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LETTER

Utilising LiDAR for fall detection

1 INTRODUCTION

The population of many developed countries are ageing, result-
ing in a decreasing workforce relative to the part of the popula-
tion being retired [1]. In order to meet the altering demand and
maintain service quality, the care services must be redesigned.
People subjected to physical and cognitive decline can be safe-
guarded by technology and thus enable them to live longer
at home. This can be done by monitoring the user by means
of various sensors in order to detect dangerous situations
in progress, lifestyle changes and emergencies that require
immediate response. In order for such monitoring systems to
be accepted, two significant factors are the intrusiveness of
the technology and the privacy concerning the details in the
acquired information [2]. Consequently, the monitoring systems
should preferably be small, discreet and not acquire more details
about a user than necessary for the intention of the system. For
example, in order to tell if a user has fallen or if a change in
gait speed has occurred over time, a video camera provides a
lot more information than needed; hence, it classifies as intru-
sive. Fall, for example, frequently occurs in the bathroom, where
cameras are considered too intrusive.

Formerly, light detection and ranging (LiDAR) technology
has been known to be expensive and power demanding [3].
However, recently, significant progress has made LiDAR sen-
sors cheaper, smaller and more power efficient [4–6]. As a result,
LiDAR technology is becoming a promising choice when devel-
oping monitoring systems [7].

This article proposes and demonstrates a LiDAR sensor
monitoring prototype developed by the authors. The system
design is based on the design factors in [2], and the goal is to
investigate the applicability of LiDAR used as a monitoring sys-
tem. The article first presents related work in Section 2, followed
by a short technical presentation of the system in Section 3.
Section 4 presents the tests and results. Section 5 discusses the
results. Finally, Section 6 concludes this paper.

2 RELATED WORK

To the best of our knowledge, we have not seen any simi-
lar LiDAR-based monitor systems. Several monitoring systems
have been designed for the purpose of making users feel safer
and providing a higher degree of independence in their own
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home environment. Existing monitoring systems have been
realised utilising a variety of sensing technologies. Existing solu-
tions include wearable and non-wearable systems [8].

Wearable systems are often based on a pendant or wristband
with sensors such as accelerometers, gyroscopes and barometric
pressure sensors [9, 10]. The former two detect acceleration and
angular velocity, respectively, allowing falls to be detected if a
sudden change in motion occurs, e.g. if a person trips and falls
to the ground. For the latter sensor, it detects fall by measuring
the change in the barometric pressure between waist height and
floor level. The two main challenges, related to wearable sensors,
are that the older people often follow a slow trajectory as they
fall (no hard impact), and the person has to remember to wear
the unit.

Non-wearable systems are sensor technology installed in the
user’s home environment (or other place of interest). If such sys-
tems are designed properly, the user can live her/his normal life,
and it will have a limited visual impact in the home. Sensor tech-
nologies used in such systems are, among other, infrared depth
cameras [11], radar [12, 13], ultrasound [14], intelligent carpet
(light transmission of light in optical fibres, built into carpet)
[15], microphones [16] and cameras [17]. Our proposed LiDAR-
based solution fits well into these technologies and offers attrac-
tive complementary features such as small size, non-invasive,
and well suited for use in places where intimate situations occur.

Automated driving systems [4, 18] and robotics [19] demand
high-precision vision systems. These two areas are the main
research areas challenging the industry to increase the LiDAR’s
capability and reduce the price. Several sensors are required to
provide autonomous driving and operations [20]. LiDAR is a
promising candidate. It produces excellent three-dimensional
point clouds, a necessity for measuring distances to objects and
proximity detection. Furthermore, the mass production of units
will cause a low unit price.

3 THE MONITORING SYSTEM

Due to the recent advancement of LiDAR technology, we
consider LiDAR a promising sensor for making a monitoring
system, e.g. for homes of elderly people. Such a monitoring sys-
tem is able to monitor daily activity patterns as well as emer-
gencies where immediate response is needed. While holding the
functionality as described, such a monitoring system can also
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FIGURE 1 LiDAR sensor transmitting (T) a light pulse towards an object.
Some of the reflected light is received (R) by the sensor, enabling a measurement
of distance (d) between the sensor and the object

FIGURE 2 Monitoring concept illustrated by using five LiDAR sensors to
coverer a room. The light grey areas illustrate the FoV of the sensors. The dark
grey area is the area in which two sensors overlap

be made small and non-invasive, i.e. not introducing signifi-
cant aesthetic or practical changes where this system is installed.
Next, we describe how the proposed monitoring system could
be realised.

The LiDAR sensor used in this paper (VL53L1X [21]) uses
time of flight of a light pulse to estimate the distance between
the sensor and an object, e.g. a human, Figure 1.

The LiDAR has a relatively narrow field of view (FoV),
approximately 20–30◦; hence, one sensor is not able to cover
an entire room. However, by combining multiple LiDAR units
in one room, the entire area of a room can be covered, as illus-
trated in Figure 2. With a network of sensors, like that seen in
Figure 2, an analysis of the acquired data can provide important
parameters regarding a person. Parameters of interest include
gait speed and falls. Gait speed is important as it can be used
as a predictor of cognitive decline, falls, institutionalisation and
survival in elderly people [22, 23].

Falls can be detected by analysing presence and lack of pres-
ence inside a room. For example, if the sensors monitoring the
room is placed at chest height, and additional sensors are placed
in every entrance to the room, one can conclude that a fall has
occurred if a person is no longer observed inside the room
(chest height), and there has not been detected movement in
any of the room’s exits/entrances. Notice that alarms are for-
warded to the care service; thus, the personnel will investigate
the situation. The healthcare service would not just be notified
in the case of a sudden fall, but also if the resident was not able

FIGURE 3 Schematic drawing of measurement system. Multiple
autonomous sensors sends distance measurements to a computer through a
LAN

FIGURE 4 Sensor unit consisting of a microcontroller, LiDAR sensor and
Wi-Fi module

to stand up after intentionally crouching to reach for something
on the floor. Hence, regardless of the incident resulting in the
person laying on the floor, the healthcare services can be noti-
fied so that a long lie can be prevented. Long lies have serious
negative impact on a person’s health and may cause an increased
chance of dying within a year following the accident [24]; it is,
therefore, essential to prevent such incidents.

To demonstrate and validate the monitoring system, a proto-
type has been made, consisting of two sensor units, and a PC
collecting data from the two sensors through a hotspot Wi-Fi.
The system is schematically illustrated in Figure 3.

The sensor units (S0, S1 etc.) consist of an Arduino Gen-
uino (UNO) microcontroller, a VL53L1X LiDAR-sensor sup-
plied by SparkFun and an ESP8266 Wi-Fi module allowing
the microcontroller to connect to an IEEE 802.11 network
for wireless data transmission. The sensor unit can be seen in
Figure 4. IEEE 802.11 was chosen because appropriate hard-
ware with associated application programming interface (API)
was easily accessible and it is a low-cost alternative. Commu-
nication between the sensor and the microcontroller uses an
inter-integrated circuit. SparkFun provides an API making it
easy to configure and read data from the sensor through the
Arduino environment. In addition to distance readings, the
LiDAR reports the validity of its measurement. A valid mea-
surement is indicated by the number zero; otherwise, the mea-
surement status will be an integer, larger than zero, indicating
a problem with the measurement. The microcontroller is pro-
grammed to continuously transmit UDP packages to the PC,
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containing a distance reading and the validity or status of the
current distance reading. When a data packet is received by the
computer, its data are stored in an array in addition to a times-
tamp (time received).

The sensor reading is not synchronised between the sensors.
Thus, the data presented differ slightly in observation time. An
important design goal is the simplicity of the system; avoiding
time-synchronised units reduces the cost and helps scaling the
system to include more sensors, as shown in Figure 2. We found
that synchronisation was not critical as the person’s movement
is slow compared to the time difference between measurements
from the two sensors. This topic will be further discussed and
analysed in our experiments in the following section.

4 SYSTEM PERFORMANCE

Several experiments have been carried out in order to charac-
terise some key parameters of the detection system. This section
presents the experiments and the results.

4.1 Measurement range and accuracy

Measurement range and accuracy were investigated by perform-
ing several distance measurements at known distances. The two
sensors were placed 200 mm apart, oriented in the same direc-
tion, on top of a trolley, 920 mm above the floor. The trolley
was carefully placed at 18 different distances between 20 and
6000 mm away from the wall. The reference distance was mea-
sured with a metre (1-mm resolution). For every position, the
system acquired about 100 distance measurements from each
sensor. Mean distance for every length interval was then calcu-
lated. To reduce the error introduced by manually positioning
the sensors at different distances from the wall, measurements
for the 18 distance intervals was repeated five times. From the
five repetitions, the mean distance was calculated. The standard
deviation provides an estimate of the measurement uncertainty.

The mean distance is plotted as a function of the refer-
ence distance in Figure 5. All data presented in the range 20–
3000 mm had a valid status code. At 3500 mm, the fraction of
valid measurements was 34% and 42% for sensor S0 and sensor
S1, respectively. At 4000–5500 mm, there were no valid mea-
surements for any of the sensors. Finally, at 6000 mm, sensors
S0 and S1 had 2% and 4% valid measurements, respectively. The
measurements with non-valid status have not been investigated
further for this experiment. Section 4.2 presents a more detailed
assessment of the data reported as invalid.

4.2 Field of view

The LiDAR sensors ability to cover an area depends on two
parameters, the range in which the sensor obtains reliable dis-
tance measurements and the sensors FoV. To investigate the
sensors’ FoV, several experiments were conducted using the
setup seen in Figure 6.

FIGURE 5 Distance measurements (non-filled) between 20 and 6000 mm.
Each data point is the mean of five experiments. Filled circles and squares are
one standard deviation of the mean distance (right y-axis)

FIGURE 6 Experimental setup of sensors for determining the sensors
FoV (𝜃). A person walked the dashed line from left to right. d0 is the distance
the person was within the FoV of sensor S1 with the closest shoulder being a
distance, d1, from the sensor. The light grey areas illustrate the FoV of the two
sensors. The dark grey area is the area in which the two sensors overlap

A person walked along the stapled line from left to right (see
Figure 6), with a mean velocity of v = 0.7 ± 0.2 m/s for these
experiments, which is a realistic gait speed for elderly people
[23]. This was repeated 10 times for each of the three distances
of 1, 2 and 3 m between the subject’s shoulder and sensor S1
(d1), resulting in a total of 30 sets of measurements. The sam-
pling rate of the two sensors is not synchronised, so that mea-
surements from the two sensors are obtained with a few mil-
liseconds separation. However, we observed that the sampling
rates of the two sensors are comparable and stable for both
sensors (as seen in Table 2). Hence, all the measurements from
sensor S0 could be paired with a measurement from sensor S1
with only a minor time difference. Such a pair of distance mea-
surements, one from sensor S0 and one from sensor S1, with a
minor time difference (typically less than 43 ms), will from now
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FIGURE 7 Distance from sensor S1 plotted as a function of the distance
from sensor S0. Figure 4 shows the experimental setup used. A person walked a
straight line in front of sensor S0, at a distance approximately 1 m (circle), 2 m
(square) and 3 m (cross) away from the sensor. Only data points where both
sensors reported valid data are plotted

on be referred to as a data point. dS0 will be the x-coordinate
and dS1 is the y-coordinate.

The valid data points from the 30 experiments (walking the
dashed line in Figure 6 one time) were plotted in Figure 7, with
circle markers for the sets at 1 m from sensor S1, square for 2 m
and cross for 3 m. When the person is positioned on the far left
or right of the sensor, the data from the LiDAR are marked as
invalid and can be filtered out as in Figure 7. Eventually, when
the person transition into the view of the sensor, the measure-
ments become valid.

Based on valid data points only, the sensor’s FoV was calcu-
lated to be 17.8 ± 0.1◦ for the experiments conducted at 1 m
from sensor S1 and 19.3 ± 0.1◦ at 2 m. At 3 m, most measure-
ments were invalid, and only three data points were obtained.

4.3 Bathroom environment

The bathroom is the place where our most intimate activities
of daily living occur. Hence, a monitoring system that produces
detailed images is even more invasive in the bathroom compared
to other areas in the home. The bathroom is, therefore, an inter-
esting location for a LiDAR-based monitoring system, as the
data produced are less invasive than a camera or an infrared
depth camera.

In order to cover all activities in a bathroom, a monitor-
ing system must perform well, even when the user is taking a
shower. Because of this, the system performance was investi-
gated by acquiring measurements in a typical shower setting.
The experimental setup can be seen in Figure 8. The sensors
were placed in such a way that the light beam crossed the
shower’s water jet and reflected from the person. This enabled
the detection of the person standing underneath the shower-
head.

FIGURE 8 Bathroom environment. S0 and S1 are the two sensors, P is the
person present during some experiments, and S is a showerhead attached to the
wall

TABLE 1 Results from experiments conducted in a shower environment

Exp.

no. dS0 [mm]

nS0

(valid) nS0 dS1 [mm]

nS1

(valid) nS1

1 1758 ± 3 25 26 2404 ± 6 25 25

2 1755 ± 3 31 32 2398 ± 5 31 33

3 1408 ± 19 55 56 2059 ± 12 53 56

4 1490 ± 7 43 45 2121 ± 8 44 44

5 1429 ± 9 51 53 2123 ± 15 49 54

6 1427 ± 7 44 45 2102 ± 12 40 45

The experiments aimed to investigate the sensor’s ability to
discriminate between a human and a water jet. Without this abil-
ity, dangerous events, such as falls, can occur unnoticed if a per-
son taking a shower is occluded by the water jet.

First, a reference experiment was conducted without anyone
in the shower, and without any water jet (experiment 1). After-
wards, measurements was performed while the water was run-
ning and without any person standing in the shower (experi-
ment 2). No significant changes were observed between these
two experiments, as can be seen from Table 1.

Next, four experiments with different configurations was per-
formed while a person (h = 1700 mm) stood in the shower.
First, the person stood underneath the showerhead with no
water running (experiment 3). Second, the water was turned
on while the person remained in place (experiment 4). There-
after, the person grabed the showerhead by his hand and held
it approximately 200 mm (experiment 5) and 400 mm (experi-
ment 6) in front of his body, in the direction of sensor S1. The
showerhead was held a bit higher than the height of the person,
so that most of the body was behind the water jet as seen from
sensor S1’s perspective.

Regarding experiments 4–6, the sensors produced concistent
distance readings, even though a water jet was placed to occlude
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TABLE 2 Sampling rate during each experiment category

Valid

measurements All measurements

Experiment category Δt [ms] n Δt [ms] n

Accuracy (4.1), S0 94 ± 113 7183 87 ± 7 10,532

Accuracy (4.1), S1 95 ± 129 7237 87 ± 7 10,528

FoV (4.2), S0 90 ± 27 1506 87 ± 7 1843

FoV (4.2), S1 114 ± 75 85 87 ± 5 1828

Shower (4.3), S0 175 ± 23 542 174 ± 16 558

Shower (4.3), S1 181 ± 39 527 174 ± 17 558

the person in experiments 5 and 6. For sensor S0, there was a
slight difference of about 60 mm from experiment 4 to experi-
ments 5 and 6. This difference is likely due to the slight rotation
of the person towards sensor S1 when holding the showerhead
in this direction.

In Table 1, d is the distance represented by mean ± standard
deviation. The subscript indicates the sensor ID. n is the number
of measurements for the respective experiment and sensor, and
n (valid) is the number of valid measurements. Calculation of
mean and standard deviation is based on valid measurements
only.

4.4 Sampling performance

As for any monitoring system, the time response must be ade-
quate for monitoring elderly people. Adequate temporal resolu-
tion imposes requirements on the sampling frequency, in order
to ensure that relevant information is not missed. The sam-
pling performance of the measurement system was investigated
by analysing the measurements from all experiments described
in Sections 4.1–4.3. Table 2 contains mean time between two
consecutive measurements for both sensors in each experiment,
both for all measurements, and for valid measurements only.

As seen in Table 2, the sampling rate (1/Δt) for valid mea-
surements only differed in the measurement environment. The
experiment setup in Section 4.2 for sensor S1 resulted in many
invalid measurements, hence resulting in a large Δt (both mean
and standard deviation) for valid measurements only compared
to the Δt based on all measurements, including both valid and
invalid.

Regarding the experiments conducted in the shower, the
shower wall was within the sensor range, resulting in mostly
valid measurements (97% valid for sensor 0 and 94% valid
for sensor 1). Consequently, only a small difference was seen
between Δt for all measurements and valid measurements only.

As stated above, Δt is the time difference between two con-
secutive measurements, as they are timestamped at the PC. The
time difference includes the configured periodic measurement
interval, the transmission time, and processing time at the PC.
The column where all measurements are presented shows con-
sistency between the two sensors in the same environment.

Regarding Δt in the shower experiments being twice as much
as for the other tests, this is likely due to the change of loca-
tion for the experiments. With different interfering traffic, this
is likely to affect the monitoring system’s data transmission per-
formance.

In Table 2, Δt is the time between two consecutive measure-
ments for one sensor. For the three experiment categories in the
table, mean, standard deviation and n have been calculated based
on the measurements from all experiments within the respective
categories. The number in the parenthesis refers to which sub-
section the main results of the respective experiment are found.

Additional experiment was conducted to investigate the sig-
nificance of transmission time between the sensors and the
computer. An experiment was designed where a piece of card-
board (0.8 × 0.6 m2) was held at about 1.5 m in front of the
two sensors, with a wall approximately 1.5 m behind the card-
board (about 3 m from the sensor). While measuring, the card-
board was pulled rapidly away from the sensors’ FoV, doubling
the measured distance. At the moment, when the cardboard was
pulled away, a button was pushed on the computer, tagging the
next incoming measurement. This way, the transmission time
was calculated as the time difference between the tagged mea-
surement and the moment the distance readings changed from
about 1.5 to about 3.0 m. Clearly, the experiment involves sev-
eral uncertainties, such as the movement of the board and the
push on the bottom. Therefore, several repeated experiments
were conducted to reduce the significance of these uncertain-
ties.

The experiment described above was performed 10 times,
resulting in a mean time difference of 135± 89 ms for sensor S0,
and 130 ± 90 ms for sensor S1. Considering the manual way of
conducting the experiment (pressing the button and removing
the cardboard) and a mean time between the received measure-
ments of 88 ms, one should probably add about a quarter of a
second of uncertainty to the experiment. Even when taking the
last considerations into account, the time from the moment the
cardboard is pulled out of the sensor’s FoV until the measured
distance is changed does not exceed 0.5 s.

5 DISCUSSION

In the preceding section, some key characteristics of the pro-
posed monitoring system have been investigated through vari-
ous experiments. We now return to the system design, as shown
in Figure 2, and discuss our findings from the perspective of
designing a system for securing a person’s home. Figure 2 illus-
trates one of several potential sensor arrangements. Clearly, the
arrangement depends on the requirements.

The shower/bathroom scenario documents a reliable, non-
intrusive solution. Currently, technical solutions designed for
independent showering for fragile older persons are appearing
[25, 26]. However, a remaining challenge is to ensure the
safety of the person in the shower and detect if the person
has fallen. We find that our LiDAR-based solution detects the
presence of the person in the shower, and it can trigger an
alarm when required. Furthermore, we find that the capability
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of identifying the person and responding to absence is adequate
to secure the person. The shower scenario demonstrated the
robustness of the LiDAR-based solution concerning water and
moisture. Furthermore, LiDAR-based systems are currently
investigated in the harsher outdoor environment [7] that is far
more challenging than homely environments. The final solution
will be contained in a box with a window that may require
periodic cleaning. In the case that dust degrades the signal, the
degradation can trigger a warning that cleaning is required.

Covering larger rooms in the home requires more sensor than
in the bathroom. An important design goal for the system was
low cost per unit; this enables the use of several autonomous
sensors. However, synchronising the sensor may impose limi-
tations on the scalability of the system in terms of the number
of sensors. Our investigations demonstrate that the system pro-
vides a satisfactory time response. The main reason is that the
movement of a person is slow (typically in the range 0.4–1.6 m/s
[23]) compared to the achieved response of the system.

The measurement range of the LiDAR sensor used is suf-
ficient for many locations, especially smaller rooms, which is
often the case for bathrooms. The number of suitable loca-
tions for using this system can be extended further by using a
sensor with increased range. However, one must keep in mind
that extended sensor range will generally involve the trade-off
of increased power consumption, unless the increased range is
the result of technological improvements rather than increased
power of the transmitted light.

The communication protocol used for this prototype was
adequate for early testing of the concept/system. However, for
an end product, a communication protocol that is more appro-
priate for sensor networks should be chosen. IEEE 802.11 is
not optimal regarding power efficiency and transmission rate
stability, as competing Wi-Fi communication may alter the sam-
pling performance. Communication protocols such as IEEE
802.15.4 or Bluetooth Low Energy should be considered for
future improvements. The final success factor of the system
depends on its unit cost. Based on experience working with
alternative radar solutions [12, 13] and price for radar systems
found in [27], we estimate that the solution will have a unit price
less than $10. The estimate is based on publicly available unit
prices on the Internet.

6 CONCLUSION

A low-cost LiDAR system is demonstrated for monitoring and
securing an elder person’s home. The bathroom is the area in
a home with high risk of falling. The bathroom is a well-suited
environment for using our sensor solution because of its ability
to detect a person taking a shower—the water will not occlude
the person. Furthermore, our system offers a monitoring solu-
tion that is non-invasive, capable of detecting whether a person
has fallen in the shower. Several independent LiDAR units are
required to cover an entire room. Our investigations find that
each unit can be designed with low-cost components that trans-
mit their data to a local hub for evaluation. Synchronisation of
the units is, based on our findings, not required.
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