IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON UTILITY PATTERN MINING:
THEORETICAL ANALYTICS AND APPLICATIONS

Received February 29, 2020, accepted March 7, 2020, date of publication March 23, 2020, date of current version April 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982415

Incrementally Updating the Discovered
High Average-Utility Patterns With

the Pre-Large Concept

JIMMY MING-TAI WU"'!, QIAN TENG', JERRY CHUN-WEI LIN 2, (Senior Member, IEEE),

AND CHIEN-FU CHENG?3

!'School of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5063 Bergen, Norway
3Department of Computer Science and Information Engineering, Tamkang University, New Taipei City 25137, Taiwan

Corresponding author: Jerry Chun-Wei Lin (jerrylin @ieee.org)

This work was supported by the Western Norway University of Applied Sciences, Bergen, Norway.

ABSTRACT High average-utility itemset mining (HAUIM) is an extension of high-utility itemset mining
(HUIM), which provides a reliable measure to reveal utility patterns by considering the length of the mined
pattern. Some research has been conducted to improve the efficiency of mining by designing a variety of
pruning strategies and effective frameworks, but few works have focused on the maintenance algorithms
in the dynamic environment. Unfortunately, most existing works of HAUIM still have to rescan databases
multiple times when it is necessary. In this paper, the pre-large concept is used to update the discovered
HAUIs in the newly inserted transactions and reduce the time of the rescanning process. To further improve
the performance of the developed algorithm, two new upper-bounds are also proposed to decrease the number
of candidates for HAUIM. Experiments were performed to compare the previous Apriori-like method and
the proposed APHAUP algorithm with the two new upper-bounds in terms of the number of maintenance
patterns and runtime in several datasets. The experimental results show that the proposed APHAUP algorithm
has excellent performance and good potential to be applied in real applications.

INDEX TERMS Pre-large, high average-utility itemset mining, dynamic database, lead partial upper bound,

incremental.

I. INTRODUCTION

Knowledge discovery in database (KDD) [1]-[6] is a process
for extracting practical, novel, and potentially useful knowl-
edge from the original data while shielding users from the
tedious details of the original data. Algorithms in KDD can
be applied to many different applications, but in the KDD
process, security [7]-[11] and optimization [12] are the pri-
mary considerations, which have also been considered as an
emerging topics in recent decades. The Association rule min-
ing (ARM) [1] was the first significant algorithm to identify
frequent itemsets (FIs) based on minimum support and gen-
erate association rules (ARs) with the minimum confidence
threshold. The first Apriori method utilizes the generate-and-
test approach for mining ARs through a level-wise process.
The Apriori algorithm [1] follows the downward closure
property (DC), and thus many unpromising candidates can

The associate editor coordinating the review of this manuscript and
approving it for publication was Philippe Fournier-Viger.

66788 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

be ignored and reduced. To accelerate the mining perfor-
mance for discovering the set of Fls, some efficient data
structures have been studied and proposed, such as FP-
tree and FP-growth mining [13]. Moreover, many extensions
have provided the information needed in different knowledge
domains, like HUIM [14]-[16] or HAUIM [17], [18], based
on the Apriori-like DC property. Besides, the existing algo-
rithms have focused on processing the static databases. When
the capacity of the database is modified (such as transac-
tion insertion), the discovered knowledge becomes useless,
and the batch model is then processed to process the entire
database to retrieve the required information.

However, frequent itemset mining (FIM) only considers
the frequency of an item and assumes that all items occur at
most once in a transaction. Thus, FIM only reflects whether
an item occurs in a transaction. Many interesting factors, such
as weight and the unit profit of the items, are not consid-
ered in FIM. High-utility itemset mining (HUIM) [14], [16],
[19] has been considered to be an effective decision-making

VOLUME 8, 2020


https://orcid.org/0000-0003-3740-2102
https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0001-9096-8047

J. M.-T. Wu et al.: Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

IEEE Access

method for displaying profitable products and itemsets. That
is, the quantity and utility of the itemsets are concerned
to reveal the high-utility itemsets (HUIs). An item(set) is
called a HUI when its utility exceeds the predefined min-
imum utility threshold. However, HUIMs is not a trivial
task compared to the traditional FIM since it does not hold
the anti-monotonic property. In other words, the utility of
an itemset may be greater, equal, or smaller than the util-
ity of its supersets. To overcome this problem, Liu et al
subsequently implemented a transaction weighted utiliza-
tion (TWU) model [19] to retain the transaction-weighted
downward closure (TWDC) property. Therefore, it can fur-
ther reduce the search space for revealing HUISs. It first dis-
covers the set of the high transaction-weighted utilization
itemsets (HTWUIs), where each itemset in the HTWUIs
holds the upper bound utility value on the pattern by ensuring
the correctness and completeness of the final HUIs. Fur-
thermore, the traditional TWU model relies on the generate-
and-test approach; thus a huge amounts of candidates is
produced and evaluated. To solve this limitation by main-
taining the promising 1-itemsets in the tree structure, a high-
utility pattern (HUP)-tree [20] was proposed by Lin et al.
to decrease the computational costs. Then, the UP-growth+
approach [21] was introduced with the UP-tree structure to
efficiently reveal the HUIs. Liu et al. [22] subsequently pre-
sented a new utility-list (UL) to extract the k-HUIs quickly
based on the simple join operation. Several methods [15],
[20], [23]-[26] have been extensively studied and discussed,
and most of them focused on the TWU model to reveal HUISs.

Even though HUIM can find more information in the
decision-making proces rather than the ARM, the utility of
the pattern is increased along with the size of the itemset,
especially when the length of the pattern is very long. For
example, any combination with caviar can also be considered
as a HUI in a supermarket, which is not a realistic case in
practice. High average-utility itemset mining (HAUIM) [17]
was investigated to evaluate high average-utility patterns by
considering the length of an itemset. An itemset is considered
to be a HAUI while the value of utility divides the length of
the itemsets larger than the minimum utility threshold. This
approach offers another way to fairly estimate the utility of
the pattern. Hong et al. developed the TPAU algorithm [17] in
a level-wise way to reveal satisfactory HAUTISs. This approach
applies the average-utility upper bound value (auub) to hold
the downward closure property in order to discover the set of
the high-average-utility-upper-bound itemsets (HAUUBIS).
To improve mining performance, Lin et al. proposed the
high average utility pattern (HAUP) tree structure [27] to
maintain the 1-HAUUBISs in the compressed tree structure.
An average-utility-list (AU-list) structure was also proposed
through a simple join operation to generate the k-itemsets.
Numerous extensions of HAUIM [27], [28] have also been
explored and discussed to enhance the mining efficiency of
HAUISs. The limitation of the existing HUIM or HAUIM algo-
rithms were built on the maintenance of the static database,
but the storage sizes have changed dynamically in realistic

VOLUME 8, 2020

situations. In this article, we utilize the pre-large concept [29]
for efficiently handling incremental mining while some trans-
actions are inserted. Furthermore, we propose two new upper-
bounds to improve mining efficiency. Several contributions of

the developed algorithm are summarized below.
1) The pre-large Apriori-based APHAUI is presented

for transaction insertion, which is used to update
the discovered HAUIs effectively in the maintenance
progress.

2) A strict upper-bound called the partial upper bound
(pub) is designed to reduce the upper-bound utility
value of the itemsets. Besides, a smaller upper-bound
called Ipub is also proposed to reduce the size of can-
didates in the search space.

3) An equation is specified here to ensure that an addi-
tional database scan is not unnecessarily performed.
However, based on the designed APHAUI algorithm,
the up-to-date HAUIs can still be maintained effi-
ciently.

4) A linked-list structure is utilized in the designed algo-
rithm to ensure that each transaction is scanned at
most one time, thus reducing the number of multiple
database scans in the maintenance progress.

Il. LITERATURE REVIEW
This section introduces related works about HAUIM and
dynamic data mining.

A. HIGH (AVERAGE-)utility ITEMSET MINING

The fundamental association-rule mining algorithm is based
on two minimum thresholds to find the relationship between
the itemsets, thereby mining the association rules, and the
original algorithm is called Apriori [1]. However, Apriori
only works with binary databases; therefore, other factors,
such as weight, interestingness, importance, and quantity, are
ignored in traditional ARM. To find more meaningful infor-
mation from the discovered knowledge, HUIM (high-utility
itemset mining) [16], [19], [30] was designed to evaluate two
factors, unit profit and the number of items, to reveal useful
and meaningful utility patterns in the database. An itemset is
known to be a high utility itemset (HUI) if the utility of the
itemset is not smaller than the pre-defined minimum utility
threshold (count). Traditional HUIM cannot, however, solve
the problem of combined explosions. Therefore, the search
space is too large to find the required HUISs.

To solve this problem and limitation, a TWU model [19]
that maintains the high transaction-weighted utilization item-
sets (HTWUIs) is proposed to hold the downward clo-
sure property in the mining progress. A HTWUI contains
the upper-bound utility on the itemset, and therefore the
transaction-weighted downward closure (TWDC) property
is maintained for the correctness and completeness of the
discovered HUIs. Lin ef al. then proposed a HUP-tree [20]
to establish a compact tree structure for maintaining the
1-HTWUIs, which reduces the computational cost com-
pared to the level-wise approach. Moreover, utility pattern

66789



IEEE Access

J. M.-T. Wu et al.: Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

(UP)-growth+ [21] was proposed to apply the UP-tree struc-
ture and several pruning strategies for mining HUIs to
accelerate the mining efficiency. Besides, a utility-list (UL)-
structure and the HUI-Miner algorithm [15] were designed
to generate the k-candidate HUIs easily through a straight-
forward join operation. Several HUIM [15], [22]-[26] algo-
rithms have been extensively discussed, and most of them
focused on the TWU model to reduce the number of candi-
dates for mining the HUIs.

During HUIM, the value of the utility increases with the
length of the itemset. Thus, any combination with an itemset
with a very high utility value, for example, the caviar or
diamond, is also considered as a HUI, which is not reason-
able in real situations. High average-utility itemset mining
(HAUIM) [17], [27] was extended from HUIM regarding the
length of the itemset for evaluation. The first algorithm in
HAUIM was TPAU [17], which uses auub model to keep
the downward closure property and utilizes the Apriori-like
approach to find the set of HAUIs in a level-wise manner.
Lin er al. then presented a HAUP-tree [27] to keep the
l-itemsets in a compressed tree structure, thereby signifi-
cantly reducing the computational cost. Several extensions
of HAUIM [18], [28] were respectively studied and most of
them relied on the auub model to find the set of HAUISs.

B. DYNAMIC DATA MINING

For traditional pattern mining, including ARM [1],
HUIM [16], [19], and sequential pattern mining [4], they
focused on mining the meaningful patterns from the static
databases. In the case of the operations for the dynamic
environment, such as insertion, deletion, or modification, for
the batch-model algorithms, even if there is a small change
(i.e., tiny transactions 1-5 are inserted into the database),
they must rescan the updated database each time for pattern
maintenance. This is a costly progress since the discovered
knowledge in the previous stage cannot be re-used, and the
database is needed for multiple database scans to obtain
the updated information. Cheung et al. suggested the Fast
UPdate (FUP) concept [31] to handle dynamic data mining
for transaction insertion to reveal the up-to-date frequent
itemsets. According to the discovered information in the
original database and inserted transaction, it can be divided
into four cases for later maintenance. This concept has been
utilized in different domains for knowledge discovery, such
as ARM [32], sequential pattern mining [33], HUIM [34], and
HAUIM [35]. Although the FUP-based approach can handle
dynamic data mining, it still needs to rescan the database in
some cases, which is still inefficient for knowledge mainte-
nance.

To better maintain the discovered knowledge and avoid the
multiple database scans, Hong et al. developed the pre-large
concept [29], [36], which is used to set up two thresholds
for knowledge maintenance. These two thresholds (upper and
lower) are used to maintain not only the large itemsets (the
pattern count is no less than the default upper threshold)
but also the pre-large itemsets (the pattern count is between

66790

New records

N

f Large  Prelarge  Small \
Itemsets Itemsets Itemsets

Large
temsets | Case 1 Case 2 Case 3

Prelarge
Itemsets Case4 CaseS Case6

Original databases

Small
Itemsets | Case 7 Case 8 Case 9

FIGURE 1. Nine cases of the pre-large concept.

the upper and lower thresholds). Thus, the pre-large itemsets
will be maintained as the buffer to avoid multiple database
scans. An equation is also defined to determine whether
the number of the newly inserted transactions is less than
the safety bound. Thus, some cases for database rescans
can be avoided, but the completeness and correctness of the
discovered knowledge can still be maintained. There is also
an equation to determine whether the number of inserted
transactions is less than the safety bound. Figure 1 shows the
cases of the pre-large concept.

Incases 1, 5, 6, 8 and 9, the final results cannot be affected.
Furthermore, for cases 2 and 3, the amount of discovered
knowledge can be reduced and some new knowledge for cases
4 and 7 may be arisen. The itemsets are easily handled for
cases 2, 3 and 4 as the pre-large itemsets are kept. The safety
bond (f) of the pre-large concept is defined below.

(S, — S) x TUP
=|—|, 1
e S M)
in which f represents the safety bound by evaluating two
thresholds. S; is set as the lower support threshold, S, is set as
the upper threshold. Moreover, TU” is the transaction utility
in D.

Ill. PROPOSED INCREMENTAL APRIORI FRAMEWORK
FOR HAUI

This section describes the detailed algorithm of the pro-
posed method (Apriori-based HAUP with pre-large concept,
named APHAUP in this paper). The APHAUP is based on
Apriori-like approach [1] with the new upper bound val-
ues to early prune the unpromising candidates and reduce
the search space for revealing the satisfied itemsets in the
updating progress. First, to reduce the size of promising
itemsets, a strict upper-bound called partial upper bound
(pub) is designed. In the traditional Apriori-like approach,
the satisfied k-itemsets are then used to generate the (k+1)-
itemsets as the candidate patterns in the level-wise manner.
In APHAUP, an itemset called pubi (high pub itemset), which
means its utility is larger than the pub is developed here.

VOLUME 8, 2020



J. M.-T. Wu et al.: Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

IEEE Access

Second, APHAUP selects a subset from pubi, called Ipubi
(lead-pubi), for later mining progress. In fact, APHAUP pro-
duces these two sets at the same time, but it applies a smaller
upper-bound than pub. Therefore, Ipubis is a subset for pubis
in the proposed method. This smaller upper-bound is called
Ipub (lead-pub). The proposed Ipubi can further reduce the
size of the candidate itemsets effectively. Third, to make sure
that each transaction will be scanned at most one time in each
round, a linked list structure is proposed. Finally, the incre-
mental updating process is proposed to maintain the discov-
ered HAUISs, and the detailed definitions and algorithms for
each part will be described in the following subsections.

A. PARTIAL UPPER BOUND, PUB AND HIGH PARTIAL
UPPER BOUND ITEMSET, PUBI

For most existing algorithms [17], [27] in HAUIM, auub was
widely applied to reveal HAUIs. The maximal utility from a
transaction is definitely larger than the average utility from
any itemset and its superset in this transaction. However, tra-
ditional auub is too large thus many unpromising itemsets are
kept. This is because auub does not consider the itemset itself.
In other words, it is assumed that there are two itemsets A and
B in a transaction. The value of auub from this transaction for
A and B are the same, even though A # B. The proposed
pub was designed to solve this limitation and the detailed
definition is given below.

Definition 1: An active item (ai) and active itemset (ais)
in the proposed Apriori process are defined in the designed
algorithm.

In Apriori-like approach [1], the discovered large
k-itemsets are used to generate (k+1)-itemsets as the can-
didate patterns for evaluation. This means that if an item
does not exist in one of the large k-itemsets, then it is def-
initely not be included in its supersets such as (k+1)-itemsets.
In HAUIM, APHAUP follows the traditional Apriori-like
approach, and in each iteration, it generates the candidate
pubis where the length is n from the pubis included n-1 items.

Assuming that APHAUP handles the process to estimate
pubis where the length is n, then an active item (ai) in this
period indicates that this item at least exists in one of the pubi
where the length is (n-1). The definition of ais,, (active itemset
of the candidate pubis with the length is n) is defined as:

ais, = {ai €x ‘x € pubis"™! } , )

where pubis"~! is the pubis in which the length is (n-1).

For example, assume that the process of APHAUP shows
the pubis, {1,2}, {1,3}, and {2,3} in the previous iteration.
The active itemset of the candidate pubis where the length is
3isaisz = {1, 2, 3}.

The physical meaning of active items is that the following
process of APHAUP only considers the items in the ais. This
implies the closure property of pubi. If an itemset is a pubi,
then all of its subsets is also a pubi.

Definition 2: The remaining maximal utility of the active
itemset in a transaction is denoted as (rmua).

VOLUME 8, 2020

Assume an itemset I = {iy, i,...,I,} in a transaction
T = {ir,us}. It = {iz1, 02, ..., iz} is the purchase items
in this transaction, U; = {u; (i;1) = us1, Us, . . ., Uy} is the
corresponding utility for each item in this transaction, and the
active itemsets is ais. The rmua of i in t denoted as rmua(i, t),
which is defined as:

rmua(i, t) = max {u; (i) |i € (ais Nip) \ i} 3)

Definition 3: The partial maximal utility upper bound is
denoted as (pub) in a transaction.

Assume an itemset I = {iy, i,...,I,} in a transaction
T = {ir,us}. It = {iz1,ir2, ..., s} is the purchase items
in this transaction, U; = {u; (i;1) = us1, s, . . ., Uy} is the
corresponding utility for each item in this transaction, and the
active itemsets is ais. The pub of i in t is denoted as pb}, which
is defined as:

u(i,t) +m x rmua(i, t)

, ifrmua(i, t) > au(i, t)

(i 1) + a1
- .t ot .
pbi= "4 - At , if 0 <rmua(i, t) < au(i, t)
li| + 1
0, if rmua(i, t) = 0,

@

where m is the number of (ais N i) \ i.

Definition 4: The partial maximal utility upper bound is
denoted as (pub) in a transaction dataset.

Assume an itemset i and a transaction dataset D. The pub
of i in D is denoted as pb;, and defined as:

pbi =Y pb} )
teD

Lemma 1: The anti-monotonicity property of pub in a
transaction.

Assume an itemset I = {iy, i, ..., I,} in a transaction
T = {i,wu}, active itemsets = ais, and a superset of I,
I' = A{ii,izy...,0in,ins1s...,0p}, In which Vx €
{ing1, .., I} = x € ais\ I, such that rmu(I, T) > pb >
au(l’, T).

Proof:- 1 Cl' -.ifi' €iy > icijandifi¢i; > i ¢
ir. 1)
1) ifi ¢ iy — mu(i, 1) = pb} = au(i’, 1) = 0.
2) ifiei;andi ¢ iy — au(@,t) =0,
. 1fpb§ — u(l,t)+rr_z><rmua(z,t)_

[+m :
u(i,t)+mxrmua(i,t) < [iltmu(i,t)+mxtmu(i,t)

[ = —_—
pbi _ |i|+m |i|+)7l =
tmu(i, t).

i t _ u(i,)+rmua(it) .
o if pb; = Wt} .

t  __ uQ,t)+rmual, i|tmu(i, mu(i, o
b = T e - iy m
tmu(i, t).

pbl =0 < tmu(i, 1).
— tmu(i, t) > pb} > au(l, 1).
3) ifici;andi € i,
0 2) . tmui, 1) = pbi.

o if rmua(i, t) > au(i, t):
bt _u(i,t)y+mxrmua(i,t) __
PO =", T

66791



IEEE Access

J. M.-T. Wu et al.: Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

D et~ Ui, D+mxrmua(i,t)

|i[+m
~rmua(i, 1) > u(iz, OV € {ing1,-. -5 o}
D el ~on Wi, D+mxrmua(i,t) - el Ui 1)
s ) [i|4+m — n+o—n -
Zw=1~0 u(iw,1) — au(i/, t)

o

o if rmua((i, 1) < a1(4(i, 1):
t _ u(i,t)+rmua(i,t)
pb; = RS
crmua(i, t) < au(i, t)
. u(i,t)+rmua(i,t) u(i,t)+mxrmua(i,t)
lil+1 = [i[+m
o if rmua(i,t) = 0:

if i’ € i;, rmua(i, 1) is impossible as 0.

> au(i', t).

— tmu(i, t) > pb; > au(l, 1).

Lemma 2: The downward closure property of pub is given
below. Assume an itemset I = {iy, i», ..., iy} in a transaction
dataset D = {t1,12,...,1;}, active itemsets = ais, and a
superset of i, I’ = {i1,i2,...,in, intl, ..., 10}, in which
Vx € {int1, ..., 1o} = x € ais\ i, such that auub(i) > pb; >
au(i).

Proof: According to Lemma 1, tmu(i,t) > pbl >
au(i’,1),Vt € d. Accumulate all of the results from each
transaction in t, — auub(i) > pb; > au(i’).

The physical meaning of the downward closure property of
pub is that if the pb of an itemset is less than the predefined
threshold, then the average-utility of its superset is definitely
less than the threshold. Therefore, if there is an itemset in
which pb is less than the threshold, then it would not be
used to combine the new candidate itemset in the Apriori-like
process.

Definition 5: High partial upper bound itemset is denoted
as (pubi). Thus, if an itemset i is a high partial upper bound
itemset (pubi) and a predefined threshold is 7, then it indicates
that pb; > r.

By Lemma 2, the proposed APHAUP maintains a set of
pubi to generate the candidate itemsets. This technique has
ability to effectively reduce the search space.

B. LEAD PARTIAL UPPER BOUND LEAD-PUB AND LEAD
HIGH PARTIAL UPPER BOUND ITEMSET LEAD-PUBI
In this section, a subset of pubi is introduced to reduce the
search space of the candidate itemsets. This subset is called
the lead partial upper bound (lead-pub). A predefined order
of items in an itemset needs to be set to apply this technique.
Before giving the formal definitions, the concept of lead-
pub is described first. Assume that a predefined item order
[ is given and a candidate itemset I. = {iy, i2, ..., i,} and
follows the order /. In the Apriori-like process, this candidate
itemset must be made up of a set of pubi. This set of pubi is
i1, in, ooy in1 b i, B0y ooy ineny ind, ooy {2, 03, o0y B0} )
The first of this set is one of the lead-pubis. Due to this extra
limitation, a smaller upper bound than pub can be defined and
described in the following section, which can further reduce
the size of the candidate itemsets.

Definition 6: The remaining maximal utility of active
itemset in a transaction is denoted as (hrmua).

66792

Assume that an itemset I = {iy, io, ..., iy}, a transaction
T = {ir,us}. It = {iz1,ir2, ..., iz} is the purchase items
in this transaction, U; = {u; (i;1) = us1, U2, - .., Upy} 1S
the corresponding utility for each item in this transaction,
and the active itemsets is ais and a predefined item order
L = {ill, ilz, ...,ii,}. The lrmua of i in t is denoted as
Irmua(i, t), which is defined as follows.

Assume that i, = iiv, and set an itemset s = {iiv—i-l’

! ., il }, we can obtain that:

Lyyor -

lrmua(i, t) = max {u, ) |i € (aisNiyNs)\ i} . (6)

Definition 7: The lead partial maximal utility upper bound
is denoted as (lead-pub) in a transaction dataset.

Assume an itemset I = {iy, i, ..., I,} in a transaction
T = {i;,w}. iy = {is1, 42, ..., iy} is the purchase items
in this transaction, U, = {uy (iy1) = s1, e, - - ., U} 1S
the corresponding utility for each item in this transaction,
the active itemsets is ais, and a predefined item order L =
{i, &5, ..., ih}. The lead-pub of i int is denoted as Ipb}, which
is defined as:

u(i, t) +m x rmua(i, t)
lil +m
if Irmua(i, t) > au(i, t)

r_ i, t i, t

Ipb! = u(i, )—!—rmua(t, ) (7
lil + 1
if 0 < lrmua(i, t) < au(i, t)

0, if lrmua(i, t) =0

s

where m is the number of (ais N i; N s) \ i (the definition of s
is same as Definition 6).

Definition 8: The lead partial maximal utility upper bound
is denoted as (lead-pub) in a transaction dataset.

Assume that there is an itemset { and a transaction
dataset D, where the lead-pub of i in D is denoted as Ipb;,
which is defined as:

Ipb; = Z Ipb! (8)

teD

Definition 9: The lead high partial upper bound itemset
is denoted as (lead-pubi). Thus, if an itemset i is a lead
high partial upper bound itmeset (lead-pubi) and a predefined
threshold is r, then pb; > r.

The lead high partial upper bound itemset lead-pubi has
a similar definition to pubi. Therefore, lead-pubi also has the
downward closure property such as pubi. The set of lead-pubi
is a subset of the set of pubi due to the strict limitation than
pubi. It can further reduce the size of the candidate itemsets
in the proposed APHAUP.

IV. APRIORI-BASED HAUP WITH PRE-LARGE

CONCEPT, APHAUP

This section describes details about the proposed APHAUP.
It includes two parts: the first is the general scan for the input
dataset and the second part is the incremental process of the
proposed APHAUP method. APHAUP utilizes the proposed

VOLUME 8, 2020



J. M.-T. Wu et al.: Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

IEEE Access

rescan threshold to select the maintenance progress automat-
ically for incremental datasets. The proposed APHAUP also
applies the new proposed upper bounds (pub and lead-pub),
and it maintains two itemsets (pubi and lead-pubi) to reveal
all of the HAUslI in a transaction dataset. The detailed pseudo-
codes are respectively given in Algorithms 1 and 2.

Different from traditional HAUI mining, the incremental
process needs to set a pre-large itemsets threshold. In the
beginning, safety bound is set in line 3. APHAUP applies
auub to initialize pubi and lead-pubi. At this time, all of
the itemsets in pubi and lead-pubi have obtained 1-items.
The APHAUP also calculates the average utility for all the
itemsets (with 1-items) at the same time. Then, it is deter-
mined whether the average utility is larger than the high
average utility threshold or the pre-large utility threshold.
This progress is performed in lines 4-23. There is a while
loop for each iteration to reveal the high average itemsets
and pre-large itemsets in lines 24-47. In lines 26-28, each
itemset in lead-pubis is combined with the itemsets in pubis
to generate the candidate itemsets. Then, APHAUP scans the
dataset again to obtain the utility information for each itemset
in the candidate itemsets. Finally, at the end of this while
loop, APHAUP updates the set of pubis, lead-pubis, P, and
H . If pubis and lead-pubis are all empty set, then the loop is
going to be stopped and the process will output the HAUIS,
pre-large itemsets and the rescan threshold.

Algorithm 2 is the incremental process of the proposed
APHAUP framework. While an incremental dataset is added
in the original dataset, APHAUP performs the incremental
process to speed up the mining algorithm. First, APHAUP
maintains a rescan threshold r. After performing Algorithm 1,
a new rescan threshold would be set to control the process
to rescan the whole dataset again or perform the incremental
algorithm. This means that if the size of the incremental
dataset is less than r, then it is impossible for the itemsets
whose average utility is less than the pre-large threshold in
Algorithm 1 to be a HAUI after updating the utility informa-
tion. APHAUP updates the value r in line 2 and it is checked
whether the value is larger than 0. If the value is less than
0, then APHAUP performs Algorithm 1 to rescan the new
whole dataset to update the new P, H, and r (lines 9-11); if
not, then the incremental process performs Algorithm 1 for
the incremental dataset D’ to obtain the partial P’ and H’ (lines
4), and a rescan itemsets S is generated (line 5). S contains all
of the itemsets that are in (P U H) and not in (P’ U H). In the
end of the updating process in lines 6, APHAUP checks the
utility information of S in D’. In line 7, APHAUP uses P/,
H’ and S to update P and H. In line 13, the updating process
outputs the updated P, H, and r.

V. EXPERIMENTAL RESULTS

In this paper, a new upper-bound, called the partial
maximal utility upper-bound (pub) is proposed. In the new
algorithm (APHAUP) proposed in this paper, a smaller upper-
bound than pub is applied called lead high partial maximal
utility upper-bound (Ipub). The proposed Ipub can effectively

VOLUME 8, 2020

Algorithm 1 Apriori-Based HAUP With Pre-Large Concept

Input: a transaction dataset, D,
a high average utility threshold, at,
and a pre-large utility threshold, pt.
Output: a set of pre-large itemsets, P,
a set of HAUI, H,
and a rescan threshold, r.
set H = () for HAUISs;
set P = () for PreLarge Itemsets;
count rescan threshold r for D by formula (1);
for each transaction ¢ in D do
find maximal utility m in ¢;
for each item i in ¢ do
flil = Ali] + m;
au(i) = au(i) + u(i, t);
end for
end for
. if au(i) > at then
H <« i
. else if au(i) > pt then
P <« i
: end if
. set pubis < (;

IR

N g
BN

17: set lead-pubis < J;

18: for each item i do

19: if A[i] > pt then

20: pubis < i

21: lead-pubis < i,

22: end if

23: end for

24: while pubis # ) and lead-pubis # ¢ do
25: set C = ¢ for the candidate itemsets;
26: for each itemset e in lead-pubis do
27: search (combine) pubis by e to generate candidate

itemsets — C
28: end for
29: set pubis < (0,
30: set lead-pubis < {;

31: for each transaction 7 in D do

32: scan utility information for each candidate item-
setin t;

33: end for

34: for each candidate itemset ¢ in C do

35: if pb. > p then

36: pubis < c;

37: end if

38: if I[pb. > p then

39: lead-pubis < c;

40: end if

41: if au(c) > at then

42: H <« c;

43: else if au(c) > pt then

44: P <« c¢;

45: end if

46: end for

47: end while
48: return P, H, r;

reduce the size of the candidate itemsets. This section
describes two implementations of the proposed APHAUP,

66793



IEEE Access

J. M.-T. Wu et al.:

Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

Algorithm 2 Incremental Process for APHAUP

Input: a incremental transaction dataset, D',
a set of pre-large itemsets, P,
a set of HAUI, H,
a remaining rescan threshold, r,
a high average utility threshold, ar
and a pre-large utility threshold, pt.
Output: a set of updated pre-large itemsets, P,
a set of updated HAUI, H,
and updated rescan threshold, r.
. inc = the size of the input D';
: update r = r — inc;
. if r > 0 then
apply Algorithm 1 for D/,
P', H';(ignore r’)
S <~ (PUH)N ~

AW =

at and pt obtain

5 (PPUH";

6: scan utility information for S in D’;

7: update P, H from P, H,P',H', S

8: else

9 update D < D + D/,

rescan whole dataset by Algorithm 1 for D, r and p;
11: update P, H, r;

. end if

13: return P, H, r;

TABLE 1. Characteristics of used datasets.

Dataset #|D]| #1] AvgLen | Type

retail 88,162 16,470 10 sparse

foodmart 21,557 1,559 4 sparse

BMS 59,602 497 2.5 sparse

mushroom 8,124 119 23 dense

chess 3,196 75 37 dense

accidents 34,018 468 34 dense

one is with the I[pub and another is without the Ipub. Besides,
the proposed APHAUP was separated into two different
experiments, one is performed for the incremental process
and utilized the pre-large concept while another is used to res-
can the whole dataset when the size of the dataset is increased
with some new transactions. The experimental results will
show the performance of APHAUP with six different real
datasets [37] using different parameter settings. The datasets
and their characteristics are shown in Table 1. All the algo-
rithms were implemented in Java language and executed on
a computer equipped with an Intel(R) Core (TM) i5-5257U
2.7 GHz processor and 8 GB main memory, running on the
MacOS Mojave operating system.

A. RUNTIME WITH DIFFERENT INCREMENTAL SIZE

In this section, the runtimes of the proposed APHAUP with
different scales of sizes for the incremental data in six real
datasets are compared. The experimental results are shown
in Figures 2 to 7. Among them, Apriori(A) is the algorithm
that applies Algorithm 1 to scan the whole dataset when
the incremental data is inserted in the original dataset but

66794

mushroom(81) 0.030

[ mushroom(81) 0.032

mushroom(81) 0.034

9000

6000

3000

%%
%

7500

5000

2500+

L/

8200 8300 8400

15000

10000

5000

0

] 8200 8300 8400 8200 8300 8400
[ mushroom(81) 0.036 ‘ ‘ mushroom(81) 0.038 mushroom(81) 0.040
8000 5000
6000+ |
6000 | 4000
- | 3000
4000 | 4000
2000 2000
2000 | 1000
0 ; ; : 0- ! 0
8200 8300 8400 8200 8300 8400 8200 8300 8400
Size
Method e Apriori(A) 4 Apriori(A, Ipub) = Apriori(l) + Apriori(l, Ipub)
(@)
mushroom(405) 0.030 ‘ mushroom(405) 0.032 mushroom(405) 0.034
15000 |
10000 75001
10000 | 5000+
5000
5000 | 2500+
] 8500 9000 9500 8500 9000 9500 8500 9000 9500
[ mushroom(405) 0.036 mushroom(405) 0.038 mushroom(405) 0.040

6000

4000

2000

M
?lik

8500 9000 9500

Method e Apriori(A)

4000
3000
2000
1000

ﬁ

8500 9000 9500
Size

3000+

2000+

1000+

8500 9000 9500

4 Apriori(A, Ipub) ®  Apriori(l) + Apriori(l, Ipub)

(b)

FIGURE 2. The runtimes for APHAUP in the mushroom dataset with two

different incremental size.

foodmart(215) 0.0010

‘ foodmart(215) 0.0012 ‘

foodmart(215) 0.0014

8

000 gt 2——p—2 . 4 —p—2— 2 M
1500 | 100
150+
1000 | 80
500 | 100+ |
0 ‘ : ‘ | % ‘ ‘ ]
g 21750 22000 22250 21750 22000 22250 21750 22000 22250
= foodmart(215) 0.0016 ‘ ‘ foodmart(215) 0.0018 ‘ foodmart(215) 0.0020
120 | 8o [
100
60+ | 60
80
60 0 | © M
21%50 22"300 22é50 21%50 22600 22é50 21‘750 22600 22é50
Size
Method e Apriori(A) 4 Apriori(A, Ipub) ® Apriori(l) + Apriori(l, Ipub)
(a)
foodmart(1075) 0.0010 ‘ foodmart(1075) 0.0012 ‘ ‘ foodmart(1075) 0.0014
6000 I 175
2000
4000 | 1500 150
125+
2000 | 1000
500 100+
g 22600 23600 24[‘700 25600 QGdOD 22’500 23600 24600 25600 26600 22600 23’500 24600 25600 2660
(= foodmart(1075) 0.0016 | foodmart(1075)0.0018 | | foodmart(1075) 0.0020
100 |
100 % 90+
75 60 | 604
50 20 W w0 M

22000 23000 24000 25000 26000

Method e  Apriori(A)

22000 23000 24000 25000 26000
Size

(d)

22000 23000 24000 25000 26000

4 Apriori(A, Ipub) = Apriori(l) + Apriori(l, Ipub)

FIGURE 3. The runtimes for APHAUP in the foodmart dataset with two

different incremental size.

does not use /pub, Apriori(I) is the algorithm that is the pro-
posed APHAUP with the incremental process (Algorithm 2)

VOLUME 8, 2020



J. M.-T. Wu et al.: Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

IEEE Access

BMS(600) 0.008 ‘ BMS(600) 0.010 BMS(600) 0.012

600
i PR N~

400 300 300
200 200
200
100 100
0 0 L —— . -
o 59500 60000 60500 61000 61500 62000 59500 60000 60500 61000 61500 62000 59500 60000 60500 61000 61500 62000
£
= BMS(600) 0.014 ‘ BMS(600) 0.016 BMS(600) 0.018
400 300 18— ——
p—e o : 300 : : S .
300 200
200 200
100 100 10
[EE — * o | - » ——u| 0¥ L - —
59500 60000 60500 61000 61500 62000 59500 60000 60500 61000 61500 62000 59500 60000 60500 61000 61500 62000
Size

Method e Apriori(A) 4 Apriori(A, Ipub) = Apriori(l) + Apriori(l, Ipub)

()

BMS(3000) 0.008 ‘ BMS(3000) 0.010 BMS(3000) 0.012

600 00 400 W‘

400 300 300
200 200
200 100 100

0 0
60000 63000 66000 69000 72000 60000 63000 66000 69000 72000 60000 63000 66000 69000 72000

Time

BMS(3000) 0.014 ‘ BMS(3000) 0.016 BMS(3000) 0.018

400
: > 300 27_.,/\1 300 ‘A_._<!

300

200 200

200
100 100 100
0 0 0

60000 63000 66000 69000 72000 60000 63000 66000 69000 72000 60000 63000 66000 69000 72000
Size

Method e Apriori(A) 4 Apriori(A, Ipub) = Apriori(l) + Apriori(l, Ipub)
(b)

FIGURE 4. The runtimes for APHAUP in the BMS dataset with two
different incremental size.

but does not use lpub, Apriori(A,lpub) is the algorithm that
applies Algorithm 1 to scan the whole dataset when the
incremental data is inserted in the original dataset, Apri-
ori(L/pub) is the algorithm that is the proposed APHAUP
with the incremental process (Algorithm 2), the numbers
on the top of the figures are the minimal support (minimal
average utility threshold), and the numbers in brackets are the
different scales of sizes for the incremental data.

First, we focus on the comparisons of Apriori(A) and
Apriori(A,lpub). This shows the good performance of the
proposed lead high partial upper bound. In most real datasets,
Apriori(A,lpub) has obtained better runtime than the Apri-
ori(A), especially in datasets that has a high density or a huge
number of transactions, such as the mushroom and the acci-
dents datasets. However, in some sparse datasets such as the
foodmart and the BMS datasets, the Apriori(A,lpub) has no
obvious advantage over Apriori(A). From this, it can be con-
cluded that a dense database is suitable for Apriori(A,lpub),
but for sparse databases, the difference between the two
algorithms is not obvious. The reason for this result is that
in the sparse datasets, the Apriori(A,lpub) does not reduce
the size of candidate itemsets but result in additional calcu-
lations. Thus, it needs more computational cost to find the
required information. Second, Aprioir(I) (incremental mode)
could handle incremental situations and reduce the runtime
effectively. Apriori(I) suffered from many database rescans
(rescanning the whole dataset) in a large scale incremental
environment. For example, in Figure 4(a), Apriori(I) almost

VOLUME 8, 2020

accidents(3400) 0.040

accidents(3400) 0.042
4e+05 1
3e+05 /| 2e+05-

2e+05

accidents(3400) 0.044

6e+05

4e+05

26405 10205 1e+057
.

il
i
ul

0e+00 14 - - 0e+00 44 - - 0e+00 -4 - -
340000 345000 350000 340000 345000 350000 340000 345000 350000

Q
£
= accidents(3400) 0.046 | accidents(3400) 0.048 | [ accidents(3400) 0.050
150000
150000 | 900004
100000 |
000004, o, . /A - 60000
50000 ‘4 | 50000 ‘; | 30000+
014 - - | 044 - - | 0-4 - .
340000 345000 350000 340000 345000 350000 340000 345000 350000
Size
Method e Apriori(A) 4 Apriori(A, Ipub) = Apriori(l) + Apriori(l, Ipub)
(@
accidents(17000) 0.040 | accidents(17000) 0.042 | accidents(17000) 0.044
6e+05 | 4e+05 | 3e+05
3e+05 |
4e+05 | 2e+05
26405 |
26405 | tes0s | 1e+05
06+00 | 0e+00 | 0e+00
qE) 340000 360000 380000 400000 340000 360000 380000 400000 340000 360000 380000 400000
= accidents(17000) 0.046 | accidents(17000) 0.048 | accidents(17000) 0.050

200000 130000

150000 150000 110000

100000 125000 90000

50000 100000 70000

1

bl

I

004 : ; } 0004 ; : v
340000 360000 380000 400000 340000 360000 380000 400000

Size

04, v v v
340000 360000 380000 400000

Method e Apriori(A) 4 Apriori(A, Ipub) ® Apriori(l) + Apriori(l, lpub)
(®)

FIGURE 5. The runtimes for APHAUP in the accidents dataset with two
different incremental size.

performs the updating progress immediately. In Figure 4(b),
the Apriori(I) rescanned the whole dataset several times
because the size of incremental data is larger than the rescan
threshold. It is worth to notice that the runtime of the rescan
process for the Apriori(I) is always larger than Apriori(A).
The reason is since Apriori(I) needs to apply a pre-large
threshold, and it causes the proposed Apriori(I) to maintain
more itemsets during the mining process. Moreover, it needs
to perform the mining process for the new utility information
and the original one to obtain the updated utility informa-
tion for maintenance. For the same reason, the runtime of
the rescan process of Apriori(L,/pub) is always larger than
Apriori(A,lpub). In some cases, the performance of Apriori(I)
is worse than Apriori(A) (in Figure 2). However, the perfor-
mance of Apriori(I,[pub) is still better than Apriori(I).

Next, the influence of different threshold settings is dis-
cussed. There are two bad influences for the incremental-
based algorithms. The first one is performing the rescanning
process (includes the first time rescanning). Due to the thresh-
old used for the pre-large itemsets, the incremental-based
algorithms reveal more itemsets in the rescanning process.
When the applied upper bound is not tight enough, there
will be a lot of candidates needed for evaluation. This is the
limitation of the incremental-based algorithms. Therefore,
it spends more time than the conventional mining method.
The second one is the updating process for some uncer-
tain itemsets (ex. check a pre-large itemset becomes a large
itemset or not), especially for the situation with the large

66795



IEEE Access

J. M.-T. Wu et al.: Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

chess(31) 0.0570 chess(31) 0.0575 chess(31) 0.0580
36405
30405
| 2405
20405 | 2405
16405 | 1e+05 | 1e+05
0:+00 | etk | (1 0() | Btk | (1.0 ek |
qE) 3200 3240 3280 3320 3200 3240 3280 3320 3200 3240 3280 3320
= chess(31) 0.0585 chess(31) 0.0590 chess(31) 0.0595
2000 |
0000 150000 | 150000
150000 |
| 100000
100000 | 100000
50000 | 50000 | 50000
0-{a - - .| 0-{# - - 3 0w - - 3
3200 3240 3280 3320 3200 3240 3280 3320 3200 3240 3280 3320
Size

Method e Apriori(A) 4 Apriori(A, Ipub) = Apriori(l) + Apriori(l, Ipub)
(@)

chess(155) 0.0575 \ chess(155) 0.0580 \

l—'\-—u\. 5000 l’/‘.\._.\.
5000

chess(155) 0.0570 \
6000 W—p— 5 u

5000 | ./\0—0—4 4000
4000 |
4000 | w00 3000
3000 | 2000
2000 | 2000 %
3200 3400 3600 3800 3200 3400 3600 3800 3200 3400 3600 3800

Time

chess(155) 0.0585 | chess(155) 0.0590 | chess(155) 0.0595 |
5000 1
4000 |
/\‘\"' 3000 |
4000 |
*/“\‘\‘_\‘ 3000 | 2500 |
3000 |

2000

2000

2000 | 1500 |
3200 3400 3600 3800 3200 3400 3600 3800 3200 3400 3600 3800
Size

Method e Apriori(A) 4 Apriori(A, Ipub) = Apriori(l) + Apriori(l, Ipub)
(b)

FIGURE 6. The runtimes for APHAUP in the chess dataset with two
different incremental size.

scale of large itemsets and pre-large itemsets. It might spend
more computational costs than the ordinary scanning process.
From Figure 4(a), it represents the size of incremental data
is 600, and Figure 4(b) represents the size of incremental
data is 3,000. As we can see from the Figure 4(a), the min-
imal support (minimal average utility threshold) is set as
0.008, the rescanning process will be preformed after the
third insertion operation of the new dataset. Due to For-
mula 1, a bigger minimal support threshold causes a larger
safety bound. Thus, if we set a small threshold for applying
the incremental-based algorithm, the gap of the pre-large
threshold and minimal average utility threshold should be
increased. Otherwise, if the size of the incremental data is
large (such as in Figure 4(b)), the frequent rescanning process
will cause longer maintaining time and the total CPU time
will be longer than the normal mining process. Obviously,
the proposed novel upper-bound can effectively relieve the
punishment of the incremental-based algorithms. In accidents
and chess datasets, the performance of incremental Apriori
without lpub is distinctly worse than the other algorithms.

B. RUNTIME WITH DIFFERENT MINIMAL SUPPORT (HIGH
AVERAGE UTILITY THRESHOLD)

This section compares the runtime for the proposed APHAPU
with different minimal supports (high average utility thresh-
old) in six real datasets. The experimental results are shown
in Figure 8. Among the figures, the data on the horizontal axis
represents the different minimal supports.

66796

retail(882) 0.014

retail(882) 0.016 \ retail(882) 0.018

1 500 ~

600

?{
ﬁ

400 | 400
400 | 300 | 300
2 | 200
200 | 200
100 | 100
0 1 - - 0 ’ : - I o : : -
g 88000 89000 90000 91000 88000 89000 90000 91000 88000 89000 90000 91000
[= retail(882) 0.020 \ retail(882) 0.022 \ retail(882) 0.024 \
S0 A——— | Rl P ————— ] ————— —
400 | 400 | a00 |
300 | 300 | 300
200 | 200 | 200
100 | 100 | 100
o{————————a ———a———a . : -
88000 89000 90000 91000 88000 89000 90000 91000 88000 89000 90000 91000
Size

Method e Apriori(A) 4 Apriori(A, Ipub) = Apriori(l) + Apriori(l, Ipub)
(@)

retail(4410) 0.016 \

relall(4410) 0.014

retail(4410) 0.018

600
400

400 |
300
200 200 200 |
100
0

0 0
90000 95000 100000 105000 90000 95000 100000 105000 90000 95000 100000 105000

H

Time

retail(4410) 0.020
500 A/‘ 5009 &

_——4 500 |

—
400 | 400 | 400 |
300 | 300 | 300 |
200 | 200 | 200 |
100 | 100 | 100 |
0 | |

‘ ; v T 0 0 : ; v g
90000 95000 100000 105000 90000 95000 100000 105000 90000 95000 100000 105000
Size

retail(4410) 0.022 retail(4410) 0.024

Method e Apriori(A) 4 Apriori(A, Ipub) ® Apriori(l) + Apriori(l, Ipub)
(b)

FIGURE 7. The runtimes for APHAUP in the retail dataset with two
different incremental size.

(a) retail ‘ ‘ (b) mushroom ‘ (c) foodmart ‘
3000 ] 12500
——t——— 000- | 10000
2000 | 300004 | 7500
20000+ | 5000
1000 [ 10000 \\% 2500
- . . . : T 0
) 0.014 0.016 0.018 0.020 0.022 0.024 0.0300 0.0325 0.0350 0.0375 0.0400 0. 001 000. UOT 250. 001500 001 750. 00200
£
= (d) chess | \ (e) BMS | (f) accidents

1e+05 | 1000

3e+05 -\-\‘\_\_\- ]
2e+05 | 2000+

f 2”

| 2500000
2000000 |
| 1500000 |
1000000 |
500000 |

0.0100 0.0125 0.0150 0.0175 ODLNJD 00‘425 00‘450 OOLWS 00500
Threshold

0e+00 % v v i v i
0.05700.05750.05800.05850.05900.0595

Method e Apriori(A) 4 Apriori(A, lpub) ® Apriori(l) + Apriori(l, Ipub)

FIGURE 8. The runtimes for APHAUP with different minimal support.

The experimental results in this section show the runtime
of the original database. It is similar to the results in the pre-
vious section. Apriori(A,lpub) and Apriori(L,lpub) are both
good for some datasets, such as the mushroom, chess, and
accidents datasets. It should be noticed that these datasets are
dense type, as the same conclusion in the previous section.
Furthermore, it can be observed that with the increasing of
the minimal support, the runtime of the algorithm is gradually
reduced. This is because the larger the minimal support,
the fewer candidates will be produced. Note that the perfor-
mance of Apriori(I) in mushroom and chess datasets is very
poor. The reason is that since the Apriori(I) applies a loose
upper-bound and produces too many candidate itemsets in the
newly inserted transactions (shown in Figure 9 and discussed
in the following session), each incremental process needs to

VOLUME 8, 2020



J. M.-T. Wu et al.: Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

IEEE Access

(a) retail (b) mushroom (c) foodmart
2.00408
15000
106 1.50408
10000
1.00+08
56405
5000 I 5.00407
o Ilna. B
g 1.40% 1.60% 1.80% 2.00% 2.20% 240% 3.007% 3.20% 3.40% 8.60% 3.80% 4.00% 0.10% 0.127% 0.14% 0.16% 0.16% 0.20%
s
S (d) chess (e) BMS ‘ (f) accidents
© 1000000
750000 20405 20406
500000
16405 10406
250000 I I I I
U““““M““I‘-‘-‘_‘ “5‘”““.‘-‘-‘_‘
5.70% 5.75% 5.80% 5.85% 5.90% 5.95% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 4.00% 4.20% 4.40% 4.60% 4.80% 5.00%
Threshold

method [ll Apriori [l Apriori(lpub)

FIGURE 9. The numbers of the candidate itemsets for APHAUP with
different minimal support.

evaluate a huge number of candidate itemsets. In this case,
rescan the whole dataset might spend less CPU time than the
incremental-based algorithms.

C. THE NUMBER OF CANDIDATES FOR PROPOSED
METHOD AND FUP-BASED MODEL

In the final part of the experimental results, the numbers
of candidates depending on whether using Ipub in six real
datasets are shown in Figure 9. The definition of a candidate
is an itemset that needs to be calculated for the utility value
in the whole dataset. Due to the benefit of lead partial upper
bound (lpub), there are few itemsets needed to check for
the utility values in the updated dataset. Comparing with
Apriori-like approach, the cost of rescanning the whole
updated dataset is not huge for the Apriori(Ipub) in some
datasets. It is very suitable to be applied in a stream environ-
ment. On the other hand, the traditional upper-bound cannot
select potential candidate itemsets precisely, especially for
mushroom and chess datasets. For those datasets, there is a
huge number of itemsets between two upper-bounds. Thus,
the traditional Apriori-like approach needs to perform the
evaluating process for a lot of unpromising itemsets no matter
in the original dataset or in the newly inserted dataset. Thus,
Apriori(I) has the worst performance in mushroom and chess
datasets and shown in the previous section.

VI. CONCLUSION

In this paper, we design an incremental insertion algorithm
based on the pre-large concept for high average-utility itemset
mining. Furthermore, we proposed two new upper-bounds
to reduce the size of candidates, respectively called pub and
lead-pub in the developed APHAUP algorithm. The results of
experiments showed that APHAUP with lead-pub can signif-
icantly reduce the execution time for updating the discovered
HAUIs compared to APHAUP with pub in dense datasets.
Moreover, the number of determined candidates is much less
than APHAUP with pub. It also showed that the pre-large
concept has the potential ability to improve the maintenance
performance for updating the discovered HAUIs. For the fur-
ther research issues, we will try to apply the pre-large concept
for more domains and applications in knowledge discovery.

VOLUME 8, 2020

Besides, we will also develop a new upper-bound based on
the pre-large concept in order to further enhance the mining
performance. In real-world situations, transaction deletion
and modification are also significant. They should also be
considered in the dynamic situations for the maintaining the
discovered HAUIS.

REFERENCES

[1] R.Agrawal and R. Srikant, “Fast algorithms for mining association rules,”
in Proc. Int. Conf. Very Large Data Bases, vol. 1215, 1994, pp. 487-499.

[2] M.-S. Chen, J. Soo Park, and P. S. Yu, “Efficient data mining for
path traversal patterns,” IEEE Trans. Knowl. Data Eng., vol. 10, no. 2,
pp. 209-221, Mar. 1998.

[3] Z.-H. Deng and S.-L. Lv, “Fast mining frequent itemsets using nodesets,”
Expert Syst. Appl., vol. 41, no. 10, pp. 45054512, Aug. 2014.

[4] W.Gan,J.C. W. Lin, P. Fournier-Viger, H. C. Chao, and P. S. Yu, ““A survey

of parallel sequential pattern mining,” ACM Trans. Knowl. Discovery

Data, vol. 3, no. 3, pp. 1-34, 2019.

Z. Ling, T. Zengrui, and N. Metawa, “Data mining-based competency

model of innovation and entrepreneurship,” J. Intell. Fuzzy Syst., vol. 37,

no. 1, pp. 35-43, Jul. 2019.

Z.Zhao, C. Li, X. Zhang, F. Chiclana, and E. H. Viedma, “An incremental

method to detect communities in dynamic evolving social networks,”

Knowl.-Based Syst., vol. 163, pp. 404—415, Jan. 2019.

[7] C.-M. Chen, B. Xiang, Y. Liu, and K.-H. Wang, “A secure authentication
protocol for Internet of vehicles,” IEEE Access, vol. 7, pp. 12047-12057,
2019.

[8] T.-Y. Wu, C.-M. Chen, K.-H. Wang, C. Meng, and E. K. Wang, ““A provably

secure certificateless public key encryption with keyword search,” J. Chin.

Inst. Eng., vol. 42, no. 1, pp. 20-28, Jan. 2019.

L. Nj, F. Tian, Q. Ni, Y. Yan, and J. Zhang, “An anonymous entropy-based

location privacy protection scheme in mobile social networks,” EURASIP

J. Wireless Commun. Netw., vol. 2019, no. 1, pp. 1-19, Dec. 2019.

[10] X.Wang, S.-J.Ji, Y.-Q. Liang, H.-F. Leung, and D. K. W. Chiu, “An unsu-
pervised strategy for defending against multifarious reputation attacks,”
Int. J. Speech Technol., vol. 49, no. 12, pp. 4189-4210, Dec. 2019.

[11] C.-M. Chen, Y. Huang, K.-H. Wang, S. Kumari, and M.-E. Wu, “A secure
authenticated and key exchange scheme for fog computing,” Enterprise
Inf. Syst., pp. 1-16, Jan. 2020, doi: 10.1080/17517575.2020.1712746.

[12] Z. Meng, J.-S. Pan, and K.-K. Tseng, ““PaDE: An enhanced differential
evolution algorithm with novel control parameter adaptation schemes
for numerical optimization,” Knowl.-Based Syst., vol. 168, pp. 80-99,
Mar. 2019.

[13] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,” Data Mining
Knowl. Discovery, vol. 8, no. 1, pp. 53-87, Jan. 2004.

[14] W. Gan, C.-W. Lin, P. Fournier-Viger, H.-C. Chao, V. Tseng, and P. Yu,
“A survey of utility-oriented pattern mining,” IEEE Trans. Knowl. Data
Eng., early access, Sep. 20, 2019, doi: 10.1109/TKDE.2019.2942594.

[15] M. Liu and J. Qu, “Mining high utility itemsets without candidate gener-
ation,” in Proc. 21st ACM Int. Conf. Inf. Knowl. Manage. (CIKM), 2012,
pp. 55-64.

[16] H. Yao, H.J. Hamilton, and C. J. Butz, ‘A foundational approach to mining
itemset utilities from databases,” in Proc. SIAM Int. Conf. Data Mining,
Apr. 2004, pp. 215-221.

[17] T.-P. Hong, C.-H. Lee, and S.-L. Wang, “Effective utility mining with
the measure of average utility,” Expert Syst. Appl., vol. 38, no. 7,
pp. 8259-8265, Jul. 2011.

[18] G.C.Lan, T.P. Hong, and V. S. Tseng, “Efficiently mining high average-
utility itemsets with an improved upper-bound strategy,” Int. J. Inf. Tech-
nol. Decis. Making, vol. 11, no. 5, pp. 1009-1030, 2012.

[19] Y. Liu, W. K. Liao, and A. Choudhary, “A two-phase algorithm for fast
discovery of high utility itemsets,” in Proc. Pacific-Asia Conf. Adv. Knowl.
Discovery Data Mining, 2005, pp. 689—695.

[20] C.-W. Lin, T.-P. Hong, and W.-H. Lu, “An effective tree structure for min-
ing high utility itemsets,” Expert Syst. Appl., vol. 38, no. 6, pp. 7419-7424,
Jun. 2011.

[21] V.S. Tseng, B.-E. Shie, C.-W. Wu, and P. S. Yu, “Efficient algorithms for
mining high utility itemsets from transactional databases,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 8, pp. 1772-1786, Aug. 2013.

[5

—

[6

—

9

—

66797


http://dx.doi.org/10.1080/17517575.2020.1712746
http://dx.doi.org/10.1109/TKDE.2019.2942594

IEEE Access

J. M.-T. Wu et al.: Incrementally Updating the Discovered High Average-UPs With the Pre-Large Concept

[22] J. Liu, K. Wang, and B. C. M. Fung, “Direct discovery of high utility
itemsets without candidate generation,” in Proc. IEEE 12th Int. Conf. Data
Mining, Dec. 2012, pp. 984-989.

[23] J. Liu, K. Wang, and B. C. M. Fung, “Mining high utility patterns in
one phase without generating candidates,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 5, pp. 1245-1257, May 2016.

[24] J. M.-T. Wu, J. C.-W. Lin, and A. Tamrakar, “High-utility itemset mining
with effective pruning strategies,” ACM Trans. Knowl. Discovery Data,
vol. 13, no. 6, pp. 1-22, Dec. 2019.

[25] S. J. Yen and Y. S. Lee, “Mining high utility quantitative association
rules,” in Proc. Int. Conf. Data Ware Housing Knowl. Discovery, 2007,
pp. 283-292.

[26] S. Zida, P. Fournier-Viger, J. C.-W. Lin, C.-W. Wu, and V. S. Tseng,
“EFIM: A fast and memory efficient algorithm for high-utility itemset
mining,” Knowl. Inf. Syst., vol. 51, no. 2, pp. 595-625, May 2017.

[27] C. W. Lin, T. P. Hong, and W. H. Lu, “Efficiently mining high average
utility itemsets with a tree structure,” in Proc. Asian Conf. Intell. Inf.
Database Syst. Hue City, Vietnam: Springer, 2010, pp. 131-139.

[28] J. C.-W. Lin, S. Ren, P. Fournier-Viger, and T.-P. Hong, “EHAUPM:
Efficient high average-utility pattern mining with tighter upper bounds,”
IEEE Access, vol. 5, pp. 12927-12940, 2017.

[29] T.-P. Hong, C.-Y. Wang, and Y.-H. Tao, “A new incremental data mining
algorithm using pre-large itemsetsl,” Intell. Data Anal., vol. 5, no. 2,
pp. 111-129, Mar. 2001.

[30] A.Erwin, R. P. Gopalan, and N. Achuthan, “Effcientmining of high utility
itemsets from large datasets,” in Proc. Pacific-Asia Conf. Adv. Knowl.
Discovery Data Mining. Suzhou, China: Springer, 2008, pp. 554-561.

[31] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong, ‘“Maintenance of
discovered association rules in large databases: An incremental updating
technique,” in Proc. 12th Int. Conf. Data Eng., 1996, pp. 106-114.

[32] T.P.Hong, C. W. Lin, and Y. L. Wu, “Incrementally fast updated frequent
pattern trees,” Expert Syst. Appl., vol. 34, no. 4, pp. 2424-2435, 2008.

[33] C.-W. Lin, T.-P. Hong, W.-Y. Lin, and G.-C. Lan, “Efficient updating of
sequential patterns with transaction insertion,” Intell. Data Anal., vol. 18,
no. 6, pp. 1013-1026, Oct. 2014.

[34] C.-W. Lin, G.-C. Lan, and T.-P. Hong, “An incremental mining algorithm
for high utility itemsets,” Expert Syst. Appl., vol. 39, no. 8, pp. 7173-7180,
Jun. 2012.

[35] T.-P.Hong, C.-H. Lee, and S.-L. Wang, “An incremental mining algorithm
for high average-utility itemsets,” in Proc. 10th Int. Symp. Pervas. Syst.,
Algorithms, Netw., 2009, pp. 421-425.

[36] C.-W. Lin, T.-P. Hong, and W.-H. Lu, “The pre-FUFP algorithm for
incremental mining,” Expert Syst. Appl., vol. 36, no. 5, pp. 9498-9505,
Jul. 2009.

[37] P. Fournier-Viger, J. C. W. Lin, A. Gomariz, T. Gueniche, A. Soltani,
Z.Deng, and H. T. Lam, “The SPMF open-source data mining library
version 2,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery
Databases. Riva del Garda, Italy: Springer, 2016, pp. 36—40.

JIMMY MING-TAI WU received the Ph.D.
degree in computer science and engineering
from National Sun Yat-sen University, Kaohsiung,
Taiwan. He was an Assistant Professor with the
: g School of Computer Science and Technology,
Harbin Institute of Technology-Shenzhen, China.
-~ He worked in an IC design company in Taiwan as
~ a Firmware Developer and an Information Tech-
- \M) nology Manager for two years. He was also a
& g ! Research Scholar with the Department of Com-
puter Science and Information Engineering, National University of Kaohsi-
ung, Kaohsiung, and with the Department of Computer Science, College of
Engineering, University of Nevada, Las Vegas. He is currently an Assistant
Professor with the College of Computer Science and Engineering, Shandong
University of Science and Technology. His current research work is related to
data mining, big data, cloud computing, artificial intelligence, evolutionary
computation, machine learning, and deep learning.

66798

QIAN TENG is currently pursuing the master’s
degree with the School of Computer Science and
Engineering, Shandong University of Science and
Technology, Qiandao, China. Her research area is
big data, and at present the main research is utility
pattern mining.

JERRY CHUN-WEI LIN (Senior Member, IEEE)
received the Ph.D. degree from the Department of
Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan.
He is currently a Full Professor with the Depart-
ment of Computer Science, Electrical Engineer-
ing and Mathematical Sciences, Western Norway
University of Applied Sciences, Bergen, Norway.
He is also the Director of IKELab. He has pub-
: - : lished more than 300 research articles in refer-
eed journals (the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
IEEE TraNsAcTIONS ON CYBERNETICS, IEEE SystEms JournaL, ACM TKDD,
and ACM TDS) and international conferences (IEEE ICDE, IEEE ICDM,
PKDD, and PAKDD). By Google Scholar, his publications have been cited
by more than 3,000 times with H-index 33 and i10-index 113. He has filed
and held 25 invention patents and two of them are U.S. patents. His research
interests include data mining, soft computing, artificial intelligence and
machine learning, and privacy-preserving and security technologies. He is
the Fellow of IET and a Senior Member of ACM. He also serves as the Editor-
in-Chief of International Journal of Data Science and Pattern Recognition
and an Associate Editor of IEEE Accegss and Journal of Internet Technology.
He is the project Co-Leader of well-known SPMF: An Open-Source Data
Mining Library, which is a toolkit offering multiple types of data mining
algorithms. He is also the Founder and the Leader of PPSF project. Moreover,
he has been awarded as the Most Cited Chinese Researcher by Elsevier,
in 2018.

CHIEN-FU CHENG received the Ph.D. degree in
computer science from National Chiao-Tung Uni-
versity, Hsinchu, Taiwan, in 2008. He is currently
a Full Professor with the Department of Computer
Science and Information Engineering and with the
Graduate Institute of Networking and Multimedia,
Tamkang University, New Taipei, Taiwan. He pub-
lished many articles in several prestigious con-
‘ ferences and journals, such as the IEEE LCN,

IEEE MASS, IEEE VTC, IEEE WCNC, IEEE
TrRANSACTIONS ON MOBILE CoMPUTING, IEEE TRANSACTIONS ON VEHICULAR
TecunoLocgy, IEEE INTERNET OF THINGS JoURNAL, IEEE SENSORS JOURNAL,
and IEEE Communications LETTERs. His current research interests include
wireless communication and mobile computing, wireless ad hoc and sensor
networks, distributed computing, and fault tolerant computing. He served
as a TPC member of more than 50 communication and computer con-
ferences, such as the IEEE GLOBECOM, IEEE ICC, IEEE INFOCOM,
and IEEE WCNC. He is currently an Associate Editor for IEEE Acckss.
For more details, please refer to his website (http://mail.tku.edu.tw/cfcheng/
eng.html).

VOLUME 8, 2020



	INTRODUCTION
	LITERATURE REVIEW
	HIGH (AVERAGE-)utility ITEMSET MINING
	DYNAMIC DATA MINING

	PROPOSED INCREMENTAL APRIORI FRAMEWORK FOR HAUI
	PARTIAL UPPER BOUND, PUB AND HIGH PARTIAL UPPER BOUND ITEMSET, PUBI
	LEAD PARTIAL UPPER BOUND LEAD-PUB AND LEAD HIGH PARTIAL UPPER BOUND ITEMSET LEAD-PUBI

	APRIORI-BASED HAUP WITH PRE-LARGE CONCEPT, APHAUP
	EXPERIMENTAL RESULTS
	RUNTIME WITH DIFFERENT INCREMENTAL SIZE
	RUNTIME WITH DIFFERENT MINIMAL SUPPORT (HIGH AVERAGE UTILITY THRESHOLD)
	THE NUMBER OF CANDIDATES FOR PROPOSED METHOD AND FUP-BASED MODEL

	CONCLUSION
	REFERENCES
	Biographies
	JIMMY MING-TAI WU
	QIAN TENG
	JERRY CHUN-WEI LIN
	CHIEN-FU CHENG


