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ABSTRACT High average-utility itemset mining (HAUIM) is an extension of high-utility itemset mining
(HUIM), which provides a reliable measure to reveal utility patterns by considering the length of the mined
pattern. Some research has been conducted to improve the efficiency of mining by designing a variety of
pruning strategies and effective frameworks, but few works have focused on the maintenance algorithms
in the dynamic environment. Unfortunately, most existing works of HAUIM still have to rescan databases
multiple times when it is necessary. In this paper, the pre-large concept is used to update the discovered
HAUIs in the newly inserted transactions and reduce the time of the rescanning process. To further improve
the performance of the developed algorithm, two new upper-bounds are also proposed to decrease the number
of candidates for HAUIM. Experiments were performed to compare the previous Apriori-like method and
the proposed APHAUP algorithm with the two new upper-bounds in terms of the number of maintenance
patterns and runtime in several datasets. The experimental results show that the proposedAPHAUP algorithm
has excellent performance and good potential to be applied in real applications.

INDEX TERMS Pre-large, high average-utility itemset mining, dynamic database, lead partial upper bound,
incremental.

I. INTRODUCTION
Knowledge discovery in database (KDD) [1]–[6] is a process
for extracting practical, novel, and potentially useful knowl-
edge from the original data while shielding users from the
tedious details of the original data. Algorithms in KDD can
be applied to many different applications, but in the KDD
process, security [7]–[11] and optimization [12] are the pri-
mary considerations, which have also been considered as an
emerging topics in recent decades. The Association rule min-
ing (ARM) [1] was the first significant algorithm to identify
frequent itemsets (FIs) based on minimum support and gen-
erate association rules (ARs) with the minimum confidence
threshold. The first Apriori method utilizes the generate-and-
test approach for mining ARs through a level-wise process.
The Apriori algorithm [1] follows the downward closure
property (DC), and thus many unpromising candidates can
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be ignored and reduced. To accelerate the mining perfor-
mance for discovering the set of FIs, some efficient data
structures have been studied and proposed, such as FP-
tree and FP-growth mining [13]. Moreover, many extensions
have provided the information needed in different knowledge
domains, like HUIM [14]–[16] or HAUIM [17], [18], based
on the Apriori-like DC property. Besides, the existing algo-
rithms have focused on processing the static databases. When
the capacity of the database is modified (such as transac-
tion insertion), the discovered knowledge becomes useless,
and the batch model is then processed to process the entire
database to retrieve the required information.

However, frequent itemset mining (FIM) only considers
the frequency of an item and assumes that all items occur at
most once in a transaction. Thus, FIM only reflects whether
an item occurs in a transaction. Many interesting factors, such
as weight and the unit profit of the items, are not consid-
ered in FIM. High-utility itemset mining (HUIM) [14], [16],
[19] has been considered to be an effective decision-making
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method for displaying profitable products and itemsets. That
is, the quantity and utility of the itemsets are concerned
to reveal the high-utility itemsets (HUIs). An item(set) is
called a HUI when its utility exceeds the predefined min-
imum utility threshold. However, HUIMs is not a trivial
task compared to the traditional FIM since it does not hold
the anti-monotonic property. In other words, the utility of
an itemset may be greater, equal, or smaller than the util-
ity of its supersets. To overcome this problem, Liu et al.
subsequently implemented a transaction weighted utiliza-
tion (TWU) model [19] to retain the transaction-weighted
downward closure (TWDC) property. Therefore, it can fur-
ther reduce the search space for revealing HUIs. It first dis-
covers the set of the high transaction-weighted utilization
itemsets (HTWUIs), where each itemset in the HTWUIs
holds the upper bound utility value on the pattern by ensuring
the correctness and completeness of the final HUIs. Fur-
thermore, the traditional TWU model relies on the generate-
and-test approach; thus a huge amounts of candidates is
produced and evaluated. To solve this limitation by main-
taining the promising 1-itemsets in the tree structure, a high-
utility pattern (HUP)-tree [20] was proposed by Lin et al.
to decrease the computational costs. Then, the UP-growth+
approach [21] was introduced with the UP-tree structure to
efficiently reveal the HUIs. Liu et al. [22] subsequently pre-
sented a new utility-list (UL) to extract the k-HUIs quickly
based on the simple join operation. Several methods [15],
[20], [23]–[26] have been extensively studied and discussed,
and most of them focused on the TWUmodel to reveal HUIs.

Even though HUIM can find more information in the
decision-making proces rather than the ARM, the utility of
the pattern is increased along with the size of the itemset,
especially when the length of the pattern is very long. For
example, any combination with caviar can also be considered
as a HUI in a supermarket, which is not a realistic case in
practice. High average-utility itemset mining (HAUIM) [17]
was investigated to evaluate high average-utility patterns by
considering the length of an itemset. An itemset is considered
to be a HAUI while the value of utility divides the length of
the itemsets larger than the minimum utility threshold. This
approach offers another way to fairly estimate the utility of
the pattern. Hong et al. developed the TPAU algorithm [17] in
a level-wise way to reveal satisfactory HAUIs. This approach
applies the average-utility upper bound value (auub) to hold
the downward closure property in order to discover the set of
the high-average-utility-upper-bound itemsets (HAUUBIs).
To improve mining performance, Lin et al. proposed the
high average utility pattern (HAUP) tree structure [27] to
maintain the 1-HAUUBIs in the compressed tree structure.
An average-utility-list (AU-list) structure was also proposed
through a simple join operation to generate the k-itemsets.
Numerous extensions of HAUIM [27], [28] have also been
explored and discussed to enhance the mining efficiency of
HAUIs. The limitation of the existing HUIMorHAUIM algo-
rithms were built on the maintenance of the static database,
but the storage sizes have changed dynamically in realistic

situations. In this article, we utilize the pre-large concept [29]
for efficiently handling incremental mining while some trans-
actions are inserted. Furthermore, we propose two new upper-
bounds to improvemining efficiency. Several contributions of
the developed algorithm are summarized below.

1) The pre-large Apriori-based APHAUI is presented
for transaction insertion, which is used to update
the discovered HAUIs effectively in the maintenance
progress.

2) A strict upper-bound called the partial upper bound
(pub) is designed to reduce the upper-bound utility
value of the itemsets. Besides, a smaller upper-bound
called lpub is also proposed to reduce the size of can-
didates in the search space.

3) An equation is specified here to ensure that an addi-
tional database scan is not unnecessarily performed.
However, based on the designed APHAUI algorithm,
the up-to-date HAUIs can still be maintained effi-
ciently.

4) A linked-list structure is utilized in the designed algo-
rithm to ensure that each transaction is scanned at
most one time, thus reducing the number of multiple
database scans in the maintenance progress.

II. LITERATURE REVIEW
This section introduces related works about HAUIM and
dynamic data mining.

A. HIGH (AVERAGE-)utility ITEMSET MINING
The fundamental association-rule mining algorithm is based
on two minimum thresholds to find the relationship between
the itemsets, thereby mining the association rules, and the
original algorithm is called Apriori [1]. However, Apriori
only works with binary databases; therefore, other factors,
such as weight, interestingness, importance, and quantity, are
ignored in traditional ARM. To find more meaningful infor-
mation from the discovered knowledge, HUIM (high-utility
itemset mining) [16], [19], [30] was designed to evaluate two
factors, unit profit and the number of items, to reveal useful
and meaningful utility patterns in the database. An itemset is
known to be a high utility itemset (HUI) if the utility of the
itemset is not smaller than the pre-defined minimum utility
threshold (count). Traditional HUIM cannot, however, solve
the problem of combined explosions. Therefore, the search
space is too large to find the required HUIs.

To solve this problem and limitation, a TWU model [19]
that maintains the high transaction-weighted utilization item-
sets (HTWUIs) is proposed to hold the downward clo-
sure property in the mining progress. A HTWUI contains
the upper-bound utility on the itemset, and therefore the
transaction-weighted downward closure (TWDC) property
is maintained for the correctness and completeness of the
discovered HUIs. Lin et al. then proposed a HUP-tree [20]
to establish a compact tree structure for maintaining the
1-HTWUIs, which reduces the computational cost com-
pared to the level-wise approach. Moreover, utility pattern
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(UP)-growth+ [21] was proposed to apply the UP-tree struc-
ture and several pruning strategies for mining HUIs to
accelerate the mining efficiency. Besides, a utility-list (UL)-
structure and the HUI-Miner algorithm [15] were designed
to generate the k-candidate HUIs easily through a straight-
forward join operation. Several HUIM [15], [22]–[26] algo-
rithms have been extensively discussed, and most of them
focused on the TWU model to reduce the number of candi-
dates for mining the HUIs.

During HUIM, the value of the utility increases with the
length of the itemset. Thus, any combination with an itemset
with a very high utility value, for example, the caviar or
diamond, is also considered as a HUI, which is not reason-
able in real situations. High average-utility itemset mining
(HAUIM) [17], [27] was extended from HUIM regarding the
length of the itemset for evaluation. The first algorithm in
HAUIM was TPAU [17], which uses auub model to keep
the downward closure property and utilizes the Apriori-like
approach to find the set of HAUIs in a level-wise manner.
Lin et al. then presented a HAUP-tree [27] to keep the
1-itemsets in a compressed tree structure, thereby signifi-
cantly reducing the computational cost. Several extensions
of HAUIM [18], [28] were respectively studied and most of
them relied on the auub model to find the set of HAUIs.

B. DYNAMIC DATA MINING
For traditional pattern mining, including ARM [1],
HUIM [16], [19], and sequential pattern mining [4], they
focused on mining the meaningful patterns from the static
databases. In the case of the operations for the dynamic
environment, such as insertion, deletion, or modification, for
the batch-model algorithms, even if there is a small change
(i.e., tiny transactions 1-5 are inserted into the database),
they must rescan the updated database each time for pattern
maintenance. This is a costly progress since the discovered
knowledge in the previous stage cannot be re-used, and the
database is needed for multiple database scans to obtain
the updated information. Cheung et al. suggested the Fast
UPdate (FUP) concept [31] to handle dynamic data mining
for transaction insertion to reveal the up-to-date frequent
itemsets. According to the discovered information in the
original database and inserted transaction, it can be divided
into four cases for later maintenance. This concept has been
utilized in different domains for knowledge discovery, such
as ARM [32], sequential patternmining [33], HUIM [34], and
HAUIM [35]. Although the FUP-based approach can handle
dynamic data mining, it still needs to rescan the database in
some cases, which is still inefficient for knowledge mainte-
nance.

To better maintain the discovered knowledge and avoid the
multiple database scans, Hong et al. developed the pre-large
concept [29], [36], which is used to set up two thresholds
for knowledge maintenance. These two thresholds (upper and
lower) are used to maintain not only the large itemsets (the
pattern count is no less than the default upper threshold)
but also the pre-large itemsets (the pattern count is between

FIGURE 1. Nine cases of the pre-large concept.

the upper and lower thresholds). Thus, the pre-large itemsets
will be maintained as the buffer to avoid multiple database
scans. An equation is also defined to determine whether
the number of the newly inserted transactions is less than
the safety bound. Thus, some cases for database rescans
can be avoided, but the completeness and correctness of the
discovered knowledge can still be maintained. There is also
an equation to determine whether the number of inserted
transactions is less than the safety bound. Figure 1 shows the
cases of the pre-large concept.

In cases 1, 5, 6, 8 and 9, the final results cannot be affected.
Furthermore, for cases 2 and 3, the amount of discovered
knowledge can be reduced and some new knowledge for cases
4 and 7 may be arisen. The itemsets are easily handled for
cases 2, 3 and 4 as the pre-large itemsets are kept. The safety
bond (f) of the pre-large concept is defined below.

f = b
(Su − Sl)× TUD

1− Su
c, (1)

in which f represents the safety bound by evaluating two
thresholds. Sl is set as the lower support threshold, Su is set as
the upper threshold. Moreover, TUD is the transaction utility
in D.

III. PROPOSED INCREMENTAL APRIORI FRAMEWORK
FOR HAUI
This section describes the detailed algorithm of the pro-
posed method (Apriori-based HAUP with pre-large concept,
named APHAUP in this paper). The APHAUP is based on
Apriori-like approach [1] with the new upper bound val-
ues to early prune the unpromising candidates and reduce
the search space for revealing the satisfied itemsets in the
updating progress. First, to reduce the size of promising
itemsets, a strict upper-bound called partial upper bound
(pub) is designed. In the traditional Apriori-like approach,
the satisfied k-itemsets are then used to generate the (k+1)-
itemsets as the candidate patterns in the level-wise manner.
In APHAUP, an itemset called pubi (high pub itemset), which
means its utility is larger than the pub is developed here.
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Second, APHAUP selects a subset from pubi, called lpubi
(lead-pubi), for later mining progress. In fact, APHAUP pro-
duces these two sets at the same time, but it applies a smaller
upper-bound than pub. Therefore, lpubis is a subset for pubis
in the proposed method. This smaller upper-bound is called
lpub (lead-pub). The proposed lpubi can further reduce the
size of the candidate itemsets effectively. Third, to make sure
that each transaction will be scanned at most one time in each
round, a linked list structure is proposed. Finally, the incre-
mental updating process is proposed to maintain the discov-
ered HAUIs, and the detailed definitions and algorithms for
each part will be described in the following subsections.

A. PARTIAL UPPER BOUND, PUB AND HIGH PARTIAL
UPPER BOUND ITEMSET, PUBI
For most existing algorithms [17], [27] in HAUIM, auub was
widely applied to reveal HAUIs. The maximal utility from a
transaction is definitely larger than the average utility from
any itemset and its superset in this transaction. However, tra-
ditional auub is too large thus many unpromising itemsets are
kept. This is because auub does not consider the itemset itself.
In other words, it is assumed that there are two itemsets A and
B in a transaction. The value of auub from this transaction for
A and B are the same, even though A 6= B. The proposed
pub was designed to solve this limitation and the detailed
definition is given below.
Definition 1: An active item (ai) and active itemset (ais)

in the proposed Apriori process are defined in the designed
algorithm.

In Apriori-like approach [1], the discovered large
k-itemsets are used to generate (k+1)-itemsets as the can-
didate patterns for evaluation. This means that if an item
does not exist in one of the large k-itemsets, then it is def-
initely not be included in its supersets such as (k+1)-itemsets.
In HAUIM, APHAUP follows the traditional Apriori-like
approach, and in each iteration, it generates the candidate
pubiswhere the length is n from the pubis included n-1 items.

Assuming that APHAUP handles the process to estimate
pubis where the length is n, then an active item (ai) in this
period indicates that this item at least exists in one of the pubi
where the length is (n-1). The definition of aisn (active itemset
of the candidate pubis with the length is n) is defined as:

aisn =
{
ai ∈ x

∣∣∣x ∈ pubisn−1 } , (2)

where pubisn−1 is the pubis in which the length is (n-1).
For example, assume that the process of APHAUP shows

the pubis, {1,2}, {1,3}, and {2,3} in the previous iteration.
The active itemset of the candidate pubis where the length is
3 is ais3 = {1, 2, 3}.

The physical meaning of active items is that the following
process of APHAUP only considers the items in the ais. This
implies the closure property of pubi. If an itemset is a pubi,
then all of its subsets is also a pubi.
Definition 2: The remaining maximal utility of the active

itemset in a transaction is denoted as (rmua).

Assume an itemset I = {i1, i2, . . . , in} in a transaction
T = {it , ut }. It = {it1, it2, . . . , itm} is the purchase items
in this transaction, Ut = {ut (it1) = ut1, ut2, . . . , utm} is the
corresponding utility for each item in this transaction, and the
active itemsets is ais. The rmua of i in t denoted as rmua(i, t),
which is defined as:

rmua(i, t) = max
{
ut (i)

∣∣i ∈ (ais ∩ it) \ i
}

(3)

Definition 3: The partial maximal utility upper bound is
denoted as (pub) in a transaction.
Assume an itemset I = {i1, i2, . . . , in} in a transaction

T = {it , ut }. It = {it1, it2, . . . , itm} is the purchase items
in this transaction, Ut = {ut (it1) = ut1, ut2, . . . , utm} is the
corresponding utility for each item in this transaction, and the
active itemsets is ais. The pub of i in t is denoted as pbti , which
is defined as:

pbti=


u(i, t)+ m× rmua(i, t)

|i| + m
, if rmua(i, t) > au(i, t)

u(i, t)+ rmua(i, t)
|i| + 1

, if 0<rmua(i, t)≤ au(i, t)

0, if rmua(i, t) = 0,
(4)

where m is the number of (ais ∩ it) \ i.
Definition 4: The partial maximal utility upper bound is

denoted as (pub) in a transaction dataset.
Assume an itemset i and a transaction dataset D. The pub

of i in D is denoted as pbi, and defined as:

pbi =
∑
t∈D

pbti (5)

Lemma 1: The anti-monotonicity property of pub in a
transaction.

Assume an itemset I = {i1, i2, . . . , in} in a transaction
T = {it , ut }, active itemsets = ais, and a superset of I,
I ′ = {i1, i2, . . . , in, in+1, . . . , io}, in which ∀x ∈

{in+1, . . . , io} → x ∈ ais \ I , such that tmu(I ,T ) ≥ pbti ≥
au(I ′,T ).

Proof: ∵ I ⊂ I ′ ∴ if i′ ∈ it → i ∈ it and if i /∈ it → i′ /∈

it . 1)
1) if i /∈ it → tmu(i, t) = pbti = au(i′, t) = 0.
2) if i ∈ it and i′ /∈ it → au(i′, t) = 0,

• if pbti =
u(i,t)+m×rmua(i,t)

|i|+m :

pbti =
u(i,t)+m×rmua(i,t)

|i|+m ≤
|i|tmu(i,t)+m×tmu(i,t)

|i|+m =

tmu(i, t).
• if pbti =

u(i,t)+rmua(i,t)
|i|+1 :

pbti =
u(i,t)+rmua(i,t)

|i|+1 ≤
|i|tmu(i,t)+tmu(i,t)

|i|+1 =

tmu(i, t).
• if pbti = 0:
pbti = 0 < tmu(i, t).

→ tmu(i, t) ≥ pbti ≥ au(i
′, t).

3) if i ∈ it and i′ ∈ it ,
∵ 2) ∴ tmu(i, t) ≥ pbti .
• if rmua(i, t) > au(i, t):
pbti =

u(i,t)+m×rmua(i,t)
|i|+m =
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∑
w=1∼n u(iw,t)+m×rmua(i,t)

|i|+m
∵ rmua(i, t) ≥ u(iz, t)∀iz ∈ {in+1, . . . , io}
∴

∑
w=1∼n u(iw,t)+m×rmua(i,t)

|i|+m ≥

∑
w=1∼o u(iw,t)
n+o−n =∑

w=1∼o u(iw,t)
o = au(i′, t)

.
• if rmua(i, t) ≤ au(i, t):
pbti =

u(i,t)+rmua(i,t)
|i|+1

∵ rmua(i, t) ≤ au(i, t)
∴ u(i,t)+rmua(i,t)

|i|+1 ≥
u(i,t)+m×rmua(i,t)

|i|+m ≥ au(i′, t).
• if rmua(i, t) = 0:
if i′ ∈ it , rmua(i, t) is impossible as 0.

→ tmu(i, t) ≥ pbti ≥ au(i
′, t).

Lemma 2: The downward closure property of pub is given
below. Assume an itemset I = {i1, i2, . . . , in} in a transaction
dataset D = {t1, t2, . . . , tz}, active itemsets = ais, and a
superset of i, I ′ = {i1, i2, . . . , in, in+1, . . . , io}, in which
∀x ∈ {in+1, . . . , io} → x ∈ ais \ i, such that auub(i) ≥ pbi ≥
au(i′).

Proof: According to Lemma 1, tmu(i, t) ≥ pbti ≥
au(i′, t),∀t ∈ d . Accumulate all of the results from each
transaction in t,→ auub(i) ≥ pbi ≥ au(i′).

The physical meaning of the downward closure property of
pub is that if the pb of an itemset is less than the predefined
threshold, then the average-utility of its superset is definitely
less than the threshold. Therefore, if there is an itemset in
which pb is less than the threshold, then it would not be
used to combine the new candidate itemset in the Apriori-like
process.
Definition 5: High partial upper bound itemset is denoted

as (pubi). Thus, if an itemset i is a high partial upper bound
itemset (pubi) and a predefined threshold is r, then it indicates
that pbi ≥ r .
By Lemma 2, the proposed APHAUP maintains a set of

pubi to generate the candidate itemsets. This technique has
ability to effectively reduce the search space.

B. LEAD PARTIAL UPPER BOUND LEAD-PUB AND LEAD
HIGH PARTIAL UPPER BOUND ITEMSET LEAD-PUBI
In this section, a subset of pubi is introduced to reduce the
search space of the candidate itemsets. This subset is called
the lead partial upper bound (lead-pub). A predefined order
of items in an itemset needs to be set to apply this technique.
Before giving the formal definitions, the concept of lead-
pub is described first. Assume that a predefined item order
l is given and a candidate itemset Ic = {i1, i2, . . . , in} and
follows the order l. In the Apriori-like process, this candidate
itemset must be made up of a set of pubi. This set of pubi is
{{i1, i2, . . . , in−1}, {i1, i2, . . . , in−2, in}, . . . , {i2, i3, . . . , in}}.
The first of this set is one of the lead-pubis. Due to this extra
limitation, a smaller upper bound than pub can be defined and
described in the following section, which can further reduce
the size of the candidate itemsets.
Definition 6: The remaining maximal utility of active

itemset in a transaction is denoted as (hrmua).

Assume that an itemset I = {i1, i2, . . . , in}, a transaction
T = {it , ut }. It = {it1, it2, . . . , itm} is the purchase items
in this transaction, Ut = {ut (it1) = ut1, ut2, . . . , utm} is
the corresponding utility for each item in this transaction,
and the active itemsets is ais and a predefined item order
L = {il1, i

l
2, . . . , i

l
p}. The lrmua of i in t is denoted as

lrmua(i, t), which is defined as follows.
Assume that in = ilw, and set an itemset s = {ilw+1,

ilw+2, . . . , i
l
p}, we can obtain that:

lrmua(i, t) = max
{
ut (i)

∣∣i ∈ (ais ∩ it ∩ s) \ i
}
. (6)

Definition 7: The lead partial maximal utility upper bound
is denoted as (lead-pub) in a transaction dataset.
Assume an itemset I = {i1, i2, . . . , in} in a transaction

T = {it , ut }. it = {it1, it2, . . . , itm} is the purchase items
in this transaction, Ut = {ut (it1) = ut1, ut2, . . . , utm} is
the corresponding utility for each item in this transaction,
the active itemsets is ais, and a predefined item order L =
{il1, i

l
2, . . . , i

l
p}. The lead-pub of i in t is denoted as lpb

t
i , which

is defined as:

lpbti =



u(i, t)+ m× rmua(i, t)
|i| + m

,

if lrmua(i, t) > au(i, t)
u(i, t)+ rmua(i, t)

|i| + 1
,

if 0 < lrmua(i, t) ≤ au(i, t)
0, if lrmua(i, t) = 0

(7)

where m is the number of (ais ∩ it ∩ s) \ i (the definition of s
is same as Definition 6).
Definition 8: The lead partial maximal utility upper bound

is denoted as (lead-pub) in a transaction dataset.
Assume that there is an itemset i and a transaction

dataset D, where the lead-pub of i in D is denoted as lpbi,
which is defined as:

lpbi =
∑
t∈D

lpbti (8)

Definition 9: The lead high partial upper bound itemset
is denoted as (lead-pubi). Thus, if an itemset i is a lead
high partial upper bound itmeset (lead-pubi) and a predefined
threshold is r, then pbi ≥ r .

The lead high partial upper bound itemset lead-pubi has
a similar definition to pubi. Therefore, lead-pubi also has the
downward closure property such as pubi. The set of lead-pubi
is a subset of the set of pubi due to the strict limitation than
pubi. It can further reduce the size of the candidate itemsets
in the proposed APHAUP.

IV. APRIORI-BASED HAUP WITH PRE-LARGE
CONCEPT, APHAUP
This section describes details about the proposed APHAUP.
It includes two parts: the first is the general scan for the input
dataset and the second part is the incremental process of the
proposed APHAUP method. APHAUP utilizes the proposed
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rescan threshold to select the maintenance progress automat-
ically for incremental datasets. The proposed APHAUP also
applies the new proposed upper bounds (pub and lead-pub),
and it maintains two itemsets (pubi and lead-pubi) to reveal
all of the HAUsI in a transaction dataset. The detailed pseudo-
codes are respectively given in Algorithms 1 and 2.

Different from traditional HAUI mining, the incremental
process needs to set a pre-large itemsets threshold. In the
beginning, safety bound is set in line 3. APHAUP applies
auub to initialize pubi and lead-pubi. At this time, all of
the itemsets in pubi and lead-pubi have obtained 1-items.
The APHAUP also calculates the average utility for all the
itemsets (with 1-items) at the same time. Then, it is deter-
mined whether the average utility is larger than the high
average utility threshold or the pre-large utility threshold.
This progress is performed in lines 4-23. There is a while
loop for each iteration to reveal the high average itemsets
and pre-large itemsets in lines 24-47. In lines 26-28, each
itemset in lead-pubis is combined with the itemsets in pubis
to generate the candidate itemsets. Then, APHAUP scans the
dataset again to obtain the utility information for each itemset
in the candidate itemsets. Finally, at the end of this while
loop, APHAUP updates the set of pubis, lead-pubis, P, and
H . If pubis and lead-pubis are all empty set, then the loop is
going to be stopped and the process will output the HAUIs,
pre-large itemsets and the rescan threshold.

Algorithm 2 is the incremental process of the proposed
APHAUP framework. While an incremental dataset is added
in the original dataset, APHAUP performs the incremental
process to speed up the mining algorithm. First, APHAUP
maintains a rescan threshold r. After performingAlgorithm 1,
a new rescan threshold would be set to control the process
to rescan the whole dataset again or perform the incremental
algorithm. This means that if the size of the incremental
dataset is less than r, then it is impossible for the itemsets
whose average utility is less than the pre-large threshold in
Algorithm 1 to be a HAUI after updating the utility informa-
tion. APHAUP updates the value r in line 2 and it is checked
whether the value is larger than 0. If the value is less than
0, then APHAUP performs Algorithm 1 to rescan the new
whole dataset to update the new P, H, and r (lines 9-11); if
not, then the incremental process performs Algorithm 1 for
the incremental datasetD′ to obtain the partialP′ andH ′ (lines
4), and a rescan itemsets S is generated (line 5). S contains all
of the itemsets that are in (P∪H ) and not in (P′ ∪H ′). In the
end of the updating process in lines 6, APHAUP checks the
utility information of S in D′. In line 7, APHAUP uses P′,
H ′ and S to update P and H . In line 13, the updating process
outputs the updated P, H, and r.

V. EXPERIMENTAL RESULTS
In this paper, a new upper-bound, called the partial
maximal utility upper-bound (pub) is proposed. In the new
algorithm (APHAUP) proposed in this paper, a smaller upper-
bound than pub is applied called lead high partial maximal
utility upper-bound (lpub). The proposed lpub can effectively

Algorithm 1 Apriori-Based HAUP With Pre-Large Concept
Input: a transaction dataset, D,

a high average utility threshold, at,
and a pre-large utility threshold, pt.

Output: a set of pre-large itemsets, P,
a set of HAUI, H,
and a rescan threshold, r.

1: set H = ∅ for HAUIs;
2: set P = ∅ for PreLarge Itemsets;
3: count rescan threshold r for D by formula (1);
4: for each transaction t in D do
5: find maximal utility m in t;
6: for each item i in t do
7: f [i] = A[i]+ m;
8: au(i) = au(i)+ u(i, t);
9: end for
10: end for
11: if au(i) ≥ at then
12: H ← i;
13: else if au(i) ≥ pt then
14: P← i;
15: end if
16: set pubis← ∅;
17: set lead-pubis← ∅;
18: for each item i do
19: if A[i] ≥ pt then
20: pubis← i;
21: lead-pubis← i;
22: end if
23: end for
24: while pubis 6= ∅ and lead-pubis 6= ∅ do
25: set C = ∅ for the candidate itemsets;
26: for each itemset e in lead-pubis do
27: search (combine) pubis by e to generate candidate

itemsets→ C
28: end for
29: set pubis← ∅;
30: set lead-pubis← ∅;
31: for each transaction t in D do
32: scan utility information for each candidate item-

set in t;
33: end for
34: for each candidate itemset c in C do
35: if pbc ≥ p then
36: pubis← c;
37: end if
38: if lpbc ≥ p then
39: lead-pubis← c;
40: end if
41: if au(c) ≥ at then
42: H ← c;
43: else if au(c) ≥ pt then
44: P← c;
45: end if
46: end for
47: end while
48: return P,H , r ;

reduce the size of the candidate itemsets. This section
describes two implementations of the proposed APHAUP,
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Algorithm 2 Incremental Process for APHAUP
Input: a incremental transaction dataset, D′,

a set of pre-large itemsets, P,
a set of HAUI, H,
a remaining rescan threshold, r,
a high average utility threshold, at
and a pre-large utility threshold, pt.

Output: a set of updated pre-large itemsets, P,
a set of updated HAUI, H,
and updated rescan threshold, r.

1: inc = the size of the input D′;
2: update r = r − inc;
3: if r ≥ 0 then
4: apply Algorithm 1 for D′, at and pt obtain
P′,H ′;(ignore r ′)

5: S ← (P ∪ H )∩ ∼ (P′ ∪ H ′);
6: scan utility information for S in D′;
7: update P,H from P,H ,P′,H ′, S
8: else
9: update D← D+ D′;
10: rescan whole dataset by Algorithm 1 for D, t and p;
11: update P,H , r ;
12: end if
13: return P,H , r ;

TABLE 1. Characteristics of used datasets.

one is with the lpub and another is without the lpub. Besides,
the proposed APHAUP was separated into two different
experiments, one is performed for the incremental process
and utilized the pre-large concept while another is used to res-
can the whole dataset when the size of the dataset is increased
with some new transactions. The experimental results will
show the performance of APHAUP with six different real
datasets [37] using different parameter settings. The datasets
and their characteristics are shown in Table 1. All the algo-
rithms were implemented in Java language and executed on
a computer equipped with an Intel(R) Core (TM) i5-5257U
2.7 GHz processor and 8 GB main memory, running on the
MacOS Mojave operating system.

A. RUNTIME WITH DIFFERENT INCREMENTAL SIZE
In this section, the runtimes of the proposed APHAUP with
different scales of sizes for the incremental data in six real
datasets are compared. The experimental results are shown
in Figures 2 to 7. Among them, Apriori(A) is the algorithm
that applies Algorithm 1 to scan the whole dataset when
the incremental data is inserted in the original dataset but

FIGURE 2. The runtimes for APHAUP in the mushroom dataset with two
different incremental size.

FIGURE 3. The runtimes for APHAUP in the foodmart dataset with two
different incremental size.

does not use lpub, Apriori(I) is the algorithm that is the pro-
posed APHAUP with the incremental process (Algorithm 2)
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FIGURE 4. The runtimes for APHAUP in the BMS dataset with two
different incremental size.

but does not use lpub, Apriori(A,lpub) is the algorithm that
applies Algorithm 1 to scan the whole dataset when the
incremental data is inserted in the original dataset, Apri-
ori(I,lpub) is the algorithm that is the proposed APHAUP
with the incremental process (Algorithm 2), the numbers
on the top of the figures are the minimal support (minimal
average utility threshold), and the numbers in brackets are the
different scales of sizes for the incremental data.

First, we focus on the comparisons of Apriori(A) and
Apriori(A,lpub). This shows the good performance of the
proposed lead high partial upper bound. In most real datasets,
Apriori(A,lpub) has obtained better runtime than the Apri-
ori(A), especially in datasets that has a high density or a huge
number of transactions, such as the mushroom and the acci-
dents datasets. However, in some sparse datasets such as the
foodmart and the BMS datasets, the Apriori(A,lpub) has no
obvious advantage over Apriori(A). From this, it can be con-
cluded that a dense database is suitable for Apriori(A,lpub),
but for sparse databases, the difference between the two
algorithms is not obvious. The reason for this result is that
in the sparse datasets, the Apriori(A,lpub) does not reduce
the size of candidate itemsets but result in additional calcu-
lations. Thus, it needs more computational cost to find the
required information. Second, Aprioir(I) (incremental mode)
could handle incremental situations and reduce the runtime
effectively. Apriori(I) suffered from many database rescans
(rescanning the whole dataset) in a large scale incremental
environment. For example, in Figure 4(a), Apriori(I) almost

FIGURE 5. The runtimes for APHAUP in the accidents dataset with two
different incremental size.

performs the updating progress immediately. In Figure 4(b),
the Apriori(I) rescanned the whole dataset several times
because the size of incremental data is larger than the rescan
threshold. It is worth to notice that the runtime of the rescan
process for the Apriori(I) is always larger than Apriori(A).
The reason is since Apriori(I) needs to apply a pre-large
threshold, and it causes the proposed Apriori(I) to maintain
more itemsets during the mining process. Moreover, it needs
to perform the mining process for the new utility information
and the original one to obtain the updated utility informa-
tion for maintenance. For the same reason, the runtime of
the rescan process of Apriori(I,lpub) is always larger than
Apriori(A,lpub). In some cases, the performance of Apriori(I)
is worse than Apriori(A) (in Figure 2). However, the perfor-
mance of Apriori(I,lpub) is still better than Apriori(I).

Next, the influence of different threshold settings is dis-
cussed. There are two bad influences for the incremental-
based algorithms. The first one is performing the rescanning
process (includes the first time rescanning). Due to the thresh-
old used for the pre-large itemsets, the incremental-based
algorithms reveal more itemsets in the rescanning process.
When the applied upper bound is not tight enough, there
will be a lot of candidates needed for evaluation. This is the
limitation of the incremental-based algorithms. Therefore,
it spends more time than the conventional mining method.
The second one is the updating process for some uncer-
tain itemsets (ex. check a pre-large itemset becomes a large
itemset or not), especially for the situation with the large
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FIGURE 6. The runtimes for APHAUP in the chess dataset with two
different incremental size.

scale of large itemsets and pre-large itemsets. It might spend
more computational costs than the ordinary scanning process.
From Figure 4(a), it represents the size of incremental data
is 600, and Figure 4(b) represents the size of incremental
data is 3,000. As we can see from the Figure 4(a), the min-
imal support (minimal average utility threshold) is set as
0.008, the rescanning process will be preformed after the
third insertion operation of the new dataset. Due to For-
mula 1, a bigger minimal support threshold causes a larger
safety bound. Thus, if we set a small threshold for applying
the incremental-based algorithm, the gap of the pre-large
threshold and minimal average utility threshold should be
increased. Otherwise, if the size of the incremental data is
large (such as in Figure 4(b)), the frequent rescanning process
will cause longer maintaining time and the total CPU time
will be longer than the normal mining process. Obviously,
the proposed novel upper-bound can effectively relieve the
punishment of the incremental-based algorithms. In accidents
and chess datasets, the performance of incremental Apriori
without lpub is distinctly worse than the other algorithms.

B. RUNTIME WITH DIFFERENT MINIMAL SUPPORT (HIGH
AVERAGE UTILITY THRESHOLD)
This section compares the runtime for the proposedAPHAPU
with different minimal supports (high average utility thresh-
old) in six real datasets. The experimental results are shown
in Figure 8. Among the figures, the data on the horizontal axis
represents the different minimal supports.

FIGURE 7. The runtimes for APHAUP in the retail dataset with two
different incremental size.

FIGURE 8. The runtimes for APHAUP with different minimal support.

The experimental results in this section show the runtime
of the original database. It is similar to the results in the pre-
vious section. Apriori(A,lpub) and Apriori(I,lpub) are both
good for some datasets, such as the mushroom, chess, and
accidents datasets. It should be noticed that these datasets are
dense type, as the same conclusion in the previous section.
Furthermore, it can be observed that with the increasing of
the minimal support, the runtime of the algorithm is gradually
reduced. This is because the larger the minimal support,
the fewer candidates will be produced. Note that the perfor-
mance of Apriori(I) in mushroom and chess datasets is very
poor. The reason is that since the Apriori(I) applies a loose
upper-bound and produces toomany candidate itemsets in the
newly inserted transactions (shown in Figure 9 and discussed
in the following session), each incremental process needs to
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FIGURE 9. The numbers of the candidate itemsets for APHAUP with
different minimal support.

evaluate a huge number of candidate itemsets. In this case,
rescan the whole dataset might spend less CPU time than the
incremental-based algorithms.

C. THE NUMBER OF CANDIDATES FOR PROPOSED
METHOD AND FUP-BASED MODEL
In the final part of the experimental results, the numbers
of candidates depending on whether using lpub in six real
datasets are shown in Figure 9. The definition of a candidate
is an itemset that needs to be calculated for the utility value
in the whole dataset. Due to the benefit of lead partial upper
bound (lpub), there are few itemsets needed to check for
the utility values in the updated dataset. Comparing with
Apriori-like approach, the cost of rescanning the whole
updated dataset is not huge for the Apriori(lpub) in some
datasets. It is very suitable to be applied in a stream environ-
ment. On the other hand, the traditional upper-bound cannot
select potential candidate itemsets precisely, especially for
mushroom and chess datasets. For those datasets, there is a
huge number of itemsets between two upper-bounds. Thus,
the traditional Apriori-like approach needs to perform the
evaluating process for a lot of unpromising itemsets no matter
in the original dataset or in the newly inserted dataset. Thus,
Apriori(I) has the worst performance in mushroom and chess
datasets and shown in the previous section.

VI. CONCLUSION
In this paper, we design an incremental insertion algorithm
based on the pre-large concept for high average-utility itemset
mining. Furthermore, we proposed two new upper-bounds
to reduce the size of candidates, respectively called pub and
lead-pub in the developed APHAUP algorithm. The results of
experiments showed that APHAUP with lead-pub can signif-
icantly reduce the execution time for updating the discovered
HAUIs compared to APHAUP with pub in dense datasets.
Moreover, the number of determined candidates is much less
than APHAUP with pub. It also showed that the pre-large
concept has the potential ability to improve the maintenance
performance for updating the discovered HAUIs. For the fur-
ther research issues, we will try to apply the pre-large concept
for more domains and applications in knowledge discovery.

Besides, we will also develop a new upper-bound based on
the pre-large concept in order to further enhance the mining
performance. In real-world situations, transaction deletion
and modification are also significant. They should also be
considered in the dynamic situations for the maintaining the
discovered HAUIs.
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