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Abstract

In this work, numerical approximation of the second order non-autonomous semilinear parabolic
artial differential equations (PDEs) is investigated using the classical finite element method. To the
est of our knowledge, only the linear case is investigated in the literature. Using an approach based
n evolution operator depending on two parameters, we obtain the error estimate of the semi-discrete
cheme based on finite element method toward the mild solution of semilinear non-autonomous PDEs
nder polynomial growth and one-sided Lipschitz conditions of the nonlinear term. Our convergence
ate is obtained with general non-smooth initial data, and is similar to that of the autonomous case.
uch convergence result is very important in numerical analysis. For instance, it is one step forward
or numerical approximation of non-autonomous stochastic partial differential equations with the finite
lement method.
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1. Introduction

Nonlinear partial differential equations are powerful tools in modelling real-world phe-
nomena in many fields such as in geo-engineering. For instance oil and gas recovery from
hydrocarbon reservoirs and mining heat from geothermal reservoirs can be modelled by
nonlinear equations with possibly degeneracy appearing in the diffusion and transport terms.
Since explicit solutions of many PDEs are rarely known, numerical approximations are
powerful tools to provide realistic approximations. Approximations are usually done at two
levels, namely space and time approximations. Only time approximations received so far some
attentions (see for example [9] and reference therein), while the space approximation has been
lacked. Our goal is to fill that gap by focusing on spatial approximation of the following
advection–diffusion equation with a nonlinear reaction term using the finite element method

∂u
∂t

= A(t)u + F(t, u), u(0) = u0, t ∈ (0, T ], T > 0. (1)

he mild solution is sought in the Hilbert space H = L2(Λ), where Λ is assumed to have
mooth boundary or is a convex polygon of Rd (d = 1, 2, 3). The second order differential
perator A(t) is given by

A(t)u =

d∑
i, j=1

∂

∂xi

(
qi, j (t, x)

∂u
∂x j

)
−

d∑
j=1

q j (t, x)
∂u
∂x j

+ q0(t, x)u, (2)

here qi, j , q j and q0 are smooth coefficients on the spatial variable, i.e. qi, j , q j , q0 ∈ C1(Λ),
, j = 1, . . . , d . We also assume qi, j , q j , q0 to be time differentiable (i.e. for all x ∈ Λ

i, j (; , x), q j (., x), q0(., x) ∈ C1((0, T ),R)) and there exist c1 ≥ 0, 0 < γ ≤ 1 such that

|qi, j (t, x) − qi, j (s, x)| ≤ c1|t − s|γ , x ∈ Λ, t, s ∈ [0, T ], i, j ∈ {1, . . . , d}.

oreover, qi, j is assumed to satisfy the following ellipticity condition
d∑

i, j=1

qi, j (t, x)ξiξ j ≥ c|ξ |
2, (t, x) ∈ [0, T ] × Λ, (3)

where c > 0 is a constant. The finite element approximation of (1) with constant linear operator
A(t) = A are widely investigated in the scientific literature, see example [1,4,8,13] and the
references therein. The finite volume method for A(t) = A was recently investigated in [11].
f we turn our attention to the non-autonomous case, the list of references becomes remarkably
hort. For the linear homogeneous case (F(t, u) = 0), the finite element approximation has
een investigated in [6], [1, Chapter III, Section 14.2]. The linear inhomogeneous version
f (1) (F(t, u) = f (t)) was investigated in [5–7], [1, Chapter III, Section 12] and the
eferences therein. To the best of our knowledge, the nonlinear case is not yet investigated
n the scientific literature. This paper fills that gap by investigating the error estimate of
he finite element method of (1) with a nonlinear term F(t, u). The challenge increases
hen the nonlinear function satisfies the polynomial growth and the one-sided Lipschitz

onditions than satisfying the global Lipschitz condition, which is restrictive and excludes
any problems such as Allen–Cahn equation, for which F(u) = u − u3. Our strategy is based

n the introduction of an auxiliary problem, namely (65) lying on two parameters evolution
perator and exploits carefully its smooth regularity properties. Our key intermediate result in
emma 3.1 generalizes [13, Theorem 3.5] to semilinear problems with time dependent and not
ecessary self-adjoint operators. Furthermore, it also generalizes [13, Theorem 4.2], the results
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n [1, Chapter III, Section 12] and in [5–7] to smooth and non-smooth initial data. Note that
emma 3.1 for non-smooth initial data is of great importance in numerical analysis. Our result

s very useful while studying the convergence of the finite element method for many nonlinear
roblems, including stochastic partial differential equations(SPDEs), see for example [2,3,14]
nd references therein for time independent SPDEs. In fact, in the case of SPDEs, due to the
tô-isometry or the Burkhölder Davis–Gundy inequality, the non-smooth version of Lemma 3.1
annot be applied since it brings degenerated integrals, which cause difficulties in the error
stimates or reduce considerably the order of convergence. Hence, our result is more general
han the existing results (even for linear problems) and has many applications. To sum up, our

ain contribution and main difficulties lie on

• Establishing Lemma 3.1, which is our key ingredient. Such results for autonomous
problems with self-adjoint linear operator were thoroughly investigated in [13], revealing
the importance of such estimate in numerical analysis. Here, the non-autonomous and not
necessarily self-adjoint version is investigated.

• Estimating the semi-discrete error for semilinear problem with nonglobal Lipschitz
condition (Theorem 3.2), which is more challenging and includes more realistic problems
such as Allen–Cahn equation.

he convergence rate achieved for semilinear problem is in agreement with many results
n the literature for autonomous problems and for non-autonomous linear problems. More
recisely, we achieve convergence order O

(
h2t−1+β/2

+ h2
(
1 + ln(t/h2)

))
or O(hβ), where

β is a regularity parameter defined in Assumption 2.1. Furthermore, under optimal regularity
of the nonlinear function F or under a linear growth assumption on F , we achieve optimal
convergence order O(h2t−1+β/2). Following [11] and using the similar approach based on the
wo parameters evolution operator, this work can be extended to the finite volume method. The
est of this paper is structured as follows. In Section 2, the well-posedness result is provided
long with the finite element approximation. The error estimate is analysed in Section 3 for
oth global Lipschitz nonlinear term and polynomial growth nonlinear term.

. Mathematical setting and numerical approximation

.1. Notations, settings and well-posedness problem

We denote by ∥ · ∥ the norm associated to the inner product ⟨·, ·⟩H in the Hilbert space
H = L2(Λ). We denote by L(H ) the set of bounded linear operators in H . Let C := C(Λ,R)
be the set of continuous functions equipped with the norm ∥u∥C := supx∈Λ |u(x)|, u ∈ C. To
nsure the well posedness of (1), we make the following assumptions.

ssumption 2.1. The initial data u0 belongs to D
(
(−A(0))

β
2

)
, 0 ≤ β ≤ 2.

Assumption 2.2. The nonlinear function F : [0, T ] × H −→ H is Lipschitz continuous,
.e. there exists a constant K such that

∥F(t, v) − F(s, w)∥ ≤ K (|t − s| + ∥v − w∥), s, t ∈ [0, T ], v, w ∈ H. (4)

We introduce two spaces H and V , such that H ⊂ V , depending on the boundary conditions
of −A(t). For Dirichlet boundary conditions, we take V = H = H 1

0 (Λ). For Robin boundary
ondition, we take V = H 1(Λ) and

H = {v ∈ H 2(Λ) : ∂v/∂v + α v = 0, on ∂Λ}, α ∈ R, (5)
A 0 0
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where ∂v/∂vA stands for the differentiation along the outer conormal vector vA. One can easily
check (see [1, Chapter III, (11.14′)]) that the bilinear operator a(t), associated to −A(t) defined

y a(t)(u, v) = ⟨−A(t)u, v⟩H , u ∈ D(A(t)), v ∈ V satisfies

a(t)(v, v) ≥ λ0∥v∥
2
1 − c0∥v∥

2, v ∈ V . (6)

with λ0 > 0 and c0 ∈ R. By adding and subtracting c0u on the right hand side of (1), we have
a new linear operator that we still call A(t) corresponding to the new bilinear form that we
still call a(t) such that the following coercivity property holds

a(t)(v, v) ≥ λ0∥v∥
2
1, v ∈ V, t ∈ [0, T ], (7)

where λ0 is a positive constant, independent of t . Note that a(t)(·, ·) is bounded in V × V
([1, Chapter III, (11.13)]), so the following operator A(t) : V → V ∗ is well defined

a(t)(u, v) = ⟨−A(t)u, v⟩ u, v ∈ V, t ∈ [0, T ],

where V ∗ is the dual space of V and ⟨·, ·⟩ the duality pairing between V ∗ and V . Identifying
H to its adjoint space H∗, we have the following continuous and dense inclusions

V ⊂ H ⊂ V ∗, and therefore ⟨u, v⟩H = ⟨u, v⟩, u ∈ H, v ∈ V .

o if we want to replace ⟨·, ·⟩ by the scalar product of ⟨·, ·⟩H on H , we therefore need to have
A(t)u ∈ H , for u ∈ V . So the domain of −A(t) is defined as

D := D (−A(t)) = D (A(t)) = {u ∈ V, A(t)u ∈ H}.

t is well known (see [1, Chapter III, (11.11) & (11.11′)]) that in the case of Dirichlet boundary
onditions D = H 1

0 (Λ) ∩ H 2(Λ) and in the case of Robin boundary conditions D = H in (5).
e write the restriction of A(t) : V −→ V ∗ to D (A(t)) again A(t) which is therefore regarded

s an operator of H (more precisely the H realization of A(t)).
The coercivity property (7) implies that −A(t) is a positive operator and its fractional powers

re well defined [1,4]. The following equivalence of norms holds [1,4]

∥v∥Hα (Λ) ≡ ∥((−A(t))
α
2 )v∥ := ∥v∥α, v ∈ D((−A(t))

α
2 ) ∩ Hα(Λ), α ∈ [0, 2]. (8)

It is well known that the family of operators {A(t)}0≤t≤T generates a family of two parameters
operators {U (t, s)}0≤s≤t≤T (see for example [10] or [1, Page 832]). The evolution equation (1)
can be written as follows

du(t)
dt

= A(t)u(t) + F(t, u(t)), u(0) = u0, t ∈ (0, T ]. (9)

The following theorem provides the well-posedness of problem (1) (or (9)).

Theorem 2.1 ([10]). Let Assumption 2.2 be fulfilled. If u0 ∈ H, then the initial value problem
(1) has a unique mild solution u(t) given by

u(t) = U (t, 0)u0 +

∫ t

0
U (t, s)F(s, u(s))ds, t ∈ (0, T ]. (10)

Moreover, if Assumption 2.1 is fulfilled, then the following space regularity holds1

∥(−A(s))
β
2 u(t)∥ + ∥F(u(t))∥ ≤ C

(
1 + ∥(−A(s))

β
2 u0∥

)
, β ∈ [0, 2), s, t ∈ [0, T ].

(11)

1 This estimate also holds when u is replaced by its semi-discrete version uh defined in Section 2.2.
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.2. Finite element discretization

Let Th be a triangulation of Λ with maximal length h. Let Vh ⊂ V denote the space of
ontinuous and piecewise linear functions over the triangulation Th . We define the projection

Ph from H = L2(Λ) to Vh by

⟨Phu, χ⟩H = ⟨u, χ⟩H , χ ∈ Vh, u ∈ H. (12)

or any t ∈ [0, T ], the discrete operator Ah(t) : Vh −→ Vh is defined by

⟨Ah(t)φ, χ⟩H = −
⟨
(−A(t))1/2φ, (−A(t))∗1/2χ

⟩
H = −a(t)(φ, χ), φ, χ ∈ Vh . (13)

ote that (−A(t))∗1/2 stands for the adjoint of (−A(t))1/2.
The space semi-discrete version of problem (9) consists of finding uh(t) ∈ Vh such that

duh(t)
dt

= Ah(t)uh(t) + Ph F(t, uh(t)), uh(0) = Phu0, t ∈ (0, T ]. (14)

For t ∈ [0, T ], we introduce the Ritz projection Rh(t) : V −→ Vh defined by

⟨−A(t)Rh(t)v, χ⟩H = a(t)(v, χ), v ∈ V, χ ∈ Vh . (15)

It is well known (see e.g. [6, (3.2)] or [1]) that the following error estimate holds

∥Rh(t)v−v∥+h∥Rh(t)v−v∥H1(Λ) ≤ Chr
∥v∥Hr (Λ), v ∈ V ∩ H r (Λ), r ∈ [1, 2]. (16)

The following error estimate also holds (see for example [6, (3.3)] or [1])

∥Dt (Rh(t)v − v) ∥ + h∥Dt (Rh(t)v − v) ∥H1(Λ) ≤ Chr (
∥v∥Hr (Λ) + ∥Dtv∥Hr (Λ)

)
, (17)

or any r ∈ [1, 2] and v ∈ V ∩ H r (Λ), where Dt :=
∂
∂t and Dt Rh(t) = R′

h(t) is the
ime derivative of Rh . According to the generation theory, Ah(t) generates a two parameters
volution operator {Uh(t, s)}0≤s≤t≤T (see for example [1, Page 839]). Therefore the mild

solution of (14) can be written as follows

uh(t) = Uh(t, 0)Phu0 +

∫ t

0
Uh(t, s)Ph F(s, uh(s))ds, t ∈ [0, T ]. (18)

In the rest of this paper, C ≥ 0 stands for a constant independent of h, that may change from
one place to another. It is well known (see example. [1, Chapter III, (12.3) & (12.4)]) that for
any 0 ≤ γ ≤ α ≤ 1 and 0 ≤ s < t ≤ T , the following estimates hold2

∥(−Ah(t))αUh(t, s)∥L(H ) ≤ C(t − s)−α, ∥Uh(t, s)(−Ah(s))α∥L(H ) ≤ C(t − s)−α. (19)

3. Main result

3.1. Preliminaries result

We consider the following linear homogeneous problem: find w ∈ D ⊂ V such that

w′
= A(t)w, w(τ ) = v, t ∈ (τ, T ], with 0 ≤ τ ≤ T . (20)

The corresponding semi-discrete problem in space is: find wh ∈ Vh such that

w′

h(t) = Ah(t)wh, wh(τ ) = Phv, t ∈ (τ, T ], with 0 ≤ τ ≤ T . (21)

The following lemma will be useful in our convergence analysis.

2 These estimates remain true if A (t) and U (t, s) are replaced by A(t) and U (t, s) respectively.
h h
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Lemma 3.1. Let r ∈ [0, 2] and γ ≤ r . Let Assumption 2.2 be fulfilled. Then the following
error estimate holds for the semi-discrete approximation (21)

∥w(t) − wh(t)∥ = ∥[U (t, τ ) − Uh(t, τ )Ph]v∥

≤ Chr (t − τ )−
(r−γ )

2 ∥v∥γ , v ∈ D
(
(−A(0))

γ
2

)
.

roof. We split the desired error as follows

wh(t) − w(t) = (wh(t) − Rh(t)w(t)) + (Rh(t)w(t) − w(t)) ≡ θ (t) + ρ(t). (22)

sing the definition of Rh(t) and Ph ((12)–(13)), we can prove exactly as in [4] that

Ah(t)Rh(t) = Ph A(t), t ∈ [0, T ]. (23)

ne can easily compute the following derivatives

Dtθ = Ah(t)wh(t) − Dt Rh(t)w(t) − Rh(t)A(t)w(t), (24)
Dtρ = Dt Rh(t)w(t) + Rh(t)A(t)w(t) − A(t)w(t). (25)

ndowing V and the linear subspace Vh with the norm ∥.∥H1(Λ), it follows from (16) that
Rh(t) ∈ L(V, Vh), t ∈ [0, T ]. By the definition of the differential operator, it follows that
Dt Rh(t) ∈ L(V, Vh) for all t ∈ [0, T ]. Hence Ph Dt Rh(t) = Dt Rh(t) for all t ∈ [0, T ] and it
ollows from (25) that

Ph Dtρ = Dt Rh(t)w(t) + Rh(t)A(t)w(t) − Ph A(t)w(t). (26)

dding and subtracting Ph A(t)w(t) in (24) and using (23), it follows that

Dtθ = Ah(t)θ − Ph Dtρ, t ∈ (τ, T ], (27)

rom (24), the mild solution of θ is given by

θ (t) = Uh(t, τ )θ (τ ) −

∫ t

τ

Uh(t, s)Ph Dsρ(s)ds. (28)

Splitting the integral part of (28) in two and integrating by parts the first one yields

θ (t) = Uh(t, τ )θ (τ ) + Uh(t, τ )Phρ(τ ) − Uh (t, (t + τ )/2) Phρ ((t + τ )/2)

+

∫ (t+τ )/2

τ

∂

∂s
(Uh(t, s)) Phρ(s)ds −

∫ t

(t+τ )/2
Uh(t, s)Ph Dsρ(s)ds. (29)

Using the expression of θ (τ ), ρ(τ ) (see (22)) and the fact that wh(τ ) = Phv, it holds that
(τ ) + Phρ(τ ) = 0. Hence (29) reduces to

θ (t) = −Uh(t, s)Phρ((t + τ )/2) +

∫ (t+τ )
2

τ

∂

∂s
(Uh(t, s)) Phρ(s)ds

−

∫ t

(t+τ )
2

Uh(t, s)Ph Dsρ(s)ds. (30)

Taking the norms on both sides of (30) and using (19) yields

∥θ (t)∥ ≤ C ∥ρ ((t + τ )/2)∥ +

∫ (t+τ )
2

τ

∥Uh(t, s)Ah(s)∥L(H ) ∥ρ(s)∥ds +

∫ t

(t+τ )
2

∥Dsρ(s)∥ds

≤ C ∥ρ ((t + τ )/2)∥ +

∫ (t+τ )
2

(t − s)−1
∥ρ(s)∥ds +

∫ t

(t+τ )
∥Dsρ(s)∥ds. (31)
τ 2
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∥ρ(s)∥ ≤ Chr
∥w(s)∥r , ∥Dsρ(s)∥ ≤ Chr (∥w(s)∥r + ∥Dsw(s)∥r ) . (32)

Note that the solution of (20) can be represented as follows.

w(s) = U (s, τ )v, s ≥ τ. (33)

Pre-multiplying both sides of (33) by (−A(s))
r
2 and using (19) yields(−A(s))

r
2 w(s)

 ≤

(−A(s))
r
2 U (s, τ )(−A(τ ))−

γ
2


L(H )

(−A(τ ))
γ
2 v


≤ C(s − τ )−

(r−γ )
2

(−A(τ ))
γ
2 v

 ≤ C(s − τ )−
(r−γ )

2 ∥v∥γ . (34)

Therefore it holds that

∥w(s)∥r ≤ C(s − τ )−
(r−γ )

2 ∥v∥γ , 0 ≤ γ ≤ r ≤ 2, τ < s. (35)

ubstituting (35) in (32) yields

∥ρ(s)∥r ≤ Chr (s − τ )−
(r−γ )

2 ∥v∥γ . (36)

Taking the derivative with respect to s on both sides of (33) yields

Dsw(s) = −A(s)U (s, τ )v. (37)

As for (34), pre-multiplying both sides of (37) by (−A(s))
r
2 and using (19) yields

∥Dsw(s)∥r ≤ C(s − τ )−1−
(r−γ )

2 ∥v∥γ . (38)

Substituting (35) and (38) in the second estimate of (32) yields

∥Dsρ(s)∥ ≤ Chr
(

(s − τ )−
(r−γ )

2 ∥v∥γ + (s − τ )−1−
(r−γ )

2 ∥v∥γ

)
≤ Chr (s − τ )−1−

(r−γ )
2 ∥v∥γ . (39)

Substituting the first estimate of (32) and (39) in (31) and using (36) yields

∥θ (t)∥ ≤ Chr (t − τ )−
(r−γ )

2 ∥v∥γ + Chr
∫ t+τ

2

τ

(t − s)−1(s − τ )−
(r−γ )

2 ∥v∥γ ds

+ Chr
∫ t

t+τ
2

(s − τ )−1−
(r−γ )

2 ∥v∥γ ds. (40)

Using the estimate∫ t+τ
2

τ

(t − s)−1(s − τ )−
(r−γ )

2 ds +

∫ t

t+τ
2

(s − τ )−1−
(r−γ )

2 ds ≤ C(t − τ )−
(r−γ )

2 ,

it follows from (40) that

∥θ (t)∥ ≤ Chr (t − τ )−
(r−γ )

2 ∥v∥γ . (41)

Substituting (36) and (41) in (22) completes the proof of Lemma 3.1. ■

3.2. Error estimate of the semilinear problem under global lipschitz condition

Theorem 3.1. Let Assumptions 2.1 and 2.2 be fulfilled. Let u(t) and uh(t) be defined by (10)
nd (18) respectively. Then the following error estimate holds

∥u(t) − uh(t)∥ ≤ Ch2t−1+β/2
+ Ch2(1 + ln(t/h2)), 0 < t ≤ T . (42)
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In addition, if the nonlinear term F satisfies the linear growth condition ∥F(t, v)∥ ≤ C∥v∥

r if there exists δ > 0 small enough such that ∥(−A(s))δ F(t, v)∥ ≤ Ct + C∥(−A(s))δv∥,
, t ∈ [0, T ], v ∈ H, then the following optimal error estimate holds

∥u(t) − uh(t)∥ ≤ Ch2t−1+β/2, 0 < t ≤ T, (43)

here β is defined in Assumption 2.1.

emark 3.1. Note that the hypothesis ∥F(t, v)∥ ≤ C∥v∥ is not too restrictive. An example of
lass of nonlinearities for which such hypothesis is fulfilled is a class of functions satisfying

F(t, 0) = 0, t ∈ [0, T ]. Concrete examples are operators of the form F(t, v) = f (t) v
1+|v|

, with
f : [0, T ] −→ R continuous or bounded on [0, T ].

emark 3.2. It is possible to obtain an error estimate without irregularities terms of the form
−1+β/2. The drawback here is that the convergence rate will not be 2, but will depend on the
egularity of the initial data. The proof follows the same lines as that of Theorem 3.1 using
emma 3.1 and we have

∥u(t) − uh(t)∥ ≤ Chβ, t ∈ [0, T ].

roof. of Theorem 3.1. We start with the proof of (42). Subtracting (18) from (10), taking the
orm on both sides and using the triangle inequality yields

∥u(t) − uh(t)∥ ≤ ∥U (t, 0)u0 − Uh(t, 0)Phu0∥

+

∫ t

0

[
U (t, s)F (s, u(s)) − Uh(t, s)Ph F

(
s, uh(s)

)]
ds

 =: I0 + I1. (44)

sing Lemma 3.1 with r = 2 and γ = β yields

I0 ≤ Ch2t−1+β/2
∥u0∥β ≤ Ch2t−1+β/2. (45)

sing Assumption 2.2, (11) and (19) yields

I1 ≤

∫ t

0

U (t, s)
[
F (s, u(s)) − F

(
s, uh(s)

)] ds

+

∫ t

0

[U (t, s) − Uh(t, s)Ph] F
(
s, uh(s)

) ds

≤ C
∫ t

0

u(s) − uh(s)
 ds + C

∫ t

0

[U (t, s) − Uh(t, s)Ph] F
(
s, uh(s)

) ds. (46)

f 0 ≤ t ≤ h2, then using (19), Assumption 2.2 and (11) yields

I1 ≤ C
∫ t

0
∥u(s) − uh(s)∥ds + C

∫ t

0
∥U (t, s) − Uh(t, s)Ph∥L(H )ds

≤ C
∫ t

0
∥u(s) − uh(s)∥ds + C

∫ t

0
ds ≤ C

∫ t

0
∥u(s) − uh(s)∥ds

≤ C
∫ t

∥u(s) − uh(s)∥ds + C
∫ h2

ds ≤ Ch2
+ C

∫ t

∥u(s) − uh(s)∥ds.

0 0 0
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f 0 < h2
≤ t , using Lemma 3.1 (with r = 2 and γ = 0), and splitting the second integral in

wo parts yields

I1 ≤ C
∫ t

0
∥u(s) − uh(s)∥ds + Ch2

∫ t−h2

0
(t − s)−1ds + Ch2

∫ t

t−h2
(t − s)−1ds

≤ C
∫ t

0
∥u(s) − uh(s)∥ds + Ch2(1 + ln(t/h2)). (47)

Substituting (45) and (47) in (44), and applying Gronwall’s lemma proves (42). To prove (43),
we only need to re-estimate the term I3 :=

∫ t
0

[U (t, s) − Uh(t, s)Ph] F
(
s, uh(s)

) ds. Note
hat under assumption ∥(−A(s))δ F(t, v)∥ ≤ Ct +C∥(−A(s))δv∥, using Lemma 3.1 (with r = 2
nd γ = δ) and (11), following the same lines as above, we obtain easily that I3 ≤ Ch2. Let
s now estimate I3 under the hypothesis ∥F(t, v)∥ ≤ C∥v∥. Using Assumption 2.2, (11), we
he help of the mild solution (18), we have

∥F(t, uh(t))∥ ≤ ∥uh(t)∥ ≤ C |t − s|ϵs−ϵ, ∥F(s, uh(s)) − F(t, uh(t))∥ ≤ C |t − s|ϵs−ϵ,

(48)

or some ϵ ∈ (0, 1) and any s, t ∈ [0, T ]. Using Lemma 3.1 (with r = 2 and γ = 0), triangle
nequality and (48) yields

I1 ≤ Ch2
∫ t

0
(t − s)−1

F
(
s, uh(s)

)
− F(t, uh(t))

 ds

+Ch2
∫ t

0
(t − s)−1

∥F(t, uh(t))∥ds

≤ Ch2
∫ t

0
(t − s)−1+ϵs−ϵds ≤ Ch2.

ence the new estimate of I1 is given by

I1 ≤ Ch2
+ C

∫ t

0
∥u(s) − uh(s)∥ds. (49)

ubstituting (45) and (49) in (44) and applying Gronwall’s lemma proves (43) and the proof
f Theorem 3.1 is completed. ■

.3. Error estimate for the semilinear problem under polynomial growth and one-sided
ipschitz conditions

In this section, we take β ∈
( d

2 , 2
)

and make the following assumptions on the nonlinearity.

ssumption 3.1. There exist four constants L0, L1, c1, c2 ∈ [0, ∞) such that the nonlinear
function F satisfies the following conditions

⟨F(s, w) − F(s, v), w − v⟩H ≤ L0∥w − v∥
2, w, v ∈ H, (50)

∥F(s, w)∥ ≤ L1 + L1∥w∥
(
1 + ∥w∥

c1
C

)
, w ∈ H, (51)

∥F(s, w) − F(s, v)∥ ≤ L1∥w − v∥
(
1 + ∥u∥

c1
C + ∥v∥

c1
C

)
, w, v ∈ H, (52)

for any s ∈ [0, T ].
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Let us recall the following Sobolev embedding theorem.

D
(
(−A(0))δ

)
↪→ C (Λ,R) , for δ >

d
2
, d ∈ {1, 2, 3}. (53)

t is a classical solution that under Assumption 3.1, (9) has a unique mild solution u satisfying
∈ C ([0, T ], H) (see for example [10]).

emma 3.2. The mild solution u of (9) satisfies the following space regularity estimates3(−A(0))
β
2 u(t)

 ≤ C, ∥u(t)∥C ≤ C, t ∈ [0, T ]. (54)

Proof. Having the first estimate of (54), the Sobolev embedding (53) allows to have

∥u(t)∥C ≤ C
(−A(0))

β
2 u(t)

 ≤ C, ∥uh(t)∥C ≤ C
(−A(0))

β
2 uh(t)

 ≤ C, t ∈ [0, T ].

(55)

ence, it remains to prove the first estimate of (54). Note that u satisfies

d
dt

u(t) − A(t)u(t) = F (t, u(t)) , u(0) = u0, t ∈ (0, T ]. (56)

Taking the inner product in (56), using Assumption 3.1 and Cauchy–Schwartz’s inequality
yields

1
2

d
ds

∥u(s)∥2
− ⟨A(s)u(s), u(s)⟩H = ⟨F (s, u(s)) − F(s, 0), u(s)⟩H + ⟨F(s, 0), u(s)⟩H

≤ C ∥u(s)∥2
+

1
2

∥u(s)∥2
+

1
2

∥F (s, 0)∥2 . (57)

Using the coercivity estimate (7), it holds that

λ0 ∥u(s)∥2
1 ≤ a(s) (u(s), u(s)) = −

1
2

d
ds

∥u(s)∥2
+

1
2

d
ds

∥u(s)∥2
− ⟨A(s)u(s), u(s)⟩H

≤ −
1
2

d
ds

∥u(s)∥2
+ C ∥u(s)∥2

+
1
2

∥F(s, 0)∥2 . (58)

sing Cauchy-Schwartz’s inequality, [12, Lemma 3.1] and (58), it holds that

|⟨A(s)u(s), u(s)⟩H | =

⏐⏐⏐⟨(−A(s))
1
2 u(s), (−A∗(s))

1
2 u(s)

⟩
H

⏐⏐⏐
≤

1
2

(−A(s))
1
2 u(s)

2
+

1
2

(−A∗(s))
1
2 u(s)

2

≤
C
2

∥u(s)∥2
1 +

1
2

(−A∗(s))
1
2 (−A(s))−

1
2

2

L(H )

(−A(s))
1
2 u(s)

2

≤
C
2

∥u(s)∥2
1 +

C
2

(−A(s))
1
2 u(s)

2
≤ C ∥u(s)∥2

1 =
C
λ0

.λ0 ∥u(s)∥2
1

≤ −
C

2λ0

d
ds

∥u(s)∥2
+ C ∥u(s)∥2

+ C ∥F(s, 0)∥2 . (59)

3 These estimates still hold if u is replaced by its discrete version uh .



724 A. Tambue and J.D. Mukam / Indagationes Mathematicae 31 (2020) 714–727

N

S

I

A

N
o

T

T
b

ote that from (57) we have

1
2

d
ds

∥u(s)∥2
≤ C∥u(s)∥2

+
1
2
∥F(s, 0)∥2

+ ⟨A(s)u(s), u(s)⟩H

≤ C∥u(s)∥2
+

1
2
∥F(s, 0)∥2

+ |⟨A(s)u(s), u(s)⟩H | . (60)

ubstituting (59) in (60) yields(
1
2

+
C

2λ0

)
d
ds

∥u(s)∥2
≤ C∥u(s)∥2

+ C∥F(s, 0)∥2. (61)

ntegrating both sides of (61) over [0, t] yields

∥u(t)∥2
≤ C

∫ t

0
∥u(s)∥2ds + C

∫ t

0
∥F(s, 0)∥2ds ≤ C

∫ t

0
∥u(s)∥2ds + C. (62)

pplying Gronwall’s lemma to (62) yields

∥u(t)∥2
≤ C. (63)

ow using Assumptions 2.1, 3.1, (63), the fact that u ∈ C([0, T ], H ) and the stability properties
f the two parameters semigroup yields

∥(−A(0))
β
2 u(t)∥ ≤ ∥(−A(0))

β
2 U (t, 0)u0∥ +

∫ t

0
∥(−A(0))

β
2 U (t, s)F(s, u(s))∥ds

≤ ∥(−A(0))
β
2 U (t, 0)(−A(0))−

β
2 ∥L(H )∥(−A(0))

β
2 u0∥

+

∫ t

0
∥(−A(0))

β
2 U (t, s)∥L(H )∥F(s, u(s))∥ds

≤ C +

∫ t

0
(t − s)−

β
2 ∥u(s)∥(1 + ∥u(s)∥c1

C )ds

≤ C + C
∫ t

0
(t − s)−

β
2 ds ≤ C. (64)

his completes the proof of the lemma. ■

heorem 3.2. Let u(t) and uh(t) be solution of (9) and (14) respectively. Let Assumption 3.1
e fulfilled. If u0 ∈ D((−A(0))

β
2 ), then the following error estimate holds

∥u(t) − uh(t)∥ ≤ Chβ, t ∈ [0, T ].

Proof. We introduce the following auxiliary equation

dũh(t)
dt

= Ah(t )̃uh(t) + Ph F (t, u(t)) . (65)

Note that the mild solution of (65) is given by

ũh(t) = Uh(t, 0)Phu0 +

∫ t

0
Uh(t, s)Ph F(s, u(s))ds, t ∈ [0, T ]. (66)

Using triangle inequality, it holds that

∥u(t) − uh(t)∥ ≤ ∥u(t) − ũh(t)∥ + ∥ũh(t) − uh(t)∥. (67)



A. Tambue and J.D. Mukam / Indagationes Mathematicae 31 (2020) 714–727 725

t

T
y

U

U

Let us start by estimating the first term in (67). Subtracting (66) from (10) and using triangle
inequality, it holds that

∥u(t) − ũh(t)∥ ≤ ∥(U (t, 0) − Uh(t, 0)Ph) X0∥

+

∫ t

0
(U (t, s) − Uh(t, s)Ph) F(s, u(s))ds


=: I I1 + I I2. (68)

Using Lemma 3.1 with r = α = β and Assumption 2.1 yields

I I1 ≤ Chβ
∥(−A(0))

β
2 X0∥ ≤ Chβ . (69)

Using Lemma 3.1 (with r = β and γ = 0), Assumption 3.1 and Lemma 3.2 yields

I I21 ≤ Chβ

∫ t

0
(t − s)−

β
2 ∥F(s, u(s))∥ds ≤ Chβ

∫ t

0
(t − s)−

β
2 ∥u(s)∥

(
1 + ∥u(s)∥c1

)
ds

≤ Chβ

∫ t

0
(t − s)−

β
2 ds ≤ Chβ . (70)

Substituting (69) and (70) in (68) yields

∥u(t) − ũh(t)∥ ≤ Chβ, t ∈ [0, T ]. (71)

Let us introduce the following error representation ẽh(t) := ũh(t) − uh(t). It is obvious to see
hat ẽh(t) is differentiable with respect to the time and satisfies

d
dt

ẽh(t) − Ah(t )̃eh(t) = Ph
(
F(t, u(t)) − F(t, uh(t))

)
, t ∈ (0, T ], ẽh(0) = 0. (72)

aking the inner product on both sides of (72), using (50) and Cauchy-Schwartz’s inequality
ields

1
2

d
ds

∥̃eh(s)∥2
−

⟨
Ah(s )̃eh(s), ẽh(s)

⟩
H

=
⟨
F(s, ũh(s)) − F(s, uh(s)), ẽh(s)

⟩
H +

⟨
F(s, u(s)) − F(s, ũh(s)), ẽh(s)

⟩
H

≤ C ∥̃eh(s)∥2
+ C∥F(s, u(s)) − F(s, ũh(s))∥∥̃eh(s)∥. (73)

sing Cauchy schwartz inequality, it follows from (73) that

1
2

d
ds

∥̃eh(s)∥2
−

⟨
Ah(s )̃eh(s), ẽh(s)

⟩
H

≤ C ∥̃eh(s)∥2
+ C∥F(s, u(s)) − F(s, ũh(s))∥2

+ C ∥̃eh(s)∥2, (74)

sing the coercivity estimate (7), (74) and the fact that ẽh(s) ∈ Vh yields

λ0∥̃eh(s)∥2
1 ≤ a(s)

(̃
eh(s), ẽh(s)

)
= −

⟨
Ah(s )̃eh(s), ẽh(s)

⟩
H (75)

= −
1
2

d
ds

∥̃eh(s)∥2
+

1
2

d
ds

∥̃eh(s)∥2
−

⟨
Ah(s )̃eh(s), ẽh(s)

⟩
H

≤ −
1
2

d
ds

∥̃eh(s)∥2
+ C ∥̃eh(s)∥2

h 2 h 2

+C∥F(s, u(s)) − F(s, ũ (s))∥ + C ∥̃e (s)∥ .
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sing (74), it holds that

1
2

d
ds

∥̃eh(s)∥2 (76)

≤ C ∥̃eh(s)∥2
+ C∥F(u(s)) − F (̃uh(s))∥2

+ C ∥̃eh(s)∥2
1 +

⟨
Ah(s )̃eh(s), ẽh(s)

⟩
H

≤ C ∥̃eh(s)∥2
+ C∥F(s, u(s)) − F(s, ũh(s))∥2

+ C ∥̃eh(s)∥2
+

⏐⏐⟨Ah(s )̃eh(s), ẽh(s)
⟩
H

⏐⏐ .
ince ẽh(s) ∈ Vh , using Cauchy-Schwartz’s inequality, the equivalence of norms [4, (2.12)]
nd [12, Lemma 3.1], it holds that⏐⏐⟨Ah(s )̃eh(s), ẽh(s)

⟩⏐⏐ =

⏐⏐⏐⟨(−Ah(s))
1
2 ẽh(s), (−Ah(s)∗)

1
2 ẽh(s)

⟩
H

⏐⏐⏐
≤

1
2

(−Ah(s))
1
2 ẽh(s)

2
+

1
2
∥(−Ah(s)∗)

1
2 ẽh(s)∥2

≤
C
2

∥̃eh(s)∥2
1 +

1
2
∥(A∗

h)
1
2 (−Ah(s))−

1
2 ∥

2
L(H )∥(−Ah(s))

1
2 ẽh(s)∥2

≤
C
2

∥̃eh(s)∥2
1 +

C
2

∥(−Ah(s))
1
2 ẽh(s)∥2

≤ C ∥̃eh(s)∥2
1. (77)

ubstituting (77) in (76) and using (75) yields

1
2

d
ds

∥̃eh(s)∥2
≤ C ∥̃eh(s)∥2

+ C∥F(s, u(s)) − F(s, ũh(s))∥2
+

C
λ0

λ0∥̃eh(s)∥2
1

≤ C ∥̃eh(s)∥2
+ C∥F(s, u(s)) − F(s, ũh(s))∥2

−
C

2λ0

d
ds

∥̃eh(s)∥2. (78)

herefore, from (78) we have(
1
2

+
C

2λ0

)
d
ds

∥̃eh(s)∥2
≤ C ∥̃eh(s)∥2

+ C∥F(s, u(s)) − F(s, ũh(s))∥2. (79)

ntegrating both sides of (79) over [0, t] yields

∥̃eh(t)∥2
≤ C

∫ t

0
∥̃eh(s)∥2ds + C

∫ t

0
∥F(s, u(s)) − F(s, ũh(s))∥2ds. (80)

sing the Cauchy-Schwartz’s inequality, Assumption 3.1, Lemma 3.2 and (71) yields

∥̃eh(t)∥2
≤ C

∫ t

0
∥̃eh(s)∥2ds + C

∫ t

0
∥F(s, u(s)) − F(s, ũh(s))∥2ds

≤ C
∫ t

0
∥̃eh(s)∥2ds + C

∫ t

0
∥u(s) − ũh(s)∥2 (

1 + ∥u(s)∥2c1 + ∥ũh(s)∥2c1
)

ds

≤ C
∫ t

0
∥̃eh(s)∥2ds + Ch2β . (81)

pplying the Gronwall’s lemma to (81) yields

∥̃eh(t)∥ ≤ Chβ, t ∈ [0, T ]. (82)

his completes the proof of Theorem 3.2. ■

emark 3.3. Along the same lines as in Theorem 3.2, one can obtain the error analysis in
he following form

∥u(t) − uh(t)∥ ≤ Ch2t−1+β/2
+ Ch2 (

1 + ln(t/h2)
)
, t ∈ [0, T ]. (83)
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