
Running ALICE Grid Jobs in Containers

A new approach to job execution for the next generation ALICE Grid
framework

Maxim Storetvedt1∗, Latchezar Betev2, Håvard Helstrup1, Kristin Fanebust Hetland1, and
Bjarte Kileng1for the ALICE Collaboration
1Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
2CERN, Geneva, Switzerland

Abstract. The new JAliEn (Java ALICE Environment) middleware is a Grid
framework designed to satisfy the needs of the ALICE experiment for the LHC
Run 3, such as providing a high-performance and high-scalability service to
cope with the increased volumes of collected data. This new framework also
introduces a split, two-layered job pilot, creating a new approach to how jobs
are handled and executed within the Grid. Each layer runs on a separate JVM,
with a separate authentication token, allowing for a finer control of permissions
and improved isolation of the payload. Having these separate layers also allows
for the execution of job payloads within containers. This allows for the further
strengthening of isolation and creates a cohesive environment across computing
sites, while avoiding the resource overhead associated with traditional virtuali-
sation.
This contribution presents the architecture of the new split job pilot found in
JAliEn, and the methods used to achieve the execution of Grid jobs while
maintaining reliable communication between layers. Specifically, how this is
achieved despite the possibility of a layer being run in a separate container,
while retaining isolation and mitigating possible security risks. Furthermore,
we discuss how the implementation remains agnostic to the choice of container
platform, allowing it to run within popular platforms such as Singularity and
Docker.

1 Introduction

The ALICE Collaboration [1] is moving towards a new Grid middleware framework in prepa-
ration for Run 3, aimed at better handling the expected increase in the volumes of collected
data following the current detector upgrades. Named JAliEn (Java ALICE Environment)
[2] for its use of Java as the language of choice, this new middleware is a complete rewrite
of AliEn (ALICE Environment) [3], the current production Grid middleware. With a com-
pletely new codebase, JAliEn aims to avoid inheriting deprecated code and old "quick-fixes",
while simultaneously provide a high-scalability and high-performance service for Run 3.
The JAliEn middleware uses a versatile toolkit to provide its service – in addition to the new
Java codebase, it also utilises more efficient database backends, comes with load balancing

∗e-mail: msto@hvl.no

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 07052 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507052



functionality and uses a hierarchical approach to configuration. It also comes with a new au-
thentication scheme, based around the concept of ”token certificates”. The new token-based
authentication scheme can be used to strengthen isolation by assigning fine-grained permis-
sions to each specific task. To fully harness this mechanism, the job pilot has thus been split
into two independent parts (i.e processes). These changes can also be used to wrap part of the
job pilot in a container, so to further strengthen isolation, and introduce a cohesive execution
environment across sites.

Having the job pilot operate as two separate components not only improves isolation, but
also introduces changes to how jobs behave and execute on the Grid. This creates new chal-
lenges in how the components interact and communicate, challenges that are further exacer-
bated by potentially having a part of the pilot running in its own container. This contribution
aims to address how these challenges were overcome in order to implement the new JAliEn
job pilot, while highlighting key architectural aspects. Furthermore, it also addresses rising
concerns in terms of vendor lock-in coming from the use of containers, and how steps were
taken to overcome these concerns.

2 Authentication tokens in JAliEn

As opposed to the X.509 proxies found in AliEn, token certificates are used for authentication
within JAliEn. These are full, time-limited, X.509 certificates, signed by an internal certifica-
tion authority (CA). The identities of these tokens are divided into groups representing Grid
roles using the distinguished name (DN) field of the certificate, with each role being given
specific privileges and limitations [4].

Each task within JAliEn should only require a single token, corresponding to the appro-
priate Grid role. This can reduce the number of active permissions to a minimum, yet this
practice is not fully upheld in all of JAliEn. The job pilot, which is modelled after the orig-
inal AliEn, has two responsibilities (i.e Grid roles): job matching and job execution. For
this to work within JAliEn, the pilot is required to hold a token corresponding to each role.
In this case, a Job Agent Token (for job matching permissions), and a Job Token (for job
execution permissions). This approach arguably defeats the purpose of having a fine-grained
authentication scheme, as permissions are no longer limited to one specific task/role.

3 A two-layer job pilot

To fully harness the token-based authentication mechanism, the JAliEn job-pilot has been
split into two separate components (”layers”): a ”Job Agent” for job matching, and a ”Job
Wrapper” for job execution. Each layer represents a unique Grid role, and comes with a single
token corresponding to that role – thus avoiding having a monolithic multi-role jobpilot. The
two job-pilot components act as two completely independent processes, running each on its
own Java Virtual Machine (JVM), with no shared resources.

3.1 Using the new job pilot on the Grid

Like the initial, monolithic, JAliEn job-pilot, the split two-layer version is an in-place re-
placement for the previous pilot found in AliEn. While equally started from an init script
found in the batch queue, it differs by only starting the job-matching agent process using an
embedded agent token within the same script (see Fig. 1). This token provides the agent with
just enough permissions to match jobs.

In addition to a unique job ID and description, a matched job will return an authentication
token specific to the job. Once received by the agent, this token can be used to start the

2

EPJ Web of Conferences 245, 07052 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507052



Figure 1. Overview of the split, two layer, job-pilot. A startup script is placed in the batch queue,
containing an agent token. It is used to start the JobAgent, fetch an appropriate job, and a token specific
to that job. The agent will thereafter start a wrapper process, provide it with necessary job data, and the
received job token. The wrapper will use this token to run the required payload (job).

second pilot process, responsible for job execution. This process may be started in a separate
container to strengthen isolation, provided this is supported by the host (see Sect. 3.2).

The second pilot process acts solely as a wrapper around the job payload, with the job
token granting it just enough permissions to download all necessary files, and to start and
run the required executable. A data pipe is maintained between the initial agent process
and the wrapper during its lifecycle, providing monitoring and data transfer between the two
processes. This allows the two processes to do communication and coordination, independent
of being on different JVMs, or possibly separated by a container (Sect. 3.3).

3.2 Strengthening isolation through containers

While using the previous AliEn middleware, sites wanting to create more isolation between
the job payload and the host node could apply virtual machines (VMs) to achieve this. More
recently, this has also been achievable through the use of namespace containers. As both job
matching and job execution would be handled by the job-pilot, the pilot in its entirety would
in this case need to be isolated and placed in a VM/container by the site.

In JAliEn, the split job-pilot is composed of two completely independent processes, with
one process functioning solely as a payload execution wrapper. As opposed to having to
encapsulate the full pilot in a VM or container to separate the payload from the host, this
allows for only having to isolate the process responsible for job execution. This enables the
other, job-matching, component to remain outside of the encapsulation. Having a separate
job-matching component outside of the encapsulation opens up a number of new possibilities
in terms of how isolation can be handled and managed. Specifically, this responsibility can
be delegated and integrated directly within the component – using it to start new execution

3

EPJ Web of Conferences 245, 07052 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507052



wrapper instances in a container, automatically, whenever possible1. Consequently, no ac-
tion would longer be needed by sites wanting to provide isolation between job payloads and
their executing hosts. Instead, sites may optionally still utilise a container/VM solely to also
separate the pilot from the host, with payload isolation being fully self-managed by the pilot.

3.3 Communicating across layers

While a two layer job-pilot provides means to improve payload isolation within JAliEn, the
very same isolation creates challenges in terms of communication between the layers. Data,
such authentication tokens, must occasionally be transferred across the two independent pro-
cesses. Each running on a separate JVM, and with one JVM possibly being in a container.
Common solutions to the challenges above – such as transferring data through shared files or
Unix sockets – require breaking down parts of the isolation between the two layers. These
solutions also rely on the underlying filesystem, which in some Grid sites may be networked
and in many occasions be slow and/or unreliable. Other approaches, such as using shared
memory regions, risk significantly increasing the overall complexity. The chosen solution for
communications within the split job-pilot, presented below, was considered the best compro-
mise between isolation and code complexity.

In Unix-like systems, parent processes are given access to the file descriptors(FDs) of
their children – visible in the filesystem under /proc/<processID>/fd. This includes the
FDs for the processes’ standard input (STDIN) and standard output (STDOUT). Within the
split JAliEn job-pilot, the execution wrapper process is a child of the agent process, thus
granting the agent the ability to write directly to its STDIN. Albeit this ability is commonly
used to provide input strings, it can also be used to transfer serialised data. This enables
the construction of a makeshift data-pipe: serialise and send data through the STDIN of the
wrapper process, and conversely read from the STDOUT. By relying on STDIN/STDOUT,
data transfer between the two pilot processes can be achieved in a straightforward manner,
independent of them being on separate JVMs. This remains true even when the wrapper
process is isolated in a container. FDs are indexed in an FD table, which are mapped to
files in an open files table, and then onward to inodes stored in the inode table – containing
pointers to the corresponding data block addresses. As these tables are all managed by the
kernel – one of the few things that remain shared between container and host – access to the
STDIN/STDOUT remains present, despite having the child (wrapper) process running in its
own container. An overview of this process is depicted in Fig. 2.

4 Containers and vendor lock-in

Despite being available for a number of years, containers may arguably still be regarded as
a relatively new concept. Frequent changes remain common, with new requirements and
solutions being continuously introduced. By integrating containers within JAliEn, adapting
to these frequent changes may become a challenge. Platform specific calls may be required
in the code, and the middleware may/will be spread across numerous distributed sites in the
Grid. This creates both version and vendor lock-in concerns – simply using any version
of a container platform2 in production introduces the risk of becoming bound to both that
platform/vendor and its specific version.

In order to reduce the concerns coming from potentially being locked to a specific con-
tainer solution, the split JAliEn job-pilot aims to be as platform agnostic as possible. In other

1While also technically achievable using VMs, only containers have so far been considered due to their minimal
overhead and ease of system integration.

2Such as Docker [6] and Singularity [7].

4

EPJ Web of Conferences 245, 07052 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507052



Figure 2. The agent process has access to the file descriptor (FD) for the wrapper STDIN (numbered
’3’, when viewed from the file-system). This can be used to serialise and send data to the wrapper
process, despite it being in a container – this will lead to a lookup in the open files table, which is
managed by the kernel and common for both processes.

words, to make it as straightforward as possible to swap whichever container platform is used
by JAliEn, with another desired alternative.

4.1 Mitigating lock-in concerns

Keeping platform specific calls to a minimum has been the key to achieving a more platform
agnostic containerised job-pilot within JAliEn. As opposed to relying on the platform to do
actions such as initialising the container environment or transfer files, many of these actions
can be replaced by having files and setup scripts within CVMFS – which is bind-mounted
from the host within newly launched containers [5].

As an example, both Docker and Singularity – two of the more popular container plat-
forms – have different ways of importing environment variables into their containers. Conse-
quently, the code would need to be adjusted to account for this change when moving between
the two platforms. By having these variables initialised through a common script in CVMFS,
having to do such adjustments can easily be avoided. CVMFS is also used to store files,
packages and container images, which are referenced through a generic symlink, set to al-
ways point towards the latest image. Some container platforms, such as Singularity, may also
be run directly from CVMFS, without having to be installed on the Grid site first.

Job specific data is handled by the agent process, and piped directly to the wrapper with-
out interacting with the underlying container platform. The remaining responsibilities may
further be delegated to the wrapper, which once started, will be running inside the container

When combined, these steps allow JAliEn to have a single, generic, call to the under-
lying container platform, e.g ”docker run” or ”singularity run”, which can be easily
replaced if necessary.

5 Summary and outlook
To better handle the expected increase in the volumes of collected data in Run 3, as a result of
undergoing detector upgrades, ALICE is preparing to use the new JAliEn Grid middleware.

5

EPJ Web of Conferences 245, 07052 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507052



To fully harness its new approach to authentication and improve isolation, a new two-layer
job-pilot has been introduced – where one layer provides job matching, while the other acts
as a payload execution wrapper. This allows for a more fine-grained control of permissions,
in addition to having jobs automatically executed in their own separate containers. The latter
is made possible by having the necessary data transferred through a makeshift pipe using the
wrapper STDIN/STDOUT, which allows the two layers to communicate.

Deploying containers in production raises concerns regarding vendor lock-in. To mitigate
these concerns, container specific calls have been kept as generic as possible, instead relying
on CVMFS for scripts and dependencies, with the remaining responsibilities being handled
by the wrapper process.

The new, containerised, split job-pilot was merged with the upstream JAliEn code in
September 2019. Together with the rest of JAliEn, it is now undergoing testing in preparation
for Run 3, and will gradually be deployed in production.

References

[1] The ALICE Collaboration, JINST 3, S08002 (2008)
[2] A.G. Grigoras, C. Grigoras, M.M. Pedreira, P. Saiz, S. Schreiner, JPCS 523, 012010

(2014)
[3] S. Bagnasco, L. Betev, P. Buncic, F. Carminati, C. Cirstoiu, C. Grigoras, A.

Hayrapetyan, A. Harutyunyan, A.J. Peters, P. Saiz, JPCS 119, 062012 (2008)
[4] M.M. Pedreira, C. Grigoras, V. Yurchenko, M. Storetvedt, EPJ-WoC 214, 03042 (2019)
[5] J. Blomer, P. Buncic, R. Meusel, The CernVM File System, CERN Technical Re-

port, 2013. URL: http://jblomer.web.cern.ch/jblomercvmfstech-2.1-0.pdf (Accessed
12.10.2019)

[6] Docker [Computer Software] (2013-). Retrievable at: https://docker.com
[7] Singularity [Computer Software] (2015-). Retrievable at: https://sylabs.io/

6

EPJ Web of Conferences 245, 07052 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507052

http://jblomer.web.cern.ch/jblomer cvmfstech-2.1-0.pdf
https://docker.com
https://sylabs.io/

	Introduction
	Authentication tokens in JAliEn
	A two-layer job pilot
	Using the new job pilot on the Grid
	Strengthening isolation through containers
	Communicating across layers

	Containers and vendor lock-in
	Mitigating lock-in concerns

	Summary and outlook

