Docs » Modeling Non-linear Least Squares

Modeling Non-linear Least Squares

Introduction

Ceres solver consists of two distinct parts. A modeling APl which provides a rich set of tools to
construct an optimization problem one term at a time and a solver API that controls the
minimization algorithm. This chapter is devoted to the task of modeling optimization problems
using Ceres. Solving Non-linear Least Squares discusses the various ways in which an optimization
problem can be solved using Ceres.

Ceres solves robustified bounds constrained non-linear least squares problems of the form:
(nm
. 1 2
min o Zpi Ifi (@i s)l
1
s.t. l]' < z; < Uj

In Ceres parlance, the expression p; (Hfl (@5, mik)||2) is known as a residual block, where f; (-)
isa costfunction that depends on the parameter blocks {z; ,...,z;}.

In most optimization problems small groups of scalars occur together. For example the three
components of a translation vector and the four components of the quaternion that define the
pose of a camera. We refer to such a group of scalars as a parameter block. Of course a parameter

block can be just a single scalar too.

p; isa LossFunction . A LossFunction is a scalar valued function that is used to reduce the influence
of outliers on the solution of non-linear least squares problems.

l; and u; are lower and upper bounds on the parameter block z;.

As a special case, when p;(z) = z, i.e., the identity function, and l; = —oo and u; = oo we get the
more familiar unconstrained non-linear least squares problem.

wall}

1 2
EZ Hfz (xilv"'vxik)” .
1

CostFunction

For each term in the objective function, a costrunction is responsible for computing a vector of

residuals and Jacobian matrices. Concretely, consider a function f (z1, ..., z}) that depends on
parameter blocks [z, ..., z].
Then, given [z, ...,], costFunction is responsible for computing the vector f (z1,...,z;) and

the Jacobian matrices

L:le(I1,7Zk) Vze{l,.,k}

class CostFunction

class CostFunction {
public:
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) = @;
const vector<int32>& parameter_block_sizes();
int num_residuals() const;

protected:
vector<int32>* mutable_parameter_block_sizes();
void set_num_residuals(int num_residuals);

};

http://ceres-solver.org/index.html
http://ceres-solver.org/nnls_solving.html#chapter-nnls-solving
http://en.wikipedia.org/wiki/Non-linear_least_squares

The signature of the costrunction (number and sizes of input parameter blocks and number of
outputs) is stored in costFunction: :parameter_block_sizes_ and costFunction: :num_residuals_
respectively. User code inheriting from this class is expected to set these two members with the
corresponding accessors. This information will be verified by the problem when added with

Problem: :AddResidualBlock() .

bool CostFunction: :Evaluate(double const *const *parameters, double *residuals, double **jacobians)

Compute the residual vector and the Jacobian matrices.

parameters isan array of arrays of size costFunction: :parameter_block_sizes_.size() and
parameters[i] iS an array of size parameter_block_sizes_[i] that contains the it" parameter block
that the costFunction depends on.

parameters is never nullptr .

residuals iSan array of size num_residuals_ .

residuals iS Never nullptr .

jacobians isan array of arrays of size costFunction: :parameter_block_sizes_.size() .
If jacobians is nullptr , the user is only expected to compute the residuals.
jacobians[i] iS @ row-major array of size num_residuals x parameter_block_sizes_[i] .

If jacobians[i] is not nullptr , the user is required to compute the Jacobian of the residual
vector with respect to parameters[i] and store it in this array, i.e.

Oresidual[r]

jacobians[i][r * parameter_block_sizes_[i] + c] = 6—‘5[}[]
parameters|z||C

If jacobians[i] is nullptr , then this computation can be skipped. This is the case when the
corresponding parameter block is marked constant.

The return value indicates whether the computation of the residuals and/or jacobians was
successful or not. This can be used to communicate numerical failures in Jacobian computations
for instance.

SizedCostFunction

class SizedCostFunction

If the size of the parameter blocks and the size of the residual vector is known at compile time
(this is the common case), sizecostFunction can be used where these values can be specified as
template parameters and the user only needs to implement costFunction: :Evaluate() .

template<int kNumResiduals, int... Ns>
class SizedCostFunction : public CostFunction {
public:

virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const = 0;

};

AutoDiffCostFunction

class AutoDiffCostFunction

Defining a costFunction Or @ sizedCostFunction can be a tedious and error prone especially
when computing derivatives. To this end Ceres provides automatic differentiation.

template <typename CostFunctor,
int kNumResiduals, // Number of residuals, or ceres::DYNAMIC.
int... Ns> // Size of each parameter block
class AutoDiffCostFunction : public
SizedCostFunction<kNumResiduals, Ns> {
public:
AutoDiffCostFunction(CostFunctor* functor, ownership = TAKE_OWNERSHIP);
// Ignore the template parameter kNumResiduals and use
// num_residuals instead.
AutoDiffCostFunction(CostFunctor* functor,
int num_residuals,
ownership = TAKE_OWNERSHIP);

};

http://en.wikipedia.org/wiki/Automatic_differentiation

To get an auto differentiated cost function, you must define a class with a templated operator()
(a functor) that computes the cost function in terms of the template parameter t . The autodiff
framework substitutes appropriate et objects for 1 in order to compute the derivative when
necessary, but this is hidden, and you should write the function as if T were a scalar type (e.g. a
double-precision floating point number).

The function must write the computed value in the last argument (the only non- const one) and
return true to indicate success.

For example, consider a scalar error e = k — = 'y, where both z and y are two-dimensional
vector parameters and k is a constant. The form of this error, which is the difference between a
constant and an expression, is a common pattern in least squares problems. For example, the
value 2Ty might be the model expectation for a series of measurements, where there is an
instance of the cost function for each measurement k.

The actual cost added to the total problem is e, or (k — = "y)2; however, the squaring is
implicitly done by the optimization framework.

To write an auto-differentiable cost function for the above model, first define the object

class MyScalarCostFunctor {
MyScalarCostFunctor(double k): k_(k) {}

template <typename T>

bool operator()(const T* const x , const T* const y, T* e) const {
e[@] = k_ - x[e] * y[o] - x[1] * y[1];
return true;

}

private:
double k_;
15

Note that in the declaration of operator() the input parameters x and y come first, and are
passed as const pointers to arrays of 7 . If there were three input parameters, then the third
input parameter would come after y . The output is always the last parameter, and is also a
pointer to an array. In the example above, e is a scalar, so only e[e] is set.

Then given this class definition, the auto differentiated cost function for it can be constructed
as follows.

CostFunction* cost_function
= new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
new MyScalarCostFunctor(1.0)); A

Dimension of residual ------ + |
Dimension of x
Dimension of y

In this example, there is usually an instance for each measurement of « .

In the instantiation above, the template parameters following myscalarcostFunction , <1, 2, 2>
describe the functor as computing a 1-dimensional output from two arguments, both 2-
dimensional.

By default autobiffcostrunction Will take ownership of the cost functor pointer passed to it, ie.
will call delete on the cost functor when the AutobiffcostfFunction itself is deleted. However, this
may be undesirable in certain cases, therefore it is also possible to specify Dpo_NOT_TAKE_OWNERSHIP
as a second argument in the constructor, while passing a pointer to a cost functor which does
not need to be deleted by the AutoDiffCostFunction. For example:

MyScalarCostFunctor functor(1.0)
CostFunction* cost_function
= new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
&functor, DO_NOT_TAKE_OWNERSHIP);

AutoDiffCostFunction also supports cost functions with a runtime-determined number of
residuals. For example:

CostFunction* cost_function
= new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(

new CostFunctorWithDynamicNumResiduals(1.0), ~ non
runtime_number_of_residuals); <----+ | |
| | [
I | [
Actual number of residuals ------ + | |
Indicate dynamic number of residuals -------- + |
Dimension of X ----=--mmmmmm e + |
Dimension Of y ==------mmm o +

WARNING 1 A common beginner’s error when first using AutobiffcostFunction is to get the
sizing wrong. In particular, there is a tendency to set the template parameters to (dimension of
residual, number of parameters) instead of passing a dimension parameter for every parameter
block. In the example above, that would be <myscalarcostFunction, 1, 2> , which is missing the 2
as the last template argument.

DynamicAutoDiffCostFunction

class DynamicAutoDiffCostFunction

AutoDiffCostFunction requires that the number of parameter blocks and their sizes be known at
compile time. In a number of applications, this is not enough e.g., Bezier curve fitting, Neural
Network training etc.

template <typename CostFunctor, int Stride = 4>
class DynamicAutoDiffCostFunction : public CostFunction {

};

In such cases bynamicAutoDiffCostFunction can be used. Like AutobiffCostFunction the user must
define a templated functor, but the signature of the functor differs slightly. The expected
interface for the cost functors is:

struct MyCostFunctor {
template<typename T>
bool operator()(T const* const* parameters, T* residuals) const {

}
}

Since the sizing of the parameters is done at runtime, you must also specify the sizes after
creating the dynamic autodiff cost function. For example:

DynamicAutoDiffCostFunction<MyCostFunctor, 4>* cost_function =
new DynamicAutoDiffCostFunction<MyCostFunctor, 4>(
new MyCostFunctor());
cost_function->AddParameterBlock(5);
cost_function->AddParameterBlock(10);
cost_function->SetNumResiduals(21);

Under the hood, the implementation evaluates the cost function multiple times, computing a
small set of the derivatives (four by default, controlled by the stride template parameter) with
each pass. There is a performance tradeoff with the size of the passes; Smaller sizes are more
cache efficient but result in larger number of passes, and larger stride lengths can destroy
cache-locality while reducing the number of passes over the cost function. The optimal value
depends on the number and sizes of the various parameter blocks.

As a rule of thumb, try using AutobiffcostFunction before you use bpynamicAutoDiffCostFunction .

NumericDiffCostFunction

class NumericDiffCostFunction

In some cases, its not possible to define a templated cost functor, for example when the
evaluation of the residual involves a call to a library function that you do not have control over.
In such a situation, numerical differentiation can be used.

O Note

TODO(sameeragarwal): Add documentation for the constructor and for
NumericDiffOptions. Update DynamicNumericDiffOptions in a similar manner.

http://en.wikipedia.org/wiki/Numerical_differentiation

template <typename CostFunctor,
NumericDiffMethodType method = CENTRAL,
int kNumResiduals, // Number of residuals, or ceres::DYNAMIC.
int... Ns> // Size of each parameter block.

class NumericDiffCostFunction : public

SizedCostFunction<kNumResiduals, Ns> {

};

To get a numerically differentiated costrunction , you must define a class with a operator() (a
functor) that computes the residuals. The functor must write the computed value in the last
argument (the only non- const one) and return true to indicate success. Please see

costFunction for details on how the return value may be used to impose simple constraints on
the parameter block. e.g., an object of the form

struct ScalarFunctor {
public:
bool operator()(const double* const x1,
const double* const x2,
double* residuals) const;

For example, consider a scalar error e = k — z'y, where both z and y are two-dimensional
column vector parameters, the prime sign indicates transposition, and k is a constant. The form
of this error, which is the difference between a constant and an expression, is a common pattern
in least squares problems. For example, the value z'y might be the model expectation for a
series of measurements, where there is an instance of the cost function for each measurement
k.

To write an numerically-differentiable class:CostFunction for the above model, first define the
object

class MyScalarCostFunctor {
MyScalarCostFunctor(double k): k_(k) {}

bool operator()(const double* const x,
const double* const y,
double* residuals) const {
residuals[@] = k_ - x[@] * y[0] + x[1] * y[1];
return true;

¥

private:
double k_;
s

Note that in the declaration of operator() the input parameters x and y come first, and are
passed as const pointers to arrays of double s. If there were three input parameters, then the
third input parameter would come after y . The output is always the last parameter, and is also
a pointer to an array. In the example above, the residual is a scalar, so only residuals[e] is set.

Then given this class definition, the numerically differentiated costrunction with central
differences used for computing the derivative can be constructed as follows.

CostFunction* cost_function
= new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
new MyScalarCostFunctor(1.0)); ~ A~

| [

Finite Differencing Scheme -+ |
Dimension of residual
Dimension of x --------
Dimension of y -----------mmmmmmooooo +

In this example, there is usually an instance for each measurement of k.

In the instantiation above, the template parameters following myscalarcostFunctor , 1, 2, 2,
describe the functor as computing a 1-dimensional output from two arguments, both 2-
dimensional.

NumericDiffCostFunction also supports cost functions with a runtime-determined number of
residuals. For example:

CostFunction* cost_function

= new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(

new CostFunctorWithDynamicNumResiduals(1.0), ~ Aon

TAKE_OWNERSHIP, | [

runtime_number_of_residuals); <----+ | |

| | [

| | [

Actual number of residuals ------ + | |

Indicate dynamic number of residuals ------------comnonon + |

Dimension Of X === === + |

Dimension of y === - - oo oo +

There are three available numeric differentiation schemes in ceres-solver:
The roruarp difference method, which approximates f(z) by computing fath)—f(z) computes
) 7)

the cost function one additional time at « + h. It is the fastest but least accurate method.

The centraL difference method is more accurate at the cost of twice as many function

f(a+h)—f(z—=h)

evaluations than forward difference, estimating f'(z) by computing o

The rippers difference method[Ridders]_ is an adaptive scheme that estimates derivatives by
performing multiple central differences at varying scales. Specifically, the algorithm starts at a
certain h and as the derivative is estimated, this step size decreases. To conserve function
evaluations and estimate the derivative error, the method performs Richardson extrapolations
between the tested step sizes. The algorithm exhibits considerably higher accuracy, but does so
by additional evaluations of the cost function.

Consider using centraL differences to begin with. Based on the results, either try forward
difference to improve performance or Ridders’ method to improve accuracy.

WARNING A common beginner’s error when first using NumericbiffCostFunction is to get the
sizing wrong. In particular, there is a tendency to set the template parameters to (dimension of
residual, number of parameters) instead of passing a dimension parameter for every parameter.
In the example above, that would be <myscalarcostFunctor, 1, 2> , which is missing the last 2
argument. Please be careful when setting the size parameters.

Numeric Differentiation & LocalParameterization

If your cost function depends on a parameter block that must lie on a manifold and the functor
cannot be evaluated for values of that parameter block not on the manifold then you may have
problems numerically differentiating such functors.

This is because numeric differentiation in Ceres is performed by perturbing the individual
coordinates of the parameter blocks that a cost functor depends on. In doing so, we assume
that the parameter blocks live in an Euclidean space and ignore the structure of manifold that
they live As a result some of the perturbations may not lie on the manifold corresponding to the
parameter block.

For example consider a four dimensional parameter block that is interpreted as a unit
Quaternion. Perturbing the coordinates of this parameter block will violate the unit norm
property of the parameter block.

Fixing this problem requires that NumericDiffcostFunction be aware of the Localparameterization
associated with each parameter block and only generate perturbations in the local tangent
space of each parameter block.

For now this is not considered to be a serious enough problem to warrant changing the
NumericDiffCostFunction API. Further, in most cases it is relatively straightforward to project a
point off the manifold back onto the manifold before using it in the functor. For example in case
of the Quaternion, normalizing the 4-vector before using it does the trick.

Alternate Interface

For a variety of reasons, including compatibility with legacy code, NumericbiffCostFunction can
also take costrunction objects as input. The following describes how.

To get a numerically differentiated cost function, define a subclass of costFunction such that the
CostFunction::Evaluate() function ignores the jacobians parameter. The numeric differentiation
wrapper will fill in the jacobian parameter if necessary by repeatedly calling the

CostFunction: :Evaluate() With small changes to the appropriate parameters, and computing the
slope. For performance, the numeric differentiation wrapper class is templated on the concrete
cost function, even though it could be implemented only in terms of the costFunction interface.

The numerically differentiated version of a cost function for a cost function can be constructed
as follows:

CostFunction* cost_function
= new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
new MyCostFunction(...), TAKE_OWNERSHIP);

where wmycostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8 respectively.
Look at the tests for a more detailed example.

DynamicNumericDiffCostFunction

class DynamicNumericDiffCostFunction

Like AutoDiffCostFunction NumericDiffCostFunction requires that the number of parameter blocks
and their sizes be known at compile time. In a number of applications, this is not enough.

template <typename CostFunctor, NumericDiffMethodType method = CENTRAL>
class DynamicNumericDiffCostFunction : public CostFunction {

};

In such cases when numeric differentiation is desired, bynamicNumericDiffCostFunction can be

used.

Like NumericDiffcostFunction the user must define a functor, but the signature of the functor
differs slightly. The expected interface for the cost functors is:

struct MyCostFunctor {
bool operator()(double const* const* parameters, double* residuals) const {
}

}

Since the sizing of the parameters is done at runtime, you must also specify the sizes after
creating the dynamic numeric diff cost function. For example:

DynamicNumericDiffCostFunction<MyCostFunctor>* cost_function =

new DynamicNumericDiffCostFunction<MyCostFunctor>(new MyCostFunctor);
cost_function->AddParameterBlock(5);
cost_function->AddParameterBlock(10);
cost_function->SetNumResiduals(21);

As a rule of thumb, try using NumericpiffcostFunction before you use

DynamicNumericDiffCostFunction .

WARNING The same caution about mixing local parameterizations with numeric differentiation
applies as is the case with NumericDiffCostFunction .

CostFunctionToFunctor

class CostFunctionToFunctor

CostFunctionToFunctor iS an adapter class that allows users to use costFunction objects in
templated functors which are to be used for automatic differentiation. This allows the user
to seamlessly mix analytic, numeric and automatic differentiation.

For example, let us assume that

class IntrinsicProjection : public SizedCostFunction<2, 5, 3> {
public:
IntrinsicProjection(const double* observation);
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const;

};

isa costrunction thatimplements the projection of a point in its local coordinate system
onto its image plane and subtracts it from the observed point projection. It can compute its
residual and either via analytic or numerical differentiation can compute its jacobians.

Now we would like to compose the action of this costFunction with the action of camera
extrinsics, i.e., rotation and translation. Say we have a templated function

template<typename T>

void RotateAndTranslatePoint(const T* rotation,
const T* translation,
const T* point,
T* result);

Then we can now do the following,

struct CameraProjection {
CameraProjection(double* observation)
: intrinsic_projection_(new IntrinsicProjection(observation)) {

}

template <typename T>
bool operator()(const T* rotation,
const T* translation,
const T* intrinsics,
const T* point,
T* residual) const {
T transformed_point[3];
RotateAndTranslatePoint(rotation, translation, point, transformed_point);

// Note that we call intrinsic_projection_, just Llike it was
// any other templated functor.
return intrinsic_projection_(intrinsics, transformed_point, residual);

}

private:
CostFunctionToFunctor<2,5,3> intrinsic_projection_;

};

Note that costrunctionToFunctor takes ownership of the costrunction that was passed in to

the constructor.

In the above example, we assumed that 1ntrinsicProjection iSa costFunction capable of
evaluating its value and its derivatives. Suppose, if that were not the case and
IntrinsicProjection Was defined as follows:

struct IntrinsicProjection {
IntrinsicProjection(const double* observation) {
observation_[@] = observation[0];
observation_[1] = observation[1];

¥

bool operator()(const double* calibration,
const double* point,
double* residuals) const {
double projection[2];
ThirdPartyProjectionFunction(calibration, point, projection);
residuals[@] = observation_[0@] - projection[0];
residuals[1] = observation_[1] - projection[1];
return true;
}

double observation_[2];

};

Here TthirdpartyProjectionFunction is some third party library function that we have no control
over. So this function can compute its value and we would like to use numeric differentiation to
compute its derivatives. In this case we can use a combination of numericpiffcostFunction and

CostFunctionToFunctor to get the job done.

struct CameraProjection {
CameraProjection(double* observation)
: intrinsic_projection_(
new NumericDiffCostFunction<IntrinsicProjection, CENTRAL, 2, 5, 3>(
new IntrinsicProjection(observation))) {}

template <typename T>
bool operator()(const T* rotation,
const T* translation,
const T* intrinsics,
const T* point,
T* residuals) const {
T transformed_point[3];
RotateAndTranslatePoint(rotation, translation, point, transformed_point);
return intrinsic_projection_(intrinsics, transformed_point, residuals);

}

private:
CostFunctionToFunctor<2, 5, 3> intrinsic_projection_;

};

DynamicCostFunctionToFunctor

class DynamicCostFunctionToFunctor

DynamicCostFunctionToFunctor provides the same functionality as CostFunctionToFunctor for cases
where the number and size of the parameter vectors and residuals are not known at compile-
time. The API provided by bynamicCostFunctionToFunctor matches what would be expected by

DynamicAutoDiffCostFunction , i.e. it provides a templated functor of this form:

template<typename T>
bool operator()(T const* const* parameters, T* residuals) const;

Similar to the example given for costFunctionToFunctor , let us assume that

class IntrinsicProjection : public CostFunction {
public:
IntrinsicProjection(const double* observation);
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const;

};

isa costrunction that projects a point in its local coordinate system onto its image plane and
subtracts it from the observed point projection.

Using this costrunction in a templated functor would then look like this:

struct CameraProjection {
CameraProjection(double* observation)
: intrinsic_projection_(new IntrinsicProjection(observation)) {

¥

template <typename T>
bool operator()(T const* const* parameters,
T* residual) const {
const T* rotation = parameters[@];
const T* translation = parameters[1];
const T* intrinsics = parameters[2];
const T* point = parameters[3];

T transformed_point[3];
RotateAndTranslatePoint(rotation, translation, point, transformed_point);

const T* projection_parameters[2];

projection_parameters[@] = intrinsics;
projection_parameters[1] = transformed_point;

return intrinsic_projection_(projection_parameters, residual);

}

private:
DynamicCostFunctionToFunctor intrinsic_projection_;

};

Like costFunctionToFunctor , DynamicCostFunctionToFunctor takes ovvnership of the costFunction
that was passed in to the constructor.

ConditionedCostFunction

class ConditionedCostFunction

This class allows you to apply different conditioning to the residual values of a wrapped cost
function. An example where this is useful is where you have an existing cost function that
produces N values, but you want the total cost to be something other than just the sum of these
squared values - maybe you want to apply a different scaling to some values, to change their
contribution to the cost.

Usage:

// my_cost_function produces N residuals
CostFunction* my_cost_function = ...
CHECK_EQ(N, my_cost_function->num_residuals());
vector<CostFunction*> conditioners;

// Make N 1x1 cost functions (1 parameter, 1 residual)
CostFunction* f_1 = ...

conditioners.push_back(f_1);

CostFunction* f N = ...

conditioners.push_back(f_N);

ConditionedCostFunction* ccf =
new ConditionedCostFunction(my_cost_function, conditioners);

Now ccf ‘s residual[i] (i=0..N-1) will be passed though the it" conditioner.

ccf_residual[i] = f_i(my_cost_function_residual[i])

and the Jacobian will be affected appropriately.

GradientChecker

class GradientChecker

This class compares the Jacobians returned by a cost function against derivatives estimated
using finite differencing. It is meant as a tool for unit testing, giving you more fine-grained
control than the check_gradients option in the solver options.

The condition enforced is that

Jij — i
Vi —— Y
“J ma:L‘U(Jl - J’) "

2

where J;; is the jacobian as computed by the supplied cost function (by the user) multiplied
by the local parameterization Jacobian, Ji} is the jacobian as computed by finite differences,

multiplied by the local parameterization Jacobian as well, and r is the relative precision.
Usage:

// my_cost_function takes two parameter blocks. The first has a local
// parameterization associated with 1it.

CostFunction* my_cost_function = ...

LocalParameterization* my_parameterization = ...

NumericDiffOptions numeric_diff_options;

std::vector<LocalParameterization*> local_parameterizations;
local_parameterizations.push_back(my_parameterization);
local_parameterizations.push_back(nullptr);

std::vector parameteri;
std::vector parameter2;
// Fill parameter 1 & 2 with test data...

std::vector<double*> parameter_blocks;
parameter_blocks.push_back(parameterl.data());
parameter_blocks.push_back(parameter2.data());

GradientChecker gradient_checker(my_cost_function,
local_parameterizations, numeric_diff_options);
GradientCheckResults results;
if (!gradient_checker.Probe(parameter_blocks.data(), 1e-9, &results)
LOG(ERROR) << "An error has occurred:\n" << results.error_log;

}

-~

NormalPrior

class NormalPrior

class NormalPrior: public CostFunction {

public:
// Check that the number of rows in the vector b are the same as the
// number of columns in the matrix A, crash otherwise.
NormalPrior(const Matrix& A, const Vector& b);

virtual bool Evaluate(double const* const* parameters,
double* residuals,

double** jacobians) const;

s

Implements a cost function of the form
cost(z) = || A(z — b)|?

where, the matrix A and the vector b are fixed and z is the variable. In case the user is
interested in implementing a cost function of the form

cost(z) = (z —)" S (z —)

where, u is a vector and S is a covariance matrix, then, A = S~12 j.e the matrix A is the square
root of the inverse of the covariance, also known as the stiffness matrix. There are however no
restrictions on the shape of A. It is free to be rectangular, which would be the case if the
covariance matrix S is rank deficient.

LossFunction

class LossFunction

For least squares problems where the minimization may encounter input terms that contain
outliers, that is, completely bogus measurements, it is important to use a loss function that
reduces their influence.

Consider a structure from motion problem. The unknowns are 3D points and camera
parameters, and the measurements are image coordinates describing the expected reprojected
position for a point in a camera. For example, we want to model the geometry of a street scene
with fire hydrants and cars, observed by a moving camera with unknown parameters, and the
only 3D points we care about are the pointy tippy-tops of the fire hydrants. Our magic image
processing algorithm, which is responsible for producing the measurements that are input to
Ceres, has found and matched all such tippy-tops in all image frames, except that in one of the
frame it mistook a car’s headlight for a hydrant. If we didn't do anything special the residual for
the erroneous measurement will result in the entire solution getting pulled away from the
optimum to reduce the large error that would otherwise be attributed to the wrong
measurement.

Using a robust loss function, the cost for large residuals is reduced. In the example above, this
leads to outlier terms getting down-weighted so they do not overly influence the final solution.

class LossFunction {
public:
virtual void Evaluate(double s, double out[3]) const = 0;

};

The key method is LossFunction: :Evaluate() , Which given a non-negative scalar s , computes

out = [p(s), p'(s), p"(s)]

Here the convention is that the contribution of a term to the cost function is given by %p(s),
where s = || f;||?. Calling the method with a negative value of s is an error and the
implementations are not required to handle that case.

Most sane choices of p satisfy:

p(0) =0

p'(0) =1

p'(s) < 1lin the outlier region
p"(s) < 01in the outlier region

so that they mimic the squared cost for small residuals.
Scaling

Given one robustifier p(s) one can change the length scale at which robustification takes place,
by adding a scale factor a > 0 which gives us p(s, a) = a®p(s/a?) and the first and second
derivatives as p'(s/a?) and (1/a?)p"(s/a?) respectively.

The reason for the appearance of squaring is that a is in the units of the residual vector norm
whereas s is a squared norm. For applications it is more convenient to specify a than its square.

Instances

Ceres includes a number of predefined loss functions. For simplicity we described their unscaled
versions. The figure below illustrates their shape graphically. More details can be found in

include/ceres/loss_function.h .

25 T
NullLoss
HuberLoss
SoftLOneLoss
Cauchy
20 —
& 15 _
s
2
z
2
g 10 —
5 |
ol — | | | |
0 1 2 3 4 5

Shape of the various common loss functions.

class Trivialloss

pls) =s

class HuberLoss

s<1

p(s):{;\/E—l s>1

class SoftLOneLoss

pls) = 2(/TF5 - 1)

class CauchyLoss

pls) = log(1 + s)

class ArctanLoss

p(s) = arctan(s)

class TolerantLoss

p(s,a,b) = blog(1 + e~ 9/%) — plog(1 + e~ *?)

class ComposedLoss

Given two loss functions £ and g, implements the loss function h(s) = f(g(s)) .

http://ceres-solver.org/_images/loss.png

class ComposedLoss : public LossFunction {
public:
explicit ComposedLoss(const LossFunction* f,
Ownership ownership_f,
const LossFunction* g,
Ownership ownership_g);

};

class ScaledLoss

Sometimes you want to simply scale the output value of the robustifier. For example, you might
want to weight different error terms differently (e.g., weight pixel reprojection errors differently
from terrain errors).

Given a loss function p(s) and a scalar a, scaledioss implements the function ap(s).

Since we treat a nullptr Loss function as the Identity loss function, rho = nullptr :is a valid
input and will result in the input being scaled by a. This provides a simple way of implementing
a scaled ResidualBlock.

class LossFunctionWrapper

Sometimes after the optimization problem has been constructed, we wish to mutate the scale
of the loss function. For example, when performing estimation from data which has substantial
outliers, convergence can be improved by starting out with a large scale, optimizing the problem
and then reducing the scale. This can have better convergence behavior than just using a loss
function with a small scale.

This templated class allows the user to implement a loss function whose scale can be mutated
after an optimization problem has been constructed, e.g,

Problem problem;
// Add parameter blocks
CostFunction* cost_function =
new AutoDiffCostFunction < UW_Camera_Mapper, 2, 9, 3>(

new UW_Camera_Mapper(feature_x, feature_y));

LossFunctionWrapper* loss_function(new HuberLoss(1.0), TAKE_OWNERSHIP);
problem.AddResidualBlock(cost_function, loss_function, parameters);

Solver::Options options;
Solver::Summary summary;

Solve(options, &problem, &summary);

loss_function->Reset(new HuberLoss(1.0), TAKE_OWNERSHIP);
Solve(options, &problem, &summary);

Theory

Let us consider a problem with a single parameter block.

1
min —p(f*(z))
Then, the robustified gradient and the Gauss-Newton Hessian are
g(z) = p'J " (2) f(2)
H(z) = J (z) (o' +20"f(2) £ (2)) ()

where the terms involving the second derivatives of f(z) have been ignored. Note that H(z) is
indefinite if p” f(z) " f(x) + %p’ < 0. If this is not the case, then its possible to re-weight the
residual and the Jacobian matrix such that the robustified Gauss-Newton step corresponds to an
ordinary linear least squares problem.

Let a be a root of

1 p//
5012 —a— =|f(=)|* =0.
P

Then, define the rescaled residual and Jacobian as

F) = 2 g0

. ~ f@)f" (=)
J(z) = <1 - a7> J(z)
v (@)

In the case 2p"|| f(z)]|* + p' < 0, we limit a < 1 — € for some small e. For more details see [Triggs].

With this simple rescaling, one can apply any Jacobian based non-linear least squares algorithm to
robustified non-linear least squares problems.

LocalParameterization

class LocalParameterization

In many optimization problems, especially sensor fusion problems, one has to model quantities
that live in spaces known as Manifolds , for example the rotation/orientation of a sensor that is
represented by a Quaternion.

Manifolds are spaces, which locally look like Euclidean spaces. More precisely, at each point on
the manifold there is a linear space that is tangent to the manifold. It has dimension equal to the
intrinsic dimension of the manifold itself, which is less than or equal to the ambient space in
which the manifold is embedded.

For example, the tangent space to a point on a sphere in three dimensions is the two
dimensional plane that is tangent to the sphere at that point. There are two reasons tangent
spaces are interesting:

1. They are Euclidean spaces, so the usual vector space operations apply there, which makes
numerical operations easy.

2. Movement in the tangent space translate into movements along the manifold. Movements
perpendicular to the tangent space do not translate into movements on the manifold.

Returning to our sphere example, moving in the 2 dimensional plane tangent to the sphere
and projecting back onto the sphere will move you away from the point you started from but
moving along the normal at the same point and the projecting back onto the sphere brings
you back to the point.

Besides the mathematical niceness, modeling manifold valued quantities correctly and paying
attention to their geometry has practical benefits too:

1. It naturally constrains the quantity to the manifold through out the optimization. Freeing the
user from hacks like quaternion normalization.

2. It reduces the dimension of the optimization problem to its natural size. For example, a
quantity restricted to a line, is a one dimensional object regardless of the dimension of the
ambient space in which this line lives.

Working in the tangent space reduces not just the computational complexity of the
optimization algorithm, but also improves the numerical behaviour of the algorithm.

A basic operation one can perform on a manifold is the B operation that computes the result of
moving along delta in the tangent space at x, and then projecting back onto the manifold that x
belongs to. Also known as a Retraction, B is a generalization of vector addition in Euclidean
spaces. Formally, B is a smooth map from a manifold M and its tangent space T’y to the
manifold M that obeys the identity

B(z,0) =z, Vz.

That is, it ensures that the tangent space is centered at x and the zero vector is the identity
element. For more see [Hertzberg] and section A.6.9 of [HartleyZisserman].

Let us consider two examples:

The Euclidean space R™ is the simplest example of a manifold. It has dimension n (and so does
its tangent space) and H is the familiar vector sum operation.

Bz, A)=z+A
A more interesting case is SO(3), the special orthogonal group in three dimensions - the space
of 3x3 rotation matrices. SO(3) is a three dimensional manifold embedded in R? or R**3.

M on SO(3) is defined using the Exponential map, from the tangent space (R?) to the manifold.
The Exponential map Exp is defined as:

http://ceres-solver.org/bibliography.html#triggs
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
http://ceres-solver.org/bibliography.html#hertzberg
http://ceres-solver.org/bibliography.html#hartleyzisserman

cosf + cp2 —8r + cpq sq + cpr
Exp([p,q,7]) = sr+cpg cos@+cq® —sp+cqr
—8q + cpr sp + cqr cos 6 + cr?

where,

0= \/p2 +q*+r%s =
Then,
H(z,A) = zExp(A)

The Localparameterization interface allows the user to define and associate with parameter
blocks the manifold that they belong to. It does so by defining the pius (H) operation and its
derivative with respect to A at A = 0.

class LocalParameterization {
public:
virtual ~LocalParameterization() {}
virtual bool Plus(const double* x,
const double* delta,
double* x_plus_delta) const = 0;
virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
virtual bool MultiplyByJacobian(const double* x,
const int num_rows,
const double* global_matrix,
double* local_matrix) const;
virtual int GlobalSize() const = @;
virtual int LocalSize() const = ©;

};

int LocalParameterization: :GlobalSize()

The dimension of the ambient space in which the parameter block z lives.

int LocalParameterization::LocalSize()

The size of the tangent space that A lives in.

bool LocalParameterization: :Plus(const double *x, const double *delta, double *x_plus_delta)const

LocalParameterization: :Plus() implements EE(.T, A)

bool LocalParameterization::ComputeJacobian(const double *x, double *jacobian)const

Computes the Jacobian matrix
J = .D2 H (.’1}, 0)

in row major form.

bool MultiplyByJacobian(const double *x, const int num_rows, const double *global_matrix, double
*local_matrix)const

local_matrix = global_matrix * jacobian

global_matrix isa num_rows x GlobalSize IOW major matrix. local_matrix isa
num_rows x LocalSize FOW Major matrix. jacobian is the matrix returned by

LocalParameterization: :ComputeJacobian() at .

This is only used by Gradientproblem . For most normal uses, it is okay to use the default

implementation.

Ceres Solver ships with a number of commonly used instances of LocalParameterization . Another
great place to find high quality implementations of B operations on a variety of manifolds is the
Sophus library developed by Hauke Strasdat and his collaborators.

IdentityParameterization
A trivial version of H is when A is of the same size as = and
Bz,A)=z+ A

This is the same as « living in a Euclidean manifold.

http://ceres-solver.org/gradient_solver.html#_CPPv415GradientProblem
https://github.com/strasdat/Sophus

QuaternionParameterization

Another example that occurs commonly in Structure from Motion problems is when camera
rotations are parameterized using a quaternion. This is a 3-dimensional manifold that lives in 4-
dimensional space.

sin(|Al)

EE(CE, A) - COS(|A|)7 T

Al xz
The multiplication * between the two 4-vectors on the right hand side is the standard quaternion
product.

EigenQuaternionParameterization

Eigen uses a different internal memory layout for the elements of the quaternion than what is
commonly used. Specifically, Eigen stores the elements in memory as (z, y, z, w), i.e., the real part (
w) is stored as the last element. Note, when creating an Eigen quaternion through the constructor
the elements are accepted in w, z, y, z order.

Since Ceres operates on parameter blocks which are raw double pointers this difference is
important and requires a different parameterization. EigenQuaternionParameterization Uses the same

plus operation as QuaternionParameterization but takes into account Eigen’s internal memory
element ordering.

SubsetParameterization

Suppose z is a two dimensional vector, and the user wishes to hold the first coordinate constant.
Then, A is a scalar and H is defined as

Bz, A) = o + m A

SubsetParameterization generalizes this construction to hold any part of a parameter block constant
by specifying the set of coordinates that are held constant.

It is legal to hold all coordinates of a parameter block to constant using a subsetParameterization .
It is the same as calling problem: :SetParameterBlockConstant() on that parameter block.

HomogeneousVectorParameterization

In computer vision, homogeneous vectors are commonly used to represent objects in projective
geometry such as points in projective space. One example where it is useful to use this over-
parameterization is in representing points whose triangulation is ill-conditioned. Here it is
advantageous to use homogeneous vectors, instead of an Euclidean vector, because it can
represent points at and near infinity.

HomogeneousVectorParameterization defines a Localparameterization for an n — 1 dimensional manifold
that embedded in n dimensional space where the scale of the vector does not matter, i.e., elements
of the projective space P"!. It assumes that the last coordinate of the n-vector is the scalar
component of the homogenous vector, i.e., finite points in this representation are those for which
the scalar component is non-zero.

Further, HomogeneousVectorParameterization::Plus preserves the scale of z.

LineParameterization

This class provides a parameterization for lines, where the line is defined using an origin point and a
direction vector. So the parameter vector size needs to be two times the ambient space dimension,
where the first half is interpreted as the origin point and the second half as the direction. This local
parameterization is a special case of the Affine Grassmannian manifold for the case Graff; (R™).

Note that this is a parameterization for a line, rather than a point constrained to lie on a line. It is
useful when one wants to optimize over the space of lines. For example, n distinct points in 3D
(measurements) we want to find the line that minimizes the sum of squared distances to all the
points.

http://eigen.tuxfamily.org/index.php?title=Main_Page
https://en.wikipedia.org/wiki/Affine_Grassmannian_(manifold))

ProductParameterization

Consider an optimization problem over the space of rigid transformations S E/(3), which is the
Cartesian product of SO(3) and IR®. Suppose you are using Quaternions to represent the rotation,
Ceres ships with a local parameterization for that and R? requires no, or Identityparameterization
parameterization. So how do we construct a local parameterization for a parameter block a rigid
transformation?

In cases, where a parameter block is the Cartesian product of a number of manifolds and you have
the local parameterization of the individual manifolds available, productparameterization can be used
to construct a local parameterization of the cartesian product. For the case of the rigid
transformation, where say you have a parameter block of size 7, where the first four entries
represent the rotation as a quaternion, a local parameterization can be constructed as

ProductParameterization se3_param(new QuaternionParameterization(),
new IdentityParameterization(3));

AutoDiffLocalParameterization

class AutoDiffLocalParameterization

AutoDiffLocalParameterization doesS for LocalParameterization What AutobiffCostFunction does for
costFunction . It allows the user to define a templated functor that implements the
LocalParameterization::Plus() operation and it uses automatic differentiation to implement the
computation of the Jacobian.

To get an auto differentiated local parameterization, you must define a class with a templated
operator() (a functor) that computes

z' = B(z, Az),

For example, Quaternions have a three dimensional local paramet