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Abstract
A simplification of existing analytical solutions together with an extended
hybrid model is proposed for estimating the horizontal impedance of batter pile
groups subjected to harmonic loading. The solutions are given through compact
interaction factors and analogue pile-soil-pile interaction elements. Benefits
and pitfalls of the simplified models are elucidated through a comprehensive
comparison with a refined finite element model. The effect of varying center-
to-center pile distance with respect to depth is discussed. It is shown that the
analytical model is able to represent pile-soil-pile interaction rather well within
the specified framework.
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1 INTRODUCTION

Inclined piles are often used to improve the lateral capacity to resist large horizontal loads. In regions with high seismic
activity however, inclined piles are not recommended due to several earthquakes where structures with deep foundations
and inclined piles performed poorly.[1] In fact, these recommendations are now part of several governing codes, including
Eurocode 8.[2] Even so, several studies on numerical solutions have shown potential advantages for both superstructure
and substructure using inclined piles.[3–7] Giannakou et al.[8] presented a parametric, linear analysis which elucidated
how the type of loading and superstructure affected the behaviour and response of batter piles. Experimental studies have
also revealed similar benefits.[9–11] The experimental study performed by Escoffier[12] showed that the response of a two-
by-one batter pile group was highly influenced by the frequency content of loading. It has also been suggested that the
inadequate performance of inclined piles has been due to poor design rather than the fundamental behaviour of the pile
itself.[13]
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Easy access to commercial FE-software allows for accurate assessment of most structural and geotechnical problems.
However, numerical solutions of dynamic soil-pile-structure response are both time-consuming and complex in nature,
often demanding cross-disciplinary set of skills. Therefore, practical engineering often favours simple analytical or
analogue methods that are robust, easy to use and verifiable. Due to the above-mentioned discouragement of inclined
piles in seismic areas, researchers have in the last decades mainly focused on vertical pile groups in the development
of computational methods. Kaynia[14] proposed a meticulous solution elucidating dynamic pile-soil-pile interaction
and validating the superposition principle for dynamic response. Dobry and Gazetas[15] proposed a simple method for
estimating the dynamic impedance of a pile group by directly applying simple wave attenuation functions as interaction
factors. Gazetas and Makris[16,17] further studied the interaction factors in a two-part article series, where the inertial and
flexural resistance of the receiver pile was recognized for lateral interaction. Makris and Gazetas[18] also investigated the
effect of phase differences in the interaction factor approach. Mylonakis and Gazetas[19] extended the interaction method
by taking into account finite pile length and soil layering. Takewaki and [20] applied the principles of the interaction
factor method in order to estimate the interstory drifts in buildings. Wang et al.[21] extended the interaction factor
method by including shear deformations and rotational inertia of the piles and shear deformations of soil. In the recent
years however, attempts have been made to develop simplified methods also for batter pile groups. Ghasemzadeh and
Alibeikloo[22] presented a simple, closed-form solution for infinitely long piles in homogeneous soil. A similar approach
was presented by Ghazavi et al.[23]. Wang et al.[24] extended his shear and multi-layer model to inclined piles. Goit and
Saitoh[25] performed an experimental study to asses the impact of non-linearity on interaction factors for batter pile
groups and proposed additional multiplication factors.
The objective of this paper is (1) to present simple, spreadsheet friendly expressions for the dynamic impedance of batter

pile groups in linear, homogeneous soil, (2) contribute in the development and understanding of simplified computational
methods for pile groups and (3) illuminate the potential benefits and pitfalls intrinsic to analogue simplifications. First,
we will present a simplified, closed-form solution that closely follows the methods for dynamic pile-soil-pile interaction
available in the literature.[15–18,22,23] The presented method is valid for long, floating piles with fixed head conditions in
homogeneous soil. The underlying philosophy in approaching this method is primarily motivated by (1) simplicity in use,
(2) accuracy in conjunction with the intended field of application and (3) educational value. Next, the analytical solution
is evaluated by computing the lateral, dynamic impedance of a two-by-one pile group. The effects of pile distance, batter
angle and load frequency are evaluated and compared to a fully numerical model using beams, solids and appropriate
boundary elements constructed in OpenSees MP.[26] Finally, a hybrid model is constructed where the piles are modelled
as finite element beams, while the soil and the pile-soil-pile interaction is represented using analogue elements based
on the analytical approach. The hybrid model may be considered as an extension of the analytical model, where the
limitations of the closed-form solution are, at least partly, bested by solving the differential equation numerically.

2 METHOD

2.1 Simplified analytical model

The general aim is to establish expressions for the displacement of a receiver pile due to harmonic vibrations of a neigh-
boring pile through an interaction factor. The main principles for this approach are well-established throughout the
literature[14,15,19–22,24] and will not be repeated here. One of the more crucial assumptions is that wave emission occurs
simultaneously from all points along the pile. This assumption is thoroughly discussed by Makris and Gazetas[18] who
have shown that the assumption is reasonable for vertical piles. For batter piles, even though the wave emission from the
source pile may be regarded as simultaneous, the waves striking the receiver pile are generally not in phase along the pile
length due to the batter angle. This issue is discussed in Section 2.1.4. Past studies have shown that rotational interaction
is negligible for vertical piles.[14,27] The same arguments apply to batter piles. The limitations of the method presented
in this paper include inertial loading, long (floating) piles, homogeneous deposits, cylindrical pile shapes and fixed-head
conditions. Note that other boundary conditions may of course be enforced, but every specific combination of conditions
requires an unique solution. The piles are modelled as bars (axial loads) and Euler-Bernoulli beams (lateral loads). The
soil is modelled using linear, frequency-dependent Winkler springs and dashpots.[18,28,29] A schematic illustration of the
model is shown in Figure 1. Expressions used for the springs are

𝑘𝑧 ≃ 0.6𝐸𝑠

(
1 +

1

2

√
𝑎0

)
(1a)
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F IGURE 1 Schematic illustration of a harmonically loaded two-pile group

𝑘𝑥 ≃ 1.2𝐸𝑠 (1b)

where subscripts 𝑧 and 𝑥 denote axial and lateral deformation, respectively. 𝐸𝑠 is the Young’s modulus of soil and 𝑎0 is the
dimensionless frequency

𝑎0 =
𝜔𝑑𝑝

𝑉𝑠
(2)

where 𝑑𝑝 is pile diameter, 𝜔 is the angular excitation frequency and 𝑉𝑠 is the shear wave velocity. The expressions used
for dashpots consist of radiation damping and hysteric damping, that is,

𝑐𝑧 ≃ 1.2𝑎
−

1

4

0
𝜋𝑑𝑝𝜌𝑠𝑉𝑠 + 2𝛽

𝑘𝑧

𝜔
(3a)

𝑐𝑥 ≃ 2𝑎
−

1

4

0
𝑑𝑝𝜌𝑠𝑉𝑠

⎡⎢⎢⎣1 +

(
𝑉𝐿𝑎

𝑉𝑠

) 5

4
⎤⎥⎥⎦ + 2𝛽

𝑘𝑥

𝜔
(3b)

Here, 𝜌𝑠 is the soil density, 𝛽 is hysteric damping factor of the soil (not to be confused with the batter angle in Figure 1)
and 𝑉𝐿𝑎 is the Lysmer’s analogue velocity. The displacement vector for a pile group may be expressed as[

𝒖𝒓

𝒘𝒓

]
=

[
𝒖𝒓𝒓

𝒘𝒓𝒓

]
+

[
𝜶𝒂𝒂 𝜶𝒂𝒍

𝜶𝒍𝒂 𝜶𝒍𝒍

][
𝒖𝒔𝒔

𝒘𝒔𝒔

]
(4)

where 𝒖𝒓 (axial) and 𝒘𝒓 (lateral) are the total receiver pile displacements, 𝒖𝒓𝒓 (axial) and 𝒘𝒓𝒓 (lateral) are the receiver
pile displacements due to own loading, 𝒖𝒔𝒔 (axial) and𝒘𝒔𝒔 (lateral) are the source pile displacement due to own loading,
𝜶𝒂𝒂 is the axial-axial interaction factor, 𝜶𝒂𝒍 is the axial-lateral interaction factor, 𝜶𝒍𝒂 is the lateral-axial interaction factor
and 𝜶𝒍𝒍 is the lateral-lateral interaction factor. Due to the rigidity of the pile cap, the total displacement of the single pile
is approximately equal to the pile group displacement.

2.1.1 Axial response of a single pile

Assuming harmonic, steady-state response, the equilibrium equation of the axially vibrating pile is

𝐸𝑝𝐴𝑝
𝜕2𝑢(𝑧)

𝜕𝑧2
−
[
(𝑘𝑧 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑧

]
𝑢(𝑧) = 0 (5)
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where𝐸𝑝 is the E-modulus of the pile and𝐴𝑝 is the cross sectional area of the pile. The general solution of the free vibration
response is

𝑢(𝑧) = 𝐴1𝑒
𝑟1𝑧 + 𝐴2𝑒

𝑟2𝑧 (6)

The roots are

𝑟1,2 = ±Λ (7)

where

Λ =

[
(𝑘𝑧 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑧

𝐸𝑝𝐴𝑝

] 1

2

(8)

Applying the conditions 𝑢(0, 𝑡) = 𝑈(0, 𝑡) = 𝑈0 and insuring a finite displacement as z tends to infinity, 𝐴1 must be equal
to zero. The displacement is then expressed as

𝑢(𝑧, 𝑡) = 𝑈0𝑒
−Λ𝑧 (9)

2.1.2 Lateral response of a single pile

The governing differential equation is expressed as

𝐸𝑝𝐼𝑝
𝜕4𝑤(𝑧)

𝜕𝑧4
+
[
(𝑘𝑥 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑥

]
𝑤(𝑧) = 0 (10)

where 𝐼𝑝 is the second moment of area of the pile cross section. Solutions are sought separately for 𝜔 < 𝜔𝑧 and 𝜔 > 𝜔𝑥,
where

𝜔𝑧 =

√
𝑘𝑥

𝑚
(11)

For simplicity, derivations are only presented for𝜔 < 𝜔𝑥 since this solution covers the frequency range of practical interest.
The solution for 𝜔 > 𝜔𝑥 is obtained through a nearly identical procedure. The solution of Equation 10 is obtained by
applying the Laplace transformation while directly incorporating the boundary condition 𝜕𝑢(0)

𝜕𝑧
= 0 (no rotation at the

pile head). To the best of the authors knowledge, this particular technique was first applied by Makris and Gazetas[17] in
relation to solving the beam-on-complex-springs differential equation. The procedure yields, algebraically at least, a fairly
simple solution to Equation 10, that is,

𝑤(𝑧, 𝑡) =
𝑊0

2

[
(1 + 𝑖)𝑒−𝑍(𝑏+𝑖𝑎)𝑧 + (1 − 𝑖)𝑒𝑍(𝑖𝑏−𝑎)𝑧

]
(12)

where𝑊0 is the lateral pile head displacement and

𝑍 =

[
(𝑘𝑥 − 𝑚𝜔2)2 + (𝜔𝑐𝑥)

2

(4𝐸𝑝𝐼𝑝)2

] 1

8

(13)

and

𝑎 = cos
𝜃

4
+ sin

𝜃

4
> 0, 𝑏 = cos

𝜃

4
− sin

𝜃

4
> 0 (14)

The full derivation is somewhat tedious and is omitted due to brevity.
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2.1.3 Attenuation functions

The use of simplified plane-strain attenuation functions is well-established and discussed throughout the
literature[15–18,22–24] and is therefore briefly addressed in this paper. When the pile is vibrating in the axial direc-
tion, cylindrical SV-waves emanate from the pile surface. The attenuation function is then given as

𝜓𝑢 ≃

(
𝑟𝑝

𝑆(𝑧)

) 1

2

exp

(
−𝛽𝜔𝑆(𝑧)

𝑉𝑠

)
exp

(
−𝑖𝜔𝑆(𝑧)

𝑉𝑠

)
(15)

It is assumed that the laterally vibrating pile emanates P-waves in the direction of displacement and SH-waves perpendic-

ular do the direction of displacement.[15–18] The attenuation functions are thus

𝜓𝑤(𝜃 = 0◦) ≃

(
𝑟𝑝

𝑆(𝑧)

) 1

2

exp

(
−𝛽𝜔𝑆(𝑧)

𝑉𝐿𝑎

)
exp

(
−𝑖𝜔𝑆(𝑧)

𝑉𝐿𝑎

)
(16)

𝜓𝑤(𝜃 = 90◦) ≃

(
𝑟𝑝

𝑆(𝑧)

) 1

2

exp

(
−𝛽𝜔𝑆(𝑧)

𝑉𝑠

)
exp

(
−𝑖𝜔𝑆(𝑧)

𝑉𝑠

)
(17)

where we have introduced 𝜃 as the angle between the direction of vibration and the center-to-center line between the two
piles. The wave field for any value of 𝜃 between 0◦ and 90◦ may be expressed as

𝜓𝑤 ≃ 𝜓𝑤(𝜃 = 0◦) cos2(𝜃) + 𝜓𝑤(𝜃 = 90◦) sin
2
(𝜃) (18)

with sufficient accuracy.[15,17] However, it should be noted that when the pile spacings are very short, the scattering effect
will inherently reduce the interaction. Therefore, the proposed method is applicable for spacings approximately equal to
or greater than 3𝑑.

2.1.4 Axial displacement of receiver pile due to axial displacement of source pile - 𝛼𝑎𝑎

The flexibility of the receiver pile will resist the soil deflection, resulting in a modified displacement profile. The batter
angles 𝛽 are, by definition, positive clock-wise. If damping is neglected when deriving the axial response of a single pile,
Equation 9 is simplified to

𝑢(𝑧) = 𝑈0𝑒
−𝑅𝑧 (19)

where

𝑅 =

(
𝑘𝑧 − 𝑚𝜔2

𝐸𝑝𝐴𝑝

) 1

2

(20)

Figure 2a shows the normalized axial displacement plotted against the ratio between depth and pile diameter at 𝑡=0
using Equations 9 and 19. For the frequency range of interest, the results show that even though the actual wave propagat-
ing down the pile is completely different for the damped and undamped system, the soil displacement distribution is very
similar. For higher frequency values however, the displacement distribution is somewhat different. In order to simplify
the algebraic expressions, Equation 19 will be used in the following derivations and examples. A similar simplification
was proposed by Makris and Gazetas[17] for lateral response. The mathematical formulation for the displacement of the
receiver pile is the non-homogeneous differential equation for the dynamic bar. The bar is loaded with a distributed load
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F IGURE 2 Normalized displacement of source pile with and without damping plotted against the ratio between depth and pile diameter
at time 𝑡=0. 𝑑∕𝐿=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05, 𝜌𝑠= 0.75𝜌𝑝 , and 𝜈 = 0.25

F IGURE 3 Attenuation function amplitude. 𝑉𝑠 = 100 m/s, damping ratio 𝛽 = 0.05, 𝜌𝑠= 0.75𝜌𝑝 and 𝜈 = 0.25

equal to the induced soil displacement multiplied by the soil impedance, that is,

𝐸𝑝𝐴𝑝
𝜕2𝑢(𝑧)

𝜕𝑧2
−
[
(𝑘𝑧 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑧

]
𝑢(𝑧) = −(𝑘𝑧 + 𝑖𝜔𝑐𝑧)𝜓𝑢𝑈0 cos(𝛽1 − 𝛽2)𝑒

−𝑅𝑧 (21)

For vertical piles, the center-to-center distance 𝑆(𝑧) between two piles is constant along the pile length. For inclined piles
however, the distance S varies linearly. With reference to Figure 1, the distance between two piles at an arbitrary depth
measured radially from the vibrating pile is expressed as

𝑆(𝑧) = 𝑆0[cos 𝛽1 + sin 𝛽1 tan (𝛽1 − 𝛽2)] +
tan (𝛽1 − 𝛽2)

cos 𝛽1

𝑧 (22)

By introducing the cardinal variable 𝑧 in the attenuation function, the solution of Equation 21 becomes inconveniently
complex. In order to investigate the effect of a varying distance 𝑆(𝑧), Equations 15 and 16 are further explored. The first
and second factor express the decay in displacement amplitude due to radiation and hysteric damping, respectively. The
third term expresses the phase lag at a distance 𝑆(𝑧). Figures 3 and 4 show the total amplitude and phase lag as functions
of 𝑆(𝑧). Firstly, it is observed that the attenuation function amplitude decays rapidly in vicinity of the source, but that
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F IGURE 4 Attenuation function phase lag. 𝑉𝑠 = 100 m/s, damping ratio 𝛽 = 0.05, 𝜌𝑠= 0.75𝜌𝑝 , and 𝜈 = 0.25

the function smoothens out as the distance increases. The observation is independent of frequency. Secondly, the phase
lag becomes quite prominent for both shear and pressure waves as the frequency increases. When the piles are vertical,
𝑆(𝑧) is constant and the phase lag is solely governed by the finite wave velocity of waves propagating down the source
pile. As previously mentioned, this assumption is thoroughly discussed by Makris and Gazetas.[18] For batter piles how-
ever, the phase lag contains an additional factor introduced by the varying attenuation function along the pile length. In
addition, the interaction in the vicinity of the pile cap is further complicated and the plane-strain attenuation functions
together with the mathematical and geometrical treatment of the loaded receiver pile are likely to be less valid. As stated
before, applying a varying distance 𝑆(𝑧) yields an exceedingly complex solution. Since we are seeking to develop simple
approximate models, such solutions would arguably contribute to the opposite, especially if applying a constant attenua-
tion function results in errors of acceptable magnitude. We will therefore proceed the derivations by assuming a constant
attention function, and assess the possible shortcomings in a finite-element and hybrid model comparison. Assuming a
constant distance 𝑆(𝑧) = 𝑆(0), the general solution is obtained as

𝑢(𝑧) = 𝐴𝑒Λ𝑧 + 𝐵𝑒−Λ𝑧 +
Γ

𝑅2 − Λ2
𝑒−𝑅𝑧 (23)

where

Γ =
(𝑘𝑧 + 𝑖𝜔𝑐𝑧)𝜓𝑢𝑈0 cos(𝛽1 − 𝛽2)

𝐸𝑝𝐴𝑝
(24)

In order to determine the constants in Equation 23, boundary conditions are enforced. First, it is observed that 𝐴 must
vanish if 𝑢(𝑧) is to remain finite as 𝑧 approaches infinity. Second, the normal force at the top of the receiver pile must be
zero. The two boundary conditions give the total solution

𝑢(𝑧) =
Γ(𝑅𝑒−Λ𝑧 − Λ𝑒−𝑅𝑧)

𝑅2Λ − Λ3
(25)

The interaction factor is established by dividing Equation 25 by Equation 19. At the pile head (𝑧=0), the interaction factor
for inertial loading is

𝛼𝑎𝑎 =
(𝑘𝑧 + 𝑖𝜔𝑐𝑧)𝜓𝑢 cos(𝛽1 − 𝛽2)

𝐸𝑝𝐴𝑝Λ(𝑅 + Λ)
(26)
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F IGURE 5 Dynamic axial-axial interaction factor for batter piles. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05, 𝜌𝑠= 0.75𝜌𝑝 , and 𝜈 =

0.25

Figure 5 shows that the axial-axial interaction decreases as the batter angles increases. The use of a constant attenuation
function for axial-axial interaction may thus be argued on the basis of (1) the decreasing displacements along the pile
length and (2) the fact that axial-axial interaction decreases with increasing batter angle.

2.1.5 Lateral displacement of receiver pile due to axial displacement of source pile - 𝛼𝑙𝑎

The soil displacement generated from the axially loaded batter pile also induces lateral displacements at the receiver pile.
The flexibility of the beam will resist the soil deflection, resulting in a modified displacement profile. The mathematical
formulation for the displacement of the receiver pile is the non-homogeneous differential equation for the dynamic beam.
The beam is now loaded with a distributed load equal to the induced soil displacement multiplied by the soil impedance,
that is,

𝐸𝑝𝐼𝑝
𝜕4𝑤(𝑧)

𝜕𝑧4
+
[
(𝑘𝑥 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑥

]
𝑤(𝑧) = [𝑘𝑥 + 𝑖𝜔𝑐𝑥]𝜓𝑢𝑈0 sin(𝛽1 − 𝛽2)𝑒

−𝑅𝑧 (27)

If we assume a constant attenuation function, the general solution is obtained as

𝑤(𝑧) = 𝑒𝜆𝑧[𝐴 cos 𝜆𝑧 + 𝐵 sin 𝜆𝑧] + 𝑒−𝜆𝑧[𝐶 cos 𝜆𝑧 + 𝐷 sin 𝜆𝑧] +
Γ

𝑅4 + 4𝜆4
𝑒−𝑅𝑧 (28)

where

𝜆 =

[[
(𝑘𝑥 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑥

]
4𝐸𝑝𝐼𝑝

] 1

4

(29)

and

Γ =
(𝑘𝑥 + 𝑖𝜔𝑐𝑥)𝜓𝑢𝑈0 sin(𝛽1 − 𝛽2)

𝐸𝑝𝐼𝑝
(30)

In order to determine the constants in Equation 28, boundary conditions are enforced. First, it is observed that 𝐴 and 𝐵

must vanish if 𝑤(𝑧) is to approach zero as 𝑧 approaches infinity. Second, the slope of deflection and the shear force are
both zero at the pile head. The two boundary conditions yield



CEMALOVIC et al. 9

F IGURE 6 Normalized displacement of receiver pile divided in homogeneous and particular part. Time 𝑡=0. 𝐿=20m, 𝐸𝑝/𝐸𝑠 = 1000,
damping ratio 𝛽 = 0.05, 𝜌𝑠= 0.75𝜌𝑝 , 𝑎0 = 0.5, and 𝜈 = 0.25

F IGURE 7 Dynamic lateral-axial interaction factor for batter piles. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05, 𝜌𝑠= 0.75𝜌𝑝 , and 𝜈 =

0.25

⎡⎢⎢⎣
−1 1

2 2

⎤⎥⎥⎦
⎡⎢⎢⎣
𝐶

𝐷

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
Γ𝑅

𝜆(𝑅4 + 4𝜆4)

Γ𝑅3

𝜆3(𝑅4 + 4𝜆4)

⎤⎥⎥⎥⎦ (31)

Figure 6A compares the total, particular and homogeneous solution presented in Equation 28 with constants determined
from Equation 31. It is clear that the homogeneous part is negligible except for a small contribution at the top. Therefore,
the homogeneous part may for all practical purposes be neglected. The lateral pile deflection may thus be reduced to

𝑤(𝑧) =
(𝑘𝑥 + 𝑖𝜔𝑐𝑥)𝜓𝑢 sin(𝛽1 − 𝛽2)𝑈0

𝐸𝑝𝐼𝑝(𝑅4 + 4𝜆4)
𝑒−𝑅𝑧 (32)

The interaction factor is obtained by dividing Equation 32 by Equation 19. At the pile head (z=0), the interaction factor is

𝛼𝑙𝑎 =
(𝑘𝑥 + 𝑖𝜔𝑐𝑥)𝜓𝑢 sin(𝛽1 − 𝛽2)

𝐸𝑝𝐼𝑝(𝑅4 + 4𝜆4)
(33)

Figure 7 shows that the lateral-axial interaction increases as the batter angles increase, which argues against the use of a
constant attenuation function.
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F IGURE 8 Dynamic lateral-lateral interaction factor for batter piles. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05, 𝜌𝑠= 0.75𝜌𝑝 , and
𝜈 = 0.25

2.1.6 Lateral displacement of receiver pile due to lateral displacement of source pile - 𝛼𝑙𝑙

If the damping is neglected, Equation 12 is simplified to

𝑤(𝑧) = 𝑊0𝑒
−𝜆𝑧[sin 𝜆𝑧 + cos 𝜆𝑧] (34)

Figure 2B shows the normalized displacement plotted against the ratio between depth and pile diameter at 𝑡 = 0 using
Equations 12 and 34. It is clear that the soil displacement distribution is very similar within the frequency range of interest.
In order to simply the algebraic expressions, Equation 34 will be used in the following derivations and examples. The
mathematical formulation for the lateral displacement of the receiver pile due to lateral displacement of the source pile is
the non-homogeneous differential equation for the dynamic beam, that is,

𝐸𝑝𝐼𝑝
𝜕4𝑤(𝑧)

𝜕𝑧4
+
[
𝑘𝑥 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑥

]
𝑤(𝑧) = [𝑘𝑥 + 𝑖𝜔𝑐𝑥]𝜓𝑤𝑊0[sin 𝜆𝑧 + cos 𝜆𝑧] cos(𝛽1 − 𝛽2)𝑒

−𝜆𝑧 (35)

Regarding the varying attenuation function depicted in Figures 3 and 4, the same observation are made for lateral vibra-
tions as for axial vibrations. We will proceed with a constant attenuation function due to the substantial simplification
of the algebraic expressions obtained by solving the governing differential equation. The Laplace method is yet again
applied in order to obtain algebraically simple expressions. Using the same procedure as for the single pile response, the
total solution may expressed as

𝑤(𝑧) =
3

4
𝜓𝑤

(𝑘𝑥 + 𝑖𝜔𝑐𝑥)

(𝑘𝑥 − 𝑚𝜔2 + 𝑖𝜔𝑐𝑥)
𝑊0 cos(𝛽1 − 𝛽2)

[
cos 𝜆𝑧 + sin 𝜆𝑧 +

2

3
𝜆𝑧 sin 𝜆𝑧

]
𝑒−𝜆𝑧 (36)

The interaction factor is expressed by dividing Equation 36 by Equation 34. At the pile head (𝑧=0), the interaction factor
is

𝛼𝑙𝑙 =
3𝜓𝑤(𝑘𝑥 + 𝑖𝜔𝑐𝑥) cos(𝛽1 − 𝛽2)

4(𝑘𝑥 − 𝑚𝜔2 + 𝑖𝜔𝑐𝑥)
(37)

Note that when 𝛽1 = 𝛽2 = 0, Equation 37 reduces to the interaction factor presented by Makris and Gazetas[17]
for vertical piles. Figure 8 shows that the lateral-lateral interaction decreases as the batter angles increases. The
use of a constant attenuation function for lateral-lateral interaction is arguably reasonable do to the decreasing
displacements along the pile length and the fact that lateral-lateral interaction decreases with increasing batter
angle.
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2.1.7 Axial displacement of receiver pile due to lateral displacement of source pile - 𝛼𝑎𝑙

Finally, the mathematical formulation for the axial displacement of the receiver pile due to lateral displacement of the
source pile is

𝐸𝑝𝐴𝑝
𝜕2𝑢(𝑧)

𝜕𝑧2
−
[
(𝑘𝑧 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑧

]
𝑢(𝑧) = −(𝑘𝑧 + 𝑖𝜔𝑐𝑧)𝜓𝑤𝑊0 sin(𝛽1 − 𝛽2)(sin 𝜆𝑧 + cos 𝜆𝑧)𝑒−𝜆𝑧 (38)

Assuming a constant attenuation function, the general solution is obtained as

𝑢(𝑧) = 𝐴𝑒Λ𝑧 + 𝐵𝑒−Λ𝑧 +
Γ
[
(Λ2 − 2𝜆2) cos 𝜆𝑧 + (Λ2 + 2𝜆2) sin 𝜆𝑧

]
Λ4 + 4𝜆4

𝑒−𝜆𝑧 (39)

where

Γ =
(𝑘𝑧 + 𝑖𝜔𝑐𝑧)𝜓𝑤𝑊0 sin(𝛽1 − 𝛽2)

𝐸𝑝𝐴𝑝
(40)

The boundary conditions imply that𝐴must vanish if 𝑢(𝑧) is to remain finite as 𝑧 approaches infinity. Also, the axial force
at the top of the receiver pile must be zero. Enforcing the boundary conditions, the total solution may be expressed as

𝑢(𝑧) =
4𝜆3Γ

Λ(Λ4 + 4𝜆4)
𝑒−Λ𝑧 +

Γ
[
(Λ2 − 2𝜆2) cos 𝜆𝑧 + (Λ2 + 2𝜆2) sin 𝜆𝑧

]
(Λ4 + 4𝜆4)

𝑒−𝜆𝑧 (41)

Figure 6B compares the total, particular and homogeneous solution presented in Equation 41. It is clear that the particular
solution is negligible except for a small contribution at the top. Therefore, the particular solution may for all practical
purposes be neglected. Note that the differential equation is a function of the spatial coordinate 𝑧. Ergo, the homogeneous
part is present throughout the harmonic, steady-state motion. The axial receiver pile deflection may thus be reduced to

𝑢(𝑧) =
4Γ𝜆3

Λ(Λ4 + 4𝜆4)
𝑒−Λ𝑧 (42)

The interaction factor is expressed by dividing Equation 42 by Equation 34. At the pile head (𝑧=0), the interaction factor
is

𝛼𝑎𝑙 =
4𝜆3(𝑘𝑧 + 𝑖𝜔𝑐𝑧)𝜓𝑤 sin(𝛽1 − 𝛽2)

Λ(Λ4 + 4𝜆4)𝐸𝑝𝐴𝑝

(43)

Figure 9 shows that the axial-lateral interaction increases as the batter angles increases, which argues against the use
of a constant attenuation function. However, the axial-lateral interaction factor is generally small compared to the other
interaction factors.

2.2 Finite element model

The finite element model is constructed in OpenSees MP[26] together with the pre- and postprocessing tool STKO.[30] The
piles aremodelledwith beam elements and the soil ismodelledwith eight-noded hexahedral elements. Elastic constitutive
models are applied for both beams and solids. The interaction between beams and solids is modelled through rigid-link-
constraints connecting each beam node to the corresponding soil nodes such that the pile section in the given beam
node acts like a rigid disk. The constraints are enforced using penalty functions.[31,32] The penalty values are obtained by
approximating the order of largest entry of the stiffness matrix, that is,

𝑂 = log
10
(𝑘𝑚𝑎𝑥) (44)
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F IGURE 9 Dynamic axial-lateral interaction factor for batter piles. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05, 𝜌𝑠= 0.75𝜌𝑝 , and 𝜈 =

0.25

F IGURE 10 Illustration of FEM-discretization of the numerical pile-soil model

The penalty value is the obtained as

𝑝 = 10(𝑂+8) (45)

See Figure 10 for an illustration. The entire model is a half-space, that is, it is symmetric about the global y-axis. The
geometrical cross section parameters of the beam are thus appliedmanually based on the half-circle and half the intended
load is applied. The half-space measures 82𝑚 × 21𝑚 × 60𝑚. The outer boundaries are represented using viscous zero-
length elements developed by Lysmerand and Kuhlemeyer[33] where the damping coefficients are determined as the
product of soil density, wave velocity and boundary area. Pressure wave velocity is used for damping coefficients normal
to the boundary, while shear wave velocity is used for damping coefficients tangential to the boundary, that is,

𝑐𝐻 = 𝑉𝑠𝜌𝑠𝐴𝑛, 𝑐𝑣 = 𝑉𝑝𝜌𝑠𝐴𝑛 (46)

Here, 𝐴𝑛 is the boundary area represented by the given node. The zero-length elements are connected to fixed nodes.
Spurious damping is avoided by choosing sufficiently smooth element mesh. The maximum element size is determined
based on the smallest wave length, that is,

𝜔𝑚𝑎𝑥 =
𝑉𝑠 𝑎0,𝑚𝑎𝑥

𝑑𝑝
L→ 𝜆𝑤𝑎𝑣𝑒,𝑚𝑖𝑛 =

2𝜋𝑉𝑠

𝜔𝑚𝑎𝑥
(47)
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where 𝜔𝑚𝑎𝑥 and 𝑎0,𝑚𝑎𝑥 are the highest frequency values applied in the analysis. In order to correctly represent a wave, it
necessary to use approximately ten nodes per wavelength.[34] Thus, the element size is kept below approximately

ℎ𝑒𝑙𝑒 =
𝜆𝑤𝑎𝑣𝑒,𝑚𝑖𝑛

9
(48)

for elements that seemingly contribute to the interaction. It should be noted that the element size is substantially smaller
in the vicinity of the pile cap where most of the interaction is expected to occur. The final element mesh is established
by verifying that refinement does not alter the results significantly. Rayleigh-damping is applied by choosing the load
frequency as the first frequency. Each beam is subjected to a lateral point load applied at the top of the beam. The system
is solved using Newmark’s method with 𝛾 =

1

2
and 𝛽 =

1

4
.

3 LATERAL DYNAMIC IMPEDANCE

3.1 Description of analysis and model verification

The analytical method is evaluated and compared to the finite element model by calculating the dynamic, lateral
impedance of a two-by-one pile group. The results are given as normalized values by dividing the actual stiffness with
the summed stiffness of two vertical, individual piles. Pile spacing of 3, 5 and 10 times the pile diameter are considered
together with batter angles of 0, 5, 10, and 15 degrees and homogeneous stratumwith 𝐸𝑝∕𝐸𝑠-ratios of 200 and 1000. There
has been performed a total of 288 three-dimensional finite element analyzes including single pile analyzes for each batter
angle and 𝐸𝑝∕𝐸𝑠-ratio. The chosen batter angles are considered within the realistic range in practical design. The piles
are free-floating with fixed-head conditions and have a length to diameter ratio 𝐿∕𝑑 = 40. A horizontal, harmonic load
is applied at top of each beam. The analytical solution is derived based on the assumption that free-vibration response is
negligible. Except for higher load frequencies in some system configurations, this assumption is indeed confirmed by both
the finite element and hybrid model. Even when there is a notable contribution, it can be shown that the free-vibration
response quickly dies out. Also, the evaluation of dynamic impedance, rather than for the maximum displacement value,
pertains intrinsically to the steady-state vibration. For the hybrid and finite element model, the load is applied for a dura-
tion of 1.00 seconds using 200 time steps, and the stiffness values are obtained by averaging the absolute value ofmaximum
and minimum displacements during the steady-state response. The models are verified by comparison to the rigorous
model developed by Kaynia.[14] Figure 11 shows the real and imaginary parts and Figure 12 shows the absolute values. The
models are in acceptable agreement.

3.2 Results

The results are shown in Figures 19 - 18. Overall, the analytical model yields satisfactory results. The trends affiliated
with pile distance and frequency are captured particularly well. In some cases, the analytical model for vertical piles
tends to overestimate the group stiffness. This can be seen in Figures 14A, 16A, 17A, and 18A. The overestimation is
more prominent for the higher 𝐸𝑝/𝐸𝑠-ratio. The results for the 15-degree configuration with 𝐸𝑝/𝐸𝑠 = 200 presented in
Figures 19D, 14A, and 15D shows agreement between the two models. For the 15-degree configuration with 𝐸𝑝/𝐸𝑠 = 1000;
however, the analytical method tends to underestimate the group stiffness. The deviation increases with increasing pile
distance and frequency. The mismatch is particularly notable in Figure 18D. The above-mentioned observations may be
viewed from a different perceptive. Studying the results for each pile distance and𝐸𝑝∕𝐸𝑠-ratio, it is seen that the analytical
model is somewhat less sensitive to batter angle compared to the finite element model. Generally, an overestimation
for vertical piles shifts to an underestimation as the batter angle increases. This observation might indicate limitations
regarding the simplified treatment of (1) wave emission and (2) how the receiver pile is loaded when the pile axis are not
aligned.
Taking into consideration that the complexity of the problem is primarily governed by the pile-soil-pile interaction,

it is crucial to investigate the accuracy of the analytical model in context with the dynamic response of single piles. It
is observed that the discrepancy between the analytical and the finite element model in some cases roughly equals the
discrepancy between the pile-group and single pile response. For example, Figure 18d shows that the analytical model



14 CEMALOVIC et al.

F IGURE 11 Normalized horizontal stiffness of a 2x1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05 and 𝜌𝑠=0.75𝜌𝑝

F IGURE 1 2 Normalized horizontal stiffness of a 2x1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05 and 𝜌𝑠=0.75𝜌𝑝

better matches the single pile finite element model than the two-by-one pile finite element model for higher frequencies.
Then, the obvious argument is that if we in fact are seeking approximate results, perhaps interaction may be neglected
all together. Even if that may be argued for some cases, the results clearly show that for a majority of configurations,
the analytical model does in fact capture the dynamic pile group effect. It should also be added that the results in this
study show that the two-by-one pile group is substantially more sensitive to load frequency compared to the single
pile.
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F IGURE 13 Horizontal stiffness of a 2 x 1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 200, damping ratio 𝛽 = 0.05, 𝜌𝑠=0.75𝜌𝑝 , and 𝑆0 = 3𝑑

F IGURE 14 Horizontal stiffness of a 2 x 1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 200, damping ratio 𝛽 = 0.05, 𝜌𝑠=0.75𝜌𝑝 , and 𝑆0 = 5𝑑

The model yields reasonable results also for larger pile groups. Figure 20 shows a comparison between the proposed
model and a FEMmodel for a three-by-three pile group consisting of both vertical and batter (15-degree) piles. Similar to
the two-by-one pile group, the results show that the trends are generality well captured with reasonable accuracy.
The results presented in this study further imply that the pile-soil-pile interaction is a complex engineering problem

which is not easily simplified for the general state. Indeed, the analytical model is able produce the trends affiliated with
pile distance and frequency rather well, but the general inaccuracy of such methods must be recognized. In addition to
the inaccuracy introduced by the various simplifications, linear methods are strongly limited in the sense that they cannot
capture material (soil) and geometrical (formation of gap) non-linearity, both of which are to be expected during strong
earthquake shaking and corresponding inertial loading.
Themethod is also limited to uniform soil profiles. Soil non-uniformity in combination with batter piles yields complex

wave propagation in addition to cumbersome solutions of both the homogeneous and non-homogeneous beam equation.
The consequences of a linearly varying pile distance 𝑆(𝑧) were discussed in Section 2.1.4. By merely introducing 𝑆(𝑧)

rather than 𝑆(𝑧) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, the analytical solutions became exceedingly complex. Therefore, we believe that even if a
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F IGURE 15 Horizontal stiffness of a 2 x 1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 200, damping ratio 𝛽 = 0.05, 𝜌𝑠=0.75𝜌𝑝 , and 𝑆0 = 10𝑑

F IGURE 16 Horizontal stiffness of a 2 x 1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05, 𝜌𝑠=0.75𝜌𝑝 , and 𝑆0 = 3𝑑

general solution was derived for non-uniform soil, it would most likely not be suited for a simplified, spreadsheet-friendly
computational model.
Even so, there are potential areas where the simplified models may be of value:

1. In the early stage of a design process or whenever approximate solution are sought.
2. Rough validation of more rigorous models.
3. In practical design situations, it is often interesting to observe trends rather than response values with respect to certain

parameters.
4. Simplifiedmethods are generallywell-suited for educational purposes. Rigorous finite elementmethods are able to pro-

duce accurate results for a variety of structural and geotechincal problems. For better or worse, numerical models tend
to directly embody and thus conceal some of the phenomena related to geodynamics and soil-structure-interaction,
which are often important in the pursuit of mastering the above-mentioned fields of engineering. The derivation of the
analytical model elucidates the majority of aspects related to structural dynamics, geodynamics, soil-pile interaction,
computational mechanics and their interplay with each other.
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F IGURE 17 Horizontal stiffness of a 2 x 1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05, 𝜌𝑠=0.75𝜌𝑝 and 𝑆0 = 5𝑑

F IGURE 18 Horizontal stiffness of a 2 x 1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping ratio 𝛽 = 0.05, 𝜌𝑠=0.75𝜌𝑝 , and 𝑆0 = 10𝑑

3.3 Extension to the hybrid model

The hybrid model is constructed in Matlab[35] using beams, Winkler complex springs and especially formulated analogue
interaction elements based on the attenuation functions given in Equations 15–18. The finite element stiffness and mass
matrices are based on uniform, finite elements in accordance with the Euler-Bernoulli beam theory and the damping
matrix is obtained as Rayleigh damping.[36] The Winkler springs and dashpots are modelled as SDOF-elements in accor-
dance with Equations 1 and 3 and are directly incorporated as additional element matrices. Local element matrices are
transformed to the global coordinate system trough a transformation matrix. In order to express the pile-soil-pile inter-
action, an analogue element is formulated by utilizing the plain strain attenuation function and the complex Winkler
stiffness. The analogue element connects the horizontally aligned nodes in each beam, and the interaction is based on the
plane-strain attenuation function and the geometrical considerations discussed in Sections 2.1.3 – 2.1.7. See illustration in
Figure 21. By considering transverse, rotational and axial degrees of freedom in each node, the complex stiffness matrix
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F IGURE 19 Horizontal stiffness of a 2 x 1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 200, damping ratio 𝛽 = 0.05, 𝜌𝑠=0.75𝜌𝑝 , and 𝑆0 = 3𝑑

F IGURE 20 Horizontal stiffness of a 3 x 3 pile group with both vertical and batter piles. 𝛽1 = -𝛽2 = 150, 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 1000, damping
ratio 𝛽 = 0.05, 𝜌𝑠=0.75𝜌𝑝 , and 𝑆0 = 3𝑑

of the analogue element is obtained as

𝑘∗
𝑖
= −𝐿𝑒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 𝑘𝑖,1 0 𝑘𝑖,2

0 0 0 0 0 0

0 0 0 𝑘𝑖,3 0 𝑘𝑖,4

𝑘𝑖,1 0 𝑘𝑖,3 0 0 0

0 0 0 0 0 0

𝑘𝑖,2 0 𝑘𝑖,4 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(49)

F IGURE 2 1 Schematic sketch of the hybrid model
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where

𝑘𝑖,1 = cos(𝛽1 − 𝛽2)𝜓𝑤(𝑘𝑥 + 𝑖𝜔𝑐𝑥) (50a)

𝑘𝑖,2 = − sin(𝛽1 − 𝛽2)𝜓𝑤(𝑘𝑧 + 𝑖𝜔𝑐𝑧) (50b)

𝑘𝑖,3 = sin(𝛽1 − 𝛽2)𝜓𝑢(𝑘𝑥 + 𝑖𝜔𝑐𝑥) (50c)

𝑘𝑖,4 = cos(𝛽1 − 𝛽2)𝜓𝑢(𝑘𝑧 + 𝑖𝜔𝑐𝑧) (50d)

and 𝐿𝑒 is the element length. The complex stiffness matrix formulated above refers to local degrees of freedom.
The transformation to the global system is obtained in the same manner as for the local finite element matrices.
Once all the element and interaction matrices are defined and transformed into the global coordinate system, they
are assembled into their global matrices. The load vector is directly defined as a global vector in the global coor-
dinate system and homogeneous boundary conditions are applied by condensing out the respective degrees of free-
dom. The pile cap is represented by adding a high-stiffness member between the two top nodes in each beam.
The solution is obtained by applying a Newmark’s scheme with 𝛾 =

1

2
and 𝛽 =

1

4
. The analogue element stiff-

ness matrix is complex since damping is directly incorporated into the matrix entries. The global stiffness matrix
is thus also complex. Alternatively, the analogue element stiffness matrix may be split into separate stiffness and
damping matrices, both of which are real. for example, 𝑘𝑖,1 may be split into stiffness and damping contributions,
that is,

𝑘𝑖,1 = cos(𝛽1 − 𝛽2) |𝑟𝑒𝑎𝑙(𝜓𝑤)| 𝑘𝑥, 𝑐𝑖,1 = cos(𝛽1 − 𝛽2) |𝑖𝑚𝑎𝑔(𝜓𝑤)| 𝑐𝑥 (51)

The analogue element matrices are then treated in the same manner as the local finite element matrices and assembled
into their corresponding global matrices,

𝑘𝑖 L→ 𝑲, 𝑐𝑖 L→ 𝑪 (52)

where both 𝑲 and 𝑪 only contain real entries. Figure 22 presents the horizontal, dynamic group stiffness for a
two-by-one pile group with batter angles of 10 and 15 degrees and 𝐸𝑝∕𝐸𝑠-ratio equal to 200. The hybrid and ana-
lytical model match well. Some discrepancy is observed for close pile spacing. The results indicate that the sim-
plifications regrading (1) the neglection of receiver pile damping when deriving the interaction factor, (2) elimina-
tion of negligible parts of the non-homogeneous differential equation solution and (3) the assumption of a con-
stant attenuation function, are in fact reasonable. Nonetheless, there are two obvious advantages to the hybrid
model compared to the analytical model. Firstly, the hybrid model allows for arbitrary pile length and bound-
ary conditions (fixed-head, hinged-head, frictional and end-bearing) whereas the analytical model demands an
unique solution for every different combination of boundary condition. Secondly, the hybrid model may eas-
ily be extended to include any of type superstructure, and thus allows for direct solutions of earthquake load-
ing problems. It should be emphasized that the hybrid model utilizes frequency dependent expressions, such that
any arbitrary loading must be divided into harmonic components. The corresponding solutions must then be
superimposed.
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F IGURE 22 Normalized horizontal stiffness of a 2 x 1 pile group. 𝐿∕𝑑=40, 𝐸𝑝/𝐸𝑠 = 200, damping ratio 𝛽 = 0.05 and 𝜌𝑠=0.75𝜌𝑝

4 CONCLUSION

1. The analytical interaction factors are summarized in Equations 53 and 54. The compact expressions presented in this
studywere obtained by simplifying the equilibriumequation solutions for both the vibrating and receiving pile. This has
been achieved by eliminating parts of the solution that are considered to have a negligible contribution. It is emphasized
that the presented analytical interaction factors are only valid for long, floating piles with fixed head conditions in
homogeneous soil.

𝛼𝑎𝑎 =
(𝑘𝑧 + 𝑖𝜔𝑐𝑧)𝜓𝑢 cos(𝛽1 − 𝛽2)

𝐸𝑝𝐴𝑝Λ(𝑅 + Λ)
, 𝛼𝑙𝑎 =

(𝑘𝑥 + 𝑖𝜔𝑐𝑥)𝜓𝑢 sin(𝛽1 − 𝛽2)

𝐸𝑝𝐼𝑝(𝑅4 + 4𝜆4)
(53a)

𝛼𝑙𝑙 =
3𝜓𝑤(𝑘𝑥 + 𝑖𝜔𝑐𝑥) cos(𝛽1 − 𝛽2)

4(𝑘𝑥 − 𝑚𝜔2 + 𝑖𝜔𝑐𝑥)
, 𝛼𝑎𝑙 =

4𝜆3(𝑘𝑧 + 𝑖𝜔𝑐𝑧)𝜓𝑤 sin(𝛽1 − 𝛽2)

Λ(Λ4 + 4𝜆4)𝐸𝑝𝐴𝑝

(53b)

Λ =

[
(𝑘𝑧 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑧

𝐸𝑝𝐴𝑝

] 1

2

, 𝜆 =

[[
𝑘𝑥 − 𝑚𝜔2) + 𝑖𝜔𝑐𝑥

]
4𝐸𝑝𝐼𝑝

] 1

4

, 𝑅 =

(
𝑘𝑧 − 𝑚𝜔2

𝐸𝑝𝐴𝑝

) 1

2

(54)

2. The analytical model is able to represent the trends associated with pile distance and frequency rather well.
3. The presented hybrid model combines the adaptability of a finite element model with the simplicity of an analytical

model by replacing the soil elements with (1) Winkler elements and (2) especially developed analogue interaction
elements to account for pile-soil-pile interaction based on simple attenuation functions. For the examined boundary
conditions and batter angles, the analytical model matches the hybrid model fairly well.
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