, Norway. *Norsk Geologisk Tidsskrift*, *51*, 329-354.
- Nilsen, O. (1978). Caledonian sulphide deposits and minor iron-formations from the southern Trondheim region, Norway.
- Nilsen, O. (1988). The tectonostratigraphic setting of stratabound sulphide deposits in the southern Trondheim region, Central Norwegian Caledonides.
- Nilsen, O., Corfu, F., & Roberts, D. (2007). Silurian gabbro-diorite-trondhjemite plutons in the Trondheim Nappe Complex, Caledonides, Norway: petrology and U-Pb geochronology. *Norwegian Journal of Geology/Norsk Geologisk Forening*, 87(3).
- Nilsen, O., Sundvoll, B., Roberts, D., & Corfu, F. (2003). U-Pb geochronology and geochemistry of trondhjemites and a norite pluton from the SW Trondheim Region, Central Norwegian Caledonides. NORGES GEOLOGISKE UNDERSOKELSE, 441, 5-16.
- Ofstad, F., Dumais, M.-A., Wang, Y., Szitkar, F., Tassis, G., Brönner, M., Ksienzyk, A. K., Olesen, O., Nasuti, A., & Baranwa, V. (2019). *Helicopter-borne magnetic, electromagnetic and radiometric geophysical survey in Selbu, Tydal Holtålen and Røros, Trøndelag.* (2019.034).
- Oftedahl, C. (1981). Norges geologi : en oversikt over Norges regionalgeologi (2. utg. ed.). Tapir.
- Olesen, N., Hansen, E., Kristensen, L., & Thyrsted, T. (1973). A preliminary account on the geology of the Selbu-Tydal area, the Trondheim region, Central Norwegian Caledonides. *Leidse Geologische Mededelingen*, *49*(2), 259-276.
- Pollock, J. C., Hibbard, J. P., & van Staal, C. R. (2012). A paleogeographical review of the peri-Gondwanan realm of the Appalachian orogen1This article is one of a series of papers published in this CJES Special Issue: In honour of Ward Neale on the theme of Appalachian and Grenvillian geology. *Canadian Journal of Earth Sciences*, 49(1), 259-288.
- Raade, G. (2009, 03.08.2020). *Glimmerskifer* Store norske leksikon. Retrieved 14.05.2021 from <u>https://snl.no/glimmerskifer</u>
- Ramberg, I. B., Bryhni, I., Nøttvedt, A., & Ragnes, K. (2013). *Landet blir til : Norges geologi* (2. utg. ed.). Norsk geologisk forening.
- Rui, I. J. (1972). Geology of the Røros district south-eastern Trondheim region with a special study of the Kjøliskarvene-Holtsjøen area. *Nor Geol Tidsskr*, 52, 1-21.

- Rui, I. J., & Bakke, I. (1975). Stratabound sulphide mineralization in the Kjøli area, Røros district, Norwegian Caledonides. *Nor Geol Tidsskr*, 55, 51-75.
- Selbekk, R. S. (2009, 19.03.2020). *Aktinolitt*. Store norske leksikon. Retrieved 02.06.2021 from <u>https://snl.no/aktinolitt</u>
- Selbekk, R. S., & Askheim, S. (2009, 09.03.2020). *Trondhjemitt* Store norske leksikon Retrieved 13.05.2021 from <u>https://snl.no/trondhjemitt</u>
- Sigmond, E. M. O., Bryhni, I., Jorde, K., & Norges geologiske, u. (2013). Norsk geologisk ordbok : med engelsk-norsk ordliste. Akademika forl.
- Slagstad, T., Pin, C., Roberts, D., Kirkland, C. L., Grenne, T., Dunning, G., Sauer, S., & Andersen, T. (2014). Tectonomagmatic evolution of the Early Ordovician suprasubduction-zone ophiolites of the Trondheim Region, Mid-Norwegian Caledonides. *Geological Society, London, Special Publications, 390*(1), 541-561.
- Spjeldnæs, N. (2009a, 16.09.2019). *Geologisk datering* Store norske leksikon Retrieved 22.04.2021 from https://snl.no/geologisk_datering
- Spjeldnæs, N. (2009b, 23.08.2020). *Kalkstein*. Store norske leksikon. Retrieved 14.05.2021 from https://snl.no/kalkstein
- Stokke, E. W., Gasser, D., Dalslåen, B. H., & Grenne, T. (2018). Tectonic evolution of syn-to late-orogenic sedimentary–volcanic basins in the central Norwegian Caledonides. *Journal of the Geological Society*, 175(4), 605-618.
- Tresselt, R. Y. K., Oppistov, T. G., & Helgheim, S. Ø. (2017). Blåhenbekksvartskiferen: et vindu i ordovisisk paleogeografi og avsetningsmiljø
- Vermeesch, P. (2004). How many grains are needed for a provenance study? *Earth and Planetary Science Letters*, 224(3-4), 441-451.
- Vermeesch, P. (u.å.). *Isotope Geology Part I: Radiometric Geochronology*. Retrieved 23.04.2021 from <u>https://www.ucl.ac.uk/~ucfbpve/geotopes/index.html#tailindex</u>
- Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W., Meier, M., Oberli, F. v., Quadt, A. v., Roddick, J., & Spiegel, W. (1995). Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. *Geostandards newsletter*, 19(1), 1-23.
- Wolff, F. (1989). Trondheim. Berggrunnskart Trondheim M 1: 250 000; trykt i farger.
- Wolff, F., & Nilsen, O. (1989). Røros og Sveg. Berggrunnskart Røros og Sveg M 1: 250 000; trykt i farger.
- Wolff, F. C. (1964). Stratigraphical position of the Gudå conglomerate zone.
- Åm, K. (1967). En undersøkelse av de geologiske årsaker til den store aeromagnetiske anomali i Gulåskifrene vestenfor deres grense med Støren grønnstener i området Holtaalen-Høystakken i Øielvdalen. Norges tekniske høgskole

Berggrunnskart med berggrunnsprofil 1:40 000

Berggrunnskart med prøvelokaliteter 1:40 000

Tegnforklaring

Berggrunnskart - våre observasjoner fra SIGMA 1:40 000

Berggrunnskart - NGUs observasjoner fra SIGMA 1:40 000

Berggrunnskart med dolerittganger 1:40 000

	ppm					Ratios												
Name	U	Th	20	³⁶ Pb ²⁰⁶ Pb _c (%)	206/204	207 Pb ^{/206} Pb	1SE ²	²⁰⁸ Pb ^{/206} Pb	1SE	²⁰⁷ Pb ^{/235} U	1SE	²⁰⁶ Pb ^{/238} U	1SE	Rho	²⁰⁸ Pb ^{/232} Th	1SE	²³² Th ^{/238} U	1SE
DG12-01-		268	24,8	76,3 .	6128	0,12577	0,00164	0,02707	0,00631	5,98533	0,11942	0,34515	0,00521	0,757	0,10027	0,00195	0,09316	0,02161
DG12-02-		486	23,7	119,1 .	14460	0,10549	0,00123	0,01409	0,00329	4,33444	0,07611	0,29799	0,00392	0,748	0,08575	0,00159	0,04897	0,01138
DG12-03-		155	15,3	32,7 .	3328	0,09642	0,00123	0,03101	0,00754	3,55465	0,11802	0,26739	0,0082	0,923	0,08309	0,00177	0,09981	0,02398
DG12-04-		88	9,2	11,1 .	1355	0,07767	0,00185	0,03602	0,00852	1,65218	0,04492	0,15428	0,00203	0,484	0,05267	0,00181	0,10552	0,02465
DG12-05-		150	19,2	33,8 .	3644	0,11521	0,0016	0,0424	0,01021	4,48129	0,13818	0,2821	0,00777	0,894	0,09243	0,00212	0,12941	0,03082
DG12-06-		217	14,6	34,4 .	4169	0,07683	0,00089	0,02076	0,00488	2,05192	0,03595	0,1937	0,00254	0,748	0,0595	0,00113	0,06758	0,01579
DG12-07-		175	38,4	12,6 .	735	0,05869	0,00086	0,06788	0,01692	0,72194	0,01378	0,08921	0,00109	0,641	0,02738	0,00039	0,22121	0,05497
DG12-08-		91	6,8	26,3 .	1824	0,1737	0,0032	0,0285	0,00694	8,67519	0,30128	0,36223	0,01066	0,847	0,13726	0,00405	0,07521	0,01803
DG12-09-		241	28,6	21 .	1170	0,06126	0,00087	0,03693	0,00883	0,90773	0,01794	0,10747	0,00148	0,696	0,03316	0,00054	0,11968	0,02851
DG12-10-		250	16,8	35,5 .		0,07421	0,00084	0,02039	0,00479	1,78666	0,03871	0,17461	0,00322	0,851	0,05253	0,00107	0,06777	0,0158
DG12-11-		119	8,7	16 .	1955	0,08161	0,00121	0,02852	0,00775	1,86527	0,03878	0,16576	0,00243	0,704	0,06368	0,0014	0,07423	0,02008
DG12-12-		24	2,8	1,9 .		0,05613	0,00187	0,03648	0,00885	0,77201	0,02865	0,09975	0,00164	0,444	0,03148	0,00084	0,11558	0,02781
DG12-13-		778	65,8	59,4 .	3893	0,05855	0,00061	0,02556	0,00598	0,75527	0,01132	0,09356	0,001	0,714	0,02808	0,00039	0,08514	0,01988
DG12-14-		80	3,8	7,7 .	788	0,06619	0,00101	0,01668	0,00391	1,08076	0,02527	0,11843	0,0021	0,759	0,04172	0,00097	0,04736	0,01102
DG12-15-		280	22,3	48,5 .	4947	0,08468	0,00099	0,02555	0,00609	2,45522	0,05712	0,21029	0,00423	0,865	0,06709	0,00131	0,08009	0,01894
DG12-16-		281	45,1	64,3 .		0,09895	0,00116	0,04771	0,01164	3,81838	0,07509	0,27987	0,00441	0,802	0,0827	0,00144	0,16145	0,03921
DG12-17-		142	10,2	19,7 .	2400	0,07612	0,00097	0,0232	0,00544	1,78498	0,03498	0,17007	0,00253	0,76	0,05444	0,00102	0,07246	0,01692
DG12-18-		258	42,1	56 .		0,10134	0,00132	0,05197	0,01234	3,77433	0,10354	0,27012	0,00653	0,881	0,08524	0,00169	0,16469	0,03877
DG12-19-		90	11,1	20,3 .		0,09962	0,00142	0,03729	0,00973	3,96473	0,09929	0,28866	0,00595	0,823	0,08689	0,00171	0,12387	0,03214
DG12-20-		447	29,4	87,4 .		0,08993	0,00102	0,02014	0,00477	2,98546	0,05741	0,24078	0,00375	0,809	0,07308	0,00129	0,06636	0,01563
DG12-21-		782	21,7	59,7 .	2677	0,06378	0,00085	0,01089	0,0026	0,82114	0,0137	0,09337	0,00093	0,6	0,03646	0,00095	0,02789	0,00663
DG12-22-		119	5,6	19,4 .		0,07945	0,00103	0,01415	0,00331	2,18062	0,05081	0,19905	0,00386	0,832	0,05914	0,00118	0,04764	0,01106
DG12-23-		79	5,5	23,1 .		0,15529	0,00257	0,02382	0,00568	7,77933	0,2339	0,36333	0,00912	0,835	0,12227	0,00296	0,07078	0,01671
DG12-24-		83	11,2	15.	1274	0,09155	0,00121	0,05061	0,01238	2,78438	0,05167	0,22057	0,00288	0,704	0,082	0,00175	0,13613	0,03313
DG12-25-		110	15,2	24,5 .	1890	0,10809	0,0016	0,04543	0,01117	4,19146	0,12292	0,28125	0,00711	0,863	0,09137	0,00194	0,13983	0,03407
DG12-20-		101	7,8	20,3 .	1071	0,09611	0,00133	0,02498	0,00602	3,30013	0,10505	0,24903	0,00714	0,901	0,08037	0,00171	0,07741	0,01845
DG12-27-		1/0	4,1	10,7 .	1262	0,07646	0,00157	0,01792	0,00446	2 06901	0,08044	0,15645	0,00075	0,907	0,05925	0,00153	0,04734	0,01159
DG12-28-		143	76	22,4 .	2722	0,00030	0,00101	0,02074	0,00047	4 02474	0,04200	0,10073	0,00303	0,795	0,00000	0,00103	0,08204	0,01973
DG12-29-		240	17.1	24,5 . 125	2132	0,1000	0,00142	0,02077	0,00507	2 871/3	0,13120	0,27399	0,0090	0,935	0,00340	0,00243	0,00010	0,01034
DG12-30-		179	19.8	35.6	3493	0,0300	0,00100	0,02077	0,00042	3 0922	0,05733	0.24361	0.00344	0,030	0,0002	0,00173	0,07107	0.02601
DG12-32-		498	34.6	101.6	0400	0 10073	0.00116	0.02084	0.00491	3 50235	0,00001	0.25216	0.0058	0.895	0.07502	0.00134	0.07005	0.01639
DG12-33-		256	12.4	54.3	4838	0,10463	0.00126	0.01532	0.00363	3,76521	0.08268	0.261	0.0048	0.838	0.08192	0.00202	0.04883	0.01146
DG12-34-		483	32	75.3 .	9543	0.07861	0.00084	0.02053	0.00487	2,08239	0.03905	0.19213	0.00296	0.822	0.05901	0.00104	0.06685	0.01578
DG12-35-		71	3,9	10.	988	0,08023	0,00137	0,02203	0,00539	1,90953	0,04286	0,17263	0,00252	0,651	0,0683	0,00167	0,05567	0,01353
DG12-36-		111	8,2	20 .	2021	0,10525	0,00135	0,02717	0,00646	3,21736	0,07688	0,2217	0,00446	0,843	0,0807	0,00222	0,07465	0,01755
DG12-37-		125	10,1	24,5 .	1669	0,09312	0,0016	0,02554	0,00601	3,07584	0,06725	0,23957	0,00325	0,62	0,07502	0,00193	0,08155	0,01904
DG12-38-		356	16,9	83,8 .		0,10526	0,00211	0,01436	0,0036	4,23232	0,1066	0,29161	0,00443	0,603	0,08782	0,00171	0,04769	0,0119
DG12-39-		315	28,5	58,9 .		0,08743	0,00098	0,02872	0,00684	2,77153	0,05354	0,22991	0,00362	0,814	0,07231	0,0014	0,09131	0,02161
DG12-40-		173	20,2	45,1 .		0,12009	0,00174	0,03635	0,00868	5,33029	0,14996	0,32192	0,00776	0,857	0,09962	0,00215	0,11747	0,0278
DG12-41-		144	24	25,4 .		0,08437	0,00112	0,05118	0,01304	2,54033	0,04984	0,21838	0,00315	0,735	0,06668	0,00119	0,16763	0,04253
DG12-42-		112	12,4	20,8 .		0,09316	0,0013	0,03932	0,00941	2,90635	0,07001	0,22626	0,00444	0,814	0,08026	0,00163	0,11086	0,02633
DG12-43-		301	15,8	76,3 .	8704	0,10878	0,00153	0,01559	0,00366	4,63812	0,10175	0,30922	0,0052	0,767	0,09133	0,00205	0,05279	0,01229
DG12-44-		173	15,7	47,4 .		0,125	0,00168	0,02619	0,00619	5,73785	0,1155	0,33292	0,00498	0,744	0,09569	0,00199	0,09113	0,02141
DG12-45-		154	9,2	22,1 .		0,07432	0,001	0,01847	0,00439	1,80741	0,03439	0,17637	0,00238	0,708	0,05425	0,00095	0,06004	0,01421
DG12-46-		111	21,9	29.	3233	0,11217	0,0015	0,05914	0,01388	4,92684	0,11569	0,31857	0,00615	0,822	0,09497	0,00204	0,19838	0,04619
DG12-47-		139	23,8	15,9 .	074	0,0706	0,00099	0,06484	0,0164	1,34587	0,0291	0,13825	0,00227	0,759	0,05212	0,00096	0,17197	0,0433
DG12-48-		00	10,9	6,9.	871	0,07059	0,00144	0,06734	0,01053	1,54138	0,05862	0,15837	0,00508	0,843	0,05433	0,0011	0,19628	0,0476
DG12-49-		105	10,9	9,2.	540	0,07220	0,00117	0,04966	0,01255	1,03057	0,0329	0,10445	0,00195	0,591	0,05096	0,00092	0,10025	0,04027
DG12-50-		103	10.7	24.7	545	0,07511	0,00170	0,01431	0,00343	3 23202	0,02739	0,09991	0,00127	0,477	0,03475	0,00194	0,02012	0,00021
DG12-51-		245	21.6	36	4494	0,03307	0,00110	0,03000	0,01100	1 92712	0.0352	0,24037	0,0037	0.761	0,07000	0,00103	0.0887	0.02086
DG12-53-		168	13.6	36.8	3360	0.09561	0.0012	0.02513	0.00595	3 54023	0.07006	0.26854	0.0041	0 772	0.0828	0.0019	0.08151	0.01915
DG12-54-		200	12.4	34.6	4035	0.08471	0.0011	0.02033	0.00479	2,48307	0.06387	0.2126	0.00472	0.863	0.06938	0.00169	0.0623	0.01454
DG12-55-		186	19.1	35.3 .		0.0853	0.00099	0.03292	0.00772	2,71496	0.05571	0.23084	0.0039	0.823	0.07358	0.00165	0.10328	0.02403
DG12-56-		220	12,2	22 .		0,0642	0,00082	0,01973	0,00468	1,08781	0,02248	0,12288	0,00199	0,783	0,04344	0,00104	0,05583	0,01315
DG12-57-		154	18	38,9 .		0,11035	0,0014	0,03534	0,00843	4,70953	0,09467	0,30954	0,00483	0,776	0,09274	0,00201	0,11796	0,02797
DG12-58-		150	21,8	25,3 .	2698	0,08468	0,0011	0,04646	0,01091	2,41993	0,0472	0,20727	0,00302	0,746	0,06584	0,00117	0,14625	0,03418
DG12-59-		303	47,5	63,7 .		0,09773	0,00116	0,05165	0,01252	3,46427	0,06439	0,25709	0,00367	0,767	0,08417	0,00239	0,15777	0,03792
DG12-60-		46	8	10,6 .		0,10322	0,00146	0,05422	0,01281	4,00447	0,08544	0,28138	0,0045	0,749	0,08738	0,00194	0,17459	0,04098

DG12-61-	365	64,7	30,4 .		0,0591	0,00077	0,05538	0,01444	0,84424	0,01536	0,10361	0,00132	0,701	0,0321	0,00056	0,17874	0,04645
DG12-62-	157	22,4	35 .	3091	0,09401	0,00117	0,03927	0,0102	3,56941	0,07174	0,27538	0,00435	0,786	0,07528	0,00143	0,14364	0,03715
DG12-63-	90	9,2	6,6 .	535	0,05964	0,00117	0,03241	0,00757	0,73929	0,0177	0,0899	0,00124	0,577	0,02824	0,00052	0,10317	0,02397
DG12-64-	135	28,3	33,3 .	1998	0,10253	0,00131	0,06109	0,0144	4,2526	0,08507	0,30082	0,00464	0,771	0,08725	0,00182	0,21063	0,04936
DG12-65-	198	19,2	28,4 .		0,07424	0,00086	0,03046	0,00746	1,81304	0,03199	0,17712	0,00235	0,752	0,055	0,00098	0,09811	0,02394
DG12-66-	104	8,3	13,5 .	1697	0,0769	0,00124	0,02695	0,00654	1,68119	0,03576	0,15855	0,00221	0,654	0,05332	0,00129	0,08015	0,01933
DG12-67-	122	22,3	15,8 .		0,07074	0,00104	0,05716	0,01343	1,55616	0,03192	0,15955	0,00228	0,695	0,04947	0,00087	0,18434	0,04312
DG12-68-	200	11,7	40,9 .		0,0915	0,0013	0,01802	0,00424	3,15167	0,06614	0,2498	0,00387	0,738	0,07676	0,00167	0,05864	0,01369
DG12-69-	49	3,9	6,7 .		0,07457	0,00143	0,0255	0,00607	1,71792	0,04022	0,16709	0,00224	0,574	0,05383	0,00121	0,07914	0,01873
DG12-70-	291	23,8	25,2 .	2224	0,06226	0,00079	0,0269	0,0063	0,90503	0,01682	0,10542	0,00144	0,733	0,03444	0,00069	0,08233	0,01919
DG12-71-	360	51,2	61,4 .		0,08451	0,00099	0,04645	0,01086	2,4239	0,04296	0,20803	0,00276	0,748	0,06744	0,00126	0,14326	0,03334
DG12-72-	312	25,2	47,9.	3103	0,08223	0,00096	0,02556	0,00609	2,14341	0,04374	0,18905	0,00316	0,82	0,05936	0,00121	0,0814	0,01927
DG12-73-	118	15,7	23,3 .	2170	0,10304	0,00163	0,04725	0,0114	3,55711	0,12671	0,25039	0,00799	0,896	0,08819	0,00194	0,13416	0,03195
DG12-74-	422	72	29.	3170	0,05919	0,00074	0,05389	0,01387	0,68116	0,0115	0,08347	0,00094	0,667	0,02617	0,00039	0,17184	0,0441
DG12-75-	101	8,1	14,8 .	729	0,07729	0,00105	0,02714	0,00641	1,91603	0,0368	0,17981	0,00244	0,708	0,06037	0,00122	0,08084	0,01899
DG12-76-	37	3,3	4,6.	000	0,07368	0,00178	0,02892	0,00681	1,54045	0,04349	0,15164	0,00221	0,516	0,04862	0,0011	0,0902	0,0211
DG12-77-	73	6,3	9,6.	900	0,07101	0,00124	0,02722	0,00639	1,57304	0,03443	0,16066	0,00212	0,602	0,04967	0,00098	0,08804	0,02057
DG12-78-	357	22,5	78,1.	000	0,10135	0,00124	0,02066	0,00492	3,71396	0,08126	0,26577	0,00481	0,828	0,08632	0,00173	0,06361	0,01506
DG12-79-	73	7,4	10,4 .	929	0,07582	0,00122	0,03212	0,00774	1,82635	0,03903	0,1747	0,00246	0,66	0,055	0,00118	0,10204	0,02445
DG12-80-	288	22,2	24,2 .	0707	0,06089	0,00067	0,02513	0,00587	0,86177	0,01477	0,10264	0,00135	0,77	0,03325	0,00063	0,07757	0,01804
DG12-81-	183	17,5	29,8.	3727	0,07981	0,00101	0,0294	0,00695	2,19743	0,04185	0,19969	0,00284	0,747	0,06083	0,00122	0,09653	0,0227
DG12-02-	000	40,1	46,9.	4901	0,00051	0,00075	0,01601	0,00447	0,09576	0,0110	0,06559	0,00096	0,66	0,02645	0,00046	0,03665	0,01403
DG12-03-	120	0.7	14,1.		0,07012	0,00123	0,0590	0,01661	2,10071	0,04695	0,2032	0,00297	0,66	0,06127	0,00123	0,19707	0,034664
DG12-04-	130	9,7	17,7 .		0,07023	0,00084	0,02173	0,00513	1,52342	0,02012	0,15732	0,00221	0,762	0,04617	0,00104	0,07096	0,01004
DG12-03-	255	47,9	20,9 .	2650	0,00176	0,00086	0,0454	0,01062	2 12520	0,01914	0,10576	0,00169	0,754	0,03307	0,00055	0,14521	0,03379
DG12-00-	200	20,3	40,1.	5700	0,00003	0,00097	0,03903	0,00941	2,13339	0,00740	0,19200	0,00240	0,729	0,00379	0,00132	0,11933	0,02010
DG12-87-	JU9 /16	23,2	04,3 . 45 1	5750	0,10003	0,00143	0,02043	0,00022	4,09043	0,09951	0,27012	0,00303	0,834	0,09219	0,00233	0,07973	0,01000
DG12-80-	2/2	21.0	43,1 .	3015	0.08581	0,00030	0.02822	0,00000	2 58023	0,05019	0,13313	0,00205	0,044	0,05235	0,00125	0.08921	0.02105
DG12-09-	63	21,4	4J. 81	3013	0,00301	0,00100	0,02022	0,0007	2,50925	0,03019	0,21003	0,00320	0,708	0,00924	0,00143	0,00921	0.02103
DG12-90-	113	9.7	23.2	2379	0.09298	0.00182	0.02743	0,00472	3 23796	0,0520	0,1373	0,00212	0,052	0,08006	0.00354	0.08653	0.0205
DG12-92-	303	59	25.5	2952	0.06469	0.00113	0.06555	0.01575	0,92069	0.02025	0 10322	0.00138	0,609	0.03447	0.00073	0 19631	0.04691
DG12-93-	233	37.5	56	2002	0 10934	0.00141	0.0519	0.01216	4 41778	0.08995	0 29303	0.00462	0 774	0.09362	0.0021	0 16245	0.03781
DG12-94-	194	21.2	13	1086	0.05941	0.00114	0.03562	0.00884	0.67355	0.01581	0.08223	0.00111	0,577	0.02663	0.00053	0 10996	0.02717
DG12-95-	148	19.6	23.4	1000	0.07933	0.00104	0.04216	0.00986	2 11491	0.04	0 19335	0.00263	0,719	0.0612	0.00121	0 13318	0.031
DG12-96-	58	7	7.6	886	0.0723	0.00132	0.04225	0.00989	1,57539	0.03824	0.15804	0.00253	0.661	0.05529	0.00112	0.12077	0.02809
DG12-97-	152	11.2	27.1 .	2254	0.08472	0.00103	0.02424	0.0057	2.54573	0.04828	0.21794	0.00318	0.769	0.07105	0.00152	0.07436	0.01739
DG12-98-	185	17	36.2 .		0.09988	0.00134	0.03382	0.00813	3.33521	0.08501	0.24219	0.00525	0.851	0.08885	0.00206	0.0922	0.02196
DG12-99-	207	16.5	40.5 .		0.08826	0.00111	0.02477	0.00592	2.92617	0.06471	0.24044	0.00438	0.824	0.07408	0.00177	0.0804	0.01906
DG12-100-	166	9,9	20,6 .	1703	0,06908	0,00099	0,01875	0,00446	1,46334	0,03609	0,15363	0,00309	0,816	0,04815	0,00099	0,05984	0,01413
DG12-101-	820	56,9	74,4 .	7117	0,06196	0,0007	0,02134	0,00509	0,94721	0,01532	0,11088	0,00129	0,717	0,03383	0,00057	0,06995	0,01661
DG12-102-	650	83,8	45,8 .	2776	0,05969	0,00072	0,04128	0,01031	0,71227	0,01191	0,08655	0,00101	0,694	0,0275	0,00046	0,12988	0,03234
DG12-103-	353	58	27,3 .		0,05865	0,00069	0,05128	0,01401	0,7866	0,01658	0,09727	0,0017	0,83	0,03013	0,00061	0,16554	0,045
DG12-104-	192	11,8	23,9 .	2681	0,09736	0,00259	0,02288	0,00734	2,98997	0,23315	0,22273	0,01633	0,94	0,08201	0,0035	0,06213	0,01922
DG12-105-	509	89,4	39,4 .		0,05937	0,00067	0,05582	0,01333	0,77808	0,0129	0,09505	0,00115	0,732	0,02999	0,0005	0,17692	0,04209
DG12-106-	232	20	40,1 .		0,08499	0,00113	0,02662	0,00631	2,50279	0,05829	0,21357	0,00409	0,823	0,06536	0,00152	0,08699	0,02046
DG12-107-	553	72,7	37,6 .	2523	0,06109	0,00078	0,04309	0,01015	0,70132	0,01231	0,08326	0,00101	0,689	0,0271	0,00046	0,1324	0,03105
DG12-108-	612	50,8	55,6 .		0,06251	0,00068	0,02657	0,00631	0,95999	0,016	0,11139	0,00141	0,761	0,0354	0,00083	0,08361	0,01974
DG12-109-	33	1,9	5.		0,07717	0,00171	0,01699	0,00402	1,94189	0,05351	0,18249	0,00298	0,592	0,05555	0,00155	0,05581	0,01307
DG12-110-	727	163,1	57,3 .	4072	0,06088	0,00071	0,07332	0,01728	0,80808	0,01311	0,09626	0,00108	0,693	0,03122	0,00052	0,22607	0,05308
DG12-111-	327	64	24,5 .	1726	0,05916	0,00069	0,06209	0,01497	0,75177	0,01274	0,09217	0,00113	0,725	0,02899	0,0005	0,19739	0,04741
DG12-112-	511	49	36,4 .		0,0584	0,0007	0,03084	0,00737	0,70472	0,01273	0,08751	0,00118	0,745	0,02794	0,0005	0,09661	0,02299
DG12-113-	145	17,8	21,8 .	1645	0,07738	0,00119	0,04	0,00936	1,96355	0,0417	0,18404	0,0027	0,692	0,05946	0,00117	0,12379	0,0288
DG12-114-	337	70	24,9 .	3101	0,05998	0,00077	0,06665	0,01554	0,7468	0,01441	0,0903	0,0013	0,747	0,02879	0,00053	0,20905	0,04849
DG12-115-	355	44,9	25,5 .		0,05884	0,00078	0,04054	0,0095	0,71465	0,01427	0,08808	0,00131	0,746	0,02798	0,0005	0,12763	0,02976
DG12-116-	825	33,8	102,8 .	7216	0,07097	0,00078	0,01152	0,00276	1,49056	0,02595	0,15232	0,00206	0,777	0,0425	0,00113	0,04127	0,0098
DG12-117-	151	20,6	28,4 .	2141	0,09644	0,00129	0,05167	0,01281	3,08987	0,06585	0,23237	0,00385	0,778	0,08729	0,00227	0,13756	0,03384
DG12-118-	518	82,7	41,2 .	5079	0,06031	0,00068	0,05109	0,01241	0,81452	0,01372	0,09796	0,00122	0,74	0,03113	0,00053	0,16077	0,0389
DG12-119-	263	13,8	35,6 .	1970	0,09151	0,00299	0,02143	0,00559	2,23334	0,14023	0,177	0,00949	0,854	0,07175	0,00201	0,05286	0,01341
DG12-120-	288	24,5	37.		0,0705	0,00085	0,02749	0,00645	1,52349	0,02689	0,15672	0,00203	0,733	0,05029	0,00103	0,08568	0,01999
DG12-121-	411	56,6	27,7 .		0,05835	0,00077	0,04426	0,01059	0,66352	0,01181	0,08247	0,00098	0,668	0,02633	0,00047	0,13865	0,03305
DG12-122-	327	25,6	77,9 .		0,10345	0,00127	0,0235	0,00554	4,15345	0,08506	0,29119	0,00476	0,799	0,08674	0,00211	0,0789	0,01847

U-Pb discorda	ance	Ages (Ma)											Inter	rnal prec	ision (perce	nt standard e	rror from count	ing statistics
Central (%)	Minimum rim (%)	207/206	1s 2	207/235	1s 20	06/238	1s 2	08/232	1s	from to	Tir	ne	U		²⁰⁰ Pb	206/204	²⁰⁷ Pb/ ²⁰⁸ Pb* ²	⁰⁷ Pb/ ²³⁵ U*
-7,27	-0,19	2040	22	1974	17	1911	25	1931	36	3	28	15,05		0,74	1,27	23,42	0,37	0,96
-2,74		1723	21	1700	14	1681	19	1663	30	3	28 1	3,11667		1,12	0,87	17,17	0,33	0,55
-2,05		1556	23	1539	26	1528	42	1613	33	3	28 2	0,01667		5,45	2,62	23,65	0,71	3,07
-20,12	-6,77	1138	47	990	17	925	11	1038	35	3	28 2	2,56667		1,68	0,98	17,17	2,18	2,79
-16,85	-4,74	1883	23	1728	26	1602	39	1787	39	3	28	25,85		4,38	2,35	16,14	0,72	3,08
2,41		1117	21	1133	12	1141	14	1168	22	3	28 2	3,16667		2,26	1,6	23,51	0,67	0,97
-0,92		556	31	552	8	551	6	546	8	3	28 3),58333		5,81	5,24	41,78	1,19	1,35
-26,87	-17,74	2594	30	2304	32	1993	50	2600	72	3	28 3	3,41667		4,98	2,41	47,03	0,94	2,79
1,59		648	30	656	10	658	9	659	11	3	28 3	6,71667		4,26	3,31	27,81	1,12	1,34
-1,02		1047	22	1041	14	1037	18	1035	21	3	28 3	9,16667		2,11	0,89	17,16	0,64	1,69
-21,59	-11,92	1236	28	1069	14	989	13	1248	27	3	28 4	5,13333		8,55	8,2	26,6	1,11	1,05
35,64	14,11	457	69	581	16	613	10	627	16	3	28 4	7,53333		5,3	4,61	10,97	3,22	3,39
4,99		550	21	571	7	577	6	560	8	3	28 4	9,63333		2,2	1,65	27,59	0,6	0,87
-11,81		812	31	744	12	722	12	826	19	3	28 5	1,71667		1,22	1,01	27,54	1,23	1,68
-6,54		1308	23	1259	17	1230	23	1313	25	3	28	53,95		2,61	3,77	22,18	0,61	2,09
-0,96		1604	21	1597	16	1591	22	1606	27	3	28	70,4		5,07	4,61	14,37	0,46	0,95
-8,44		1098	24	1040	13	1012	14	1072	20	3	28	72,5		2,22	1,14	25,38	0,85	1,06
-7,32		1649	24	1587	22	1541	33	1653	32	3	28 7	1,61667		3,89	1,69	17,29	0,7	2,63
1,25		1617	26	1627	20	1635	30	1684	32	3	28 7	5,43333		11,65	8,89	22,77	0,92	2,38
-2,59		1424	20	1404	15	1391	19	1426	24	3	28	78,35		3,77	2,61	17,45	0,47	1,47
-22,62	-9,8	734	29	609	8	575	6	724	19	3	28 8),78333		3,48	3,27	33,38	1	1
-1,22		1183	25	1175	16	1170	21	1161	23	3	28 8	2,76667		1,2	1,67	13,47	0,86	1,72
-19,65	-10,69	2405	27	2206	27	1998	43	2331	53	3	28 8	1,81667		3,4	1,37	12,26	0,79	2,02
-13,1	-5,18	1458	23	1351	14	1285	15	1593	33	3	28 8	7,81667		4,17	3,58	28,19	0,81	1,06
-10,84		1767	26	1672	24	1598	36	1767	36	3	28	90,2		6,4	3,55	30,97	0,95	2,69
-8,38		1550	25	1481	25	1433	37	1562	32	3	28 9	1,98333		4,65	3,71	28,33	0,88	3,12
-20,54		1159	38	1006	30	937	38	1163	29	3	28	94		5,91	4,33	18,27	1,75	4,98
-9,21		1206	24	1139	14	1104	17	1194	20	3	28 9	5,03333		5,66	4,2	28,41	0,79	1,65
-11,89		1746	24	1641	31	1561	49	1620	45	3	28 9	3,28333		4,74	1,1	23,39	0,71	3,6
-14,86		1498	27	1374	25	1296	35	1615	33	3	28 1	00,0667		4,4	1,48	17,27	1,05	3,68
-4,79		1469	23	1431	14	1405	18	1460	27	3	28 1	14,0167		3,05	2,24	25,49	0,6	1,07
-12,82	-1,08	1638	21	1528	20	1450	30	1462	25	3	28	115,95		3,08	1,21	20,05	0,34	2,27
-13,96	-4,96	1708	21	1585	18	1495	25	1591	38	3	28 1	18,0667		2,88	1,55	30,1	0,43	1,41
-2,76		1162	20	1143	13	1133	16	1159	20	3	28	120,1		3,99	3,15	19,01	0,45	1,3
-15,82	-4,42	1203	33	1084	15	1027	14	1335	32	3	28	122,15		3,38	2,43	21,94	1,4	2
-27,44	-19,14	1719	23	1461	19	1291	24	1569	42	3	28	124,2		2,76	1,25	27,56	0,63	1,94
-7,89		1490	32	1427	17	1384	17	1462	36	3	28 1	26,1833		2,11	1,69	25,39	1,36	1,51
-4,57		1719	36	1680	21	1650	22	1701	32	3	28	128,5		9,16	8,33	17,97	1,67	1,94
-2,9		1370	20	1348	14	1334	19	1411	26	3	28 1	30,2833		3,62	2,65	17,35	0,47	1,15
-9,27		1958	25	1874	24	1799	38	1919	39	3	28 1	32,4333		3,89	2,62	21,97	0,78	2,67
-2,35		1301	25	1284	14	1273	17	1305	22	3	28 1	34,5333		7,79	6,55	20,32	0,88	0,82
-13,06	-1,97	1491	25	1384	18	1315	23	1560	31	3	28	137		2,58	2,45	17,49	0,92	2,1
-2,71		1779	24	1756	18	1737	26	1767	38	3	28	140,15		1,83	1,37	23,43	0,82	0,78
-9,99	-3,12	2029	22	1937	17	1853	24	1847	37	3	28 1	46,2333		2,19	1,7	13,46	0,49	0,94
-0,32		1050	26	1048	12	1047	13	1068	18	3	28 1	48,5333		3,57	2,72	13,74	0,95	1,17
-3,25		1835	24	1807	20	1783	30	1834	38	3	28 1	78,3667		1,31	0,97	17,16	0,64	1,72
-12,53		946	28	866	13	835	13	1027	18	3	28 1	31,3833		4,82	5,76	13,93	1,05	1,45
0,26		945	40	947	23	948	28	1069	21	3	28	183,1		6,7	3,65	17,89	1,82	3,58
-1,29		993	31	985	13	981	11	1005	18	3	28	185,05		6,61	6,07	25,17	1,32	1,3
-44,75	-35,08	1072	46	721	14	614	7	1077	37	3	28	186,95		3,58	2,93	37,13	2,14	2,35
-7,91		1529	23	1465	15	1421	19	1491	31	3	28 1	38,8167		3,08	2,13	14,76	0,63	1,04
-6,33		1135	22	1091	12	1069	14	1171	22	3	28 1	90,5667		2,69	1,96	21,79	0,67	1,2
-0,49		1540	23	1536	16	1533	21	1608	35	3	28	192,65		2,68	1,76	20,16	0,65	0,92
-5,56		1309	24	1267	19	1243	25	1356	32	3	28 1	94,4333		2,57	1,17	20,06	0,81	2,32
1,39		1322	22	1333	15	1339	20	1435	31	3	28 1	96,1333		1,33	1,55	18,65	0,57	1,48
-0,18		748	26	747	11	747	11	859	20	3	28 2	00,5167		3,19	1,99	16,09	0,91	1,7
-4,21		1805	22	1769	17	1738	24	1793	37	3	28 2	02,2333		2,67	2,07	13,59	0,5	0,97
-7,88		1308	25	1249	14	1214	16	1289	22	3	28	204,05		2,95	1,98	20,14	0,81	1,39
-7,52		1581	22	1519	15	1475	19	1633	45	3	28 2	05,8833		2,71	1,93	17,33	0,48	1,07
-5,67		1683	25	1635	17	1598	23	1693	36	3	28	208,25		2,19	1,63	15,95	0.86	1,04

11,93 .		ł	571 :	27 62 ⁻	1 8	636	8	639	11	3	28	223,35	8,04	7,04	18,9	0,94	1,29
4.46 .		15	508	23 1543	3 16	1568	22	1467	27	3	28	225,7833	6.97	6.02	26.63	0.63	1.38
-6.31			591	41 563	2 10	555	7	563	10	3	28	227 6667	1.39	0.98	25.35	1 74	1 78
17		16	370	23 168	1 16	1695	23	1691	34	3	28	229 4667	2 27	1.63	30,12	0.6	1.02
0.24		1(149	22 105	- 10 1 12	1050	12	1097	10	2	20	221 5167	7.22	6,40	20.27	0,65	0.06
16.22	4 75	1	140	23 1000	J 12	040	10	1062	15	3	20	231,3107	7,52	0,49	20,37	1.29	0,90
-10,33	-4,75	1		31 100	1 14	949	12	1050	23	3	20	233,05	3,01	2,92	10,07	1,20	1,30
0,5 .			950	29 95.	3 13	954	13	976	17	3	28	235,8	2,42	1,5	15,93	1,13	1,36
-1,51 .		14	157	26 144	o 16	1437	20	1495	31	3	28	237,6833	2,07	1,21	14,63	0,94	1,3
-6,21 .		10	057 :	38 101	5 15	996	12	1060	23	3	28	240,6	2,88	2,24	17,32	1,65	1,67
-5,71 .		6	683 2	26 654	4 9	646	8	684	14	3	28	244,5333	0,97	1,71	41,29	0,87	1,65
-7,23 .		1:	304	22 1250) 13	1218	15	1319	24	3	28	261,5667	1,69	1,6	13,49	0,57	0,89
-11,73	-0,61	12	251	23 1163	3 14	1116	17	1166	23	3	28	263,7333	3,43	2,28	20,27	0,57	1,41
-15.87		16	580 :	30 1540) 28	1440	41	1708	36	3	28	265.55	5.02	2.25	23.55	1.1	3.72
-10.39			574	26 52	7 7	517	6	522	8	3	28	267 8167	3.96	4 37	24 21	0.87	0.94
6.02		1	120	26 102	7 12	1066	12	1195	22	3	20	201,0101	2,33	1,60	41 14	0,07	1 22
-0,02.		1	123 .	47 04	7 17	1000	10	1105	23	3	20	203,0	2,55	1,09	41,14	0,92	1,32
-12,72 .		10	133	47 94		910	12	960	21	3	28	271,8833	2,11	1,44	15,95	2,21	2,31
0,3 .			158	34 960) 14	960	12	980	19	3	28	2/3,616/	1,03	1,7	30,17	1,46	1,46
-8,83 .		16	549 2	22 1574	4 18	1519	25	1673	32	3	28	275,7	1,86	2,69	18,84	0,48	1,61
-5,2 .		10	090 :	30 105	5 14	1038	14	1082	23	3	28	277,6167	4,37	3,89	24,32	1,27	1,43
-0,94 .		6	636	22 63	1 8	630	8	661	12	3	28	282,1667	1,18	1,2	21,68	0,59	1,07
-1,71 .		1.	192 2	24 1180) 13	1174	15	1194	23	3	28	289,9833	2,4	1,9	16	0,76	0,95
-17,66	-0,12	(522 2	26 530	6 7	516	6	528	9	3	28	295,6	5,45	5,27	28,22	0,83	0,92
4.06		1.	150	30 117	7 15	1192	16	1202	24	3	28	298.0833	9.43	8.62	25.02	1.21	1.23
0.78			335	24 94() 11	942	12	951	20	3	28	300 1167	2 37	1 59	15.95	0.7	1.02
2 90			67 ·	20 65	2 10	649	10	659	11	3	20	201 75	2,01	2,00	17.42	1.04	1,02
-2,09.		11	107	22 116	2 10	1122	10	1250	25	3	20	211 0222	1,91	3,02	27.92	1,04	1,13
-7,17		14	212	23 110	J 12	1133	13	1250	20	3	20	311,0333	2,91	2,42	27,02	0,63	1,03
-10,59	-0,4	1.	46	23 1654	4 20	1582	28	1782	43	3	28	312,9167	0,84	1,51	33,08	0,65	1,95
-28,81	-17,02	11	120 2	24 903	3 14	817	15	1043	24	3	28	314,75	5,61	3,93	13,05	0,73	2,21
-4,8 .		1:	334 :	23 1298	3 14	1276	17	1353	27	3	28	316,55	3,73	2,78	33,43	0,65	0,92
-7,23 .		1()13 :	30 966	5 13	945	12	1021	25	3	28	318,3167	1,33	0,83	18,54	1,21	1,44
-2,69 .		14	488 :	35 1466	5 20	1452	23	1557	66	3	28	320,1833	3,3	2,45	17,39	1,62	2,55
-17,99 .		-	764	35 663	3 11	633	8	685	14	3	28	321,9833	3,56	3,18	23,93	1,46	2,07
-8.36	-0.3	17	789	22 1710	5 17	1657	23	1809	39	3	28	323.85	1.32	1.5	13.46	0.49	1.02
-12 99	- / -	,	582	39 52	3 10	509	7	531	10	3	28	325.8	4 79	3.96	28.53	1.68	1 76
-3.78		1.	180	26 115	1 13	1140	11	1201	23	3	28	327 7333	1,68	1 00	20,00	0.82	1.08
-5,70.		'. '	100 2	26 06	1 15	046	14	1099	23	3	20	220,9667	1,00	1,03	20,00	1.52	1,00
-3,24 .			000	30 90	- 13	940	14	1000	21	3	20	329,0007	1,19	1,11	21,05	1,55	1,00
-3,21.		1.	309	24 128	5 14	1271	17	1387	29	3	28	331,05	2,32	1,62	47,12	0,6	1,03
-15,33	-4,34	16	522	24 1489	9 20	1398	27	1721	38	3	28	333,7833	4,28	2,39	25,49	0,7	2,15
0,06 .		1:	388	23 1389	9 17	1389	23	1445	33	3	28	335,7333	2,62	1,51	9,91	0,65	1,31
2,4 .		ę	901 :	29 91	5 15	921	17	950	19	3	28	337,6	3,97	2,09	27,77	1,04	2,23
0,81 .		6	573 2	24 67	7 8	678	7	672	11	3	28	355,6333	1,72	1,64	30,14	0,6	0,78
-10,07 .		ł	592 2	25 546	6 7	535	6	548	9	3	28	357,6833	5,34	4,94	22,69	0,74	0,96
8.37 .		ţ	554	25 589	9 9	598	10	600	12	3	28	359.6	11.23	10.14	18.9	0.7	1.67
-19.47		15	574	46 140	5 59	1296	86	1593	65	3	28	361.45	18.88	8.04	27.51	2.41	9.54
0.83			581 '	24 58	1 7	585	7	597	10	3	28	363.45	3.7	3 19	16.49	0.61	0.8
-5.65		11	315	25 127	3 17	1248	22	1280	20	3	20	367 1833	3 /1	2 28	16 11	0.78	2 04
20.54	2 5 2		510	27 54	7 7	516	6	540	23	3	20	260.15	2,41	2,20	20.14	0,70	2,04
-20,54	-3,55		042	27 540		516	0	540	9	3	20	309,13	2,01	2,1	30,14	0,64	0,9
-1,62 .			591	23 68	3 8	681	8	703	16	3	28	372,0667	3,16	2,59	20,29	0,49	0,64
-4,35 .		11	126	44 1096	5 18	1081	16	1093	30	3	28	373,9833	2,28	1,47	17,25	1,97	2,03
-7,03 .		(635 2	24 60 ⁻	1 7	592	6	621	10	3	28	376,2667	1,64	1,82	20,18	0,67	0,57
-0,82 .		Ę	573 2	24 569	9 7	568	7	578	10	3	28	378,2333	4,19	3,7	24,23	0,67	0,83
-0,81 .		Ę	545 2	25 542	2 8	541	7	557	10	3	28	380,1167	3,68	3	12,74	0,74	1,04
-4.04 .		1.	131 :	29 110	3 14	1089	15	1167	22	3	28	382	1.58	1.09	33.04	1.13	1.08
-7.9		6	503	28 566	6 8	557	8	574	10	3	28	384,45	0.79	1.32	23.39	0.85	1,16
-3.18		i	561	28 549	- 	544	Ř	558	10	3	28	386 1667	2 25	1 43	20.09	0.92	1.34
-4 79			957	22 07	7 11	01/	12	Q/1	22	3	20	387 0167	1 20	1.54	22,03	0,02	0.84
	6.02	41	56	22 4420	, il) 16	12/7	20	1601	42	3	20	206 1667	1,09	1,04	22 10	0.7	1 50
-14,9	-0,02	1		20 1430	- 10	1347	20	1091	42	3	28	390,1007	5,31	4,43	33,19	0,7	1,52
-2,07 .			010	∠ 3 60	5 8	602		620	10	3	28	398,3333	6,17	5,67	20,37	0,59	0,6
-30,22	-0,53	14	157	59 1192	2 44	1051	52	1400	38	3	28	400,2	9,33	8,38	27,99	3,07	4,64
-0,52 .		9	943 :	24 940) 11	939	11	992	20	3	28	402,4333	2,33	1,86	9,99	0,64	0,85
-6,17 .		ŧ	543 :	28 51	7 7	511	6	525	9	3	28	404,2333	4,38	4,19	15,33	0,91	1
-2,65 .		16	687 :	23 166	5 17	1647	24	1681	39	3	28	406	1,61	0,89	20,04	0,33	0,94

only)	Relative er	ror on reg	pression li	ne (%)	Tera-Wasse	rburg output f	for 3D regress	sion	11A CH16		Signal (volts)				Observed cr
²⁰⁰ Pb/ ²³⁰ U*	²⁰⁷ Pb/ ²⁰⁸ Pt	o* ²⁰ Pb/2	³⁵ U* ²⁰⁰ P	b/ ²³⁰ U*	²³⁰ U ^{/200} Pb	1s ²	Pb ^{/200} Pb	1s (²⁰⁴ Pb ^{/206} Pb	1s	204	206	207	238	
0,77	0,6	2	0,62	0,84	2,897	0,044	0,12577	0,00164	0,000163	3,82E-05	33,518285	205408,36	26122,255	4701,222	0,93
0,55	0,7	4	0,86	0,97	3,356	0,044	0,10549	0,00123	0,000069	1,19E-05	22,175284	320646,71	34178,554	8522,088	0,826
2,87	0,8	1	1,05	1,08	3,74	0,115	0,09642	0,00123	0,0003	7,11E-05	26,47541	88104,7	8572,5578	2711,55	0,974
0,94	1,0	1	2,26	1,87	6,482	0,085	0,07767	0,00185	0,000738	0,000127	22,087012	29918,927	2337,0364	1544,342	0,747
2,51	0,6	8	0,83	1,02	3,545	0,098	0,11521	0,0016	0,000274	4,43E-05	24,949559	90909,463	10561,768	2619,091	0,987
0,86	1,0	2	1,82	1,49	5,163	0,068	0,07683	0,00089	0,00024	5,64E-05	22,227048	92658,265	7191,1945	3808,613	0,741
0.88	1,3	3	5,17	3,23	11,21	0,137	0,05869	0,00086	0,001361	0,000569	46,324086	34031,553	2009,8078	3060,804	0,5
2,64	0,4	5	0,43	0,8	2,761	0,081	0,1737	0,0032	0,000548	0,000258	38,896595	70944,474	12428,507	1596,293	0,942
1,07	1,2	8	4,11	2,68	9,305	0,128	0,06126	0,00087	0,000854	0,000238	48,297604	56526,111	3496,6673	4221,989	0,587
1.58	1.0	6	2.09	1.65	5.727	0.106	0.07421	0.00084			19.43884	95599,464	7159.618	4375,718	0.925
1.12	0.9	6	2	1.74	6.033	0.088	0.08161	0.00121	0.000512	0.000136	22.017655	43041.017	3570,4643	2076.626	0.479
1.41	1	4	4.84	2.89	10.025	0.165	0.05613	0.00187	-,	-,	9.5145027	5242.5961	297,41286	421,3993	0.328
0.64	1.3	4	4.94	3.08	10.688	0,114	0.05855	0.00061	0.000257	7.09E-05	41.10971	160058.8	9453,4293	13635.18	0.721
1.54	1.1	8	3.45	2.43	8,444	0.15	0.06619	0.00101	0.001269	0.000349	26,456495	20855.2	1393,2298	1403,401	0.712
1.74	0.9	2	1.52	1.37	4,755	0.096	0.08468	0.00099	0.000202	4.48E-05	26,418664	130680.87	11208.833	4905.676	0.966
1.07	0.7	9	0.98	1.03	3.573	0.056	0.09895	0.00116	-,	.,	10.258513	173127.47	17343.598	4928,261	0.901
1.14	1.0	3	2.09	1.7	5.88	0.088	0.07612	0.00097	0.000417	0.000106	22.068096	52967.015	4071.5184	2485.005	0.706
2.14	0.7	7	0.99	1.07	3.702	0.089	0.10134	0.00132	-,	-,	12.824717	150899.31	15409.602	4514,264	0.978
1.7	0.7	9	0.94	1	3.464	0.071	0.09962	0.00142			13,745272	54713.362	5428,6868	1576,425	0.951
1 12	0,8	7	1 25	12	4 153	0.065	0.08993	0.00102			19 167718	235443.09	21332 565	7825 833	0.97
0.5	1.2	3	4 55	3.09	10 71	0 107	0.06378	0.00085	0 000374	0.000125	60 025221	160684 99	10329 088	13700.39	0.262
1.66	0.9	9	1 71	1 45	5 024	0.097	0 07945	0.00103	0,00001	0,000.20	14 407315	52125 749	4175 7676	2079 909	0.872
2 13	0,0	5	0.48	0.79	2 752	0,069	0 15529	0.00257			11 109711	62184 241	9773 3571	1376 482	0.929
0.78	0.8	6	1 3/	1 31	4 534	0,000	0.00155	0,00201	0 000785	0.000221	31 595208	40257 230	3722 607	1455 257	0,65
2.26	0,0	2	0.80	1.03	3 556	0,000	0,03100	0,00121	0,000703	0,000221	34 930643	66003 92	7181 0026	102/ 1	0,03
2,20	0,7	1	1 13	1,00	4 016	0,05	0,10003	0,0010	0,000523	0,000104	32 7/27/0	54727 013	5314 6726	1777 205	0,94
2,00	0,0	1	2 21	1.84	6 302	0,115	0,03011	0,00155	0,000330	0,00017	1/ 363178	28850.68	2265 1508	1518 307	0,000
13	0.0	7	1.8	1,04	5 355	0,270	0,07040	0,00101	0.000734	0 000209	44 300126	60362 038	/883 1172	2606 243	0,34
2.22	0,3	2	0.02	1,04	3,555	0,000	0,00050	0,00101	0,000754	0,000203	24 117277	65970 265	7007 290	1079 012	0,001
2,81	0,7	1	13	1 20	3,03	0,120	0,1000	0,00139	0,000300	0,002-00	20,466583	11/530	10775 138	1100,012	0,002
2,01	0,0	5	1.0	1,29	4,45	0,134	0,0933	0,00139	0.000286	0 000072	20,400303	05099 270	9011 6601	4199,293	0,903
2.02	0,0	0	1,21	1,10	4,105	0,038	0,09200	0,00111	0,000200	0,000073	21,411532	272502.22	27790.052	9710 206	0,029
2,02	0,7	5	0.00	1,14	3,900	0,091	0,10073	0,00110	0 000207	6 225 05	20,472000	146202,55	15449.007	4492 027	0,994
1,40	0,7	1	1 70	1,1	5,001	0,07	0,10403	0,00120	0,000207	1 00E 05	21 261025	202000,00	16090 41	9455 026	0,000
1,17	0.0	0	1,75	1.5	5,203	0,00	0,07001	0,00084	0,000103	0.000222	21,201035	202000,04	2167 0624	1244 016	0,939
1,09	0,8	1	1,50	1,07	5,795	0,005	0,00023	0,00137	0,001013	0,000222	21,223120	52972 976	5720 9124	1047 052	0,744
0.8	0,7	4	1 21	1,0	4,511	0,057	0,10323	0,00135	0,000433	0,000150	39 590164	66058 667	6210 1016	2100 820	0,040
0,0	0,0	1	0.88	0 00	3 /20	0,057	0,03512	0,0010	0,000333	0,000132	12 60546	225753.86	23881 800	6236 225	0,442
1 15	0,7	- 0	1 25	1 25	1.25	0,052	0,10320	0,00211			14 492077	159522.69	12079 507	5515 007	0,012
2.07	0.6	5	0.7	0.0	4,55	0,008	0,00743	0,00098			14,402577	121/12 02	14602 497	2024 070	0,910
2,07	0,0	3	1 47	1 2 2	3,100	0,075	0,12009	0,00174			14,710200	69276 002	5966 2190	2525 141	0,5/1
1.65	0,8	1	1,47	1,32	4,575	0,000	0,00437	0,00112			14 972907	55059 526	5268 0005	1060 172	0,041
1,05	0,0	-+ 	0.0	0.02	4,42	0,007	0,09310	0,0015	0.000115	2 605 05	14,013091	205255 49	3208,0003	F071 607	0,500
1,14	0,7	2	0,0	0,93	3,234	0,034	0,10070	0,00153	0,000115	2,09E-05	23,393940	200000,40	22312,303	2020 009	0,701
0,76	0,0	5	0,05	0,07	5,004	0,045	0,125	0,00166			12,00000	12/301,32	16077,309	3039,096	0,052
0,91	1,0	7	2,07	1,03	3,07	0,076	0,07432	0,001	0.000200	E 21E 0E	0,2100375	79102 404	4404,2709	2097,993	0,003
1,40	1.1	1	0,70	2,00	3,139	0,061	0,11217	0,0015	0,000309	5,31E-05	24,155100	10102,494	2024 4244	1940,217	0,932
1,34	1,1	1	2,11	2,09	7,233	0,119	0,0706	0,00099	0.001110	0.000005	12,000703	42040,77	3034,4344	2430,009	0,718
3,06	1,1	1	2,42	1,82	6,314	0,202	0,07059	0,00144	0,001148	0,000205	21,305171	18565,488	1320,4272	979,2216	0,861
0,00	1,0	8	2,28	1,75	6,081	0,072	0,07226	0,00117	0,001643	0,000414	40,504414	24654,747	1798,3607	1200,185	0,225
0,89	1,0	4	3,01	2,89	10,009	0,127	0,07511	0,00176	0,00182	0,000676	41,815889	22971,706	1731,3012	1838,029	0,413
0,99	0,8	2	1,10	1,17	4,056	0,061	0,09507	0,00118	0 000000		12,971465	00018,298	6387,4593	2155,541	0,807
0,95	1,0	0	1,94	1,0	5,547	0,077	0,07753	0,00092	0,000223	4,00E-05	21,088903	31021,838	1001,1720	4292,201	0,827
0,98	0,8	2	1,05	1,07	3,724	0,057	0,09561	0,0012	0,000298	0,00006	29,514502	99181,514	9064,9547	2941,937	0,769
1,95	0,9	2	1,5	1,36	4,704	0,104	0,08471	0,0011	0,000248	4,97E-05	23,076924	93113,935	7943,0299	3511,999	0,942
1,28	0,9	2	1,38	1,25	4,332	0,073	0,0853	0,00099			16,885246	95043,347	8173,428	3265,807	0,924
1,32	1,2	2	3,43	2,35	8,138	0,132	0,0642	0,00082			12,57251	59197,558	3830,1922	3861,589	0,849
0,92	0,7	1	0,79	0,93	3,231	0,05	0,11035	0,0014	a aaaa- :		12,055486	104754	11657,091	2690,179	0,861
1	0,9	2	1,54	1,39	4,825	0,07	0,08468	0,0011	0,000371	7,46E-05	25,283733	68219,885	5813,4923	2626,819	0,821
0,84	0	8	1,08	1,12	3,89	0,055	0,09773	0,00116			11,916772	171505,44	16881,515	5309,045	0,901
1,05	0,7	6	0,93	1,02	3,554	0,057	0,10322	0,00146			20,264818	28441,911	2958,196	803,5664	0,665

0,86	1,33	4,42	2,78	9,652	0,123	0,0591	0,00077			18,562422	81949,862	4879,828	6386,983	0,6
1.03	0.83	1.05	1.05	3.631	0.057	0.09401	0.00117	0.000324	8.61E-05	30,479193	94215.674	8893.4807	2753.741	0.9
1.02	1.31	5.05	3.21	11,123	0.154	0.05964	0.00117	0.001868	0.000474	33,263028	17809.079	1069.8176	1578,171	0.3
0.9	0.76	0.88	0.96	3 324	0.051	0 10253	0.00131	0.0005	0.000151	44 905423	89736 692	9268 9332	2370.064	0.8
0.83	1.05	2.06	1.63	5 646	0.075	0.07424	0.00086	-,	-,	16 29256	76351 38	5715 1991	3461 948	0.7
0,96	1,00	2 22	1,00	6 307	0.088	0.0769	0.00124	0 000589	0.000111	21 399748	36308 298	2820 6265	1828 676	0.4
1.01	1 11	24	1.81	6 268	0,000	0.07074	0,00124	0,000000	0,000111	17 988651	42508 711	3035 0126	2130 468	0,4
1.07	0.96	1 1 9	1 15	4,003	0,003	0,0015	0,00104			11,300031	110166 /6	10156 001	2510,400	, , ,
1,05	1.05	2.17	1,13	4,003	0,002	0,0913	0,0013			20,202640	19064 72	1261 0225	3510,090	0.2
0,87	1,05	2,17	1,73	5,965	0,08	0,07457	0,00143	0.00045	0.0004.00	20,302049	10004,72	1301,0325	662,0344	0,2
0,97	1,26	4,13	2,74	9,486	0,129	0,06226	0,00079	0,00045	0,000186	30,472888	67786,241	4259,5783	5101,658	0,9
0,74	0,93	1,54	1,39	4,807	0,064	0,08451	0,00099			6,2232037	165266,78	14061,584	6304,057	0,7
1,29	0,95	1,74	1,53	5,29	0,089	0,08223	0,00096	0,000322	6,53E-05	41,544767	128903,47	10672,459	5465,371	0,9
2,98	0,76	1,05	1,15	3,994	0,127	0,10304	0,00163	0,000461	0,000109	28,940732	62787,783	6496,4343	2062,208	0,
0,6	1,32	5,48	3,45	11,981	0,135	0,05919	0,00074	0,000315	7,64E-05	24,590164	77956,282	4645,3214	7398,155	0,4
0,85	1,01	1,95	1,6	5,562	0,076	0,07729	0,00105	0,001371	0,000564	54,627995	39847,626	3098,1227	1765,045	0,7
1,04	1,06	2,42	1,9	6,595	0,096	0,07368	0,00178			16,670871	12381,093	917,39609	650,8151	0,3
0,82	1,1	2,37	1,79	6,224	0,082	0,07101	0,00124	0,001111	0,000335	28,631778	25779,07	1840,2598	1271,297	0,2
1,35	0,77	1,01	1,08	3,763	0,068	0,10135	0,00124			20,882724	210374,27	21505,621	6249,676	0,9
0,93	1,03	2,04	1,65	5,724	0,081	0,07582	0,00122	0,001076	0,000262	30,214376	28072,836	2140,872	1283,439	0,4
0,89	1,29	4,33	2,81	9,743	0,129	0,06089	0.00067			18,13367	65149,47	3992,5971	5047,389	0,8
0,9	0,98	1,7	1,44	5,008	0,071	0,07981	0,00101	0,000268	4,29E-05	21,538462	80282,405	6445,5692	3199,32	0,6
0.62	1.29	5.37	3.46	11,991	0.138	0.06051	0.00075	0.000204	5.76E-05	25,750316	126200.46	7662.259	12048.95	0.4
0.94	1	1.71	1.42	4,921	0.072	0.07812	0.00123		-,	17.225726	38025,167	3006.2424	1513.262	0.4
0.93	1 12	2 45	1 83	6,356	0.089	0.07023	0.00084			11 456495	47674 472	3369 6209	2416 555	0.7
1 26	1 27	4 14	2 73	9 453	0 151	0.06178	0,00086			18 688525	77759 583	4823 2623	5814 935	0.6
0.64	0.97	1 75	15	5,400	0.067	0.08063	0,00097	0.000376	0.000105	40 605297	107979	8749 5388	4474 459	0,0
1.6	0,37	0.91	1.04	3 596	0,007	0 10683	0.001/13	0,000070	5 71E-05	39.224464	227101 60	24462 501	6470 935	0.0
1,0	1.02	2.6	2 1 2	3,330	0,075	0,10003	0,00145	0,000175	5,712-05	5 5727712	121/06 52	0204 5502	7292 261	0,0
1,07	1,02	2,0	2,13	1,4	0,145	0,07097	0,00090	0 000000	0.000444	3,3737712	121400,32	9394,3393	1203,201	0,5
0,94	0,91	1,44	1,32	4,569	0,000	0,06561	0,00106	0,000332	0,000111	30,430013	115009,02	10019,05	4231,109	0,73
0,82	1,07	2,35	1,83	6,333	0,085	0,07297	0,00114	0 000 40	7.045.05	13,593948	21/5/,106	1597,4588	1095,719	0,5
1,28	0,84	1,15	1,14	3,959	0,07	0,09298	0,00182	0,00042	7,31E-05	26,305171	62571,322	5837,9483	1978,325	0,8
0,88	1,21	4,05	2,79	9,688	0,13	0,06469	0,00113	0,000339	8,11E-05	23,263028	68671,727	4456,6005	5307,532	0,8
0,9	0,72	0,85	0,98	3,413	0,054	0,10934	0,00141			13,203027	150839,15	16612,704	4073,891	0,8
0,92	1,32	5,54	3,51	12,161	0,165	0,05941	0,00114	0,000921	0,000263	32,156369	34922,464	2084,1738	3405,734	0,3
0,77	0,99	1,77	1,49	5,172	0,07	0,07933	0,00104			18,827239	62998,784	5029,085	2590,297	0,6
1,19	1,08	2,37	1,82	6,328	0,101	0,0723	0,00132	0,001128	0,000244	22,95082	20340,838	1479,0224	1023,329	0,5
0,88	0,92	1,47	1,32	4,588	0,067	0,08472	0,00103	0,000444	0,000209	32,408575	73052,895	6226,3994	2668,554	0,8
1,81	0,78	1,12	1,19	4,129	0,09	0,09988	0,00134			20,504414	97435,293	9777,5414	3247,464	0,9
1,37	0,89	1,28	1,2	4,159	0,076	0,08826	0,00111			3,9019859	109140,25	9701,203	3624,123	0,8
1,7	1,13	2,55	1,88	6,509	0,131	0,06908	0,00099	0,000587	0,000163	32,5599	55459,223	3845,7352	2911,53	0,8
0,5	1,26	3,94	2,6	9,019	0,105	0,06196	0,0007	0,000141	4,23E-05	28,152585	200372,04	12496,608	14362,73	0,6
0,54	1,31	5,24	3,33	11,554	0,134	0,05969	0,00072	0,00036	8,17E-05	44,388399	123207,82	7398,2516	11381,23	0,1
1,41	1,34	4,75	2,96	10,28	0,18	0,05865	0,00069			11,99874	73439,013	4330,6903	6185,13	0,9
7,27	0,8	1,25	1,29	4,49	0,329	0,09736	0,00259	0,000373	0,000103	24,022699	64404,348	6017,4902	3356,203	0,9
0,62	1,32	4,8	3,03	10,521	0,128	0,05937	0,00067			11,109711	106190,06	6338,69	8918,48	0,0
1.51	0.92	1.49	1.35	4.682	0.09	0.08499	0.00113			17,994957	108099.72	9213.8062	4060.235	0.9
0.62	1.28	5.32	3.46	12.01	0.145	0.06109	0.00078	0.000396	0.000119	40.075662	101126.39	6220,7665	9684,162	0.
0.69	1 25	3.89	2 59	8 978	0 1 1 4	0.06251	0.00068	- ,	-,	16 607819	149753 97	9426 5168	107294	0.7
1 16	1.01	1.92	1.58	5 48	0.089	0.07717	0.00171			19 546028	13414 036	1042 3605	586 1999	0.3
0.39	1 29	4 62	.,	10.388	0 117	0.06088	0,00071	0 000246	4 96E-05	37 919294	154395 72	9441 41	12734 07	0.0
0.63	1 32	4 97	3 1 3	10.85	0 133	0.05916	0,00069	0.000579	0.00014	38 278689	66075 238	3933 3735	5725 471	0,6
0.84	1 34	53	33	11 427	0 154	0.0584	0.0007	0,0000.0	0,00011	9 4766716	97888 785	5741 3754	8944 027	0.7
0.91	1,04	1 0	1 57	5 /3/	0.08	0.07738	0,0007	0 000608	0.000201	35 725095	58781 541	4576 3209	2539 601	0,3
0.98	1 31	5	3 10	11 074	0.16	0.05000	0.00077	0.000322	7.54E-05	21 6/565	67126 622	4044 7059	5005 705	0,5
1.05	133	5 22	3.13	11,074	0,10	0.05884	0,00077	0,000322	7,042-00	10 500164	68531 602	4052 8352	6212 007	· · · · · · · · · · · · · · · · · · ·
0.76	1,00	2,22	1 90	11,505 6 565	0,109	0,03004	0,00078	0.000120	4 58E 05	20 270572	276020 42	10752 050	11156 20	0,77
1 1	0.91	1 21	1.05	4 202	0,009	0,07097	0,00078	0.000139	-,30L-03	30,379372 35 756634	76561 100	7405 2159	2629 162	
1,1	0,01	1,21	1,24	4,303	0,071	0,09044	0,00129	0,000407	4.015.05	30,730021	111010 70	6750 2270	2030,102	0,9
0,03	1,3	4,58	2,94	10,208	0,127	0,00031	0,00068	0,000197	4,01E-05	21,860026	05070 077	0/50,32/2	9070,296	0,5
0,20 0,01	0,80	1,07	1,03	5,65	0,303	0,09151	0,00299	0,000508	0,000142	48,732661	90919,211	0008,8304	4005,493	0,8
0,61	1,11	2,45	1,84	6,381	0,083	0,0705	0,00085			10,794452	99502,35	1057,8097	5052,889	0,1
0,52	1,34	5,63	3,5	12,126	0,144	0,05835	0,00077			15,920556	/4485,624	4353,8544	/19/,9/4	0,4
0,92	0,76	0,9	0,99	3,434	0,056	0,10345	0,00127			16,948298	209861,73	21838,807	5721,817	0,9

orrelation coefficient for raw data	Error magnifica	tion factors		
Rho/Rho(raw)	206/207 20	7/235 20	6/238	
0.814	3.5	2.08	1.96	110521-run1.msws lso.prn
0,906	3.58	3 17	2,39	110521-run1 msws lso prn
0.948	1 81	1.08	1.07	110521-run1 msws lso prn
0.648	1 09	0.97	1 41	110521-run1 msws lso prn
0,905	1 91	1	11	110521-run1 msws lso prn
1.01	1 74	1.8	1 52	110521-run1 msws lso pro
1 284	1 24	1 42	1,39	110521-run1 msws lso.pm
0.9	1.96	1 24	1 12	110521-run1 msws lso pro
1,186	1.27	1.48	1.29	110521-run1.msws lso.prn
0.92	1 77	1.28	1 17	110521-run1 msws lso pro
1.47	1.33	1.98	1.31	110521-run1.msws lso.prn
1.355	1.03	1.09	1.17	110521-run1.msws lso.prn
0.99	1.75	1.73	1.68	110521-run1.msws lso.prn
1,066	1,24	1,39	1,15	110521-run1.msws lso.prn
0,895	1,92	1,11	1,16	110521-run1.msws lso.prn
0,89	2,53	2,06	1,47	110521-run1.msws lso.prn
1,077	1,5	1,85	1,3	110521-run1.msws lso.prn
0,901	1,85	1,04	1,13	110521-run1.msws lso.prn
0,865	1,54	1,05	1,21	110521-run1.msws lso.prn
0,835	2,4	1,31	1,39	110521-run1.msws lso.prn
2,288	1,34	1,66	1,99	110521-run1.msws lso.prn
0,954	1,51	1,35	1,17	110521-run1.msws lso.prn
0,899	2,09	1,49	1,18	110521-run1.msws Iso.prn
1,084	1,62	1,74	1,67	110521-run1.msws lso.prn
0,917	1,56	1,09	1,12	110521-run1.msws Iso.prn
0,933	1,57	1,02	1,08	110521-run1.msws lso.prn
0,965	1,14	0,95	1,02	110521-run1.msws Iso.prn
0,9	1,58	1,25	1,25	110521-run1.msws lso.prn
0,952	1,88	1,04	1,05	110521-run1.msws lso.prn
0,911	1,41	0,91	1,06	110521-run1.msws lso.prn
0,919	2,01	1,74	1,58	110521-run1.msws lso.prn
0,901	3,33	1,13	1,14	110521-run1.msws lso.prn
0,877	2,76	1,55	1,26	110521-run1.msws Iso.prn
0,875	2,37	1,44	1,31	110521-run1.msws lso.prn
0,875	1,22	1,12	1,34	110521-run1.msws Iso.prn
0,889	2,05	1,23	1,17	110521-run1.msws lso.prn
1,402	1,26	1,45	1,68	110521-run1.msws lso.prn
1,177	1,2	1,3	1,62	110521-run1.msws lso.prn
0,889	2,38	1,69	1,36	110521-run1.msws Iso.prn
0,878	1,85	1,06	1,17	110521-run1.msws Iso.prn
1,359	1,52	2,39	1,46	110521-run1.msws Iso.prn
0,899	1,52	1,15	1,19	110521-run1.msws iso.prn
1,094	1,72	2,81	1,47	110521-run1.msws Iso.prn
0,873	2,73	2,15	1,98	110521-run1.msws iso.prn
1,17	1,41	1,63	1,47	110521-run1.msws iso.pm
0,883	2,09	1,37	1,32	110521-run1.msws iso.pm
1,056	1,34	1,49	1,22	110521-run1.msws iso.pm
0,979	1,12	1,06	1,05	110521-run1.msws iso.pm
2,023	1,23	1,55	1,01	110521-10111.IIISWS ISO.pIII
0.954	1,1	1,14	1,40	110521-run1 mewe loo pro
0,334	1,50	1.52	1.01	110521-run1 mewe leo pro
1 004	1,70	2 1/	1,-0	110521-run1 mewe loo pro
0.917	1,90	2,14	1,55	110521-run1 mewe loo pro
0,917	2.05	1 30	1 32	110521-run1 mewe leo pro
0,03	1 42	1 22	1.23	110521-run1 msws leo pro
0.9	2.54	2.08	17	110521-run1 msws lso pro
0,0	1.61	1 4	1 46	110521-run1 mewe leo pro
0,852	2 48	1 74	17	110521-run1 msws lso.pm
1,126	1.65	2.05	1.52	110521-run1.msws lso.prn
.,.==	.,	_,	.,	

1,025	1,38	1,41	1,47	110521-run1.msws lso.prn
0,868	1,99	1,46	1,54	110521-run1.msws lso.prn
1.769	1.12	1.35	1.35	110521-run1.msws Iso.prn
0 949	2 13	1 96	1 72	110521-run1 msws lso pro
1 001	1.8	1.83	1 50	110521-run1 msws lso pro
1,001	1.26	1,00	1,00	110521 run1 msws lso.pm
1,444	1,20	1,54	1,45	110521-run1 mouro loo pro
1,198	1,31	1,51	1,41	110521-run1.msws iso.pm
1,054	1,51	1,61	1,5	110521-run1.msws iso.prn
2,095	1,16	1,41	1,54	110521-run1.msws iso.prn
0,811	1,45	1,13	1,4	110521-run1.msws Iso.prn
0,97	2,07	2	1,79	110521-run1.msws Iso.prn
0,897	2,04	1,45	1,3	110521-run1.msws Iso.prn
0,924	1,44	0,96	1,07	110521-run1.msws Iso.prn
1,539	1,45	1,8	1,87	110521-run1.msws lso.prn
0,985	1,47	1,45	1,6	110521-run1.msws lso.prn
1.628	1.09	1.22	1.4	110521-run1.msws lso.prn
2,158	1.2	1.5	1.62	110521-run1.msws lso.prn
0.86	2.56	1.36	1.34	110521-run1 msws lso pro
1 337	1 27	1 / 9	1,51	110521-run1 msws lso pro
0.022	1,27	1,45	1,01	110521 run1 msws lso.pm
0,923	1,00	1,01	1,49	110521-run1 mouro loo pro
1,121	1,07	1,99	1,56	110521-1011.IIISWS ISO.pm
1,433	1,5	1,84	1,80	110521-run1.msws iso.pm
1,67	1,3	1,74	1,55	110521-run1.msws iso.prn
1,02	1,71	1,81	1,5	110521-run1.msws Iso.prn
1,199	1,34	1,85	1,28	110521-run1.msws Iso.prn
0,889	1,92	1,7	2,01	110521-run1.msws Iso.prn
0,876	2,06	1,25	1,27	110521-run1.msws Iso.prn
0,872	1,71	1,05	1,18	110521-run1.msws Iso.prn
1,019	1,9	2,12	1,58	110521-run1.msws lso.prn
1,215	1,29	1,44	1,64	110521-run1.msws lso.prn
0.795	1.21	1.03	1.37	110521-run1.msws Iso.prn
0.757	1.19	1.06	1.52	110521-run1.msws lso.prn
0.885	2.62	2	1 75	110521-run1 msws lso pro
1 643	1 14	1 3 3	1 / 8	110521-run1 msws lso pro
1,045	1,14	1,55	1,40	110521 run1 msws lso.pm
1,105	1,0	1,75	1,77	110521-run1 mouro loo pro
1,132	1,19	1,29	1,55	110521-1011.IIISWS ISO.pm
0,942	2,03	1,84	1,66	110521-run1.msws iso.pm
0,895	1,91	1,19	1,2	110521-run1.msws Iso.prn
0,931	1,94	1,69	1,33	110521-run1.msws Iso.prn
0,911	1,37	1,1	1,18	110521-run1.msws Iso.prn
1,119	1,89	2,08	2,32	110521-run1.msws Iso.prn
1,085	1,62	1,74	2,15	110521-run1.msws Iso.prn
0,913	1,68	1,26	1,24	110521-run1.msws Iso.prn
0,944	1,1	0,82	1,01	110521-run1.msws Iso.prn
1,126	1,84	2,08	1,94	110521-run1.msws lso.prn
0,87	1,7	1,14	1,27	110521-run1.msws lso.prn
1.563	1.52	1.95	1.95	110521-run1.msws lso.prn
1 034	2.22	2.62	1.83	110521-run1 msws lso pro
1 754	1 13	1 36	1 4	110521-run1 msws lso pro
10 491	1,15	2.97	2 97	110521 run1 msws lso.pm
1 201	1,73	2,07	2,07	110521-run1 mouro loo pro
1,201	1,74	2,05	1,94	110521-1011.IIISWS ISO.pm
1,045	1,63	1,73	1,6	110521-run1.msws iso.pm
1,88	1,36	1,96	1,61	110521-run1.msws Iso.prn
1,07	1,51	1,66	1,47	110521-run1.msws lso.prn
1,027	1,44	1,49	1,42	110521-run1.msws lso.prn
0,9	2,59	2,08	1,78	110521-run1.msws lso.prn
0,857	1,91	1,4	1,5	110521-run1.msws lso.prn
1,373	1,93	2,82	1,98	110521-run1.msws lso.prn
1,049	1,06	1,35	1,02	110521-run1.msws lso.prn
1,11	1,87	2,07	2,1	110521-run1.msws lso.prn
1,58	1,46	1,78	2,3	110521-run1.msws lso.prn
0.853	3.71	2.18	1.77	110521-run1 msws lso pro
	5,11	_,	.,	

	ppm					Ratios											
Name	U	Th	²⁰⁶ Pb	²⁰⁶ Pb _c (%)	206/204	²⁰⁷ Pb ^{/206} Pb	1SE	²⁰⁸ Pb ^{/206} Pb	1SE	²⁰⁷ Pb ^{/235} U [*]	1SE	²⁰⁶ Pb ^{/238} U	1SE	Rho	²⁰⁸ Pb ^{/232} Th	1SE	²³² Th ^{/238} U
EM28-01-		171	12,4	26,8 .		0,07416	0,0012	0,02325	0,00639	1,86486	0,03697	0,18237	0,0021	0,581	0,05796	0,00124	0,07315
EM28-02-		189	15,2	27.		0,07141	0,00101	0,02564	0,00619	1,63027	0,03011	0,16559	0,00197	0,645	5 0,05269	0,00094	0,08059
EM28-03-		176	8,5	24,2 .		0,07449	0,00169	0,01644	0,00432	1,65638	0,04345	0,16127	0,00211	0,499	0,05476	0,00142	0,04841
EM28-04-		116	4,3	18,7.	719	0,08381	0,00283	0,01443	0,00371	2,168	0,08322	0,1876	0,00342	0,475	5 0,07274	0,00475	0,03721
EM28-05-		136	29,4	20,5 .	896	0,07333	0,00126	0,06756	0,01626	1,78312	0,04997	0,17635	0,00391	0,791	0,05484	0,00094	0,21726
EM28-06-		88	9,6	14.	206	0,14645	0,00536	0,06207	0,01573	3,74593	0,14934	0,1855	0,00292	0,395	0,10466	0,00557	0,11002
EM28-07-		160	15,1	120,8 .	2989	0,07924	0,00114	0,00862	0,00227	2,1730	0,04228	0,19894	0,0026	0,672	0,07966	0,00312	0,02153
EM28-00-		110	0,4	20,1.	1403	0,07751	0,00196	0,0107	0,00044	1,90040	0,00001	0,16366	0,00278	0,000	0,03009	0,00121	0,05269
EM28-10-		242	11,4	35.7	455	0,09901	0,00306	0,04572	0,01217	2,24704	0,00071	0,10307	0,00228	0,352	0,07313	0,0031	0,1023
EM28-10-		127	19	21.3		0,07233	0,00100	0,01484	0,00379	1,70070	0,0414	0,17393	0,00324	0,703	0,05303	0.00113	0,04000
EM28-12-		6	0.3	11		0.08279	0.00695	0.01085	0.00312	2 30688	0 20415	0 20209	0.00562	0,314	0.04579	0.00458	0.04786
EM28-13-		230	14.7	35.3 .		0.07283	0.00096	0.01955	0.00477	1.7882	0.03165	0,17807	0.00211	0.67	0.0543	0.00096	0.06411
EM28-14-		110	11.3	15.		0.07522	0.00145	0.03187	0.0078	1.62523	0.04089	0.15671	0.00252	0.64	0.04867	0.00101	0.10262
EM28-15-		90	7.5	12.6 .	702	0.07448	0.0013	0.02606	0.00624	1,68938	0.04116	0.16452	0.00279	0.696	0.05051	0.00088	0.08487
EM28-16-		146	23,7	22,3 .	1370	0,07558	0,00123	0,05223	0,0154	1,88014	0,04006	0,18042	0,00248	0,646	0,0575	0,00101	0,16389
EM28-17-		55	6,1	8.	179	0,12746	0,00734	0,06577	0,01701	3,02969	0,18318	0,17239	0,00319	0,306	6 0,10067	0,00757	0,11262
EM28-18-		83	7	17,1 .	410	0,11062	0,00804	0,04193	0,01169	3,6438	0,27876	0,2389	0,00573	0,313	0,11847	0,01599	0,08456
EM28-19-		135	12,2	21,2 .	1723	0,0793	0,00198	0,03049	0,00755	2,01127	0,06136	0,18395	0,00322	0,574	0,06161	0,00226	0,09104
EM28-20-		112	11,2	16,1 .	775	0,08689	0,00211	0,03701	0,00892	2,00631	0,06677	0,16747	0,00381	0,684	0,06144	0,0017	0,10086
EM28-21-		229	18,1	39,4 .		0,08191	0,00123	0,02655	0,00639	2,24268	0,04422	0,19858	0,00253	0,646	6 0,06615	0,0016	0,0797
EM28-22-		50	8,5	10.	821	0,10504	0,00262	0,06172	0,01494	3,32537	0,10381	0,2296	0,00431	0,602	2 0,08305	0,00192	0,17063
EM28-23-		85	5,8	12,3 .	950	0,07334	0,00153	0,02128	0,00581	1,72381	0,0432	0,17047	0,00238	0,556	6 0,05292	0,00131	0,06855
EM28-24-		227	26,1	30,7.	1503	0,08308	0,00155	0,03596	0,0086	1,80104	0,04534	0,15723	0,00266	0,671	0,04888	0,00105	0,11569
EM28-25-		186	23,1	34,7.	1985	0,085	0,00122	0,03754	0,00957	2,54254	0,05066	0,21694	0,00301	0,696	0,06527	0,00151	0,12477
EM28-20-		208	22,5	30,4 .	4000	0,07454	0,00117	0,03587	0,0102	1,78848	0,03815	0,17402	0,0025	0,674	0,05727	0,00108	0,10898
EM28-27-		265	15,6	48,4 .	1620	0,08788	0,00116	0,01838	0,0045	2,53634	0,05745	0,20932	0,00385	0,812	0,06493	0,00161	0,05926
EIVI20-20-		9 100	12.6	1,3.	30	0,60066	0,03741	0,19569	0,00002	13,7152	0,9079	0,1000	0,00371	0,338	0,2994	0,04200	0,10635
EM28-20-		616	31.2	32,1. 88.2	2022	0,00777	0,00150	0,0236	0,00000	2,49240	0,07007	0,20390	0,00319	0,010	0,0724	0,00215	0,06709
EM28-31-		428	27.9	98.9	2522	0,00020	0.00147	0,0141	0,00504	3 55588	0 10175	0 2634	0,00230	0,741	0,07957	0,00142	0.06579
EM28-32-		265	31.5	41.4		0.07515	0.00101	0.0376	0.00899	1.88406	0.03648	0.18182	0.00253	0,718	0.05692	0.00102	0.1201
EM28-33-		97	14.9	13.4 .		0.07401	0.00115	0.04983	0.01199	1,64137	0.03479	0.16086	0.00232	0.682	2 0.05179	0.00101	0.15475
EM28-34-		175	26.1	26.	2063	0.07408	0.00101	0.04724	0.0124	1,78573	0.03375	0,17483	0.0023	0.695	5 0.05499	0.00101	0.1502
EM28-35-		214	14,5	36,5 .	1694	0,08055	0,00132	0,02169	0,00557	2,20603	0,048	0,19863	0,00286	0,661	0,06319	0,00129	0,06818
EM28-36-		65	4	10,6 .		0,07787	0,00167	0,01933	0,00563	2,06744	0,05349	0,19255	0,00278	0,559	0,06024	0,00133	0,06179
EM28-37-		429	36,8	63,3 .	2363	0,07538	0,00103	0,02762	0,0069	1,80335	0,03677	0,1735	0,00263	0,744	0,05547	0,00105	0,08639
EM28-38-		116	6	19,7 .		0,08828	0,00164	0,01757	0,00573	2,59274	0,07416	0,21301	0,00463	0,76	6 0,0714	0,00166	0,05242
EM28-39-		377	20,7	59.	584	0,10006	0,0041	0,03083	0,00774	2,51476	0,11095	0,18227	0,00299	0,371	0,10184	0,00746	0,05518
EM28-40-		750	125,5	85,3 .	483	0,10391	0,00203	0,05566	0,0148	1,99094	0,07316	0,13896	0,00432	0,846	6 0,04591	0,00155	0,16847
EM28-41-		183	15	54,7 .	4296	0,11695	0,00181	0,02465	0,00593	5,4692	0,12734	0,33918	0,00591	0,749	0,10174	0,00262	0,08219
EM28-42-		80	11,6	8,7.	396	0,08675	0,00402	0,04586	0,01168	1,58597	0,09646	0,13259	0,00522	0,647	0,04163	0,00142	0,14607
EM28-43-		133	17	47,1 .	410	0,20614	0,00525	0,04791	0,01205	11,75138	0,45373	0,41344	0,01199	0,751	0,15328	0,0059	0,12924
EM28-44-		130	41,7	37,6.	700	0,11329	0,00177	0,09335	0,02229	5,14826	0,11684	0,3296	0,00541	0,723	3 0,09531	0,00217	0,32282
EM28-45-		68	7,1	9,7.	766	0,0749	0,00144	0,03434	0,00826	1,7098	0,04364	0,16557	0,00278	0,657	0,05393	0,00113	0,10542
EM28-46-		88	8,5	11,7.	0505	0,07527	0,00172	0,02882	0,00821	1,64929	0,04704	0,15892	0,0027	0,596	0,04662	0,00148	0,09825
EIVI20-47-		120	7,9	32,1.	2000	0,1144	0,00181	0,01954	0,00400	4,04400	0,10554	0,30714	0,00461	0,005	0,09009	0,00219	0,06663
EM28-40-		121	3,7	161	786	0,07247	0,00133	0,0222	0,00536	1,03957	0,03003	0,10408	0,00193	0,000	0,05249	0,00108	0,00941
EM28-50-		134	15.9	18.9	1166	0.08065	0.00158	0,02,000	0.0100	1 83576	0.00230	0,16508	0.00202	0.53	0.05648	0,00133	0,10005
EM28-51-		128	9.2	24.2	1121	0.09287	0.00187	0.027	0.00655	2 82614	0.07508	0 22072	0.00384	0.654	0.08229	0.00282	0.07242
EM28-52-		305	16.4	35.3	2083	0.07441	0.00135	0.01764	0.00477	1.46652	0.05221	0.14294	0.00438	0.861	0.04654	0.00133	0.05418
EM28-53-		219	12,7	53,5 .	2000	0,10208	0,00156	0,01775	0,0043	3,98339	0,09779	0.28302	0,00545	0.784	0,08614	0,00216	0,05833
EM28-54-		354	32,9	70,1 .		0,08995	0,00129	0,02835	0,00675	2,84997	0,06268	0,22979	0,00383	0,757	0,06961	0,00137	0,0936
EM28-55-		194	16	30.	1147	0,08327	0,00133	0,02634	0,00635	2,0954	0,07497	0,18251	0,00584	0,895	5 0,05775	0,00142	0,08325
EM28-56-		145	12,2	23,1 .		0,07853	0,0014	0,02543	0,00606	1,99912	0,04413	0,18462	0,00239	0,587	0,05549	0,00111	0,08461
EM28-57-		210	15	41 .	2846	0,09367	0,00202	0,02281	0,00627	3,18725	0,11965	0,24677	0,00759	0,819	0,07845	0,00163	0,07176
EM28-58-	284	27.8	35.7 .	1653	0.0714	0.00116	0.02979	0.00857	1.50471	0.03843	0.15284	0.00301	0.77	0.04623	0.00127	0.09848	
-----------	-----	------	---------------	------	---------	---------	---------	---------	----------	---------	---------	---------	-------	---------	---------	-----------	
EM28-59-	740	80.5	112.7	8428	0.07798	0.00102	0.03291	0.00831	1 9238	0.03579	0 17892	0.00237	0 711	0.05374	0,00099	0 10957	
EM28-60-	85	10.2	12.5	0420	0.07775	0.00205	0.0369	0,00001	1,8657	0.05478	0 17/03	0.00226	0.442	0.05306	0.00122	0,10007	
EM20-00-	406	22.0	76.4	402	0,07775	0,00205	0,0309	0,00933	2 20526	0,03478	0,17403	0,00220	0,442	0,0000	0,00122	0,12103	
EM28-01-	400	22,9	70,4.	492	0,11270	0,00215	0,02703	0,00072	3,39520	0,07918	0,21030	0,00293	0,374	0,10017	0,00327	0,00000	
EW20-02-	302	25,6	/1,0.		0,09664	0,00144	0,02519	0,00605	3,72034	0,06457	0,273	0,00477	0,769	0,08065	0,00162	0,08526	
EM28-63-	242	31,5	42,3 .		0,08717	0,00143	0,04262	0,01056	2,54799	0,09873	0,212	0,00745	0,906	0,06899	0,00162	0,13095	
EM28-64-	118	11,6	18,4 .		0,07618	0,00113	0,03016	0,00821	1,91836	0,03861	0,18263	0,00247	0,672	0,05596	0,00115	0,09843	
EM28-65-	150	4,5	26,1 .		0,08359	0,00157	0,00904	0,00304	2,61293	0,08784	0,22671	0,00633	0,83	0,06766	0,002	0,03028	
EM28-66-	163	13,9	26,8 .	1619	0,07796	0,00121	0,02606	0,00621	2,0596	0,04397	0,19161	0,00281	0,687	0,05779	0,00123	0,08639	
EM28-67-	402	15	59,9 .		0,07666	0,00128	0,01112	0,0037	1,92172	0,04295	0,18182	0,00271	0,666	0,05364	0,00114	0,03768	
EM28-68-	152	14,8	34,7 .	1724	0,09691	0,00146	0,0287	0,00691	3,50239	0,07684	0,26212	0,00419	0,729	0,07696	0,00184	0,09776	
EM28-69-	174	6,8	60,2 .		0,14941	0,00547	0,01124	0,00301	8,0632	0,41733	0,39141	0,01432	0,707	0,11101	0,00452	0,03964	
EM28-70-	162	10,9	21,1 .		0,0718	0,00124	0,02134	0,00521	1,52261	0,03325	0,15381	0,00206	0,612	0,04829	0,00106	0,06797	
EM28-71-	146	14.7	25.1	802	0.0973	0.00209	0.0364	0.00893	2,71942	0.07799	0.20271	0.00385	0.662	0.07307	0.00219	0.10099	
EM28-72-	147	22.9	29.7		0.09144	0.00139	0.04636	0.01248	3 01605	0.06509	0 23923	0,00365	0 708	0.07056	0.00156	0 15718	
EM28-73-	404	28.5	66.5	20/2	0.08786	0.00135	0.0227	0.00556	2 37/17	0.06549	0 19598	0.0045	0,700	0.06259	0.00136	0.07108	
EM28-74-	240	17.8	46.2	800	0,00700	0,00100	0,0227	0,00000	2,37414	0,00043	0,13530	0,0043	0,052	0,00200	0,00130	0,07487	
EM2074-	240	17,0	40,2 .	800	0,10332	0,00243	0,02072	0,00037	1 95207	0,10027	0,22004	0,00322	0,701	0,00093	0,00240	0,07407	
EM20-70-	227	13,9	34,2 .		0,07010	0,00110	0,01802	0,00449	1,05207	0,04155	0,17030	0,00291	0,735	0,05346	0,00115	0,0014	
	207	9,4	44,0.		0,09619	0,00271	0,01334	0,00375	3,39063	0,17665	0,25044	0,01106	0,646	0,07284	0,00413	0,04567	
EM28-77-	54	3,7	7,6.		0,0745	0,00158	0,0219	0,00529	1,70155	0,04767	0,16565	0,00304	0,656	0,05222	0,00143	0,06948	
EM28-78-	78	6,4	12,1 .		0,07392	0,0012	0,02467	0,0059	1,83653	0,04045	0,1802	0,00268	0,676	0,05396	0,00131	0,0824	
EM28-79-	83	4,5	12,9 .		0,08175	0,00177	0,01778	0,00469	2,19716	0,08368	0,19494	0,0061	0,822	0,06355	0,00201	0,05453	
EM28-80-	309	53,2	47.		0,0752	0,00103	0,05358	0,01353	1,84653	0,0348	0,17808	0,00231	0,688	0,05501	0,00104	0,17344	
EM28-81-	190	18	32,4 .		0,07875	0,00112	0,02847	0,00689	2,17211	0,04426	0,20003	0,00293	0,718	0,05977	0,00125	0,09528	
EM28-82-	200	21,3	40,7 .		0,09282	0,00147	0,03196	0,00777	3,05013	0,0786	0,23834	0,00484	0,787	0,07112	0,00154	0,1071	
EM28-83-	67	5,7	9,7 .		0,08554	0,0017	0,03148	0,00756	1,99035	0,0493	0,16876	0,00249	0,597	0,06163	0,00192	0,0862	
EM28-84-	82	7	12.8 .		0.0786	0.0013	0.0268	0.00641	1,99307	0.0471	0.18392	0.00311	0.715	0.05724	0.00129	0.0861	
EM28-85-	253	17.8	47.5	3454	0.08521	0.00118	0.02202	0.00538	2,58848	0.05673	0.22033	0.00374	0.774	0.06853	0.00146	0.07078	
EM28-86-	162	14.4	23.2		0.074	0.00125	0.02768	0,00671	1 72456	0.04256	0 16903	0.00303	0 727	0.05245	0.0012	0.08919	
EM28-87-	225	16.5	33		0 07421	0.00106	0.02224	0.00542	1 76514	0.03538	0 17251	0.00242	0 701	0.05179	0.00103	0.07407	
EM28-88-	111	15.3	18.4	502	0 1027	0,00100	0.05230	0.01277	2 76237	0,00000	0,10508	0,00242	0,701	0.07347	0,00788	0 1 3 0 1	
EM20-00-	220	11,5	10,4 .	502	0,1027	0,00330	0,03239	0,01277	2,70237	0,10371	0,19300	0,00310	0,423	0,07347	0,00200	0,1391	
EM28-09-	220	74.4	40,1.		0,06534	0,00125	0,01000	0,00392	2,30730	0,03109	0,21309	0,0031	0,705	0,00303	0,00147	0,05301	
EM20-90-	697	74,4	112,5 .		0,07913	0,00104	0,03254	0,00815	2,00120	0,03766	0,10093	0,00241	0,697	0,05715	0,00108	0,10757	
EM28-91-	30	2,5	4,2 .		0,07602	0,00309	0,02969	0,0073	1,73855	0,07745	0,16586	0,00303	0,41	0,0577	0,00365	0,08533	
EM28-92-	107	7,8	22.		0,09148	0,00167	0,02251	0,00569	3,02886	0,07352	0,24013	0,00384	0,659	0,07356	0,00171	0,07349	
EM28-93-	59	5,8	9,8.	619	0,0778	0,00169	0,02963	0,00708	2,09075	0,05748	0,1949	0,00327	0,611	0,05832	0,00138	0,09903	
EM28-94-	187	13,3	35,9 .	950	0,09986	0,00296	0,02531	0,00616	3,0858	0,10256	0,22411	0,00336	0,451	0,07904	0,00213	0,07177	
EM28-95-	386	15,8	50,2 .	1933	0,07474	0,0011	0,01236	0,00325	1,66757	0,05478	0,16181	0,00475	0,894	0,04863	0,00162	0,04113	
EM28-96-	562	45,3	84,3 .	3234	0,08215	0,00113	0,02485	0,00652	2,03002	0,04452	0,17923	0,00306	0,778	0,05479	0,00138	0,0813	
EM28-97-	128	10	17,8 .	435	0,095	0,0022	0,03459	0,00924	2,17792	0,06135	0,16627	0,00267	0,571	0,07312	0,00219	0,07865	
EM28-98-	303	15,4	39,3 .	1377	0,07775	0,0018	0,01799	0,00479	1,75228	0,06918	0,16346	0,00523	0,81	0,05745	0,00183	0,05118	
EM28-99-	90	6,6	42,1 .		0,2091	0,00484	0,01947	0,00473	15,02517	0,48363	0,52114	0,01167	0,696	0,13747	0,00466	0,0738	
EM28-100-	175	17.1	23.6	1344	0.07021	0.00102	0.02965	0.00761	1,54067	0.03164	0.15914	0.00231	0.708	0.04789	0.00102	0.09855	
EM28-101-	256	13.9	56	3465	0.09861	0.00146	0.01669	0.00411	3 51818	0.09395	0 25876	0.00576	0.833	0.07885	0.00186	0.05477	
EM28-102-	114	12.1	17.2	0.00	0.08319	0.00148	0.03368	0.0082	2 04497	0.04889	0 17828	0.00285	0,668	0.05588	0.00138	0 10747	
EM28-102-	397	28.9	66.3		0.07853	0,00140	0.02211	0,0002	2 12076	0.04221	0 19586	0.00266	0,681	0.05921	0.00124	0.07315	
EM28-104-	11	57	5.0	377	0,07033	0,00114	0,02211	0,00000	1 60432	0,05131	0,15300	0,00200	0,001	0,03321	0,00124	0,07313	
EM20-104-	72	0,1	J,5 . 14 1	511	0,07213	0,00151	0,04000	0,01001	2 71142	0,05131	0,10131	0,00319	0,019	0,04957	0,00117	0,13230	
EM28-103-	73	0,1	14,1.	0005	0,08003	0,00131	0,0333	0,00854	2,71143	0,00379	0,22000	0,00363	0,091	0,00000	0,00150	0,11101	
EM28-106-	666	32,7	105,7 .	6965	0,07652	0,00102	0,01527	0,00376	1,96802	0,03721	0,18652	0,0025	0,708	0,0576	0,00119	0,04945	
EM28-107-	825	49,9	87,1.	280	0,15825	0,0033	0,03589	0,00896	2,70805	0,07044	0,12411	0,00193	0,598	0,07314	0,00368	0,06091	
EM28-108-	62	9	13,2 .		0,09488	0,00178	0,04453	0,01078	3,29414	0,08968	0,25181	0,00497	0,725	0,07595	0,00186	0,14765	
EM28-109-	101	20,9	20,9 .		0,08963	0,00151	0,06154	0,0148	2,96267	0,06544	0,23973	0,00344	0,649	0,07107	0,0016	0,20756	
EM28-110-	72	5,4	12,4 .	715	0,08576	0,00157	0,02374	0,00567	2,36518	0,05765	0,20001	0,00323	0,662	0,06296	0,00167	0,07544	
EM28-111-	222	19,3	33 .		0,07451	0,00112	0,0265	0,00633	1,78974	0,03629	0,1742	0,00237	0,672	0,05275	0,00116	0,08752	
EM28-112-	178	18,9	32,4 .	2486	0,09014	0,0015	0,03297	0,00902	2,66074	0,06645	0,21407	0,00399	0,746	0,0661	0,00181	0,10677	
EM28-113-	109	10,2	44 .	2374	0,18107	0,00382	0,02494	0,00625	11,44487	0,34002	0,45843	0,0096	0,705	0,12135	0,00425	0,09423	
EM28-114-	76	6,5	12,5 .	244	0,11316	0,01129	0,04583	0,01283	3,00249	0,3051	0,19243	0,00375	0,192	0,10263	0,01453	0,08593	
EM28-115-	103	6,3	11,8.		0,07597	0,00137	0,0213	0,00516	1,43928	0,04318	0,13741	0,00329	0,799	0,04744	0,00112	0,06169	

	U-Pb discordance		Ages (Ma)											Internal prec	ision (percent	standard er
1SE	Central (%) Mini	mum rim (%)	207/206	1s :	207/235	1s	206/238	1s 2	208/232	1s	from to		Time	U	²⁰⁶ Pb 2	206/204
0,02001	3,53 .		1046	31	1069	13	1080	11	1139	24	3	28	13,98333	9,82	9,51	17,68
0,01938	2,08 .		969	28	982	12	988	11	1038	18	3	28	15,68333	3,11	2,55	20,32
0,01263	-9,28 .		1055	44	992	17	964	12	1078	27	3	28	17,66667	9,27	8,85	19,08
0,00922	-15,19 .		1288	64	1171	27	1108	19	1419	89	3	28	19,38333	3,1	1,69	23,38
0,05193	2,52 .		1023	35	1039	18	1047	21	1079	18	3	28	20,95	3,31	1,32	30,1
0,02721	-56,84	-51,99	2305	61	1581	32	1097	16	2012	102	3	28	22,9	5,81	4,62	22,28
0,00559	-0,79 .		1178	29	1173	14	1170	14	1549	58	3	28	24,58333	10,63	10,23	56,65
0,01718	-3,38 .		1134	48	1111	20	1099	15	1153	23	3	28	26,35	21,11	20,61	39,68
0,02684	-42,59	-33,34	1617	67	1196	28	977	13	1427	58	3	28	28,15	8,15	7,43	69,98
0,01237	4,57 .		1002	28	1031	15	1045	18	1056	19	3	28	29,8	8,52	6,72	16,63
0,0361	9,73	2,2	1051	28	1113	13	1145	13	1160	22	3	28	31,9	3,03	2,52	18,85
0,01283	-6,73 .		1264	164	1214	63	1187	30	905	88	3	28	33,56667	8,55	6,46	23,2
0,01558	5,06 .		1009	27	1041	12	1056	12	1069	18	3	28	35,25	5,45	4,8	24,61
0,02496	-13,59 .		1074	38	980	16	938	14	961	20	3	28	36,98333	3,31	3,83	20,85
0,02021	-7,42 .		1054	33	1005	16	982	15	996	17	3	28	38,61667	2,42	1,23	20,07
0,04819	-1,48 .		1084	30	1074	14	1069	14	1130	19	3	28	51,25	12,52	11,76	35,03
0,02779	-54,3	-45,29	2063	99	1415	46	1025	18	1939	139	3	28	54,13333	6,72	5,52	47,25
0,02053	-26,28	-2,86	1810	132	1559	61	1381	30	2263	289	3	28	55,86667	5,66	4,24	25,86
0,02224	-8,39 .		1180	49	1119	21	1089	18	1208	43	3	28	59,23333	5,3	4,19	20,92
0,02405	-28,58	-15,04	1358	45	1118	23	998	21	1205	32	3	28	63,55	2,7	1,25	30,03
0,01905	-6,65 .		1243	29	1194	14	1168	14	1295	30	3	28	68,73333	2,63	2,36	16,11
0,04099	-24,67	-14,85	1715	46	1487	24	1332	23	1613	36	3	28	70,43333	2,68	2,12	23,55
0,0186	-0,92 .		1023	41	1017	16	1015	13	1042	25	3	28	72,18333	9,84	8,99	18,62
0,02748	-27,86	-17,28	1271	35	1046	16	941	15	965	20	3	28	73,73333	1,71	1,06	41
0,03162	-4,18 .		1316	27	1284	15	1266	16	1278	29	3	28	75,36667	6,64	5,68	28,71
0,03087	-2,24 .		1056	30	1041	14	1034	14	1126	21	3	28	77	12,3	11,14	18,44
0,01439	-12,3	-1,09	1380	24	1283	16	1225	21	1271	31	3	28	78,66667	3,17	3,96	37,56
0,0263	-83,65	-82	4510	88	2730	63	988	21	5294	664	3	28	80,41667	1,49	2,07	100
0,01702	-13,54 .		1377	34	1270	22	1207	28	1413	40	3	28	82,26667	8,49	5,39	32,25
0,01306	-18,18	-7,66	1203	26	1066	14	1001	14	916	28	3	28	83,86667	4,74	3,8	33,14
0,01671	-5,48 .		1585	26	1540	23	1507	33	1548	45	3	28	90,43333	7,06	7,69	20,7
0,02858	0,43 .		1073	26	1075	13	1077	14	1119	20	3	28	92,65	2,36	1,87	15,92
0,03706	-8,28 .		1042	29	986	13	962	13	1021	19	3	28	94,26667	3,36	2,54	22,01
0,03928	-0,51.		1044	27	1040	12	1039	13	1082	19	3	28	95,85	7,64	6,82	19,39
0,01742	-3,84 .		1211	31	1183	15	1168	15	1239	25	3	28	97,46667	5,73	5,1	56,58
0,01794	-0,8.		1144	42	1047	10	1021	15	1001	20	3	20	99,15	13,30	11,00	21,09
0,02149	-4,75.		1079	20	1047	13	1031	14	1204	20	3	20	100,9333	0,92	4,92	20.47
0,01701	-11,30 .	24.60	1605	55	1233	21	1245	25	1060	127	2	20	102,55	21,40	10,37	29,47
0,01322	-30,43	-24,09	1625	74	1270	32	1079	24	1900	30	3	20	104,00	2,30	1,00	8.02
0,04412	-33,0	-43,15	1055	27	1896	20	1883	24	1958	48	3	20	108,5555	0,03	1 16	25.34
0,01353	-43.32	-20.18	1310	85	965	20	803	30	824	28	3	28	111 3	5.47	1,10	33.04
0,03042	-26.45	-17 73	2875	41	2585	36	2231	55	2882	103	3	28	113 1167	5.98	2.56	14 44
0.07654	-1 01	11,10	1853	28	1844	19	1836	26	1840	40	3	28	114 7833	2 22	1 65	14 65
0,07004	-7.91		1066	38	1012	16	988	15	1040	22	3	28	116.45	2,22	1,05	27.66
0.02777	-12 48		1076	46	989	18	951	15	921	29	3	28	135 0167	12,00	11 55	21,00
0.01583	-8.76	-1 07	1870	27	1793	18	1727	23	1743	41	3	28	136.8	2 19	1 61	25.48
0.01674	-2.13	1,01	999	35	986	14	979	11	1034	21	3	28	138,7167	3.69	3.3	24.07
0.02484	-27.13	-11.11	1280	37	1061	22	957	25	947	30	3	28	140.3167	4.91	1.84	47.12
0.03169	-20.26	-9.81	1213	39	1058	15	985	11	1110	27	3	28	142.0667	8.73	8.37	31.99
0.01735	-14.81	-3.72	1485	37	1362	20	1286	20	1598	53	3	28	143,7333	4.07	2.25	30.03
0,01446	-19,41 .	- /	1053	35	917	21	861	25	919	26	3	28	145,3333	8.21	5,9	27.02
0,01401	-3,78 .		1662	27	1631	20	1607	27	1670	40	3	28	148,4333	4,33	3,18	13,73
0,02216	-7,08 .		1425	26	1369	17	1333	20	1360	26	3	28	150,35	1,94	0,96	18,54
0,01977	-16,58 .		1275	29	1147	25	1081	32	1135	27	3	28	152,0667	2,14	1,83	55,46
0,02007	-6,39 .		1160	34	1115	15	1092	13	1092	21	3	28	154,1	1,72	1,51	27,55
0.01956	-5.91		1502	39	1454	29	1422	39	1526	30	3	28	156.35	13.36	8.92	38.92

0,02812	-5,77 .		969	32	932	16	917	17	913	25	3	28	158,25	10,78	9,54	39,08
0.02755	-8.08 .		1146	26	1089	12	1061	13	1058	19	3	28	160	6.69	5.84	25.02
0.03049	-10.09		1141	50	1069	19	1034	12	1045	23	3	28	163.6	7.23	6.6	22 01
0.01369	-34.07	-28 39	18//	34	1503	18	1273	15	2030	60	3	28	176 /833	3.67	2 97	7 25
0,02032	-3.25	20,00	1602	26	1576	19	1556	24	1568	34	3	20	103 3333	2,57	2,01	10.05
0,02002	-0,20 .		1002	20	1070	20	1000	40	1249	21	3	20	105,5555	2,51	2,00	15,03
0,03196	-10,04 .		1304	30	1200	20	1239	40	1340	31	3	20	190,0000	0.04	0.45	15,04
0,02666	-1,03 .		1100	30	1067	13	1061	13	1100	22	3	20	197,25	9,27	6,45	25,17
0,0101	2,95 .		1283	37	1304	25	1317	33	1323	38	3	28	199,0167	21,97	18,45	34,47
0,02048	-1,5 .		1146	31	1135	15	1130	15	1136	23	3	28	200,7	1,65	1,1	25,34
0,01251	-3,46 .		1112	33	1089	15	1077	15	1056	22	3	28	202,4833	20,95	20,38	47,68
0,02337	-4,63 .		1565	27	1528	17	1501	21	1498	35	3	28	204,2333	1,01	1,45	47
0,01039	-10,52 .		2339	60	2238	47	2129	66	2128	82	3	28	207,3167	2,32	4,2	16,66
0,01651	-6,34 .		980	34	940	13	922	11	953	20	3	28	209	5,48	4,75	19,57
0,02452	-26,64	-16,83	1573	39	1334	21	1190	21	1426	41	3	28	210,7667	5,24	3,96	41,12
0.04211	-5.58 .		1456	28	1412	16	1383	19	1378	29	3	28	212,5667	12.66	12.15	23.73
0.01728	-17.87	-4.59	1379	28	1235	20	1154	24	1227	26	3	28	214,2667	5.3	3.37	20.59
0.01795	-24 29	-13 14	1688	43	1466	25	1317	27	1685	46	3	28	216 1667	3.64	1 79	46,98
0.01473	-5.13	10,11	1099	30	1064	15	1047	16	1053	22	3	28	218 1833	2 95	2.06	14 79
0.01248	-10.48		1590	50	1502	/1	1441	57	1/21	78	3	28	231.5	4.05	5.81	15.87
0,01240	-10, 4 0.		1055	41	1002	10	000	17	1020	20	2	20	201,0	7,00	1.24	17.0
0,01004	-0,03 .		1035	41	1009	10	900	17	1029	20	3	20	235,2007	2,0	1,24	21.02
0,01958	3,02 .		1039	32	1059	14	1068	15	1062	25	3	28	235,0667	2,16	1,54	21,68
0,01418	-8,04 .		1239	41	1180	27	1148	33	1245	38	3	28	236,75	10,77	7,56	22,56
0,0436	-1,77 .		1074	27	1062	12	1056	13	1082	20	3	28	238,3667	5,66	5,48	17,35
0,02293	0,89 .		1166	27	1172	14	1176	16	1173	24	3	28	239,9833	4,24	3,42	8,07
0,02584	-7,94 .		1484	29	1420	20	1378	25	1389	29	3	28	241,8833	4,07	2,9	13,69
0,02049	-26,21	-16,44	1328	37	1112	17	1005	14	1209	37	3	28	243,5333	2,24	1,9	25,6
0,02046	-6,89 .		1162	31	1113	16	1088	17	1125	25	3	28	245,25	1,66	1,04	18,56
0,0172	-3,06 .		1320	25	1297	16	1284	20	1340	28	3	28	250,8333	4,52	3,31	17,59
0,02147	-3,59 .		1041	33	1018	16	1007	17	1033	23	3	28	252,5167	3,31	2	15,99
0,01797	-2,19 .		1047	27	1033	13	1026	13	1021	20	3	28	254,2833	4,13	3,52	13,85
0.0334	-34,19	-23.99	1673	60	1345	29	1149	17	1433	54	3	28	255,9833	3.68	2.76	69.39
0.01318	-6.48		1323	28	1274	15	1245	16	1236	28	3	28	257.7	4 41	3.6	17 71
0.02682	-5 54		1175	25	1136	12	1116	13	1123	21	3	28	259 4833	4 99	4 58	22 33
0,02002	-10.47		1096	76	1023	20	080	17	1120	70	3	20	267 8333	1,07	1.84	17 31
0,02021	-10,47		1457	22	1/15	29	1207	20	1425	22	3	20	207,0333	7.07	7.04	10.21
0,01040	-3,20 .		1437	33	1413	19	1307	20	1433	32	3	20	270,3007	7,0	1,30	10,31
0,02349	0,57 .	40.04	1142	42	1140	19	1140	10	1140	20	3	20	272,05	2,08	1,22	36,59
0,01732	-21,64	-10,81	1622	52	1429	25	1304	18	1538	40	3	28	273,8333	3,18	2,42	55,64
0,01067	-9,62 .		1062	29	996	21	967	26	960	31	3	28	275,4667	8,93	5,48	49,83
0,02117	-16,17	-4,97	1249	26	1126	15	1063	17	1078	26	3	28	277,3	7,82	6,23	28,65
0,02083	-37,84	-29,78	1528	42	1174	20	992	15	1426	41	3	28	279,0167	10,05	8,17	100
0,01343	-15,53 .		1140	42	1028	26	976	29	1129	35	3	28	280,6833	10,86	7,39	31,22
0,01769	-8,21 .		2899	36	2817	31	2704	49	2603	83	3	28	282,4833	3,28	2,64	20,43
0,02517	2.		935	29	947	13	952	13	945	20	3	28	284,1333	6,59	5,99	25,36
0,01337	-8,02 .		1598	26	1531	21	1483	29	1534	35	3	28	285,9167	6,05	4,61	26,38
0,02599	-18,4	-7,17	1274	33	1131	16	1058	16	1099	26	3	28	287,65	2,84	2	17,34
0.02001	-0.68	,	1160	29	1156	14	1153	14	1163	24	3	28	289.3167	11.07	10.91	23.65
0.03232	-2 78		990	50	972	20	964	18	978	23	3	28	291 0333	4 51	3.02	22.1
0.02848	-0.98		1339	32	1332	18	1327	20	1331	30	3	28	292 7167	8.94	7.61	19.21
0.0121	-0.62		1100	27	1105	13	1102	14	1122	23	3	28	204 3333	6.23	5.76	25.22
0,0121	-0,02 .	70.05	2427	21	1221	10	754	14	1407	23	3	20	205 95	0,23	2.01	25,22
0,01407	-12,90	-70,95	2437	30	1400	19	104	11	1427	09	3	20	202,00	2,34	2,01	4,14
0,03042	-5,1.		1526	34	1400	21	1440	∠0 10	1400	30	3	28	301,2033	3,75	2,38	10,7
0,0496	-2,54 .		1418	31	1398	17	1385	18	1388	30	3	28	312,25	2,99	2,56	16,09
0,01787	-12,92	-1,31	1333	33	1232	17	1175	17	1234	32	3	28	313,95	0,81	1,15	30,02
0,0208	-2,07 .		1055	30	1042	13	1035	13	1039	22	3	28	315,7167	2,17	1,69	17,3
0,029	-13,71	-2,34	1429	33	1318	18	1250	21	1294	34	3	28	317,4333	5,19	3,84	17,84
0,0233	-10,36	-2,26	2663	33	2560	28	2433	42	2315	77	3	28	319,1	4,15	3,46	25,74
0,02068	-42,14	-17,03	1851	175	1408	77	1135	20	1975	266	3	28	322,2	3,84	4,58	36,72
0,01481	-25,73	-8,89	1094	35	905	18	830	19	937	22	3	28	324,0167	3,85	1,8	16,01

ror from countin	ng statistics of	nly)	Relative error	r on regression	n line (%)	Tera-Wasserb	urg output fo	or 3D regress	sion	0401/20601		Signal (volts)		
Pb/Pb^	Pb/U*	Pb/U^	Pb/Pb* -	Pb/U*	°Pb/-**U^	UPb	1s -	PDPD	1s -	PDPD	1s	204	206	207	238
1,16	1,26	0,57	1,17	2,41	1,61	5,483	0,063	0,07416	0,0012	0,000373	0,000066	18,4615392	49435,8245	3675,476	2073,0255
0,89	1,14	0,69	1,22	2,76	1,78	6,039	0,072	0,07141	0,00101	0,000369	7,51E-05	18,4047924	49822,6749	3595,3608	2303,2852
1,97	2,16	0,9	1,17	2,71	1,82	6,201	0,081	0,07449	0,00169			11,5012413	44621,6208	3321,5231	2138,0406
3,15	2,11	1,55	1,04	2,07	1,57	5,33	0,097	0,08381	0,00283	0,00139	0,000325	47,9192942	34477,5768	2940,4397	1411,3397
1,31	2,36	2,02	1,19	2,52	1,67	5,67	0,126	0,07333	0,00126	0,001116	0,000336	42,1689789	37797,4596	2792,6245	1657,0861
3,23	4,29	1,23	0,59	1,2	1,59	5,391	0,085	0,14645	0,00536	0,004866	0,001084	125,472888	25785,8562	3675,6801	1073,8383
0,87	1,35	0,8	1,1	2,07	1,48	5,027	0,066	0,07924	0,00114	0,000335	0,00019	74,4262296	222464,34	17700,49	8612,4282
2,28	2,32	1,12	1,12	2,26	1,58	5,38	0,08	0,07751	0,00198	0,000674	0,000268	31,1538465	46192,201	3499,1137	1949,0797
3,44	3,25	1,01	0,87	2	1,8	6,11	0,085	0,09961	0,00368	0,00221	0,001546	63,8587643	28897,5929	2940,2878	1366,6888
0,96	1,9	1,58	1,2	2,55	1,67	5,684	0,105	0,07259	0,00106			9,4703664	65848,3929	4803,0267	2945,6813
0,91	1,13	0,66	1,17	2,26	1,51	5,144	0,063	0,07437	0,00107			14,4892817	39281,57	2944,3433	1541,8698
8,28	7,44	2,64	1,05	1,95	1,46	4,948	0,138	0,08279	0,00695	0,010402	0,002413	20,8827243	2007,52207	169,06103	78,289409
0,71	0,83	0,65	1,19	2,51	1,65	5,616	0,067	0,07283	0,00096	0,000301	7,41E-05	19,5838592	65002,8119	4769,6701	2799,1738
1,57	1,23	1,32	1,16	2,77	1,88	6,381	0,103	0,07522	0,00145	0,000661	0,000138	18,2534683	27625,9888	2082,9498	1342,9889
1,34	1,67	1,42	1,17	2,66	1,79	6,078	0,103	0,07448	0,0013	0,001425	0,000286	33,1967218	23294,0712	1749,3458	1088,8289
1,17	1,23	0,96	1,15	2,39	1,63	5,543	0,076	0,07558	0,00123	0,00073	0,000256	29,9936951	41088,8151	3136,4642	1772,3332
5,51	4,71	1,6	0,68	1,48	1,71	5,801	0,107	0,12746	0,00734	0,005586	0,00264	82,5283734	14773,4487	2024,0199	667,69701
7,09	8,99	2,17	0,79	1,23	1,23	4,186	0,1	0,11062	0,00804	0,002442	0,000632	76,8032791	31451,2272	3569,6681	1014,197
2,21	2,93	1,46	1,1	2,24	1,6	5,436	0,095	0,0793	0,00198	0,00058	0,000121	22,6986134	39105,9216	3141,5721	1647,1729
2,1	1,63	2,09	1	2,24	1,76	5,971	0,136	0,08689	0,00211	0,001291	0,000388	38,1715009	29569,1285	2590,8202	1365,3819
0,94	0,65	0,74	1,06	2	1,48	5,036	0,064	0,08191	0,00123			16,1790675	72589,7444	5998,1938	2787,5043
2,09	2,37	1,55	0,83	1,35	1,28	4,355	0,082	0,10504	0,00262	0,001217	0,000287	22,4842375	18467,7854	1944,1005	613,12718
1,75	1,65	1	1,19	2,61	1,73	5,866	0,082	0,07334	0,00153	0,001053	0,000196	23,8083235	22620,2282	1692,7665	1035,9448
1,44	1,07	1,41	1,05	2,5	1,87	6,36	0,107	0,08308	0,00155	0,000665	0,000273	37,6355614	56574,3922	4736,7748	2765,4156
0,79	1	0,88	1,02	1,77	1,36	4,61	0,064	0,085	0,00122	0,000504	0,000145	32,1752841	63879,0436	5486,486	2263,5418
1,1	1,3	1,05	1,17	2,51	1,69	5,746	0,083	0,07454	0,00117			9,2244648	55980,2213	4248,111	2525,6485
0,52	1,55	1,53	0,99	1,77	1,41	4,777	0,088	0,08788	0,00116	0,000617	0,000232	55,0126106	89131,5899	7886,7794	3221,5226
2,16	2,3	2,06	0,14	0,33	1,78	6,039	0,135	0,60066	0,03741	0,033511	0,033512	80,2143758	2393,63808	1402,8137	110,72761
1,29	3,39	2,34	0,99	1,8	1,43	4,855	0,122	0,08777	0,00156	0,000592	0,000191	34,9621693	59069,4967	5171,7739	2282,0379
0,77	1,26	1,19	1,08	2,42	1,75	5,955	0,091	0,08026	0,00112	0,000342	0,000113	55,6116018	162474,243	13143,301	7489,7404
0,77	2,8	2,19	0,89	1,26	1,12	3,796	0,092	0,09791	0,00147			19,9936954	182255,193	18082,591	5199,4954
0,74	1,24	0,96	1,16	2,39	1,62	5,5	0,076	0,07515	0,00101			14,6153852	76314,1211	5779,1216	3216,5455
1,07	1,34	1,08	1,18	2,74	1,83	6,217	0,09	0,07401	0,00115			19,1614128	24599,6649	1832,8126	1179,5898
0,77	1,1	0,85	1,17	2,52	1,68	5,72	0,075	0,07408	0,00101	0,000485	0,000094	23,2345529	47936,2786	3571,4545	2124,1647
1,14	1,58	0,99	1,08	2,04	1,48	5,035	0,072	0,08055	0,00132	0,00059	0,000334	39,6784364	67226,2778	5449,9004	2604,2312
1,81	1,75	1,02	1,12	2,17	1,53	5,193	0,075	0,07787	0,00167			8,4552338	19562,7509	1544,7504	794,98078
0,76	1,05	1,15	1,15	2,49	1,7	5,764	0,087	0,07538	0,00103	0,000423	0,000143	49,3694832	116660,032	8892,4077	5221,0782
1,39	2,24	1,93	0,99	1,73	1,38	4,695	0,102	0,08828	0,00164			17,5094584	36283,9478	3196,6831	1410,2101
3,86	4,87	1,3	0,87	1,79	1,61	5,486	0,09	0,10006	0,0041	0,001712	0,001187	186,172762	108755,91	10902,434	4584,2836
1,42	1,96	3,01	0,84	2,26	2,12	7,196	0,224	0,10391	0,00203	0,002072	0,000166	325,485498	157081,414	16591,017	9118,4599
0,55	1,1	1,05	0,74	0,82	0,87	2,948	0,051	0,11695	0,00181	0,000233	0,000059	23,4552337	100773,724	11846,185	2229,2942
4,46	2,78	3,88	1	2,83	2,22	7,542	0,297	0,08675	0,00402	0,002523	0,000834	40,2648174	15956,489	1412,654	974,13141
1,24	1,61	2,52	0,42	0,38	0,71	2,419	0,07	0,20614	0,00525	0,00244	0,000352	211,721312	86771,6332	17980,63	1613,9293
0,67	0,82	0,9	0,77	0,87	0,89	3,034	0,05	0,11329	0,00177			8,8209338	69346,298	7899,5397	1582,1138
1,55	2,09	1,37	1,16	2,63	1,78	6,04	0,101	0,0749	0,00144	0,001306	0,000361	23,2282475	17788,1598	1341,6386	829,23202
1,98	1,83	1,4	1,16	2,73	1,85	6,292	0,107	0,07527	0,00172			10,9899124	21600,8948	1622,6456	1063,8366
0,67	0,9	0,69	0,76	0,93	0,96	3,256	0,049	0,1144	0,00181	0,00039	9,93E-05	23,0453976	59116,9323	6792,4943	1452,793
1,48	1,53	0,6	1,2	2,74	1,79	6,094	0,072	0,07247	0,00135			19,6595212	13958,995	1018,8866	654,41083
1,52	1,94	2,63	1,04	2,44	1,84	6,246	0,173	0,08347	0,00162	0,001273	0,0006	37,7868854	29686,9752	2505,5101	1468,1584
1,56	1,45	0,69	1,08	2,45	1,78	6,058	0,074	0,08065	0,00158	0,000858	0,000274	29,7919297	34738,3127	2852,8325	1627,9853
1,55	1,41	1,36	0,94	1,59	1,33	4,531	0,079	0,09287	0,00187	0,000892	0,000268	39,7099625	44516,9491	4173,0622	1555,7918
1,4	3,11	2,96	1,17	3,07	2,06	6,996	0,215	0,07441	0,00135	0,00048	0,00013	31,2042879	64992,933	4874,5387	3707,3226
0,73	1,83	1,49	0,85	1,13	1,04	3,533	0,068	0,10208	0,00156			12,2257258	98595,6189	10113,133	2668,4119
0,71	1,7	1,23	0,97	1,58	1,28	4,352	0,072	0,08995	0,00129			15,3970229	129192,333	11681,93	4299,6811
1,05	2,6	3,09	1,04	2,15	1,61	5,479	0,175	0,08327	0,00133	0,000872	0,000484	48,2282473	55306,469	4621,7729	2354,1726
1,35	1,34	0,75	1,11	2,25	1,59	5,417	0,07	0,07853	0,0014			20,0693572	42574,7728	3361,4532	1767,6823
1,73	4,51	2,92	0,93	1,41	1,19	4,052	0,125	0,09367	0,00202	0,000351	0,000137	26,5195463	75466,7489	6861,5141	2558,831

1,18	1,74	1,72	1,22	2,99	1,93	6,543	0,129	0,0714	0,00116	0,000605	0,000237	39,8108451 65794,9364 4746,1907 3455,4117
0,6	0,88	0,81	1,12	2,34	1,64	5,589	0,074	0,07798	0,00102	0,000119	2,97E-05	24,6343005 207628,807 16312,65 9001,6344
2,35	2,47	0,78	1,12	2,41	1,69	5,746	0,075	0,07775	0,00205			18,5876424 23094,5985 1802,6753 1028,6066
1.26	1.38	0.71	0.77	1.32	1.35	4,579	0.061	0.11276	0.00215	0.002034	0.000148	286.128626 140668.126 15968.68 4939.2354
0,59	1,61	1,23	0,88	1,21	1,08	3,663	0,064	0,09884	0,00144			5,5107196 131807,39 13085,004 3677,0586
1.06	4.31	3.41	1	1.76	1.39	4.717	0.166	0.08717	0.00143			10.4413626 77982.6856 6805.8064 2944.3875
0.92	1.15	0.81	1.14	2.34	1.61	5.476	0.074	0.07618	0.00113			15.7944519 33803.5856 2584.1963 1438.0051
1.42	3.58	2.6	1.04	1.72	1.3	4,411	0.123	0.08359	0.00157			21,27995 47998,347 3923,6579 1822,4585
1	1 41	0.97	1 12	2 18	1.54	5 219	0.077	0.07796	0.00121	0.000618	0 000157	30 428752 49274 7714 3862 8067 1976 9629
1 18	1 74	1.03	1 13	2.34	1 62	55	0.082	0,07666	0.00128	-,	-,	11 6393446 110276 994 8395 6166 4887 705
0.73	1.32	1	0.9	1.28	1 12	3 815	0.061	0.09691	0.00146	0.00058	0 000273	37 0996218 63974 1068 6226 2227 1853 3371
32	6.62	3 46	0.58	0.56	0.75	2 555	0,093	0 14941	0.00547	-,	-,	10 8890296 110963 929 17095 682 2113 8543
1 29	1 27	0.83	1 21	2,95	1.91	6,502	0.087	0.0718	0.00124			18 8587647 38915 6013 2811 8593 1966 999
1 69	0.99	1 55	0.89	1.65	1 45	4 933	0.094	0.0973	0.00209	0 001247	0.000513	57 7364441 46307 8859 4579 1958 1776 9109
0.83	1 32	0.94	0,95	1,00	1,40	4 18	0,064	0.09144	0.00139	0,001247	0,000010	19 1551078 54720 0078 4995 3506 1783 4579
0.88	1.6	2 04	0,99	1,40	1.5	5 103	0,004	0.08786	0.00135	0 00034	0.00007	41 6330396 122492 324 10819 839 4906 0801
1.89	1 12	2,04	0.84	1,00	1,0	4 412	0,102	0 10352	0.00243	0.00125	0.000587	106 361917 85078 2977 8879 9237 2916 4995
0.96	1,12	1 25	1 14	2 /3	1.67	5.67	0,102	0,07616	0,00245	0,00125	0,000307	6 2/8/2/1 62062 5706 /810 1001 2763 /13
24	6.69	1,23	0.89	1 33	1,07	3 993	0,035	0,07010	0,00110			10 / 35057/ 82080 6765 8275 01/8 2510 8388
1 75	2.05	1.5	1 17	2.64	1,10	6,037	0,170	0,03015	0,00271			17 2446412 14070 6005 1053 3620 650 86007
1,75	2,05	0.00	1,17	2,04	1,70	5,037	0,111	0,0743	0,00138			18 575032 22278 0201 1654 181 054 23231
1,12	4.02	0,99	1,10	2,45	1,05	5,549	0,003	0,07332	0,0012			
0.60	4,02	2,90	1,00	2,03	1,51	5,15	0,101	0,00175	0,00177			17 8310231 86580 1386 6551 0464 3754 0657
0,09	0,9	0,05	1,10	2,43	1,05	3,010	0,073	0,0752	0,00103			
0,75	1,15	0,9	1,1	2,07	1,47	4,999	0,073	0,07875	0,00112			5,0505179 59077,0934 4721,159 2307,1005
0,91	2,29	1,00	0,94	1,47	1,23	4,190	0,085	0,09262	0,00147			13,2397737 75023,5390 0901,7050 2435,9321
1,54	2,03	0,99	1,02	2,20	1,74	5,920 5,427	0,066	0,06554	0,0017			19,3020937 17614,0436 1526,4122 615,77596
1,12	1,19	1,27	1,11	2,20	1,0	5,437	0,092	0,0766	0,0013	0 00000		
0,0	1,19	1,21	1,02	1,74	1,34	4,039	0,077	0,06521	0,00116	0,00029	5,09E-05	25,3341740 87490,3970 7300,7900 3079,4257
1,21	1,94	1,43	1,10	2,01	1,74	5,910	0,106	0,074	0,00125			15,306954 42769,3021 3160,3023 1971,0652
0,8	0,84	0,85	1,17	2,55	1,71	5,797	0,081	0,07421	0,00106		0 004000	9,5712491 60796,2892 4545,2913 2731,0206
3,16	3,91	1,14	0,85	1,63	1,51	5,126	0,083	0,1027	0,00356	0,001993	0,001383	67,4211854 33835,484 3447,1583 1343,9082
0,75	1,19	0,82	1,02	1,79	1,38	4,693	0,068	0,08534	0,00125			7,717529 73818,8619 6313,3165 2677,2999
0,48	0,56	0,52	1,1	2,18	1,56	5,293	0,067	0,07913	0,00104			16,9546032 20/227,176 16510,932 8472,0784
3,86	4,64	1,46	1,14	2,59	1,77	6,029	0,11	0,07602	0,00309			10,7503158 7752,47995 595,01967 360,39722
1,27	1,44	0,99	0,95	1,48	1,23	4,164	0,067	0,09148	0,00167		0 000504	15,8701141 40475,3884 3717,9079 1299,6141
1,8	2,35	1,21	1,12	2,15	1,51	5,131	0,086	0,0778	0,00169	0,001616	0,000591	29,0920557 18006,4823 1404,5689 713,94025
2,62	2,38	0,85	0,87	1,46	1,31	4,462	0,067	0,09986	0,00296	0,001053	0,000586	69,5712485 66086,0678 6658,3748 2270,4386
0,85	3,3	2,76	1,16	2,7	1,82	6,18	0,181	0,07474	0,0011	0,000517	0,000258	47,8625474 92503,5772 6898,8763 4695,7832
0,59	1,27	1,27	1,06	2,21	1,64	5,579	0,095	0,08215	0,00113	0,000309	8,86E-05	48,0075666 155271,411 12820,907 6828,3876
1,88	1,44	1,14	0,92	2,06	1,77	6,014	0,097	0,095	0,0022	0,002299	0,002299	75,2711224 32736,225 3198,7637 1559,2377
1,96	2,22	3,04	1,12	2,57	1,8	6,118	0,196	0,07775	0,0018	0,000726	0,000227	52,5851201 72392,1754 5680,6957 3677,9062
0,42	0,79	0,86	0,42	0,3	0,56	1,919	0,043	0,2091	0,00484			14,9117281 77486,0472 16168,641 1099,4345
0,85	0,95	0,91	1,24	2,92	1,85	6,284	0,091	0,07021	0,00102	0,000744	0,000189	32,3329134 43443,344 3063,1559 2127,2141
0,56	1,93	1,84	0,88	1,28	1,14	3,865	0,086	0,09861	0,00146	0,000289	7,61E-05	29,7856246 103208,421 10188,101 3110,5664
1,25	1,38	1,1	1,05	2,2	1,65	5,609	0,09	0,08319	0,00148			21,0214382 31701,0115 2654,8996 1380,5053
0,78	0,93	0,62	1,11	2,12	1,5	5,106	0,069	0,07853	0,00114			13,9911733 122068,97 9632,9201 4830,3343
2,2	2,4	1,64	1,21	2,8	1,82	6,199	0,123	0,07213	0,00181	0,002653	0,000586	28,833544 10869,119 788,6942 528,96857
1,19	1,67	1,11	1,01	1,66	1,29	4,375	0,073	0,08603	0,00151			12,1185377 26047,1293 2233,2574 890,8344
0,53	0,71	0,57	1,14	2,28	1,58	5,361	0,072	0,07652	0,00102	0,000144	3,62E-05	27,9634304 194752,564 14949,109 8098,1327
0,97	1,57	1,09	0,55	1,66	2,37	8,057	0,125	0,15825	0,0033	0,003567	0,000148	572,257251 160421,762 25411,401 10024,012
1,29	2	1,49	0,92	1,36	1,17	3,971	0,078	0,09488	0,00178			16,3619173 24381,2899 2324,1421 749,85743
1,04	0,98	0,57	0,97	1,52	1,23	4,171	0,06	0,08963	0,00151			12,8499376 38411,5047 3453,4073 1230,9291
1,29	1,2	1,04	1,01	1,9	1,47	5	0,081	0,08576	0,00157	0,001399	0,00042	31,9924341 22860,8164 1964,3375 880,23713
0,87	1,08	0,64	1,17	2,51	1,69	5,74	0,078	0,07451	0,00112			13,7137458 60730,9823 4542,246 2699,8889
1	2,23	1,39	0,96	1,69	1,37	4,671	0,087	0,09014	0,0015	0,000402	7,18E-05	23,9911733 59637,8994 5375,1668 2168,4066
0,52	1,07	0,92	0,48	0,39	0,64	2,181	0,046	0,18107	0,00382	0,000421	0,000108	34,1298869 81029,1028 14637,478 1323,8188
9,8	10,79	1,53	0,77	1,5	1,53	5,197	0,101	0,11316	0,01129	0,004094	0,001503	94,4955866 23081,3952 2887,3714 922,86602
1,31	1,59	2,13	1,14	3,12	2,14	7,278	0,174	0,07597	0,00137			16,6519552 21815,9175 1667,8734 1256,3528

Observed correlation	Error magnification factors								
Rho/RI	ho(raw)	206/207 2	207/235	206/238					
0,381	1,528	1,38	1,58	2,03	120521-run1.msws lso.prr				
0,626	1,029	1,58	1,62	1,72	120521-run1.msws lso.prr				
0,407	1,226	1,15	1,21	1,46	120521-run1.msws lso.prr				
-0,474	-1,003	1,07	1,82	1,18	120521-run1.msws lso.prr				
0,833	0,949	1,31	1,19	1,1	120521-run1.msws lso.prr				
0,899	0,44	1,14	0,93	1,28	120521-run1.msws Iso.prr				
0,791	0,848	1,66	1,44	1,63	120521-run1.msws lso.prr				
0,278	1,818	1,12	1,28	1,33	120521-run1.msws lso.prr				
-0,04	-8,858	1,07	1,22	1,37	120521-run1.msws lso.prr				
0,862	0,907	1,52	1,24	1,16	120521-run1.msws lso.prr				
0,601	1,077	1,59	1,66	1,84	120521-run1.msws lso.prr				
-0,159	-1,981	1,01	1,19	1,05	120521-run1.msws Iso.prr				
0,562	1,191	1,85	2,12	1,83	120521-run1.msws lso.prr				
0,238	2,683	1,23	2,05	1,22	120521-run1.msws lso.prr				
0,631	1,103	1,3	1,46	1,2	120521-run1.msws lso.prr				
0,448	1,441	1,39	1,73	1,44	120521-run1.msws lso.prr				
-0,375	-0,817	1,04	1,28	1,16	120521-run1.msws Iso.prr				
0,902	0,347	1,02	0,85	1,1	120521-run1.msws Iso.prr				
0,683	0,841	1,13	1,04	1,2	120521-run1.msws Iso.prr				
0,386	1,77	1,16	2,04	1,09	120521-run1.msws lso.prr				
0,075	8,67	1,59	3,05	1,73	120521-run1.msws lso.prr				
0,497	1,212	1,19	1,32	1,21	120521-run1.msws lso.prr				
0,196	2,836	1,19	1,52	1,4	120521-run1.msws lso.prr				
0,347	1,931	1,29	2,36	1,2	120521-run1.msws Iso.prr				
0,653	1,066	1,82	2	1,58	120521-run1.msws Iso.prr				
0,577	1,169	1,43	1,64	1,37	120521-run1.msws Iso.prr				
0,942	0,862	2,52	1,46	1,2	120521-run1.msws lso.prr				
0,513	0,66	2,88	2,88	1,09	120521-run1.msws lso.prr				
0,964	0,848	1,38	0,91	1,08	120521-run1.msws lso.prr				
0,806	0,92	1,82	1,65	1,29	120521-run1.msws Iso.prr				
0,982	0,866	1,96	1,02	1,11	120521-run1.msws lso.prr				
0,804	0,893	1,83	1,56	1,45	120521-run1.msws lso.prr				
0,626	1,089	1,45	1,59	1,34	120521-run1.msws lso.prr				
0,716	0,97	1,77	1,72	1,54	120521-run1.msws Iso.prr				
0,693	0,953	1,43	1,38	1,45	120521-run1.msws lso.prr				
0,233	2,401	1,19	1,48	1,42	120521-run1.msws lso.prr				
0,765	0,972	1,79	1,94	1,32	120521-run1.msws lso.prr				
0,786	0,967	1,33	1,28	1,13	120521-run1.msws lso.prr				
0,83	0,447	1,06	0,91	1,26	120521-run1.msws lso.prr				
0,922	0,917	1,38	1,87	1,03	120521-run1.msws lso.prr				
0,873	0,857	2,83	2,11	1,66	120521-run1.msws lso.prr				
0,136	4,749	1,04	2,19	1,01	120521-run1.msws lso.prr				
0,914	0,822	2,05	2,4	1,15	120521-run1.msws lso.prr				
0,701	1,032	2,34	2,76	1,83	120521-run1.msws lso.prr				
0,672	0,977	1,24	1,22	1,22	120521-run1.msws lso.prr				
0,27	2,209	1,16	1,56	1,22	120521-run1.msws lso.prr				
0,671	1,026	2,35	2,43	2,16	120521-run1.msws lso.prr				
0,278	1,923	1,26	1,44	1,96	120521-run1.msws lso.prr				
0,82	0,999	1,27	1,75	1,05	120521-run1.msws Iso.prr				
0,067	7,878	1,26	1,6	1,78	120521-run1.msws Iso.prr				
0,37	1,768	1,29	1,88	1,28	120521-run1.msws Iso.prr				
0,894	0,963	1,29	1,15	1,04	120521-run1.msws Iso.prr				
0,923	0,85	2,08	1,34	1,29	120521-run1.msws Iso.prr				
0,931	0,814	2,01	1,29	1,35	120521-run1.msws Iso.prr				
0,947	0,946	1,52	1,38	1,04	120521-run1.msws lso.prr				
0,263	2,23	1,32	1,65	1,72	120521-run1.msws lso.prr				
0,982	0,834	1,25	0,83	1,05	120521-run1.msws Iso.prr				

0,768	1,003	1,38	1,47	1,14	120521-run1.msws Iso.prn
0,755	0,942	2,19	2,11	1,63	120521-run1.msws Iso.prn
0,307	1,443	1,12	1,19	1,67	120521-run1.msws Iso.prn
0,417	1,377	1,51	1,69	1,9	120521-run1.msws Iso.prn
0,947	0,812	2,45	1,41	1,43	120521-run1.msws Iso.prn
0,989	0,916	1,54	0,9	1,03	120521-run1.msws Iso.prn
0,602	1,118	1,61	1,76	1,67	120521-run1.msws Iso.prn
0.943	0.88	1.32	0.94	1.07	120521-run1.msws lso.prn
0.702	0.979	1.55	1.52	1.5	120521-run1.msws lso.prn
0,753	0,884	1,41	1,28	1,45	120521-run1.msws Iso.prn
0,839	0,868	2,07	1,66	1,59	120521-run1.msws Iso.prn
0,995	0,711	1,14	0,78	1,06	120521-run1.msws Iso.prn
0,301	2,034	1,34	1,72	1,6	120521-run1.msws Iso.prn
0,179	3,704	1,27	2,89	1,22	120521-run1.msws Iso.prn
0,781	0,906	1,84	1,64	1,62	120521-run1.msws Iso.prn
0,912	0,911	1,75	1,73	1,12	120521-run1.msws Iso.prn
0,39	1,797	1,24	2,92	1,14	120521-run1.msws Iso.prn
0,686	1,072	1,58	1,93	1,32	120521-run1.msws Iso.prn
0,993	0,854	1,15	0,78	1,01	120521-run1.msws Iso.prn
0.552	1.189	1.21	1.36	1.22	120521-run1.msws Iso.prn
0.649	1.041	1.45	1.49	1.5	120521-run1.msws Iso.prn
0.912	0.901	1.22	0.95	1.05	120521-run1.msws Iso.prn
0.65	1.058	1.98	2.09	1.98	120521-run1.msws Iso.prn
0.759	0.946	1.9	1.78	1.62	120521-run1.msws Iso.prn
0.945	0.833	1.75	1.13	1.23	120521-run1.msws Iso.prn
0.679	0.878	1.29	1.22	1.5	120521-run1.msws Iso.prn
0.583	1.226	1.47	1.99	1.33	120521-run1.msws Iso.prn
0.878	0.882	2.33	1.84	1.4	120521-run1.msws Iso.prn
0.783	0.928	1.4	1.27	1.26	120521-run1.msws Iso.prn
0.552	1.27	1.79	2.37	1.66	120521-run1.msws Iso.prn
0.734	0.577	1.1	0.98	1.42	120521-run1.msws Iso.prn
0.787	0.896	1.96	1.73	1.77	120521-run1.msws Iso.prn
0.601	1,161	2.71	3.28	2.45	120521-run1.msws Iso.prn
0.643	0.638	1.05	0.96	1.25	120521-run1.msws Iso.prn
0.502	1.311	1.44	1.69	1.62	120521-run1.msws Iso.prn
0.657	0.93	1.21	1.17	1.39	120521-run1.msws Iso.prn
-0.114	-3.948	1.13	1.4	1.76	120521-run1.msws Iso.prn
0.976	0.916	1.73	1	1.06	120521-run1.msws Iso.prn
0.894	0.871	2.35	1.73	1.35	120521-run1.msws Iso.prn
-0.048	-11.96	1.23	1.96	1.4	120521-run1.msws Iso.prn
0,766	1,057	1,18	1,78	1,05	120521-run1.msws lso.prn
0,876	0,794	5,53	4,06	2,6	120521-run1.msws Iso.prn
0.586	1.208	1.71	2.16	1.6	120521-run1.msws Iso.prn
0.957	0.871	2.63	1.39	1.21	120521-run1.msws Iso.prn
0.509	1.311	1.42	1.73	1.45	120521-run1.msws Iso.prn
0.557	1.222	1.87	2.14	2.2	120521-run1.msws Iso.prn
0.457	1.354	1.14	1.33	1.21	120521-run1.msws Iso.prn
0.701	0.986	1.47	1.45	1.5	120521-run1.msws Iso.prn
0.685	1.033	2.54	2.65	2.35	120521-run1.msws Iso.prn
0.794	0.753	2.16	1.66	1.43	120521-run1.msws Iso.prn
0.762	0.951	1.45	1.36	1.32	120521-run1.msws Iso.prn
0,188	3,462	1,62	2,25	2,53	120521-run1.msws lso.prn
0,346	1,913	1,42	2,04	1,55	120521-run1.msws Iso.prn
0,597	1,126	1,73	1,87	2,13	120521-run1.msws Iso.prn
0.951	0.784	1.66	1.12	1.34	120521-run1.msws Iso.prn
0.874	0.806	4.06	2.78	2.27	120521-run1.msws Iso.prn
0.689	0.278	1.02	0.94	1.27	120521-run1.msws Iso.prn
0,79	1,011	1,38	1,88	1,13	120521-run1.msws Iso.prn