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Abstract
This article explains and illustrates the use of a set of coupled dynamical
equations, second order in a fictitious time, which converges to solutions of sta-
tionary Schrödinger equations with additional constraints. In fact, the method
is general and can solve constrained minimization problems in many fields.
We present the method for introductory applications in quantum mechanics
including three qualitative different numerical examples: the radial Schrödinger
equation for the hydrogen atom; the 2D harmonic oscillator with degener-
ate excited states; and a nonlinear Schrödinger equation for rotating states.
The presented method is intuitive, with analogies in classical mechanics for
damped oscillators, and easy to implement, either with coding or with soft-
ware for dynamical systems. Hence, we find it suitable to introduce it in
a continuation course in quantum mechanics or generally in applied mathe-
matics courses which contain computational parts. The undergraduate student
can, for example, use our derived results and the code (supplemental mate-
rial (https://stacks.iop.org/EJP/41/065406/mmedia)) to study the Schrödinger
equation in 1D for any potential. The graduate student and the general physicist
can work from our three examples to derive their own results for other models
including other global constraints.
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1. Introduction

In this article we describe the idea of solving stationary Schrödinger equations (SEs) as energy
minimization problems with constraints, by using a second-order damped dynamical system.
We discuss how to numerically solve the problems in a stable and efficient way.

For the formulas in this article to be easily recognized and directly applicable for the students
in different courses, we write most formulas explicitly in an infinite-dimensional setting. For
example, we use integrals instead of scalar products (or Dirac notation). However, if you write
your own code1 instead of using high-level solvers for the differential equations, you need to
formulate integrals as finite sums and derivatives, e.g. as finite differences, i.e. the linear SE
equation can be formulated as a linear eigenvector equation Hu = Eu, with H a matrix, u a
(column) eigenvector, and E an eigenvalue of H.

We provide enough details, including the references, for all the numerical results presented
here to be reproducible. We recommend that anyone who wants to use the method in practice,
or who just wants to obtain a step-by-step understanding of the algorithm, should read (and
run) the carefully implemented and commented codes provided [1].

From a pedagogical point of view, the method has the advantage of being able to solve a
large set of problems in arbitrary dimensions with the same main idea.

The novel way we formulate constraints here allows for using high-level software instead
of your own code, for example when calculating excited states.

There are of course many other ways of attaining the stationary solution of the SE numer-
ically. For the common, so-called imaginary time dependent SE (see below), the approach is,
after discretization in space (finite differences, finite elements, or other methods), to solve a
first-order damped time dependent equation numerically, see [1, 2]. Sometimes these meth-
ods are called steepest descent methods (not to be confused with steepest descent methods in
optimization [3]). In this category we also have the so-called shooting methods [4], although
these are restricted to systems in one spatial dimension or with potentials obeying separa-
tion of variables. These are, in general, computationally expensive, but have some advantages
for problems with complicated boundary conditions, and for problems with discontinuous
solutions.

When the SE is independent of time (e.g. through separation of variables) the SE is, after
discretization in space, equivalent to a (nonlinear) finite dimensional minimization problem,
with nonlinear constraints. Generally, such minimization problems can be solved by a variety
of numerical methods including gradient descent methods, (quasi-)Newton methods, machine
learning techniques, etc [3, 5]. Note that in the linear case with only normalization constraints
we have solved a linear eigenvalue problem, e.g. by so-called diagonalization [6], for which
there are numerous specialized numerical methods.

Our method presented here can be used in a very general and efficient way for minimization
problems (linear, nonlinear, with any type of global constraints) and has been shown to be
highly competitive [7–9]. It can also be used for linear eigenvalue problems [10, 11].

We hope the readers will expand the theory and applications in different directions from the
examples presented here.

1 As a starting point for own coding, see supplementary material at https://stacks.iop.org/EJP/41/065406/mmedia,
including: a simplified MATLAB program DFPM_1D_HO.m that can calculate excited states of a particle in a 1D
harmonic oscillator potential; and DFPM_1D_NLSE.m that solves the NLSE as described in this article. Those codes
can alternatively be used with the free software OCTAVE, https://gnu.org/software/octave/.
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Figure 1. A simple oscillating spring–mass system.

2. The method

In order to introduce the idea of the method let us first consider a basic example in classical
mechanics. The harmonic oscillator is, according to Newton’s second law, described by

Mü + ku = 0, k > 0. (1)

Here u = u(t) is the distance from the equilibrium for a mass M on which a force F = −ku
is acting. The dot denotes the time derivative. For example, the mass could be attached to a
spring, with k being the spring constant, see figure 1. If we in addition assume that there is
some linear resistance proportional to the velocity u̇, e.g. between the mass and the surface on
which it is sliding, we get a damped second-order system

Mü + ηu̇ − F(u) = 0, (2)

where η > 0 is a damping parameter due to the linear resistance. With the damping term present
the kinetic energy will decay with time, such that Mü + ηu̇ → 0 when t →∞. It is clear from
this example that one of the parameters M, η, k can be scaled out, so we usually set M = 1 in
the following. The solutions of equation (2) in the noncritical case (η �= 2

√
k) are given by

u(t) = C1 exp(ξ1t) + C2 exp(ξ2t), (3)

where Ci are determined by the initial conditions u(0) and u̇(0), and ξ j = −η/2 ±√
(η/2)2 − k. It is easy to see from equation (3) that u tends to zero when t goes to infinity,

which is the equilibrium position of the mass and hence the stationary solution to equation (2).
The value η = 2

√
k for the damping parameter ensures the ξ j is real and is referred to as crit-

ical damping for equation (2), for which u(t) = (C1 + C2t) exp(−
√

kt). For smaller or larger
values of η, the oscillations are referred to as under- or over-damped, respectively. The criti-
cally damped system is known to be the fastest way for the system to return to its equilibrium,
i.e., to reach the stationary solution. In multimode discretized systems the above argument can
be generalized in order to obtain an optimal value for the damping parameter to be used in a
numerical calculation [7].

Now we note that u = 0 is also the solution of the (trivial) minimization problem
min

(
ku2/2

)
. In fact, the convex functional V(u) = ku2/2 is the mechanical potential corre-

sponding to the force F = −ku which is conservative, i.e., F = −dV/du. Of course, in this
case it is easier to directly solve ku = 0 or min ku2/2 for u, than to integrate the differential
equation (2). However, this simple idea can be extended to solve more challenging problems,
where η takes the role of a parameter that can be tuned for optimal numerical properties, as we
explain in this article.
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2.1. Damped oscillator approach to the ground state of the Schrödinger equation

We here briefly repeat how the stationary (i.e. time-independent) SE for a particle with mass
M and a spatially-dependent potential V (r, t) = V (r) is attained from the time-dependent SE:

i�
∂Ψ

∂t
= − �

2

2M
∇2Ψ+ VΨ ≡ ĤΨ. (4)

Given a time- and space-separating ansatz of the wavefunction Ψ(r, t) = u(r)exp(−iEt/�), we
then have from equation (4):

Ĥu = Eu. (5)

Alternatively, the stationary SE can be viewed as the Euler–Lagrange equation [12] cor-
responding to the minimization of the energy, which, if we start from equation (5), is the
following functional of u:

E(u) =

∫
ūĤudr∫
|u|2dr

, (6)

where the bar from now on denotes complex conjugation.
If the normalization of the wave function is considered as a constraint, then the denominator

of equation (6) is unity and the ground state of equation (5) is given by the solution of

E = min
u

∫
ūĤudr, s.t.

∫
|u|2dr = 1, (7)

where s.t. is an abbreviation for ‘subject to’. We later give examples with more complicated
constraints.

Our main idea for solving equation (7) is to mimic equation (2) and consider the second-
order damped dynamical system:

ü + ηu̇ +
δE
δū

= 0, η > 0,
∫

|u|2dr = 1. (8)

In the following we reserve the dot notation for the derivatives with respect to a fictitious time
τ . The force F in equation (2) corresponds to the generalized force −δE/δū, the third term in
equation (8), i.e., to a functional derivative of the energy. It can be shown [13] that the stationary
solution to equation (8), say u∗(r), is the solution to equation (7). Note that in the limit when
τ →∞ the stationary solution u∗ will satisfy the Euler–Lagrange equation δE/δū = 0. The
corresponding energy is E(u∗) = minu

(∫
ūĤudr

)
where Ĥ is the Hamiltonian operator from

the SE (4).
After the problem has been formulated as in equation (8), an important question is the fol-

lowing: how do we choose a stable and efficient numerical method for obtaining the stationary
solution to equation (8)? Symplectic integration methods [14] are tailor-made for Hamilto-
nian systems. This serves as the motivation for our choice of numerical method. Let us rewrite
equation (8) as the first-order system

u̇ = v

v̇ = −ηv − δE
δū

.
(9)

Then, we can apply a symplectic explicit method, such as symplectic Euler or Störmer–Verlet
[14], which gives us an iterative map in the numerical approximations (uν , vν), ν = 1, 2, 3, . . .
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with a step in fictitious time Δτ ν and damping ην . The choice of parameters Δτ ν and ην can
be chosen in order to optimize the performance of the numerical method, which is generally
a nontrivial task. However, for linear differential equations, such as the SE, analytical results
exist [7, 10]. For simplicity, we will keep all parameters constant through the iterations, i.e.
independent of the step ν.

The approach of finding the solution to equation (7) by solving equation (8) with a
symplectic method has been named the dynamical functional particle method (DFPM)
[11]. We would like to emphasize that it is the combination of the second-order damped
dynamical system together with an efficient (fast, stable, accurate) symplectic solver that
makes the DFPM a very powerful method. Even if the idea of solving minimization prob-
lems using dynamical systems with different damping strategies goes far back, see ref-
erences [15, 16], it has not been presented for the SE with constraints with symplectic
solvers for second-order systems. According to our practical experience many common (non-
symplectic) integration methods with optimal or nonoptimal damping parameters give a
reasonably fast convergence of equation (8) to the stationary solutions. So, unless the numer-
ical performance is important, a variety of softwares for dynamical systems can be used in
practical implementations.

Let us finally comment on one closely related approach for solving equation (7) that has
been studied extensively [1, 2], namely, the steepest descent method:

u̇ + α
δE
δū

= 0, α > 0,
∫

|u|2dr = 1. (10)

The method is called the imaginary time method when applied to the SE withα = 1 (i.e. change
t →−iτ in equation (4)). It might seem that equation (10) is better than equation (8) since the
exponential decrease towards the stationary solution in equation (10) can be made arbitrarily
large by choosing α large enough. However, as proven strictly for linear problems [7], and
by numerical evidence for some nonlinear examples [9], going to a second-order differential
equation in a fictitious time is superior if one takes into account the stability and accuracy of
the numerical solver. DFPM has been shown to have a remarkably faster convergence to the
stationary solution than any numerical method applied to equation (10), see [7].

It is the purpose of this article to explain this new method through a few qualitatively differ-
ent examples for the stationary SE. In addition, it will be extended to a corresponding method
to treat constraints.

2.2. Damped oscillator approach for global constraints

DFPM is readily extended to more general constrained problems, e.g. normalized and excited
states of the SE in general settings. Consider a convex minimization problem for E(u) with
smooth global constraint functionals G j(u) = 0, i.e.

min
u

E(u), s.t. G j(u) = 0. (11)

The actual choice of index j is dependent on what is natural for different problem settings. To
give one example of a constraint, Gj(u) = 0, the normalization constraint in equation (7) can
be written in this form, see equation (14).

The problem in equation (11) has a unique solution u∗ if δG j/δū is surjective at u∗, and thus
fulfils the so-called Karush–Kuhn–Tucker conditions. The corresponding dynamical system
for constraints can be formulated using an extended constrained energy functional (often called
Lagrange function in mathematical literature) I(u,μ1,μ2, . . .) = E(u) +

∑
j μ jG j(u), where μ j
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are Lagrange multipliers. The dynamical system for solving equation (11) is then given by

ü + ηu̇ +
δE
δū

+
∑

j

μ j
δG j

δū
= 0, (12)

with μ j(τ ) chosen such that u(τ ) tends to the stationary solution u∗ when τ tends to infinity,
see examples in the next section. For more details on the existence and uniqueness of solutions
to constrained problems see [17] and references therein.

In order to solve equation (11) one can choose the μ j(τ ) such that u(τ ) always remains on
the constraints set, e.g. by projection methods, or as we will do here, to approach the con-
straints set (usually in an oscillatory manner) as τ increases. Projection is generally costly
but there are important exceptions such as, e.g. eigenvalue problems with only normalization
constraints.

For our damped approach, we introduce an additional dynamical system, analogous to
equations (2) and (8), for a constraint G j as in equation (11) according to

G̈ j + ηĠ j + k jG j = 0, η > 0, k j > 0. (13)

Note that equation (13) describes damped oscillators. Then G j(u(τ )) tends to zero exponentially
fast and equation (13) can be used to derive expressions of the Lagrange multipliers μ j(τ )
for equation (12), which for some problems are explicit, see further details in sections 3.1
and 3.2.

This method, based on equation (13), was introduced in [10] for solving matrix eigen-
value problems, where it was shown that u(τ ) converges asymptotically to the eigenvectors.
It was also shown that the choice of k j in equation (13) does not change the local convergence
rate if k j lie within a rather large range which is determined by the eigenvalues to the opera-
tor δE/δū, see [10] for details. In this article we always keep k j = k for all j for simplicity,
while using the freedom in different k j can further improve the numerical performance of the
method.

Under these assumptions, the local convergence rate of the corresponding symplectic Euler
with the optimal parameters [7] will be the same as for the projection approach. However,
while the two approaches have the same local behavior it is not generally known a priori
which of these two methods is faster for a specific problem. Further, note that a general known
disadvantage with projection is that large changes in the Lagrange multipliers require small
timesteps.

3. Two examples of constraints with explicit derivations of Lagrange
multiplicators

We include two examples of constraints here in detail for readers who wish to understand
the method. We begin by deriving the Lagrange multiplier for only one normalization con-
straint, then we add only an orthogonalization constraint, i.e. what is needed to calculate the
first excited state of the SE.

3.1. Normalization constraint

Taking the first- and second-order derivatives of the normalization constraint

G1 = 1 −
∫

|u|2dr ≡ 1 − N(τ ) = 0, (14)

6
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with respect to τ gives

Ġ1 = −
∫ (

˙̄uu + ūu̇
)

dr, G̈1 = −
∫ (

¨̄uu + 2 ˙̄uu̇ + ūü
)

dr. (15)

Inserting the expressions from equation (15) into the left hand side of the general differential
equation for constraints (13), then gives, after simplifications,

G̈1 + ηĠ1 = −
∫ ({

¨̄u + η ˙̄u
}

u + ū {ü + ηu̇}+ 2|u̇|2
)

dr. (16)

If we now use the DFPM equation (12) with δE/δū + μ1δG1/δū = Ĥu − μ1u for the stationary
SE. We can then, when ü + ηu̇ → 0, identify the limit of the Lagrange multiplier being equal
to the energy, limτ→∞ μ1 (τ ) = E, compare with equation (5). Inserting −Ĥu + μ1u into the
curly brackets of equation (16) gives, after simplifications,

G̈1 + ηĠ1 = 2E − 2μ1N − 2
∫

|u̇|2dr = −k1 (1 − N) , (17)

with E(τ ) ≡
∫

ūĤu dr. Finally we can solve for the Lagrange multiplier μ1 (τ )

μ1 =
E + k1 (1 − N) /2 −

∫
|u̇|2dr

N
. (18)

We see in equation (18) that μ1 → E, since |u̇| → 0, N → 1 as τ →∞.

3.2. Normalization constraint and one orthogonalization constraint

Introducing, in addition to G1 above, the following orthogonalization constraint:

G0 =

∫
ūu0dr = 0, (19)

means that the solution u, should be orthogonal to a known normalized function u0. This u0

can be defined analytically, which can be helpful while testing software1, but more often u0

is a numerically obtained approximation. For example, in the case of a convex 1D problem,
u0 is the solution with the lowest eigenvalue E (ground state), and u is the solution with the
second lowest eigenvalue E (first excited state). As seen in the 2D example of section 4.2, this
situation can be more complicated in higher dimensions where eigenvalues can be degenerate,
meaning that several different solutions can have the same eigenvalue.

Taking the first- and second-order derivatives with respect to τ of the orthogonalization
constraint in equation (19) gives

Ġ0 =

∫
˙̄uu0dr, G̈0 =

∫
¨̄uu0dr. (20)

Inserting the expressions from equations (19) and (20) into the general differential equation
for constraints (13), then gives, with simplifications,

G̈0 + ηĠ0 =

∫ {
¨̄u + η ˙̄u

}
u0dr =

∫ {
−Ĥū + μ1ū

}
u0dr − μ0 = −k0G0. (21)

7
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In comparison to equation (17) there is now an additional term ( j = 0) in equation (12). The
corresponding coupled equation for G1 is

G̈1 + ηĠ1 = 2E − 2μ1N +

∫ (
μ0ū0u + μ0ūu0 − 2|u̇|2

)
dr = −k1G1. (22)

Finally, we write equations (21) and (22) for the two coupled Lagrange multipliers μ0 (τ ) and
μ1 (τ ) as a linear system

[
1 −G0

−Re (G0) 1 − G1

] [
μ0

μ1

]
=

⎡
⎢⎣ k0G0 −

∫
u0Ĥūdr

E −
∫

|u̇|2dr + k1G1/2

⎤
⎥⎦ ≡

[
y1

y2

]
, (23)

where Re (G0) =
∫

(ū0u + ūu0) dr/2. We can check the limits for the Lagrange multipliers
from equation (23), i.e. μ0 → 0 and μ1 → E, since u̇ → 0, G0 → 0, G1 → 0 as τ →∞.

Using Cramer’s rule on the linear system of equation (23) gives the explicit expressions

μ0 =
(1 − G1)y1 + G0y2

1 − G1 − G0Re (G0)
, μ1 =

y2 + Re (G0) y1

1 − G1 − G0Re (G0)
, (24)

that can be used to calculate the first excited state in various problems.
In appendix A, we show how an arbitrary number of orthogonalization constraints are

treated. We stress that the obtained result from appendix A can be used for SEs in any dimension
with any potential, as illustrated in sections 4.1 and 4.2.

4. Numerical examples

In this section we show numerical results using the symplectic Euler method [14] for three
examples and compare the presented DFPM method against analytic formulas. The first
example is a linear equation in one radial variable for the hydrogen atom. The second is a har-
monic oscillator in two variables (2D), which gives degenerated solutions. Finally, an example
of a nonlinear Schrödinger equation (NLSE) is given.

4.1. The radial equation for the hydrogen atom

The function u is, in this example, the radial part of the 3D spatial wavefunction from
equation (4), but multiplied with the radius r = |r|, i.e. ũ(r) = ũ(r, θ,φ) = u(r)/r Ym

l (θ,φ),
where Ym

l are the spherical harmonics. We write the dimensionless (i.e. with � = Me = a0

= 1) radial SE of the hydrogen atom as

Ĥ(r)u ≡ −1
2

d2u
dr2

+

(
l (l + 1)

2r2
− 1

r

)
u = Eu, 4π

∫ ∞

0
|u|2dr = 1, (25)

where the expression within the large parenthesis in equation (25) is referred to as the effective
radial potential. The factor 4π in the normalization constraint comes from the radial symmetry
in 3D. For comparison, the energies only depend on a single quantum number n = 1, 2, 3, . . .
and are given by [18]

En = − Mee4

2(4πε0)2
�2

1
n2

= − �
2

2Mea2
0

1
n2

= −1
2

1
n2

, (26)

8
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Figure 2. The six numerical solutions of equation (28) with the lowest energies E. Solid
(blue) curves are numerical results, while (black) circles show the result of equation (27).
We used an equidistant grid 10−6 < r j < 102, j = 1, . . . , 103, and τmax large enough
such that |ü + ηu̇| < 10−6 in equation (12). DFPM parameters used were η = 0.5,
k = 4, and Δτ = 0.1, which are of the same order of magnitude as the optimal pre-
dicted values for linear systems [7]. The (real) initial condition u(0) was in this example
chosen randomly. We note that the sign of the final wavefunction depends on the initial
condition used.

where a0 = 4πε0�
2/(Mee2) is a length scale called the Bohr radius. The corresponding radial

wavefunctions depend on the two quantum numbers n = 1, 2, 3, . . . and l = 0, 1, 2, . . . , n − 1
and are given by [18]

un,l(r)/r =

√
1

πa3
0n4

(n − l − 1)!
(n + l)!

(
2r
na0

)l

L2l+1
n−l−1

(
2r
na0

)
exp

(
− r

na0

)
, (27)

where L denotes the generalized Laguerre polynomials [19], defined in agreement with the
MATLAB command laguerreL(n − l − 1, 2∗l + 1, 2∗r/n), although differ-
ent normalization factors can be found in the physics literature.

The effective radial potential in equation (25) depends on the quantum number l, as do
the solutions in equation (27), so there is not any degeneracy when solving equation (25)
numerically. In other words, the solution of equation (25) is unique for this radial SE. How-
ever, all states with the same quantum number n have the same energy E, as is clear from
equation (26), and together with the degeneracy (2m + 1) for the spherical harmonics Ym

l , the
three-dimensional wavefunction for hydrogen have a n2 degeneracy.

The solutions un,l∗ with n = 1, 2, . . . , n∗ − 1 should be orthogonal to the unknown un∗,l∗ .
Since un,l∗ , n = 1, 2, . . . , n∗ − 1 are needed in order to obtain un∗,l∗ , we solve equation (12) in
consecutive order. More specifically, we start with the normalization constraint, see section 3.1,
to obtain u1,l∗ , then add an orthogonality constraint, see section 3.2, to obtain u2,l∗ , and generally
several orthogonality constraints, see appendix A, to obtain the solutions un∗,l∗ with n∗ > 2.
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Figure 3. The six lowest energies E for the hydrogen atom. Dots (blue) are the numeri-
cally calculated energies from equation (28). The dashed horizontal (black) lines corre-
spond to the values from equation (26). The inset figure shows the convergence dynamics
of the energy E2,1 as a function of the fictitious time. The parameters used are the same
as the one in the caption of figure 2.

We can write the n∗ constraints compactly using the Kronecker delta as Gn =
4π

∫∞
0 ūn∗,l∗un,l∗dr − δn∗,n = 0, n = 1, 2, . . . , n∗. Using equation (25) we formulate the

dynamical system, different for each value of l∗, that is, equation (12) applied to this radial
SE is

ün∗,l∗ + ηu̇n∗,l∗ + Ĥ(r)(l
∗)un∗,l∗ +

n∗∑
n=1

μn
δGn

δū
= 0. (28)

The two Lagrange multipliers needed in the sum above to calculate the first excited state,
i.e. for n∗ = 2, can be obtained from equation (24). For the case with several multipliers
(n∗ > 2) in equation (28), they can conveniently be obtained from, e.g. numerical solutions
of equation (A.6).

The six stationary numerical solutions to equation (28) with lowest energies are plotted in
figure 2, while the corresponding energies are illustrated in figure 3.

4.2. Two-dimensional harmonic oscillator

In this example we calculate the well-known wave functions u(x, y) and energies E to the
dimensionless (i.e. with � = M = ω = 1) SE with an isotropic two-dimensional harmonic
potential on a 2D Cartesian grid:

Ĥu ≡ −1
2

(
∂2

∂x2
+

∂2

∂y2

)
u +

1
2

(
x2 + y2

)
u = Eu

∫
R2

|u|2dr = 1. (29)

That is, for the ground state we solve the following optimization problem:

min
u

∫
R2

ūĤudr, s.t.
∫
R2

|u|2dr = 1. (30)

10
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Figure 4. The six numerical wavefunctions of equation (32), with the lowest ener-
gies E. We used −5 � x, y � 5 and Δx = Δy = 1/12 for the discretization, which
is enough to obtain all six solutions with correct energies within three significant
digits. The parameters were η = 1.5, k = 0.5 and Δτ = 0.05, which is in the same
order of magnitude as predicted to be optimal [7]. The initial wavefunction (for all
six subfigures here) was a translated and scaled (unnormalized) Gaussian u(τ = 0)
= 1.2/

√
π exp(−((x − 1.2)2 + (y − 1.2)2)/2) with E(τ = 0) 	 2.5 (see the left ring

in figure 5). The six numerical wavefunctions, from the upper left subfigure to the
bottom right subfigure, correspond to u(nx ,ny) from equation (33) in the order (nx , ny)
= (0, 0), (1, 0), (0, 1); (2, 0), (0, 2), (1, 1). However, note that the orientation and phase
(sign) of the final wavefunction depends on the initial condition used.

Let us denote the sth eigenstate and Es =
∫
R2 ūsĤusdr the corresponding eigenvalue. To

obtain us∗ for s∗ > 1 we use, in addition to equation (29), the s∗ − 1 orthogonality constraints∫
R2

ūs∗u1dr = 0,
∫
R2

ūs∗u2dr = 0, . . . ,
∫
R2

ūs∗us∗−1dr = 0. (31)

Using equations (29) and (31) we can from equation (12) formulate the corresponding
dynamical system with the s∗ constraints Gs =

∫
R2 ūs∗usdr − δs∗ ,s = 0, s = 1, 2, . . . , s∗, as

üs∗ + ηu̇s∗ + Ĥus∗ +
s∗∑

s=1

μs
δGs

δū
= 0. (32)

Since one needs access to us, s = 1, 2, . . . , s∗ − 1, we solve equation (32) in consecutive order.
The two Lagrange multipliers needed in the sum above to calculate the first excited state,
i.e. for s∗ = 2, are given by equation (24). For the case with several multipliers (s∗ > 2) in
equation (32), see appendix A, they can conveniently be obtained from, for example, numer-
ical solutions of equation (A.6). We show the six first numerical solutions to equation (32) in
figure 4.

For comparisons, we note that equation (29) has the explicit solutions [18]

u(nx ,ny) (x, y) =
1√

2(nx+ny)nx!ny!π
Hnx (x)Hny (y) exp

(
− x2 + y2

2

)
, (33)

11
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Figure 5. Left figure: Convergence of the energies for the six solutions seen in figure 4.
Dashed horizontal lines correspond to the exact energies E(nx ,ny) = nx + ny + 1. Right
figure: Illustration of the convergence of the calculation for solution number six (i.e.
s∗ = 6 corresponding to nx = ny = 1). The uppermost curve shows the normalization∫
|u|2dr (the ring shows the value 1.22 = 1.44, see the initial condition in the cap-

tion of figure 4), and the lower curves show the five orthogonality constraints
∫

ūusdr,
s = 1, 2, 3, 4, 5.

where H denote the Hermite polynomials [19], and the two quantum numbers can take the
values nx , ny = 0, 1, 2, 3, . . . .

In contrast to the radial SE for the hydrogen atom, there is no dependence on any of the
quantum numbers nx, ny in the SE (29), and different solutions u(nx ,ny) can give degenerate
energies E(nx ,ny) = nx + ny + 1 as long as nx + ny is constant.

In the left plot of figure 5 we show the numerical convergence for the energies. In the right
plot of figure 5 we show the numerical convergence for the constraints.

4.3. The NLSE under rotation

The NLSE is commonly used to model many interacting bosonic particles via a mean-field
approximation [20]. We have developed a DFPM formulation with damped constraints for a
dimensionless NLSE in u = u(x) on a ring geometry −π � x � π (R = � = 2M = 1) using
periodic boundary conditions u(−π) = u(π).

The aim is to minimize the total energy

E(u) =
∫ π

−π

∣∣∣∣∂u
∂x

∣∣∣∣
2

+ πγ|u|4 dx, (34)

with γ a parameter for the nonlinear term, subject to one constraint for normalization, and one
constraint for the angular momentum being �0

G1 = 1 −
∫ π

−π

|u|2dx = 0, G2 = �0 + i
∫ π

−π

ū
∂u
∂x

dx = 0. (35)

We note that this problem can be solved analytically and refer to appendix B of reference [9]
for the details of the solutions. In earlier work we implemented DFPM numerically for this
problem with a modified RATTLE method [9], in which we solved for the two Lagrange mul-
tipliers corresponding to equation (35) numerically in each timestep. There it was demonstrated

12
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Figure 6. Yrast curve [9], i.e. energy vs momentum, with some examples of the density
and the phase for the wavefunction u for the constant of nonlinearity being γ = 7.5.
Optimal numerical parameters in equation (36) are not trivially given in the nonlinear
case, and we used η = k/2 = 1 and Δτ = 0.015. The spatial equidistant discretization
consisted of 400 points.

that DFPM outperformed another commonly used method that is first order in time [9]. In this
article we instead couple the minimization of equation (34) to equation (35), via the dynamical
equation (13) for the constraints and get the following realization of equation (12):

ü + ηu̇ +
δE
δū

+ μ
δG1

δū
+Ω

δG2

δū
= ü + ηu̇ − ∂2u

∂x2
+ 2πγ|u|2u − μu + iΩ

∂u
∂x

= 0, (36)

with the two Lagrange multipliers from equation (B.10):

μ =
b1〈�̂2〉 − b2�

N〈�̂2〉 − �2
, Ω =

b2N − b1�

N〈�̂2〉 − �2
. (37)

The Lagrange multipliers in equations (36) and (37) represent physical properties. Hence, μ
is the so-called chemical potential, which is not equal to the energy E for the NLSE, and Ω is
the angular velocity for the rotation. The quantities N, 〈�̂2〉, �, b1, b2 in equation (37), which
depend on the fictitious time τ , are defined in appendix B.

In figure 6 we have plotted the resulting so-called Yrast curve (main figure) with the density
and phase of the corresponding complex wave function u for the particularly interesting points
�0 = 0, 0.5, 1 (inset figures). At integer values of �0 (0, 1 in this example), u is a plane-wave
u = exp (i�0x) /

√
2π. At half-integer values (e.g. �0 = 0.5), u corresponds to a dark solitary

wave that circulates in the ring [21], see the right-upper- and mid-lower-inset figures.

5. Conclusions

We have introduced the DFPM with normalization and several orthogonalization con-
straints for the linear SE. Numerical results are presented for the wavefunctions and
energies of the radial part of the hydrogen atom, and for the 2D harmonic oscillator.
Furthermore, DFPM was formulated with constraints for rotational states to the NLSE and
then solved numerically.

13
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We believe this presentation of DFPM may be helpful for students and researchers who
want to solve globally constrained equations in general. More specifically, it can be used for
numerically solving different kinds of SE attaining (degenerated) excited states and energies.

Obviously, DFPM will not outperform all existing methods for solving the large variety of
different SEs. However, as partly discussed in the introduction, we here mention four general
advantages that we believe are of importance: (1) the method has a general formulation and can
solve many different kinds of problems; (2) among methods for solving equations with ordinary
differential equations DFPM seems to be the best; (3) we have here specifically shown that
DFPM is relevant and competitive for several important problems in quantum mechanics; and
(4) the method is simple to implement: discretize in space then solve the second-order damped
dynamical system with a stable method, preferably a symplectic method; see the codes in the
supplementary material.
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Appendix A. Normalization constraint and several orthogonalization
constraints

In the numerical examples in sections 4.1 and 4.2 both a normalization constraint and sev-
eral orthogonalization constraints are treated simultaneously. We here sketch how an arbitrary
number of orthogonalization constraints is treated. The result will hold for any potential V(r)
in any dimension.

We generalize equations (14) and (19) to a vector containingw orthogonalization constraints
and one normalization constraint

�G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
ūu0dr∫
ūu1dr

...∫
ūuw−1dr

1 −
∫

ūudr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= �0. (A.1)

Hence with

�̇G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
˙̄uu0dr∫
˙̄uu1dr

...∫
˙̄uuw−1dr

−
∫

˙̄uu + ūu̇dr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �̈G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
¨̄uu0dr∫
¨̄uu1dr

...∫
¨̄uuw−1dr

−
∫

¨̄uu + ūü + 2 ˙̄uu̇dr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.2)
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we have from equation (13)

�̈G + η�̇G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ (
¨̄u + η ˙̄u

)
u0dr∫ (

¨̄u + η ˙̄u
)

u1dr

...∫ (
¨̄u + η ˙̄u

)
uw−1dr

−
∫ {

¨̄u + η ˙̄u
}

u + {ü + ηu̇} ū + 2 ˙̄uu̇dr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

−k0G0

−k1G1
...

−kw−1Gw−1

−kwGw

⎤
⎥⎥⎥⎥⎥⎦ . (A.3)

From equation (12) we now have

¨̄u + η ˙̄u = −Ĥū −
w−1∑
j=0

μ jū j + μwū, (A.4)

with Ĥ = − �
2

2M∇2 + V(r) as defined in equation (4), such that the left-hand side of
equation (A.3) is

�̈G + η�̇G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
∫

u0Ĥūdr + μw

∫
ūu0dr −

w−1∑
j=0

μ j

∫
ū ju0dr

−
∫

u1Ĥūdr + μw

∫
ūu1dr −

w−1∑
j=0

μ j

∫
ū ju1dr

...

−
∫

uw−1Ĥūdr + μw

∫
ūuw−1dr −

w−1∑
j=0

μ j

∫
ū juw−1dr

2E + 2μw (Gw − 1) +
w−1∑
j=0

μ j

∫ (
ū ju + ūu j

)
dr − 2

∫
˙̄uu̇dr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.5)

Now since
∫

ūiu jdr = δi j we can write equation (A.3) in matrix form with the Lagrange
multipliers as the unknowns⎡

⎢⎢⎢⎢⎢⎣

1 0 . . . 0 −G0

0 1 . . . 0 −G1
...

...
...

...
0 0 . . . 1 −Gw−1

−Re (G0) −Re (G1) . . . −Re (Gw−1) 1 − Gw

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

μ0

μ1
...

μw−1

μw

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k0G0 −
∫

u0Ĥūdr

k1G1 −
∫

u1Ĥūdr

...

kw−1Gw−1 −
∫

uw−1Ĥūdr

kwGw/2 + E −
∫

|u̇|2dr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.6)
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where Re
(
G j

)
=

∫ (
ū ju + ūu j

)
dr/2 and E =

∫
ūĤu dr.

For example, with only one (w = 1) orthogonality constraint, equation (A.6) is the system
in equation (23).

We note that the system (A.6) can be solved very efficiently by sparse Gaussian elimination
with a computational cost proportional to w.

Appendix B. Normalization and angular momentum constraints

The two constraints we used for the NLSE are defined in equation (35). Taking the first- and
second-order derivatives of G1 and G2 with respect to τ gives

Ġ1 = −
∫ π

−π

(
˙̄uu + ūu̇

)
dx, G̈1 = −

∫ π

−π

(
¨̄uu + 2 ˙̄uu̇ + ūü

)
dx, (B.1)

respectively

Ġ2 = i
∫ π

−π

(
˙̄u
∂u
∂x

+ ū
∂u̇
∂x

)
dx, G̈2 = i

∫ π

−π

(
¨̄u
∂u
∂x

+ 2 ˙̄u
∂u̇
∂x

+ ū
∂ü
∂x

)
dx. (B.2)

Inserting the expressions from equations (B.1) and (B.2) into the left-hand side of the general
differential equation for constraints (13), then gives after simplifications

G̈1 + ηĠ1 = −
∫ π

−π

({
¨̄u + η ˙̄u

}
u + ū {ü + ηu̇}+ 2|u̇|2

)
dx, (B.3)

and

G̈2 + ηĠ2 = i
∫ π

−π

({
¨̄u + η ˙̄u

} ∂u
∂x

+ ū

{
∂ü
∂x

+ η
∂u̇
∂x

}
+ 2 ˙̄u

∂u̇
∂x

)
dx. (B.4)

The use of equation (36) for the curly brackets above gives (with η, γ,μ and Ω real, and by
using integration by parts to some terms)

G̈1 + ηĠ1 =

∫ π

−π

(
−2ū

∂2u
∂x2

+ 4πγ|u|4 + 2iΩū
∂u
∂x

− 2μ|u|2 − 2|u̇|2
)

dx, (B.5)

and

G̈2 + ηĠ2 =

∫ π

−π

(
2i
∂u
∂x

∂2ū
∂x2

− 2iπγ|u|2ū
∂u
∂x

− 2iπγū
∂
(
|u|2u

)
∂x

+ 2Ωū
∂2u
∂x2

+ 2iμū
∂u
∂x

+ 2i ˙̄u
∂u̇
∂x

)
dx. (B.6)

Comparing the above equations with equation (13) and inserting the constraints (35)

G1 = 1 −
∫ π

−π

|u|2dx ≡ 1 − N = 0, G2 = �0 + i
∫ π

−π

ū
∂u
∂x

dx ≡ �0 − � = 0, (B.7)

with the three real functions N (τ ) , � (τ ) and 〈�̂2〉 (τ ) = −
∫ π

−π ū ∂2u
∂x2 dx, being the norm, the

angular momentum, and (here) the kinetic energy, respectively, we have from equation (B.5)

−2Nμ− 2�Ω+

∫ π

−π

(
−2ū

∂2u
∂x2

+ 4πγ|u|4 − 2|u̇|2
)

dx = −k1G1, (B.8)
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and from equation (B.6)

−2�μ− 2〈�̂2〉Ω+

∫ π

−π

(
2i
∂u
∂x

∂2ū
∂x2

− 4iπγ
∂u
∂x

|u|2ū − 2iπγ
∂ (ūu)
∂x

ūu + 2i ˙̄u
∂u̇
∂x

)
dx = −k2G2.

(B.9)

The second to last term in the left-hand side above disappears, since
∫

∂(ūu)
∂x ūudx =∫

∂
∂x (ūu)2 dx/2 =

(
|u (π) |4 − |u (−π) |4

)
/2 = 0 due to the periodic boundary conditions.

Hence, equations (B.8) and (B.9) lead us to the following linear system for the Lagrange
multipliers:

[
N �

� 〈�̂2〉

] [
μ
Ω

]
=

⎡
⎢⎢⎣

k1G1/2 +

∫ π

−π

ūĤu dx −
∫ π

−π

|u̇|2 dx

k2G2/2 − i
∫ π

−π

∂u
∂x

Ĥū dx + i
∫ π

−π

¯̇u
∂u̇
∂x

dx

⎤
⎥⎥⎦ ≡

[
b1

b2

]
,

(B.10)

where Ĥu = δE/δū with E from equation (34). Using Cramer’s rule on the above linear system
gives the explicit expressions used in equation (37).
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