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Over the past decade, high-utility itemset mining (HUIM) has received widespread atten-
tion that can emphasize more critical information than was previously possible using fre-
quent itemset mining (FIM). Unfortunately, HUIM is very similar to FIM since the
methodology determines itemsets using a binary model based on a pre-defined minimum
utility threshold. Additionally, most previous works only focused on single, small datasets
in HUIM, which is not realistic to any real-world scenarios today containing big data envi-
ronments. In this work, the fuzzy-set theory and a MapReduce framework are both utilized
to design a novel high fuzzy utility pattern mining algorithm to resolve the above issues.
Fuzzy-set theory is first involved and a new algorithm called efficient high fuzzy utility
itemset mining (EFUPM) is designed to discover high fuzzy utility patterns from a single
machine. Two upper-bounds are then estimated to allow early pruning of unpromising
candidates in the search space. To handle the large-scale of big datasets, a Hadoop-based
high fuzzy utility pattern mining (HFUPM) algorithm is then developed to discover high
fuzzy utility patterns based on the Hadoop framework. Experimental results clearly show
that the proposed algorithms perform strongly to mine the required high fuzzy utility pat-
terns whether in a single machine or a large-scale environment compared to the current
state-of-the-art approaches.
� 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the rapid growth of information techniques, knowledge discovery in databases (KDD) is a critical research field to
reveal important, valuable, interesting, and essential knowledge from unprocessed data sources [1–7]. Many different kinds
of expertise or rules have been proposed to state the essential concepts from a dataset, and association rule mining (ARM)
and/or frequent-itemset mining (FIM) work to gain fundamental knowledge in KDD which has been applied to many
domains and applications [4,8–11]. Traditional FIM-based algorithms ignored important factors that are more often than
not present in real applications. For example, a commercial company should put more attention to profits and purchase
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quantities. Unfortunately, FIM does not take into account these types of valuable factors, thus the discovered information
may be incomplete or not overly useful.

High-utility itemset mining (HUIM) was proposed to create solutions for revealing more valuable information from a
database. HUIM is different from traditional ARM or FIM since it applies utility information (like profit) instead of frequency
information for revealing useful patterns. It is usually more suitable to match the requirement of real-world applications. A
utility threshold is set by individuals to select high-utility itemsets; if an itemset is called a high-utility itemset, its utility has
to be higher than the minimum utility threshold. For example, let us look at an itemset (pattern) as a high-utility itemset in a
transaction database. This means that this itemset gained more profit in the past and might have more potential to generate
more profit in the future. Therefore, more attention should be given to it. Furthermore, not only ‘‘profit” can be applied as a
utility value to mining high-utility itemsets, but ‘‘weight”, ‘‘cost” and other different interesting factors can also construct
different types of high-utility itemsets. Several previous works were respectively proposed to reveal the set of complete HUIs
in recent years. The concept of high-utility itemset was first introduced by Yao et al. [12]. Then Yao et al. proposed HUIMs to
reveal HUIs effectively [13], purchase quantities and unit profits of items are both considered to show high-utility itemsets in
a transaction database. Several extensions have been presented and discussed to better provide the efficient data structures
and pruning strategies to reduce the search space for revealing HUIs [14–19]. Evolutionary computations algorithms were
also applied to find HUIs with limited termination conditions [20–22].

Although HUIM solves the limitations in ARM or FIM, it is based on the concept of minimum utility threshold to deter-
mine whether an itemset is a HUI. Moreover, the discovered patterns only reveal the correlation without any quantitative
information; it is not a realistic model for many applications. Therefore, the fuzzy-set theory is usually applied to extend
the quantitative concept into linguistic terms to resolve this kind of situation. It can provide more flexible and effective
knowledge than the previous traditional 0–1 logical concept. Recently, there are more and more machine learning or expert
systems applied Fuzzy-set to enhance their performance [23–26]. In this paper, fuzzy-set theory was involved in HUIM by
presenting an alternative knowledge for pattern mining. It solves the limitations of the above works especially the quantity is
involved as the representative of the linguistic terms that shows interpretable knowledge of the discovered patterns. For
example, generic ARM or HUIM cannot present a rule such as ‘‘a large number of people that purchase diapers implies a
few numbers of people purchase beer”. In many real-world applications and domains, it shows crucial information by involv-
ing the quantity factor for pattern representation. Wang et al. [27] first proposed a fuzzy-based high-utility algorithm to
incorporate the fuzzy-set concept into HUIM. The fuzzy-set theory first transfers the value of quantities to linguistic terms
that can fit the real situations and provide a more detailed pattern in a transaction database. Lan et al. [28] further applied
effective upper-bounds to enhance the performance for revealing high fuzzy utility itemsets. Wu et al. [29] introduced an
evolutionary computation technique to this field and first proposed a GA-based high fuzzy utility mining algorithm. How-
ever, previous works suffer from the "combinational explosion problem" thus the search space to discover the required infor-
mation is huge. Thus, the above approaches are hard to be applied in a database with massive records and items.
Nevertheless, previous algorithms can only be performed on a single machine to handle simple and small databases; they
are not easy to handle very large-scale databases.

To solve the above limitations in high fuzzy utility itemset mining, this paper presents an efficient high fuzzy utility item-
set mining (EFUPM) algorithm for revealing the high fuzzy utility patterns. To handle big datasets, the Hadoop framework for
the proposed EFUPM algorithm is also introduced named HFUPM. The significant contributions of this paper are summarized
as follows:

1. We proposed an efficient high fuzzy utility pattern mining algorithm (EFUPM) algorithm to efficiently discover the high
fuzzy utility patterns from the database in a single-machine mechanism.

2. To handle the large-scale databases, the Hadoop-based high fuzzy utility pattern mining (HFUPM) algorithm is also intro-
duced here with several MapReduce tasks to scan the original dataset and reduce the size of temporary files as possible.
For each MapReduce task (iteration), the developed HFUPM does not perform any modifications or duplicated operators
for the original dataset. This improves the feasibility of the developed method in practical applications.

3. The developed HFUPM can also reduce the number of database scans since it could catch all of the information of the
currently processed itemset, which is very efficient in the large-scale environment by reducing the seeking time of the
database.

4. To better reduce the search space for discovering the high fuzzy utility patterns, two upper-bounds are then designed
here to early remove the unpromising candidates that can be applied to both single-machine or Hadoop-based frame-
work for mining the high fuzzy utility patterns.

2. Related work

Frequent itemset (FI) and association rule mining (ARM) [1] are fundamental tasks in data mining. Frequent items are
created by a pre-defined threshold from a transaction database for minimum support, and association rules are generated
by another predefined threshold that calls for minimum confidence. In the past, ARMs were used in many applications
and flourished in true market environments. Apriori [1] is the first transaction dataset mining algorithm to show the FIs
and ARMs. Two primary steps are included in Apriori’s process to achieve the global. In the first step, the process of Apriori
will evaluate all candidate itemset and finds FIs of which the frequencies are larger than the predefined minimum support
32
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threshold. Then the process will generate the new candidate itemsets from the FIs which are identified before. Until no new
candidate itemsets are generated, the first step is finished. In the second step, an AR (association rule) generated by FI com-
bination will be revealed if AR confidence is greater than the minimum trust level pre-defined. Apriori is also a ‘‘generate-
and-test” method that involves multiple scans of the transaction record to produce FIs and reveal ARs. This will cause the
awful question of performance to search for a huge dataset. Frequent pattern (FP)-tree, which is a tree structure, was pro-
posed to speed up the discovery of FIs, and the corresponding mining algorithm is called for FP-growth [30]. There are sev-
eral pieces of research further based on Apriri and FP-growth to enhance the performance for mining FIs and ARs from
transaction databases [31–33]. Other works focused on applying these algorithms in the several real-world applications
[10,11,4,34]. FI and ARM, nonetheless, have a serious disadvantage. A high-frequency itemset does not necessarily mean
it is an actual valuable commodity and has a high value for capital.

To reveal more important information in a dataset high-utility itemset mining (HUIM) was proposed. To find a set of high-
utility itemsets (HUIs), it considers the quantity and unit profit of itemsets simultaneously [12,35]. The model TWU
(Transaction-weighted utilization) has been designed to reduce the number of HUI revealing items of a candidate because
of its DC property, also known as downward closure [13]. When observing the downward closure of transaction-
weighted utilization we can say clearly that if a given itemset from which the TWU is greater than some given threshold,
we would say that this would be a high TWU itemset, which we can refer to as HTWUIs. Furthermore, we can further this
idea by saying that all further supersets are then definitely can not be HTWUIs as well as HUIs. A given method that is used to
apply TWUmode is then able to ignore the given itemset of which the superset for the HTWUIs. Li was able to propose what
is known as an IIDS, or isolated discarding item strategy that can be used to further lower the count of candidate itemsets
through a TWUmodel [16]. HUI-Miner algorithm depends on a utility-list structure and follows the depth-first search in this
structure, it does not need to generate candidates to mine the HUIs [18]. The HUI-Miner uses a vertical database display and
is designed with a simple joint operation to avoid multiple database scans, but the high-utility k-itemsets still can be
obtained. Several extensions of HUIM (i.e., applied for presenting different knowledge) are widely studied and discussed
[36,37].

The previous HUIs mining algorithms hid the quantity information in the output patterns. People could not get the orig-
inal quantity information from the HUIs; even if HUIs are calculated by the unit profits and quantities. It causes that people
might lose some vital knowledge and can not set up precise strategies. Fuzzy theorem, therefore, was involved in the field of
HUIM to transfer the quantities to linguistic terms [27]. It shows the semantics concept between the traditional bit logical (0
or 1) in the computer science [38]. Each individual can be assigned a fuzzy value within an interval [0, 1] that indicates the
membership level of a certain class. Recently, the fuzzy concept has been widely applied in many applications to provide its
flexibility for decision making [39–44]. In this paper, the fuzzy concept extends and converts a traditional item to several
fuzzy items. Thus, it enhances the complexity of mining high fuzzy utility itemsets (HFUIs). Lan et al. proposed effective
upper-bounds for mining HFUIs and prune the searching space to increase performance [28]. Wu et al. also applied the evo-
lutionary computation technique to this field and first proposed a GA-based high fuzzy utility mining algorithm [29].

In the past, the above algorithms obtained excellent outcomes for mining high-utility itemsets. In a small scale dataset,
the previous methods are all good enough to reveal high-utility itemset in reasonable computation time. However, that is
because the previous methods applied some complicated operators in datasets. By modifying the original dataset and main-
taining a table to store some metadata, the previous algorithms can reduce the times of seeking a database and looking for a
transaction. The principal problem of these algorithms is that they are very hard to be applied in a database which includes a
huge number of transactions. They modified the original dataset, tried to remove the unnecessary items and transactions,
and combined multiple transactions into one transaction. They also maintained a table to stored the metadata for utilities
and store in the memory. In the big-data environment, the cost of modifying a dataset is very high and also almost impos-
sible. The storage of the original dataset and the modified dataset is another critical issue. The modifying operators and com-
bining operators would produce several duplications of the original dataset. No matter how to store these data, it lays a big
burden for handling a terabyte-scale (or more) dataset and applying these operators. Paradoxically, HUIM is a data mining
technic for the commercial field, and most of the real transaction datasets are very large. That is to say, the previous methods
are very difficult to be applied in a real-world situation.

Propose by Google in 2008, MapReduce is a popular framework for programming used in big data [45]. It uses a dis-
tributed algorithm on clusters and is the combination of two procedures, namely Map and Reduce. MapReduce uses a
key-value list for input data. Each node in the system that is tasked with performing the Map is first given this input list.
The procedure itself performs a ‘‘mapping” which can be customized by the programmer that transfers this input list into
another key-value list. Next, a shuffle operator gets defined that distributes records from this new key-value list to the nodes
that are tasked to Reduce. One of the main goals of the shuffle operator is to maintain balance for each node. Lastly, the
Reduce procedure goes through a summary operation for all input records which have identical keys and releases the
results. Usually, the output as well as a key-value list. The two main procedures run independently and there usually is
not any interaction between nodes in a given cluster. Therefore, the qualities of MapReduce usually include reliability
and strong distribution to nodes within a given cluster. Dynamically users can add/remove computational units and manage
loads on the fly. Moreover, the system can move jobs that have failed from one cluster to another and remotely shutdown
nodes that are acting strangely. Overall, MapReduce can provide a dynamic, and reliable framework capable of handling big
data.
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3. Preliminaries and Problem Statement

Let a quantitative transaction dataset D ¼ fT1; T2; � � � ; Tngwith n transactions and a finite itemset I ¼ fi1; i2; � � � ; imgwithm
distinct items. Each transaction Tq 2 D includes several items from I and has a unique identifier q 1 6 q 6 mð Þ called its TID.
Moreover, each item ij 2 Tq has a purchase quantity which is denoted as q ij; Tq

� �
. In order to estimate the utility of each item

and transaction, a profit table P ¼ p i1ð Þ; p i2ð Þ; � � � ; p imð Þf g shows the unit profit of each item ij i 6 j 6 mð Þ. If an itemset is called
as k-itemsets, it means this itemset includes k items and each item belongs to itemsets I. In this study, the same fuzzy mem-
bership functions will be applied in each item in I. For example, three linguistic terms indicated low, middle and high are
defined in a membership function to estimate the fuzzy utility for each item. Assume a minimum fuzzy utility threshold
is set as d according to users’ preference to reveal high fuzzy utility itemsets.

An example for the input data is shown below. A quantitative dataset with purchase quantities is shown in Table 1, which
will be running example in this paper. It includes 10 transactions and 6 distinct items, denoted from (a) to (f) respectively.
Assume the profit values (external utilities) of each item in Table 1 are shown as fa : 3; b : 9; c : 1; d : 5; e : 6; f : 1g.

Definition 1 (Fuzzy set of quantitative value). The fuzzy set f yz of the purchase value (quantitative value) qðiz; TyÞ of item iz in
the transaction Ty can be denoted by the given membership functions as:
f yz ¼
f yz1
Rz1
þ f yz2

Rz2
þ � � � þ f yzh

Rzh

� �
; ð1Þ
where h is the number of membership functions (linguistic term or fuzzy region) of an item, f yzl is the fuzzy value of the
quantitative value qðiz; TyÞ in the l-th fuzzy region Rzl.
Definition 2 (Item utility of an item). The utility of an item ijin the transaction Tqis denoted as uðij; TqÞ, and is defined as:
uðij; TqÞ ¼ qðij; TqÞ � pðijÞ: ð2Þ
Definition 3 (Fuzzy utility of a fuzzy item). The fuzzy utility fuyzl of the l-th fuzzy region for the item iz in the transaction Ty is
defined as:
fuyzl ¼ f yzl � uðiz; TyÞ: ð3Þ

Note that the membership functions are the same for each item in this study. It is possible to use different membership

functions for different items.
Definition 4 (Fuzzy utility of a fuzzy itemset). The fuzzy utility fuyX of a fuzzy itemset X in the transaction Ty is the summation
of the fuzzy utility of X in Ty. It is defined as:
fuyX ¼
X
fizl2X

fuyzl ð4Þ
The fuzzy item fizl is the item zwith a linguistic term l in the fuzzy itemset X. Note that the definition of the fuzzy utility of
a fuzzy itemset is different in the previous works [27,28] but follows the previous GA-based algorithm [29]. In the papers
[27,28], the process of calculating the fuzzy utility of a fuzzy itemset is performed by the minimum operator among all fuzzy
values in this fuzzy itemset. After that, this single minimum fuzzy value is then used to accumulate the fuzzy utilities of all
fuzzy items. However, this model is not suitable for the utility concept because if a certain fuzzy item is with low fuzzy value,
the whole fuzzy utility of this itemset is also shallow. It thus will produce incomplete information of the discovered high
fuzzy utility patterns.
Table 1
A quantitative database D.

TID Transaction (item, quantity)

T1 a:1, c:18, e:1,
T2 b:6, d:1, e:1, f:1
T3 a:2, c:1, e:1
T4 d:1, e:1
T5 c:4, e:2
T6 b:1, f:1
T7 b:10, d:1, e:1
T8 a:3, c:25, d:3, e:1
T9 a:1, b:1, f:3
T10 b:6, c:2, e:2, f:4
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Definition 5 (Actual fuzzy utility of a fuzzy itemset). The actual fuzzy utility afuX of a fuzzy itemset X in a transaction database
D is the summation of all fuzzy utility of X in all the transaction which includes X. It is denoted as:
afux ¼
X

IX�y2D
fuyX ; ð5Þ
where IX is the original discrete itemset for X and y is a transaction including IX .
Definition 6 (High fuzzy utility itemset). Set a pre-defined minimum fuzzy utility threshold d. A fuzzy itemset X is called as a
high fuzzy utility itemset, if and only if afuX P d.

Based on the above definitions, the concept of high fuzzy utility pattern mining considers not only the utility of an itemset
but also the quantitative information interpreted by fuzzy-set theory. Comparing with the traditional high-utility itemset, a
high fuzzy utility pattern provides more useful information to discover complete and understandable information. For exam-
ple, it can help a manager in the supermarket to decide the purchase volumes of each product.

Problem Statement: Assume a quantitative transaction database D, and each transaction in D is recorded with the pur-
chased items and quantities. A pre-defined high fuzzy utility threshold d is given. The issue in this paper is to find all the high
fuzzy utility patterns in which their actual fuzzy utility values are higher than or equal to the pre-defined threshold. More-
over, to handle the large-scale databases for mining the high fuzzy utility patterns in realistic situations, an efficient MapRe-
duce approach is required to be designed to speed up mining performance.

4. Proposed EFUPM and HFUPM

There are four parts to this section. The first part is that an upper-bound with closure property named as itemset fuzzy
upper bound is proposed. The second part is the algorithm for constructing the searching graph to reveal HFUIs. The third
one is the pruning strategies proposed in the developed EFUPM. Two upper-bounds names as sub-tree fuzzy utility and local
fuzzy utility are introduced and applied in the designed pruning strategy to reduce the search space. Last but not least, the
proposed Hadoop-based HFUPM is then implemented and studied.

4.1. Itemset Fuzzy Utility Upper Bound

In traditional FIM, downward closure (DC) property is always applied to limit the searching space for revealing high-
frequency itemsets. However, in the field of HUIM, the utility cannot be the assessed value to directly apply DC property.
Liu et al. [13] proposed transaction weighted utility twu to keep closure property in HUIM. Lan et al. [28] introduced fuzzy
utility upper-bound fuub to hold the DC property for high fuzzy utility pattern mining. In this paper, a tighter upper-bound
named itemset fuzzy utility upper bound ifuub is proposed to further reduce the searching space and maintains the DC prop-
erty. The detailed definitions of the original fuub and the developed ifuub are described as follows.

Definition 7 (Maximal fuzzy utility of an item). The maximal fuzzy utility mfuyz of the item iz in the transaction Ty is defined
as:
mfuyz ¼ max fuyz1; fuyz2; � � � ; fuyzl

� �
; ð6Þ
where fuyzk is the fuzzy utility of the k-th fuzzy region of the item iz in the transaction Ty.

The maximal fuzzy utility is the maximal value of an item calculated in a transaction. Because a fuzzy itemset can only
select one fuzzy region (linguistic term) of each item, it can be used to generate an upper-bound of fuzzy utility for an item-
set with DC property.

Definition 8 (Maximal transaction fuzzy utility). The maximal transaction fuzzy utility mtfuy of the transaction Ty is the
summation of the maximal fuzzy utility values of all the items in the Ty, that can be defined as:
mtfuy ¼
X
iz2Ty

mfuyz: ð7Þ
The maximal transaction fuzzy utility is the maximal fuzzy utility of which an itemset can obtain in a transaction. If an
itemset is included in a transaction, the fuzzy utilities of its superset and itself are equal or less than the maximal transaction
fuzzy utility. Therefore, it can be used to design an upper-bound and keep the DC property for high fuzzy utility pattern
mining.
Definition 9 (Fuzzy utility upper-bound). The fuzzy utility upper-bound fuubX of a fuzzy itemset X is the summation of the
maximal transaction fuzzy utility of all the transactions which include IX (the original discrete itemset of X) in the dataset D.
The detailed definition is defined as:
35
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fuubX ¼
X

IX # Ty2D
mtfuy: ð8Þ
In previous work, fuub is used to keep the DC property and reduce the search space to reveal high fuzzy utility patterns.
Nevertheless, fuub is a loose upper-bound for fuzzy utility. Another tighter upper-bound is developed in the proposed algo-
rithm as described below.
Definition 10 (Itemset maximal transaction fuzzy utility). The itemset maximal transaction fuzzy utility imtfuyX of the fuzzy
itemset X in the transaction Ty is defined as:
imtfuyX ¼ fuyX þ
X

iz2Ty ;izRIX
mfuyz; ð9Þ
where IX is the corresponding discrete itemsets of the fuzzy itemset X. Note that if IX:# Ty; imtfuyX ¼ 0, that is because Ty

cannot provide fuzzy utility to X. The value of imtfuyX is a maximal fuzzy utility to which the transaction can provide for
all of the fuzzy supersets of X.
Definition 11 (Itemset fuzzy utility upper bound). The itemset fuzzy utility upper bound ifuubX of the fuzzy itemset X in the
dataset is the summation of the maximal transaction fuzzy utility of all the transactions including IX (the original discrete
itemset of X) in the dataset D. It is then defined as:
ifuubX ¼
X

IX # Ty2D
imtfuy: ð10Þ
Comparing with mtfu, imtfu applies the fuzzy itemset X itself and not uses the discrete itemset to calculate the upper-
bound. Therefore, imtfu is equal or less than mtfu but also keeps the DC property. The related proofs are shown below.
Theorem 1 (Anti-monotonicity property of imtfu). Assume two fuzzy itemsets X and X0 and X � X0, a transaction Ty such as
IX # T. Thus,
mtfuy P imtfuyX P fuyX0 :
Proof 1. The proof is divided into three parts.

1. mtfuy P imtfuyX:
imtfuyX ¼ fuyX þ
X

iz2Ty ;izRIX
mfuyz

6
X
iz2IX

mfuyz þ
X

iz2Ty ;izRIX
mfuyz

¼
X
iz2Ty

mfuyz

¼ mtfuy:

2. IX0 � T:

* fuyX0 ¼ 0 ) imtfuyX P fuyX0 :

3. IX0 # T:

½l�imtfuyX ¼ fuyX þ
X

iz2Ty ;izRIX
mfuyz

P fuyX þ fuy X0nXð Þ
þ

X
iz2Ty ;izRIX0

mfuyz

¼ fuyX0
X

iz2Ty ;izRIX0
mfuyz

P fuyX0 :

* 1), 2) and 3) )mtfuy P imtfuyX P fuyX0 .
36
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Theorem 2 (Anti-monotonicity property of ifuub). Assume two fuzzy itemsets X and X0 and X � X0, a transaction Ty such as IX # T.
Thus,
fuubX P ifuubX P afuX0 :
Proof 2. * Theorem 1 )mtfuy P imtfuyX P fuyX0 in each transaction Ty where IX 2 Ty.
! P

IX # Ty2Dmtfuy P
P

IX # Ty2Dimtfuy

P
P

IX�yfuyX0 ¼
P

I0X�yfuyX0

! fuubX P ifuubX P afuX0 : �
The designed ifuub is a tighter upper-bound than that of the fuub and keeps DC property in the mining progress. It can also

be applied in an Apriori-based algorithm to reveal high fuzzy utility patterns.

Definition 12 (k-candidate high fuzzy utility itemset). An fuzzy itemset X is called as k-candidate high fuzzy utility itemset k-
CHFUI if and only if ifuubX P minimumfuzzyutilitythresholdd.

In an Apriori-based algorithm, k-CHFUIs can be as candidate fuzzy itemsets with k items in each round to reveal the high
fuzzy utility itemsets. In the proposed EFUPM and HFUPM algorithms, the 1-CHFUI is used to build the searching graph for
the mining process and two upper-bounds are introduced here to further reduce the search space. The detailed descriptions
are stated below.

4.2. Searching graph for mining process

4.2.1. Constructing search graph
Before performing the proposed algorithms, a search graph is first built that can be used to apply the pruning strategies

and the proposed algorithms. The proposed algorithms discover all the HFUPs (high fuzzy utility patterns) in a dataset when
the proposed algorithms estimate or prune all the nodes in a graph. Based on the developed Theorem 2, the search graph
Fig. 1. A search graph with five items.
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contains only 1-CHFUIs in a transactional database. After obtaining the 1-CHFUIs, the proposed algorithms sort the corre-
sponding discrete items in the 1-CHFUIs (using the maximal fuzzy value of an item for all fuzzy terms) with their ifuub
by descending order. After that, a routing graph will be generated from this ordered list. Details are then described in Algo-
rithms 1 and 2 A search graph of the given example is shown in Fig. 1. In this graph, a node (item) represents all of the pos-
sible corresponding fuzzy items for this item. For example, if the fuzzy item fa:lowg and fa:middleg exist in 1-CHFUI, a node a
represents the fuzzy item fa:lowg and fa:middleg simultaneously.

Algorithm 1. Construct searching graph

Input: an ordered item list l.
Output: a searching graph G.

1: set G ¼£;
2: put the starting point s into G;
3: run BUILDCHILDNODES G; s; lð Þ;
4: return G;
Algorithm 2. Build child nodes algorithm
38
1: function BUILDCHILDNODESG; s; l

2: for each item i in l do
 . select item i by l order.

3: G i;

4: generate a directed link from s to i;

5: if item i is not the last one in list l then

6: set a list li is a sub list of l after item s;

7: run BUILDCHILDNODES G; i; lið Þ;

8: end if

9: end if

10: end function
4.2.2. The Node’s Expression for Itemset
According to the above process, a search graph is generated before EFUPM. Therefore, each node in the search graph indi-

cates a specific fuzzy itemset which can be estimated whether it is a high fuzzy utility pattern. The expression of a node is the
traveling log between the starting node to this node. For example, assume there are three linguistic terms as low,middle, and
high. If a tracking history of the search process is e and b, and e:low; b:middle and b:high exist in 1-CHFUI, the corresponding
fuzzy item is fe:low; b:middleg, and fe:low; b:highg. However, fewer possible fuzzy itemsets will be estimated due to the
developed pruning strategies as follows.

4.3. Pruning strategies

For the developed EFUPM and HFUPM, the pruning strategies used in EFIM [46] are then utilized and enhanced here to
early prune the unpromising candidates, thus the search space can be greatly reduced. Two upper-bounds named sub-tree
fuzzy utility and local fuzzy utility are then designed here to determine whether the process is required to estimate the fol-
lowing nodes from the current node. Details are then given below.

Definition 13 (Sub-tree fuzzy utility). Assume the item order is I ¼ fi1; i2; . . . ; ikg, and the last item in a sorted fuzzy itemset X
sorted by I order is fim. The fio is defined as the first fuzzy item following fim and assume the corresponding discrete item is
set as io. I0 is a sub-list of I, which is defined as fioþ1; ioþ2; . . . ; ikg. Assume that z ¼ in is an item 2 I0 and gðX [ fzgÞ is a
transaction set in which transaction including itemset X [ fzg. The sub-tree fuzzy utility of z w.r.t X is:
sfuðX; zÞ ¼
X

T2gðX[ðzÞÞ
½fuðX; TÞ þ fuðz; TÞ þ

X
i2T\I0

mfuði; TÞ�: ð11Þ
Definition 14 (Local fuzzy utility). Assume the item order is I ¼ fi1; i2; . . . ; ikg. Also assume the last item in a sorted fuzzy
itemset X sorted by I order is fim. fio is the first fuzzy item following fim. The corresponding discrete item is io. Let I

0 be a
sub-list of I as fioþ1; ioþ2; . . . ; ikg; z ¼ in is an item 2 I0 and gðX [ fzgÞ is a transaction set in which transaction including itemset
X [ fzg. The local fuzzy utility of z w.r.t X is:
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lfuðX; zÞ ¼
X

T2g X[ðzÞð Þ
fuðX; TÞ þ

X
i2T\I0

mfuði; TÞ
" #

: ð12Þ
The sub-tree fuzzy utility, sfu and local fuzzy utility, lfu are respectively corresponding to the sub-tree utility and local utility
that were used in EFIM model [46]. They are the tighter upper-bounds for the high fuzzy utility patterns in the proposed
search graph. Thus, if the sfu value of a fuzzy itemset is less than the threshold, the following fuzzy itemsets in the search
graph are no possibility to be a high fuzzy itemset. Moreover, if the lfu value of a fuzzy itemset is less than the threshold, all
of the super fuzzy itemsets of this fuzzy itemset are also no possibility to be a high fuzzy itemset. The developed algorithm is
then provided below.
4.4. Developed EFUPM algorithm

The proposed EFUPM applies the developed high fuzzy utility version (sub-tree fuzzy utility and local fuzzy utility) to estab-
lish the upper-bounds of candidates in the search graph. The detailed pseudo-code is provide following. The proposed
EFUPM follows the process of the previous EFIM algorithm that applies sub-tree (fuzzy) utility and local (fuzzy) utility for
performing the pruning strategies that can be used to greatly reduce the size of search space. To mainly focus on the devel-
oped Hadoop-based algorithm (HFUPM) in this paper, detailed algorithm can be referred to [46]. However, due to involve-
ment in the fuzzy theorem, the proposed process of EFUPM is more complicated than the previous EFIM. Note that, the
following description also matches the concept of the following HFUPM Hadoop framework. The proposed algorithm first
calculates the value of ifuub for each item in the input dataset. According to the pre-defined membership function set, there
are several corresponding fuzzy items of an item. Therefore, the item list l will be sorted by the maximal value of ifuub for
each item by descending order. This list will be used to establish a searching graph logically. It is different from the tradi-
tional EFIM algorithm, each node in this searching graph indicates a set of fuzzy item. For example, if a node is a, it might
indicate the fuzzy items a.low, a.middle and a.high. Then, the proposed will search the graph by the breadth-first order. The
searching process will start from a node in the searching graph and estimate the following nodes directly linked to this node.
For example, it might be as fa:low; b:highg [ fcg. Then, the proposed process will calculate all of the values of fu for all pos-
sible fuzzy itemsets and check it is HFUIs or not. The pruning method will be performed consequently. sfu is calculated to
check the proposed process should establish the following node or not. And lfu is calculated to maintain to set rl. This set
can be used to check a fuzzy itemset should be evaluated or not. In the proposed HFUPM framework, the pruning method
will be handle by a task file and be described in the following session.

4.5. Developed HFUPM algorithm

The framework of the proposed HFUPM is shown in Fig. 2. It consists of three MapReduce architectures, which are respon-
sible for different purposes in the proposed framework. The first one is used to reveal the 1-CHFUIs, the second one is to sort
the 1-CHFUIs and the last one is for the mining task of high fuzzy utility patterns. An independent process between MapRe-
duce 2 and 3 is to generate a task file for discovering the high fuzzy utility patterns in MapReduce 3. Each part is respectively
described below.

4.5.1. Transaction dataset
Generally, a Hadoop program catches the input data from HDFS with the plain text format. In the developed HFUPM, the

transaction information is stored in HBase with the binary structure. HFUPM tries to produce less temporary data as possible,
therefore, the random access ability for the original input dataset is very important. Apache HBase provides the random
access ability and good performance to reach any transaction in the dataset. For any specific transaction, HFUPM uses a hash
table to store the transaction information and uses Apache Avro to serialize it into the binary structure. Thus, HFUPM can
obtain specific information for a certain item in a transaction efficiently. All the complex data structures are serialized
and de-serialized by Apache Avro in the developed HFUPM. The tasks of each MapReduce is then described below.
Fig. 2. Proposed HFUPM framework.
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4.5.2. MapReduce 1: Revealing 1-CHFUIs
MapReduce 1 is set at the beginning of the proposed framework that reveals all 1-CHFUIs in the dataset. Besides Mapper

and Reducer, HFUPM also builds the Combiner in MapReduce 1 to increase the performance. Detailed descriptions are shown
as follows.

In the first MapReduce framework, each Mapper obtains a part of transaction dataset. Each item in a transaction will be
transferred to several fuzzy items based on the pre-defined membership functions. The key-value pair for the fuzzy item and
the imtfu of this fuzzy item will be considered as the output to the later Combiners. In the Combiner operator, the Mapper
nodes accumulate the value of the same item ID before it outputs the key-value pair list to Reducers. Actually, the output
value of the node is the partial ifuub of an item. It can reduce the requirement of the communication bandwidth and the time
of transformation. Finally, the key-value pairs of the same item ID will be assigned to the same Reducer. The Reducers in
MapReduce 1 then calculates the sum of the partial ifuub of each item and outputs the 1-CHFUIs to MapReduce 2 for the
sorting process.

4.5.3. MapReduce 2: Sorting 1-CHFUIs
MapReduce 2 is an option in the proposed framework. That is because the scale of the number of items always not

achieves at the big data level. Sorting thousands of 1-CHFUIs in a single machine is always faster than a Hadoop cluster.
However, if a dataset contains a huge number of 1-CHFUIs, MapReduce 2 is designed to handle this situation to increase
the performance. MapReduce 2 is applied to a famous MapReduce sorting algorithm named TeraSort for sorting 1-
CHFUIs. It uses the auto-sorting method for keys in the MapReduce process, whereas the default sorting action in Hadoop
is sorting keys in ascending order. Note that users need to overwrite the compare function to change the sorting behavior.
The algorithm of MapReduce 2 is very simple, it just switches keys and values to sort by ifuub.

In the default setting, a Reducer sorts keys for its own data automatically. That is to say, Hadoop can not guarantee global
sorting. It is not a sorted list by ifuub descending order. Thus, users need to overwrite the shuffle function defined in the
Hadoop framework. The shuffle function is used to assign a record to a specific Reducer. In the developed HFUPM, assume
there are n Reducers in the system, the shuffle function needs to sample n - 1 ifuub values and sorts them by the descending
order. This sorting sample list will be the cutting points for global sorting. The records of which ifuub is larger than or equal
to the first value in the sorting sample list will be assigned to the first Reducer, the records of which ifuub is less than the last
value in the list will be assigned to the last Reducer and the records of which ifuub is less than the (n - 1)-th value and larger
than or equal to n-th value will be assigned to the n-th Reducer. In general, the sorting process can be performed in a single
machine without the Hadoop framework.
Algorithm 3. Generate the task file for candidate k-HUIs
40
Input: a list l of key-value pair for the previous task file. The sub-tree fuzzy utilities and local fuzzy utilities for the
previous candidate fuzzy itemsets.

Output: a list o of key-value pair for the current candidate itemsets.
1: for each ðn; lf Þ in l do

2: set nextNodes = {}, wholeFollowingList = {};

3: for each nf in lf do

4: if sfuðn;nf ÞPthreshold then
 . sfu is sub-tree fuzzy utility

5: nextNodes  nf ;

6: end if

7: if lfuðn;nf ÞPthreshold then
 . lfu is local fuzzy utility

8: wholeFollowingList  nf ;

9: end if

10: end for

11: if nextNodes is not {} then

12: for each nn in nextNodes do

13: nodeFollowing = {};

14: index = wholeFollowingList.getIndex(nn) + 1;

15: length = wholeFollowingList.length;

16: while index is not equal to length do

17: temp = wholeFollowingList.get(index);

18: nodeFollowing  temp;

19: index = index + 1;

20: end while

21: if nodeFollowing is not {} then

22: o  ( n;mf g, nodeFollowing);

23: end if
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24: end for
41
25: end if

26: end for

27: Output o to the task file;
4.5.4. Generate task file
In MapReduce 3, while seeking the dataset each time, the proposed HFUPMwill reveal all of the high fuzzy utility patterns

(HFUPs) containing the same number of items. Thus, a task file is required to be generated to show the candidate itemsets for
MapReduce 3. In other words, at the k-th time by performing MapReduce 3, all of the k-HFUPs will be discovered in this
round. The format of the task file is a list of the key-value structure, and the key is an itemset which is estimated at the pre-
vious round, and the value is a list of items which can be extended from this itemset in the search graph. Therefore, the keys
and the values can be combined with the new candidate itemset for the iteration. The first task file thus contains one record
of which key is NULL and value is the list of 1-CHFUIs. The description of generating task files at other rounds is shown in
Algorithm 3.

In Algorithm 3, it combines Algorithm 1 and the developed pruning strategies to reduce the search space of the unpromis-
ing candidates. In the designed Algorithm, two emptysets are created to store the fuzzy itemsets whose sfu or luf (Line 2,
Algorithm 3) is larger than the pre-defined threshold. The nextNodes is a set where each node has possibility to be extended
for generating more high fuzzy utility itemsets. A loop is then performed to traverse all nodes in nextNodes in Lines 12 to 24.
On the other hand, any branch following a node should exist in wholeFollowingList; otherwise, it will not seek the possible
high fuzzy utility itemsets. In Lines 13 to 20, the proposed algorithm seeks the branches whether it exists in wholeFollow-
ingList. After that, the algorithm generates a task file with the current node if the related nodeFollowing is not empty (Lines
21 to 23, Algorithm 3). An example is shown below to explain the process clearly. Assume the current node n is 17 ({b}),
nextNodes = {d} and wholeFollowingList = {d, c}. Due to sub-tree utility pruning strategy, the following branches after node
22 and 24 will be pruned. The branch between node 18 and 21 will also be pruned, because luðb; f Þ < threshold. Finally,
b; df g; cf gf g will be written into list o in this loop iteration. After performing Algorithm 3 for the other nodes with 2-

items, all of the candidates with 3-items will be put into the output list o. Note that, the value of sfu and lfu are the maximal
value of all the fuzzy terms, and the corresponding candidates of high fuzzy utility patterns will be put in the task file. For
example, if sfuðfb:lowg; d:highÞ < threshold but sfuðfb:lowg; d:middleÞP threshold, we will simply indicate
sfufb; dgP threshold and keep the node d in the search graph. However, the fuzzy itemset fb:low; d:highgwill not be existing
in the task file.

4.5.5. MapReduce 3: Revealing HFUPs
In this section, the developed HFUPM loads the potential HFUPs from the task file and transaction information from the

HBase database. Then, a MapReduce 3 will be utilized to calculate the fuzzy utility, sub-tree fuzzy utility and local fuzzy utility
for all candidates, and further reveals the HFUPs in this dataset. In MapReduce 3, HFUPM also maintains a related transaction
ID list (this list records the ID numbers and does not include any transaction information) to be as an input file for the
MapReduce system. Therefore, the HFUPM does not need to scan the whole dataset, and the computational cost can be
greatly reduced.
Algorithm 4. Mapper of MapReduce 3
Input: a list l of transaction ID, a task file f and a transaction dataset d.
Output: a list o of key-value pair. The key is an itemset and the value is the utility information for a certain transaction

which contains this itemset.
1: for each transaction ID i in l do

2: set nextIteration = false; 3: for each ðn; lf Þ in f do

4: get transaction t from d using ID i

5: if t does not contain n then

6: continue;

7: end if

8: calculate uðn; tÞ;

9: set futilities = {}, sfUtilities = {}, lfUtility = 0, existFollowing = false;

10: for each nf in lf do

11: if t contains nf then

12: existFollowing = true;
 . It exists candidate

itemsets.
(continued on next page)
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13: calculate uðnf ; tÞ;
42
14: lfUtility = lfUtility + uðnf ; tÞ;

15: put ðnf ! uðnf ; tÞÞ into futilities;

16: put ðnf ! 0ÞÞ into sfUtilities;
 . Initialization.

17: for each ðk! vÞ in sfUtilities do

18: put ðk! v þ uðnf ; tÞÞ into sfUtilities;
 . Update.

19: end for

20: end if

21: end for

22: if existFollowing is false then

23: continue;

24: end if

25: nextIteration = true;
 . Keep this transaction.

26: for each ðk! vÞ in utilities do

27: set temp = {}, temp2 = {};

28: temp  ðn; kÞ;

29: temp2  {(futility: uðn; tÞ þ v), (sfUtility: uðn; tÞþ sfUtilities.get(k)), (lfUtility:

uðn; tÞ þ lUtility)};

30: o  (temp, temp2);

31: end for

32: end for

33: if nextIteration is true then

34: put i into the new transaction ID list;Save in the HBase’s table for the next iteration.

35: end if

36: end for
In Algorithm 4, a Mapper calculates the fuzzy utility, sub-tree fuzzy utility, and local fuzzy utility (Line 29) of each itemset in
the task file for each transaction which is assigned to this Mapper. If a transaction contains a candidate itemset, it will be
kept in the new transaction ID list; otherwise, it will be removed. For the same reason as MapReduce 1, MapReduce 3 also
makes a Combiner to reduce the communication cost. The description of the Combiner in MapReduce 3 is shown below.
Algorithm 5. Reducer of MapReduce 3
Input: a list l of key-value pair. The key is an itemset and the value is the partial utility information for this itemset.
Output: a list o of key-value pair. The key is an itemset and the value is the utility information for this itemset. And a

part of HUIs to HBase.
1: for each key-value pair ði; luiÞ in l do

2: set fut = 0, sfUt = 0, lfUt = 0;

3: for each ui in lui do

4: fut = fut + ui.get(futility);

5: sfUt = sfUt + ui.get(sfUtility);

6: lfUt = lfUt + ui.get(lfUtility);

7: end for

8: set temp = {};

9: temp {(futility: fut), (sfUtility: sfUt), (lfUtility: lfUt)};

10: o  (i, temp);

11: if fut P threshold then

12: HUIs  i;
 . It is stored in the HBase database.

13: end if

14: end for
In Algorithm 5, HFUPM calculates the value of fuzzy utility (Line 4), sub-tree fuzzy utility (Line 5) and local fuzzy utility (Line
6) of each candidate for the whole transaction dataset and outputs to the HBase database in order to be used for the next
iteration. If the fuzzy utility of a fuzzy itemset is larger than the pre-defined threshold, this itemset will be stored in the HBase
database (Line 12). Finally, if Algorithm 3 cannot generate more candidates for the HFUPs, it indicates that the developed
HFUPM has already revealed all of the HFUPs in this transaction dataset; the process is then terminated and the results
are then output as the discovered HFUPs.
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5. Experimental evaluation

This section examines the effectiveness of the EFUPM, HEUPM, and the previous Apriori-based algorithms for high fuzzy
utility pattern mining under different databases. The experiments were conducted in computing nodes equipped with the
Intel Core i7-6700 CPU @ 3.40 GHz *8 and 32 GB assigned RAM, running Linux Ubuntu 16.04 LTS. To achieve parallelization,
the experiment was run under the Hadoop2.5.1 cluster with one master node and five data nodes.

5.1. Data information and preparation

The original databases include many transactions with items and their utilities. To facilitate calculation, firstly, the exper-
iment initializes the database and take the line number as TID. Each transaction contains three parts: the first part is the
items, the second part is the utility of each item, and the third part is the ifuubof the transaction. By analyzing these data
sets, corresponding high fuzzy utility patterns can be mined. To analyze the different performance between the three algo-
rithms more comprehensively and show the performance differences between different databases, six standard datasets for
evaluating the traditional HUIM algorithms are selected as input data (namely BMS, Mushroom, Accident, Connect, Food-
mart, and Chess), and they are shown in Table 2. Besides, a pre-defined membership function is also provided to calculate
the fuzzy value of each item. Moreover, to verify the advantages and disadvantages of the algorithm in big data, the exper-
iments are divided into three groups, namely small, medium, and large of the conducted datasets. After preparing these data-
bases, we need to upload them to HDFS for the initialization for performing the Hadoop-based HFUPM algorithm.

5.2. Algorithm development and evaluation

The proposed algorithms can be adjusted according to requirements. Before performing the algorithms, a threshold value
is required to be set for determining whether an itemset is a high fuzzy utility pattern. In the designed HFUPM, MapReduce2
is an iterative process, and every iteration needs to scan the database to calculate the fuzzy utilities of the itemsets. When the
database is extensive, it often takes a long time to scan the database. Therefore, the performance of EFUPM is related to the
number of items in the databases. The first experiment aims to compare the running time of the four algorithms in six dif-
ferent datasets. The information of the six databases is shown in Table 2. The four algorithms are the proposed EFUPM,
HFUPM, and the traditional Apriori and the Hadoop-based Apriori framework (Apriori(M)) [47]. Note that, to handle the pro-
cess for mining HFUPs, the proposed ifuub concept will be applied in the Apriori-based algorithms.

5.2.1. Runtime
As is shown in Fig. 3, by taking the first group of databases which has smaller size, the runtimes of EFUPM and Apriori is

significantly less than that of HFUPM and Apriori(M). In this figure, The x-coordinate represents the different databases
within the group, and the y-coordinate represents the runtime of the compared algorithms. From the experimental results,
it can be seen that the MapReduce framework of Hadoop has no advantage while dealing with small datasets. This is rea-
sonable since it takes a certain amount of time to startup the Hadoop cluster, and communication cost among different nodes
is also very expensive. When we use the first group of databases (small size), for the HFUPM and Apriori(M) algorithms, the
size of the four databases is not up to the size of a block. Therefore, the process is done on one node. Even so, the two algo-
rithms will start the whole Hadoop cluster using the master node scheduling the entire process, but the EFUPM and Apriori
complete in a single machine. Therefore, while using this set of data, the performance of single-machine algorithms is better
than Hadoop-based frameworks. Moreover, the performance difference between HFUPM and Apriori(M) at low data volumes
is not significant because the amount of computation is small.

The next experiments take the second group of databases which has a medium size, and the results are shown in Fig. 4.
From the results, it can be seen that the runtime of the single machine algorithms is still less than Hadoop-based frame-
works. In this experiment, the size of the input data exceeded the size of the block, and the parallel computing was imple-
mented in the Hadoop-based algorithms; the input data was divided into different nodes for calculation. This step saves a lot
of computational costs. However, as mentioned earlier, while using Hadoop’s MapReduce architecture, the communication
cost among different nodes is very high. Moreover, since EFUPM and Apriori algorithms run on a single machine, its perfor-
mance requirements on the computer begin to increase as the size of the dataset gets larger. And as the amount of compu-
Table 2
Database information.

Dataset Trans. Items Avg. trans. length

BMS 59,601 497 4.8
Mushroom 8,124 119 23.0
Accident 340,183 468 33.8
Connect 67,557 129 43.0
Chess 3,196 75 37.0
Foodmart 4,141 1,559 4.4
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Fig. 3. Runtimes in the small size databases.

Fig. 4. Runtimes in the medium size databases.
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tation increased, the performance difference between HFUPM and Apriori(M) is obvious. The reason is that the developed
upper-bounds are efficient to reduce the search space; it can save much time in the calculation process.

In the third experiment, the input data is the large datasets, and the results of this experiment are shown in Fig. 5. The
results of this experiment showed the significance of our developed HFUPM. Obviously, in this experiment, the running time
of both Hadoop-based algorithms has increased a lot, but the runtime of the Apriori(M) algorithm grows faster. What is
more, when the size of the database reaches 1.5 GB, the single machine can no longer support to perform the EFUPM and
Apriori algorithms. For the HFUPM and Apriori(M) algorithms, although they take a long time to initialize the MapReduce
framework, the final results can still be obtained, and we can see more clearly that the HFUPM performs better than the Apri-
ori(M).

In summary, the experiments showed that the HFUPM can be well performed for mining the high fuzzy utility patterns in
a very large database. At the same time, the purpose of using the MapReduce architecture in Hadoop is usually not to achieve
parallelism and improve algorithm performance but to process big data that cannot be processed by a single machine. Also,
the performance of the single-machine EFUPM algorithm is better than the Apriori-based algorithm for mining the high
fuzzy utility patterns.
5.2.2. Memory usage
According to the previous works [1], the Apriori(M) generates a lot of intermediate data during computation, which takes

up more storage space. The designed HFUPM can thus solve this limitation. In these experiments, we compared the file sizes
generated by HFUPM and Apriori(M) while they were performed and executed. The different databases and memory usage
are independent, thus the influence of memory usage depends on the size of a database. Therefore, we only present the rela-
tionship between the size of a database and the memory usage in the experiments. The experimental results are shown in
Table 3.

To minimize the impact of different factors on the performance of the compared algorithms, the number of items remains
stable while adjusting the database size. However, the transaction size is then changed. From the results, it can be seen that
the Apriori(M) has a better memory usage while performing it in a tiny database. That is because the proposed HFUPM needs
to perform a very complex process in the search space to reduce the unpromising candidates. However, while the size of the
database increases, HFUPM shows excellent memory usage compared to the Apriori(M); it kept the size of memory in a suit-
able rage, but Apriori(M) suffered the memory explosion crisis.
Fig. 5. Runtimes in the large size databases.
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Table 3
Memory usage of two compared algorithms in three
databases.

Database size

Algorithm 100 KB 40 MB 0.5 GB

HFUPM 9 MB 10 MB 17 MB
Apriori(M) 4 MB 97 MB 190 MB

Fig. 6. Scalability comparisons.

Jimmy Ming-Tai Wu, G. Srivastava, M. Wei et al. Information Sciences 553 (2021) 31–48
5.2.3. Scalability of the Hadoop-based algorithms
In this section, the influence of varied numbers of nodes for the developed HFUPM and the Apriori(M) is shown below.

The runtimes and memory usages with 1 to 5 computers in the Hadoop cluster are respectively shown in Fig. 6(a) and
(b). Here, to make a fair comparison, only the algorithm based on the MapReduce technique is considered in the experiments.
For different datasets, the influences between the varied numbers of nodes and the runtime are very similar. Therefore, we
simply showed the relationship between the scalability results regarding the number of nodes and runtime in one database.
The experimental results were performed in the ‘‘accident” database with 46M size.

From the conducted results, it is obvious to see that the developed HFUPM always has better performance than the Apri-
ori(M) under a varied number of nodes in the Hadoop cluster. The reason is that the developed upper-bounds can provide
better pruning strategies to reduce the search space of the unpromising candidates and the developed HFUPM has a better
ability to manage memory, thus the developed HFUPM can better reveal the high fuzzy utility patterns (HFUPs) in a parallel
environment and does not need too muchmemory usage for the progress. Moreover, these two frameworks are both suitable
to be utilized in the MapReduce system.When the number of nodes increases, the reduction of the runtime is very obvious. It
can be concluded that these two algorithms can be parallelly performed in a distribution system. On the other hand, the
memory usages are almost the same while the number of nodes increases for the two compared algorithms. Thus, we
can say that more nodes in the Hadoop system can enhance the performance for pattern mining based on the developed
frameworks.
6. Conclusion

With the rapid growth of commercial datasets, it is necessary to develop an effective mining algorithm to reveal knowl-
edge for decision making. However, the traditional mining algorithms were limited in the ability to handle the huge dataset.
In this paper, we designed two algorithms named EFUPM and HFUPM for mining high fuzzy utility patterns. Two new upper-
bounds are also estimated and developed in this paper to reduce the search space of the unpromising candidates. Moreover,
the HFUPM is implemented by the Hadoop framework to handle the large-scale databases. Experiments showed that the
developed EFUPM has better performance than that of the Apriori-like approach for mining the high fuzzy utility patterns
and the designed HFUPM has good performance than the Apriori-based model running on the Hadoop framework. Thus,
the designed algorithms provide a practical model in real-life situations.

In this paper, the designed HFUPM is based on the Hadoop architecture for implementation. In the future, the Spark
framework is then applied to the designed model for handling the high fuzzy utility patterns mining. More constraints such
as incremental or multi-objective concepts can also be considered to contribute to the significant benefits in the field of pat-
tern mining. The machine learning model can also be involved to predict the high fuzzy utility patterns in the sequential
databases as the future study.
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