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Abstract
1. Pollination is a key ecosystem service for global agriculture but evidence of polli-

nator population declines is growing. Reliable spatial modelling of pollinator abun-
dance is essential if we are to identify areas at risk of pollination service deficit and 
effectively target resources to support pollinator populations. Many models exist 
which predict pollinator abundance but few have been calibrated against obser-
vational data from multiple habitats to ensure their predictions are accurate.

2. We selected the most advanced process-based pollinator abundance model avail-
able and calibrated it for bumblebees and solitary bees using survey data collected 
at 239 sites across Great Britain. We compared three versions of the model: one 
parameterised using estimates based on expert opinion, one where the param-
eters are calibrated using a purely data-driven approach and one where we allow 
the expert opinion estimates to inform the calibration process.

3. All three model versions showed significant agreement with the survey data, dem-
onstrating this model's potential to reliably map pollinator abundance. However, 
there were significant differences between the nesting/floral attractiveness 
scores obtained by the two calibration methods and from the original expert opin-
ion scores.

4. Our results highlight a key universal challenge of calibrating spatially explicit, pro-
cess-based ecological models. Notably, the desire to reliably represent complex 
ecological processes in finely mapped landscapes necessarily generates a large 
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1  | INTRODUC TION

Pollination is a key ecosystem service underpinning the reproduc-
tion of many flowering plants, including many crops. Pollinators 
enhance production in ∼75% of globally significant crops, adding 
>$235bn p.a. of productivity and substantially increasing the nutri-
tional security of people all over the world (Breeze et al., 2016; Smith 
et al., 2015). However, pollinator populations are under increasing 
pressure from landscape simplification (Kennedy et al., 2013), ag-
rochemical use (Rundlöf et al., 2015; Woodcock et al., 2017) and 
climate change (Kerr et al., 2015), and there is growing evidence of 
instability in pollinator-dependent crop yields (Garibaldi et al., 2011; 
Garratt et al., 2014). Unless addressed, these pressures are expected 
to cause significant declines in global pollinator diversity in the com-
ing decades (Balfour et al., 2018; Rasmont et al., 2015), threatening 
global food security.

To date, very few countries have sufficient data to monitor pol-
linator abundance (O'Connor et al., 2019) or diversity (Carvalheiro 
et al., 2013; Kerr et al., 2015; Powney et al., 2019) and therefore 
cannot reliably identify areas suffering declines or at risk of sub- 
optimal pollination services (Garibaldi et al., 2011). Although field 
monitoring of national scale trends in pollinators and pollination 
services is both scientifically and economically viable (Breeze et al., 
2020; O'Connor et al., 2019), it will take several years to build up 
such databases. Until then, additional approaches are needed to help 
target resources to support pollinator populations.

Spatial modelling of pollinator populations can support deci-
sion-making and is essential to predict the effects of future land-use 
change on pollinator populations. The most simplistic spatial models 
of pollination are purely based on crop forage distance from semi-nat-
ural habitat (Priess et al., 2007). Other studies assign habitat quality 
scores to all habitat types in the landscape (Nogué et al., 2016; Schulp 
et al., 2014), but this does not capture the fact that pollinators may 
use different habitats for different resources. The more sophisticated 

InVEST pollinator model, developed by Lonsdorf et al. (2009), assigns 
a separate nesting and flowering quality score to each habitat for dif-
ferent taxa, accounting for flight distances. This model and adapta-
tions of it have already been used to infer spatially explicit current 
(Koh et al., 2016; Zhao et al., 2019) and future trends in pollinators/
pollination (Chaplin-Kramer et al., 2019) and estimate pollinator natu-
ral capital (Ricketts & Lonsdorf, 2013).

More recent studies have refined this process-based InVEST model 
further by assuming that pollinators are optimal foragers (Olsson 
et al., 2015), accounting for temporal variation in floral resources and 
using expert-derived floral attractiveness scores (Häussler et al., 2017). 
If models are to be capable of predicting the impact of future land-use 
change on pollinators and reliably informing conservation management, 
such sophisticated and realistic simulation of pollinator requirements and 
resource use is essential. The most advanced social bee models currently 
available — BEEHAVE and Bumble-BEEHAVE (Becher et al., 2014, 2018) 
— adopt an agent-based approach, simulating the behaviour of individual 
bees. However, such agent-based modelling is computationally intensive, 
such that process-based models remain the most viable option for pre-
dicting pollinator visitation across large spatial scales, while still account-
ing for fine-grained differences in land-use.

Structural realism alone is not sufficient, however, any model used 
to inform land management and policy must also be validated against 
observational data to ensure its predictions reflect current observed 
reality. Several studies have compared predictions from process-based 
pollinator models with field data (e.g. Groff et al., 2016; Kennedy 
et al., 2013; Lonsdorf et al., 2009; Nicholson et al., 2019; Ricketts & 
Lonsdorf, 2013), but these have primarily focused on predicting polli-
nator abundance within specific crops. Such models are yet to be val-
idated more widely using pollinator abundance measurements in both 
crop and non-crop landcovers.

Here, we take the most advanced process-based pollinator abun-
dance model available (Poll4pop; Häussler et al., 2017), which simu-
lates both solitary and social bees (the main UK pollinators of crops 
and wild flowers), and we compare its predictions to abundance data 

number of parameters, which are challenging to calibrate with ecological and geo-
graphical data that are often noisy, biased, asynchronous and sometimes inaccu-
rate. Purely data-driven calibration can therefore result in unrealistic parameter 
values, despite appearing to improve model-data agreement over initial expert 
opinion estimates. We therefore advocate a combined approach where data-driven 
calibration and expert opinion are integrated into an iterative Delphi-like process, 
which simultaneously combines model calibration and credibility assessment. This 
may provide the best opportunity to obtain realistic parameter estimates and reli-
able model predictions for ecological systems with expert knowledge gaps and 
patchy ecological data.

K E Y W O R D S

calibration, credibility assessment, Delphi panels, ecosystem services, pollinators, process-
based models, validation
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collected at 239 sites across Great Britain, including crop, non-crop 
and urban sites. Our aim is to identify an optimum set of parameters for 
the model that produces the best agreement with the observed survey 
data and enables the model to be used with confidence to predict the 
consequences of land-use change on UK pollinator populations and 
pollination service. We first parameterise the model using nesting and 
floral attractiveness scores derived from expert opinion and assess the 
level of model-data agreement. We then use the observed abundance 
data to calibrate these nesting and floral attractiveness scores and 
improve the model-data agreement, using an Approximate Bayesian 
Computation-like approach. We test two calibration methods: a free 
data-driven calibration and an expert-informed prioritised calibration. 
We discuss the implications of these three different model parameter-
isations, the realism of their derived parameter values and their impli-
cations for reliably modelling pollination service at large spatial scales.

2  | MATERIAL S AND METHODS

2.1 | Pollinator abundance data

We collated transect data from surveys conducted between 2011 
and 2016 at 239 sites across Great Britain (Figure 1; Table S1), in-
cluding 84 crop sites, 12 urban sites and 143 non-crop sites (i.e. na-
ture reserves and semi-natural habitat). Number of surveys per site 
ranged from 1 to 14, with a mean of 4.5 ± 0.1 surveys per site.

For each survey, we sum up the total number of individuals 
observed within each of four guilds, which we can then compare 
to the model predictions, controlling for total transect length and 
survey date. The guilds are ground nesting bumblebees (GNBB), 
tree nesting bumblebees (TNBB), ground nesting solitary bees 
(GNSB) and cavity nesting solitary bees (CNSB), with species al-
located to guilds following the nesting preferences given in Falk 
(2015). Where observations were not recorded to species level but 
instead recorded as ‘Bombus unknown’ or ‘solitary unknown’, we 
divide these unknown individuals between the nesting guilds ac-
cording to the proportions of known individuals assigned to each 
guild on that particular survey. In practice, unknown Bombus and 
unknown solitary bees were predominantly assigned to ground 
nesting guilds due to observations of ground nesting species sig-
nificantly outnumbering other guilds.

2.2 | Model description

Poll4pop is a process-based model that predicts spatially explicit 
abundance and flower visitation rates by wild central-place-foraging 
pollinators in a given landscape. It accounts for population growth 
over time, allows different dispersal distances for workers and re-
productives, includes preferential use of more rewarding floral and 
nesting resources, and can incorporate fine-scale edge features in 
the landscape. We summarise the model below. For a detailed de-
scription of the model see Häussler et al. (2017).

The model requires a rasterised landcover map detailing the land-
cover class (e.g. cereal, woodland, etc.) of each pixel, as well as rasters 
containing the area within each pixel that is covered by specific edge 
features (e.g. hedgerows, flower margins). Each landclass is scored ac-
cording to the amount of floral cover it provides during each season 
(spring, summer and autumn), the attractiveness of those floral re-
sources to each pollinator guild (floral attractiveness) and the attrac-
tiveness of the nesting opportunities the landclass provides to each 
pollinator guild (nesting attractiveness). For each guild, the model then 
generates a nesting resources map (i.e. nesting attractiveness score for 
each pixel multiplied by the pixel area and maximum nest density input 
into the model), plus floral resource maps for each season (i.e. floral 
attractiveness multiplied by seasonal floral cover score for each pixel).

Nests are then randomly allocated across the landscape, with 
the number of nests in a pixel drawn randomly from a Poisson dis-
tribution around the expected number predicted by the nesting re-
sources map. For each nest, the model uses the foraging distance of 
the pollinator to calculate the resources gathered by the nest from 
its surroundings, which in turn determines how many workers (if so-
cial) and new reproductive females the nest produces using the input 
growth parameters for that pollinator. New reproductive females 
then disperse according to the dispersal kernel of the pollinator. In 
any given pixel, the number of new reproductive females that survive 

F I G U R E  1   Locations of survey sites colour-coded by type of 
survey site (see Table S1 for type definitions)
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the following year is limited by the expected number of nests in that 
pixel according to the nesting resources map.

The model outputs visitation rate to each pixel in each season 
(based on the amount of time pollinators from all nests spend for-
aging in each pixel). Solitary bees are assumed to be active only 
during one season, with new bees produced at the end of this 
season. Social bees (e.g. bumblebees) are assumed to be active in 
all three seasons, with queens (i.e. reproductive females) foraging 
during season 1, workers foraging during seasons 2 and 3, and new 
queens produced at the end of season 3.

2.3 | Model inputs

2.3.1 | Landcover/edgecover rasters

Landcover rasters are generated from the CEH Land Cover Map 
2015 (LCM2015) with Ordnance Survey orchard polygons added on 
top of this. Where a land parcel is classed as ‘Arable and Horticulture’ 
in LCM2015, we obtain crop information for the year 2016 from 
rural payments agency databases.

For each landcover raster, we also generate edgecover rasters for 
six edge features (ditches, fallow field margins, grassy field margins, 
flower-rich margins, hedgerows and woodland edges) using infor-
mation from rural payments agency databases and the CEH Woody 
Linear Features Database (Scholefield et al., 2016). See Supporting 
Information for full details of landcover/edgecover raster generation.

For each survey site, we generate 10 × 10 km landcover/edgecover 
rasters with 10 × 10 m pixels centred on the survey site, which are used 
to obtain model predictions for calibration and validation. To obtain 
upscaled calibrated model predictions for Great Britain, we also gener-
ate 512 35 × 35 km landcover/edgecover rasters with 10 × 10 m pixels, 
which cover the entire geographical area with a 5 km overlap between 
rasters (later removed from output rasters to eliminate edge effects).

2.3.2 | Expert opinion data: Floral cover, floral 
attractiveness and nesting attractiveness

Ten UK pollinator experts were asked to score 35 common European 
landclasses (Table S2) for abundance and duration of floral resources 
per season (later multiplied to obtain floral cover). They were also 
asked to assign floral and nesting attractiveness scores to each land-
class for the pollinator guilds they had experience of. Scores were 
collected on a 6-point scale, along with corresponding ‘certainty 
scores’. We then calculated the mean scores across all experts 
and their variance, weighted by the experts' certainty scores. See 
Supporting Information for full details.

2.3.3 | Literature data: Maximum nest density, 
foraging distances, dispersal distances and 
growth parameters

We use the maximum nest density, foraging distance, dispersal 
distance and growth parameters supplied with the poll4pop model 
for bumblebees and solitary bees and used in Häussler et al. (2017; 
Table 1). For simplicity, we assume both bumblebee nesting guilds 
have the same values for these parameters. Similarly, we assume 
both solitary bee nesting guilds have the same values for these pa-
rameters. This is unlikely to be true. However, the identical maxi-
mum nest density assumption is unimportant for our results, since 
we never compare the relative abundance of guilds and are con-
cerned only with calibrating relative attractiveness of landclasses 
within guilds. Similarly, we consider the uniform foraging and dis-
persal distances within bumblebees and solitary bees an appropri-
ate simplification, since foraging and dispersal distances are poorly 
known and vary between species (even within guilds) and we com-
pare our model predictions to observed guild totals of varying spe-
cies composition.

Parameter Description Unit BB SB

nmax Number of nests in a cell of maximum 
nesting quality

nests/ha 19 20

β Mean dispersal distance for foraging m 530 191

� Mean dispersal distance to new nesting 
sites

m 1,000 100

aw Median of the growth rate for workers – 100 –

bw Steepness of the growth rate for workers – 200 –

aq Median of the growth rate for 
reproductive females

– 15,000 42

bq Steepness of the growth rate for 
reproductive females

– 30,000 12

wmax Maximum number of workers produced 
by a reproductive female

– 600 –

qmax Maximum number of new reproductive 
females produced

– 160 2

pw Fraction of foraging workers – 0.5 –

TA B L E  1   Poll4pop model parameters 
taken from literature data showing 
values adopted for bumblebees (BB; from 
Häussler et al., 2017), and solitary bees 
(SB; see Table S3)
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2.4 | Comparison of model predictions with 
pollinator abundance data

To obtain a model prediction for a given survey site, we input the 
site's 10 × 10 km landcover/edgecover rasters and calculate the pre-
dicted spring visitation rate per m2 within the survey area (V1) by 
summing up the season 1 visitation rate to all pixels inside the survey 
area and dividing by the total survey area. We compare this to the 
observed number of bees on each survey (Nobs) by fitting the model:

where L is the total transect length (i.e. we implicitly assume bees 
are detected within some unknown width either side of the transect 
which is constant across sites), W is the week of the year that the sur-
vey was carried out, Y is the year the survey was carried out and we fit 
to (Nobs + 1) to avoid taking the logarithm of zero when no pollinators 
were recorded. The co-variable W allows us to account for the fact 
that pollinator population size changes during the survey season, for 
example, as bumblebee nests produce workers over time and solitary 
bees' active periods pass. The co-variable Y allows us to account for 
the fact that pollinator abundance nationally shows between-year 
variability due to year-to-year variation in weather suitability impact-
ing pollinator growth directly (e.g. through poor weather reducing 
foraging time) and indirectly (e.g. by reducing floral cover).

Although the survey data represent counts, we fit the linear 
model assuming a Gaussian error distribution rather than Poisson, 
because the count data are over-dispersed with variance much larger 
than the mean. We choose a Gaussian error distribution with logged 
variables rather than any other method to deal with overdispersion, 
such as quasi-Poisson distribution, because this approach produces 
the smallest and most uniform residuals across the data range.

We fit the linear model using r version 3.5.1 (R Core Team, 2018). 
A positive value of β that is significantly different from zero indicates 
significant model-data agreement.

2.5 | Sensitivity analysis

We conduct a sensitivity analysis to determine how sensitive the 
model-data agreement is to changes in the input nesting and floral 
attractiveness scores. For each guild, we calculate the change (∆) 
in model-data agreement slope (β; obtained from fitting Equation 
1) when each attractiveness parameter is adjusted by ±50%. This is 
done by running the poll4pop model twice for each attractiveness 
parameter — once with that parameter increased by 50% and once 
with it decreased by 50%, while holding all other parameters constant 
at their original expert opinion values. For attractiveness parameters 

that are zero, we vary the parameter by ±50% around a value of 
0.1. For each attractiveness parameter, we obtain model predictions 
across all the survey sites for these two scenarios (parameter ± 50%) 
and fit Equation 1 to obtain the model-data agreement slope in each 
scenario (β+ and β−). We then calculate the percentage change in the 
model-data agreement slope as:

where β is the model-data agreement slope when all attractiveness  
parameters are set to their original expert opinion values.

We calculate the uncertainty in ∆ by propagating the SEs on the 
individual slopes (��+

, ��−
 and αβ), following Hughes and Hase (2010), 

as:

2.6 | Model calibration

We separate the survey sites into 120 calibration sites and 119 vali-
dation sites, using stratified random sampling to ensure both subsets 
contain equal proportions of crop/non-crop sites and zero/non-zero 
surveys per guild. The validation sites are not used for calibration 
but reserved for assessing improvement in model-data agreement.

For each guild, we focus on calibrating the nesting and floral 
attractiveness scores for each landclass, excluding the landclasses 
buckwheat (which does not occur in any of our survey site rasters) 
and ‘unsuitable’ (which is used for water/bare rock etc. and is fixed 
at zero attractiveness). We keep the floral cover scores fixed at their 
original expert opinion values, to allow us to decouple the guilds and 
calibrate each guild separately, and all other parameters remain fixed 
at their literature values.

We test two different methods of calibration. Method 1 involves 
searching the parameter space of all eligible parameters simultane-
ously (free data-driven calibration). Method 2 (expert-informed prior-
itised calibration) involves first prioritising parameters for calibration 
according to the results of the sensitivity analysis and searching the 
parameter space of parameters which the model is most sensitive to 
first, while less sensitive parameters remain fixed at their original ex-
pert opinion values. The parameter space of these less sensitive pa-
rameters is only searched once the more sensitive parameters have 
been calibrated. We define three sensitivity thresholds for Method 
2: parameters which produce ∆ ≥ 5% are calibrated first, followed 
by parameters which produce 5% > ∆ ≥ 0.5%, with the remaining 
parameters producing ∆ < 0.5% calibrated last.

The calibration process itself follows an Approximate Bayesian 
Computation-like approach (Fearnhead & Prangle, 2012) and in-
volves running poll4pop 1,000 times across all of our calibration 
sites. Each run uses a unique set of attractiveness parameters where 
each eligible attractiveness parameter is assigned a random value 
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drawn from a uniform distribution between the allowable limits 
for that parameter, while any ineligible attractiveness parameters 
remain fixed at their original expert opinion scores. For each run, 
we fit Equation 1 to assess the model-data agreement between the 
calibration site survey data and model predictions and select the 
100 runs which produce (β, R2) closest to (1, 1). We then calculate 
the density distributions of the eligible parameters across these 100 
best runs. While the density distributions of the eligible parameters 
across all 1,000 runs are flat, the density distributions corresponding 
to the 100 best runs should be biased towards parameter values that 
produce the best fit to the data and show a peak around this value. 
If the full width half maximum (FWHM) of the density distribution 
peak is ≤60% of the parameter's allowable range, then we assume 
the parameter has been sufficiently constrained and we define the 
parameter's calibrated score as the score that corresponds to the 
density distribution peak. The FWHM limit of ≤60% was set after 
careful consideration of the density distribution widths the calibra-
tion process and data quality are capable of producing.

Typically only a few (∼1–5) parameters will be constrained from 
analysing a single batch of 1,000 runs, due to the large number of pa-
rameters being varied simultaneously broadening the density distri-
butions of individual parameters. After a single batch of 1,000 runs, 
any successfully calibrated parameters are set to their calibrated val-
ues and the process is repeated until all parameters have been cal-
ibrated or the remaining parameters to do not yield FWHM ≤ 60% 
due to their minimal leverage on the model-data agreement.

2.7 | Predicting visitation rates across Great Britain

We generate two model predictions per guild for spring visitation 
rate across Great Britain: one prediction using the calibrated attrac-
tiveness scores obtained using Method 1 (Vcal) and one using the 
original expert opinion attractiveness scores (Vexp). We compare the 
ratio of these two predictions by calculating Vcal/Vexp to identify re-
gions of the country where these two predictions differ.

We quantify the uncertainty on Vcal by running 100 simulations, 
where the score of each attractiveness parameter is randomly se-
lected from the density distribution of that calibrated parameter. 
The uncertainty on the model prediction in each pixel is then repre-
sented by the SD of these 100 simulations.

We quantify the uncertainty on Vexp by running 100 simulations, 
where the score of each attractiveness parameter is randomly se-
lected from a beta distribution (B(a, b)) with mean (µ = a/(a + b)) and 
variance (σ2 = µ(1 − µ)/(a + b + 1)) equal to the mean and variance 
of the expert opinion score for that parameter. Since B(a, b) is only 
defined on the interval (0, 1), we rescale the floral attractiveness pa-
rameter means (originally scored from 0–20) and variances onto the 
interval (0, 1), draw randomly from the appropriate beta distribution 
and multiply the randomly selected scores by 20 to return them to 
the appropriate scale.

The uncertainty on the ratio Vcal/Vexp is taken as the SD of the ra-
tios calculated from dividing one Vcal simulation by the correspond-
ing Vexp simulation. We assess the significance of the ratio Vcal/Vexp 
in each pixel by calculating the number of SDs the ratio is away from 
a ratio of 1:1 in that pixel, that is, by expressing (Vcal/Vexp − 1) in units 
of the SD of Vcal/Vexp within that pixel. Pixels with (Vcal/Vexp − 1) ≥ 3 
SDs are considered to show a significant difference between the 
 calibrated and expert opinion model predictions.

3  | RESULTS

3.1 | Initial model-data comparison

All four guilds show significant model-data agreement (i.e. statisti-
cally significant β > 0) between the initial model predictions for 
each survey site, calculated using the expert opinion attractive-
ness scores, and the observed survey data (Table 2). However, 
the agreement is nonlinear with β ≪ 1 for all guilds, implying a 
doubling of predicted visitation is not reflected by a doubling in 
observed abundance. R2 values for the fits range from 0.285 to 

TA B L E  2   Results from fitting equation log ((Nobs + 1)/L) = β log V1 + γ log W + (α2011, ..., α2016)Y to assess model-data agreement for initial 
model predictions using expert opinion attractiveness scores and model predictions using calibrated attractiveness scores obtained via 
Methods 1 and 2. Statistically significant coefficients are marked with asterisks (***p < 0.001). Guild abbreviations GNBB, TNBB, GNSB 
and CNSB refer to ground nesting bumblebees, tree nesting bumblebees, ground nesting solitary bees and cavity nesting solitary bees, 
respectively

GNBB TNBB GNSB CNSB

Expert opinion β 0.23 ± 0.07*** 0.16 ± 0.02*** 0.50 ± 0.05*** 0.44 ± 0.04***

γ −0.2 ± 0.2 −0.62 ± 0.09*** −0.8 ± 0.1*** −0.62 ± 0.08***

R2 0.298 0.448 0.285 0.467

Calibrated Method 1  
(free data-driven)

β 0.91 ± 0.06*** 0.75 ± 0.05*** 0.99 ± 0.06*** 0.89 ± 0.05***

γ 0.1 ± 0.1 −0.35 ± 0.09*** −0.7 ± 0.1*** −0.49 ± 0.07***

R2 0.358 0.460 0.382 0.482

Calibrated Method 2  
(expert-informed prioritised)

β 0.83 ± 0.06*** 0.84 ± 0.03*** 0.90 ± 0.06*** 0.83 ± 0.05***

γ 0.1 ± 0.1 −0.09 ± 0.08 −0.8 ± 0.1*** −0.58 ± 0.08***

R2 0.342 0.433 0.377 0.486
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0.467, with ground nesting guilds showing lower R2 values than 
the other guilds.

3.2 | Sensitivity analysis

For each guild, only a small number of parameters produce a sig-
nificant change in model-data agreement slope when adjusted 
(Figure 2). For GNBB, only the nesting attractiveness of unimproved 
permanent grassland and cereal and the floral attractiveness of 

coniferous woodland, unimproved permanent grassland, cereal 
and oilseed produce a percentage change in slope with uncertainty 
bounds that do not overlap zero. This is due to the large scatter in 
the model-data agreement producing ∼10% uncertainty on indi-
vidual model-data slopes and the small geographic area covered by 
many landclasses (e.g. vegetables).

The model-data agreement sensitivity is influenced by land-
scape composition and data collection location, as well as in-
corporating expert opinion as to which landclasses should be 
important to each guild. It is most sensitive to: (a) landclasses that 

F I G U R E  2   Sensitivity analysis results for each guild. Bar heights show percentage change in model-data agreement slope when landclass 
attractiveness scores are adjusted by ±50%. Error bars show propagated uncertainty using Equation 3. See Table S2 for abbreviations
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occur within many survey areas (e.g. orchards; Figure 2 GNSB 
panel), (b) landclasses that occur close to survey areas and/or 
cover a large area within the surrounding landscape (e.g. cereal; 
Figure 2 GNBB panel), (c) landclasses that have floral attractive-
ness scores similar to adjacent landclasses (such that flipping 
the score above/below that of an adjacent landclass produces a 
big change in where bees are foraging), and (d) landclasses that 
have high floral/nesting expert opinion attractiveness scores, 
since ±50% of a high score results in a bigger absolute change in 
input attractiveness score than ±50% of a low score (e.g. suburbs, 
Figure 2 TNBB panel).

3.3 | Model calibration

3.3.1 | Improvement in model-data agreement

All four guilds show β closer to 1 and improved R2 values after 
calibration (except Method 2 for TNBB), with R2 values for all 
guilds now ranging from 0.342 to 0.486 (Table 2). Calibration 
Method 1 generally produces a slightly higher R2 than Method 
2, but there is typically no significant difference between the 
model-data agreement slopes obtained by the two methods, with 
TNBB the only guild for which the SEs on the two slopes do not 
overlap.

The results in Table 2 represent the model-data fit agreement 
using all survey sites. Figure 3 (and the corresponding Figures S1, S2 

and S3) shows the improvement in β and R2 as successive batches 
of parameters are calibrated for the calibration and validation sites 
separately. The validation sites, which were not used to calibrate the 
model, generally show a similar improvement in model-data agree-
ment to the calibration sites, with the exception of TNBB R2 using 
Method 1 (Figure S1). In this case, the calibration subset began with 
a lower R2 than the validation subset and selecting for (β, R2) close to 
(1, 1) in the calibration subset produces a slight reduction in R2 for the 
validation subset.

Across all four guilds, the biggest improvements in model-data 
agreement occur at the beginning of both calibration processes, 
when the most influential parameters are calibrated (despite these 
not being forcibly prioritised by Method 1). GNBB show no fur-
ther significant improvement in model-data agreement slope via 
Method 1 after the first six batches of parameters have been cal-
ibrated (18 out of 66 parameters). The optimal β value is typically 
achieved faster via Method 2 than Method 1. Method 2's prioritis-
ing of slope-influencing parameters means that improvements in 
R2 often take longer to achieve than improvements in β, whereas β 
and R2 improve at roughly the same rate using Method 1 (Figure 3). 
For TNBB, this prioritisation of slope-influencing parameters actu-
ally results in an overall reduction in R2 by the end of the Method 
2 calibration process (Figure S1). This may be due to TNBB being 
most restricted by the Method 2 calibration process, with just 11 pa-
rameters falling below the first sensitivity threshold for calibration, 
compared to 23, 15 and 19 parameters for GNBB, GNSB and CNSB 
guilds, respectively.

F I G U R E  3   Change in model-data 
agreement slope and R2 after each 
successive round of calibration using 
Methods 1 and 2 for ground nesting 
bumblebees. Solid line shows results 
from fitting all survey sites, dashed and 
dotted lines show results for calibration 
and validation sites respectively. Error 
bars show slope SE. Figures S1, S2 and S3 
show corresponding plots for the other 
pollinator guilds
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3.3.2 | Calibration rates

For GNBB and TNBB (Figure 4, left panel) the cumulative number 
of parameters fixed per patch is initially higher using Method 2 but 
drops below Method 1 for later batches, such that both calibration 
methods require the same total number of batches. However, the 
Method 2 calibration rate remains higher than Method 1 while the 
calibration process is still producing significant improvements in 
model-data agreement (cf. Figure 3; Figure S1), only dropping below 
Method 1 after the overall change in model-data agreement be-
comes negligible. This suggests adopting Method 2 may be advanta-
geous for these guilds, although TNBB may benefit from lower ∆ 
thresholds to avoid the over-prioritisation of slope improvement at 
the expense of improvements in R2.

For GNSB, the cumulative number of parameters fixed by Method 
2 is always comparable to or less than Method 1, such that adopt-
ing Method 2 offers no advantage for this guild (circles, Figure 4). In 
contrast, for CNSB, the calibration rate by Method 2 is always sub-
stantially higher than using Method 1 (diamonds, Figure 4). Method 
2 fixes a lower total number of parameters for CNSB than Method 
1 (51 vs. 58 respectively). However, Figure S3 shows that significant 
improvements in model-data agreement ceased around batch 16 for 
both methods for this guild, at which point Method 2 had calibrated 
a greater number of parameters than Method 1.

3.3.3 | Calibrated attractiveness scores 
versus original expert opinion scores

For individual attractiveness parameters, there can be large differ-
ences between the original expert opinion scores and the calibrated 
scores. For bumblebees, where both calibrated nesting scores for a 
landclass disagree with the original expert opinion score (i.e. neither 

FWHM overlap the expert opinion score uncertainty), the calibrated 
nesting scores are typically higher than the experts' nesting scores, 
and this is especially noticeable for crops (Figure 5). In contrast, 
where both calibrated floral scores for a landclass disagree with the 
expert opinion scores, the calibrated floral scores for bumblebees 
and GNSB are typically lower than the original expert scores. The 
solitary bee nesting scores show the greatest level of agreement 
between the expert opinion scores and calibrated scores (Figure 6), 
with 52% of landclasses showing overlapping uncertainties for 
all three scores compared to 33% and 27% for GNBB and TNBB, 
respectively.

For individual attractiveness parameters, there can also be 
large differences between the scores obtained by the two calibra-
tion methods. All guilds have instances where the Method 1 cali-
brated score agrees with the original expert opinion score, while 
the Method 2 score disagrees, and vice versa. Even though the two 
calibrated versions of the model produce similar β and R2 values 
when compared to the data, Figures 5 and 6 show that they achieve 
this sometimes with very different input attractiveness parameters.

Examining the scores for a particular landclass across all guilds re-
veals some notable trends. The calibrated floral scores for suburbs are 
far lower than the expert floral scores across all guilds (Figures 5 and 
6). The calibrated floral scores for cereal and maize are significantly 
higher than the expert floral scores for solitary bees. Finally, the cali-
brated nesting scores for maize are significantly higher than the expert 
scores for both ground nesting guilds.

3.4 | Calibrated versus uncalibrated model 
predictions for Great Britain

Figure 7, and the corresponding Figures S4, S5 and S6, show the 
predicted spring visitation rate across Great Britain for GNBB, 

F I G U R E  4   Comparison of rates at which parameters are fixed by successive rounds of calibration using Methods 1 and 2 for each guild
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TNBB, GNSB and CNSB, respectively, using the nesting and floral 
attractiveness scores obtained via calibration Method 1. The most 
extensive regions of predicted high visitation for bumblebees occur 

in northern Scotland due to large continuous tracts of moorland and 
wetland (i.e. upland bog in LCM2015) in these areas, which have high 
floral and nesting calibrated scores for these guilds (Figure 5). Both 

F I G U R E  5   Comparison of expert opinion attractiveness scores (black) with calibrated attractiveness scores obtained by Method 1 (blue) 
and Method 2 (red) for ground nesting bumblebees and tree nesting bumblebees. Error bars show SE on expert opinion scores (or zero when 
only one expert contributed a score or all experts volunteered the same score) and density distribution full width half maximum (FWHM) for 
calibrated scores. The absence of a black point for a parameter indicates no experts contributed a score. The absence of a blue (or red) point 
indicates Method 1 (or Method 2) could not calibrate this parameter. See Table S2 for abbreviations
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bumblebee guilds show lower visitation rates in lowland arable areas 
of eastern England, due to the predominance of (low calibrated flo-
ral score) cereals in these areas (Figure 7; Figure S4). However, for 
GNBB, this low visitation cereal matrix is interspersed with highly 
visited hedges, fallow and mass flowering crop fields, while TNBB 

show visitation rate hotspots in East Anglia, where highly scored 
nesting habitats (deciduous woodland and suburbs) are embedded 
in highly scored foraging habitats (permanent grassland). The soli-
tary bees show an opposite geographical trend, with higher visita-
tion rates in lowland arable areas (driven by high nesting and floral 

F I G U R E  6   Same as Figure 5 but comparing expert opinion attractiveness scores (black) with calibrated attractiveness scores obtained by 
Method 1 (blue) and Method 2 (red) for Ground Nesting Solitary Bees and Cavity Nesting Solitary Bees
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F I G U R E  7   (a) Model predictions for Ground Nesting Bumblebee spring visitation rate across Great Britain using attractiveness scores 
obtained via calibration Method 1. (b) SD of model predictions shown in (a). (c) Ratio between (a) and model predictions using original expert 
opinion attractiveness scores. (d) Number of SDs of ratio away from 1:1. Figures S4, S5 and S6 show corresponding maps for the other 
pollinator guilds
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calibrated scores for maize and cereals; Figure 6) and lower visitation 
rates in upland areas of permanent grassland (Figures S5 and S6).

For all guilds, the spatially resolved uncertainty on the spring 
visitation rate predictions (top right panels; Figure 7; Figures S4, S5 
and S6) is highest in landclasses where the calibrated attractiveness 
scores have large FWHM and in landclasses with high floral scores 
but low nesting scores. Such areas have very little nesting within 
them, so their visitation rate is dominated by bees nesting in sur-
rounding landclasses. Varying their floral attractiveness therefore 
has a large effect on how many bees travel into forage in these areas.

Across all guilds, the calibrated model typically predicts higher 
visitation rates than the expert model in arable areas of southern, 
central and eastern England and lower visitation rates than the ex-
pert model in upland areas of permanent grassland and suburban 
areas (bottom left panels; Figure 7; Figures S4, S5 and S6). TNBB 
show the most extreme differences between the two models, pro-
ducing in some upland wetland areas a factor of 107 difference in 
predicted visitation rate, due to the calibrated model obtaining 
non-zero nesting scores for many landclasses for which the experts 
assigned zero attractiveness (Figure 5). Once the uncertainties on 
the attractiveness scores are taken into account, there are generally 
no significant differences between the two model predictions for 
solitary bees, with the largest discrepancies (between 1 and 2 SD 
away from 1:1 ratio) occurring in suburban areas and at the inter-
face between suburban areas and woodlands (bottom right panels; 
Figures S5 and S6). In contrast, both bumblebee guilds show signifi-
cant differences between the two model predictions in arable areas 
(>3 SD away from 1:1 ratio; Figure 7; Figure S4). See the Supporting 
Information for a full discussion of the national-level model predic-
tions for each guild.

4  | DISCUSSION

We have compared the most advanced spatially explicit process-
based pollinator abundance model currently available to bee abun-
dance data collected at 239 sites across Great Britain. Our initial 
model version, parameterised using expert opinion nesting and floral 
attractiveness scores, showed significant (but nonlinear) model-data 
agreement for all four guilds. We then tested two different meth-
ods to calibrate the nesting and floral attractiveness scores for each 
guild and improve the model-data agreement — 1. a free purely data-
driven calibration and 2. an expert-informed prioritised calibration. 
Method 2 calibrated parameters at a faster rate (initially) for three of 
the four guilds, but not for GNSB.

Although our calibrated models both showed improvements in 
model-data agreement, there were significant differences between 
the calibrated attractiveness scores obtained by the two methods, 
reflecting the fact that, in complex interacting process-based mod-
els, the order in which parameters are calibrated matters. Another 
factor may be ‘over adjustment’ of parameters by the prioritised cal-
ibration method to compensate for the fact that the process could 
not always simultaneously adjust other parameters which, if allowed 

to vary, might have enabled a better combined fit to the data. It may 
also simply be a consequence of our low model-data sensitivity to 
small area landclasses (Yapo et al., 1996).

Both calibration processes selected attractiveness scores that 
improved the fit to our observed abundance data. However, closer 
examination of the calibrated scores reveals instances where the 
calibration process identified ecologically unrealistic values, for ex-
ample, high floral attractiveness scores for solitary bees for cere-
als, which are wind pollinated and do not provide significant nectar 
resources (except potentially in organic systems with higher incrop 
wild floral cover; Holzschuh et al., 2007). There are many reasons 
why our calibration processes might find erroneous/unrealistic at-
tractiveness values:

• Detectability biases in survey data. Erroneous calibrated scores 
may arise if species detectability varies systematically with land-
cover, for example, through reduced sight lines/fewer individuals 
in flight. Our guild-level approach may further exacerbate this if 
guild species composition systematically alters across landcover 
such that more readily detectable species are replaced with less 
detectable species in some habitats, so causing an apparent re-
duction in measured guild abundance unrelated to actual guild 
abundance. Solitary bees are typically under-recorded on tran-
sects due to their smaller size (O'Connor et al., 2019), and their 
short flight periods also reduces data availability for these guilds.

• Use of survey totals. We necessarily compared mean model 
visitation rate within the survey area with summed abundance 
along all surveyed transects. This may produce erroneous cali-
brated scores in heterogeneous survey areas containing multiple 
landclasses.

• Timing of crop surveys. All crop surveys were conducted during 
the (relatively short) peak flowering period of the crop when 
temporarily high foraging abundances occur within the crop 
relative to the wider countryside. However, the model predicts 
total visitation rate per season. Two adjacent parcels containing 
equally attractive resources for short durations will receive the 
same predicted seasonal visitation rate, that is, half the bees for-
age in each. If, in reality, these two parcels flower sequentially 
within one season, such that all the bees forage in one and then 
in the other, the model cannot capture this unless we subdivide 
the season and increase the temporal resolution at which we run 
the model. This temporal limitation may be driving the unusually 
high calibrated nesting/floral scores obtained for some crops.

• Geographical distribution of survey sites. Biases in geographical 
coverage can produce spurious calibration results if these cor-
relate with systematic changes in landcover or data collection 
conditions. Despite wide geographical coverage, there were more 
lowland intensive arable sites than upland sites and often bet-
ter survey conditions at lowland sites. Wide variation in survey 
weather condition recording/lack of recording for some sites pre-
vented us controlling for this.

• Geographical differences in total abundance unrelated to flo-
ral/nesting attractiveness. Climatic gradients and current range 
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limitations (relevant to TNBB Bombus hypnorum) can also cause 
variation in pollinator population size and produce spurious cal-
ibration results where these gradients correlate with systematic 
geographical changes in landcover.

• Limitations of mapping data: misclassifications. Inaccuracies in 
mapping data can lead to spurious calibration results if mapping 
data indicate a landclass is present when in reality it is not.

• Limitations of mapping data: omissions. Lack of fine-scale feature 
mapping (IPBES, 2016) prevents many important pollinator habi-
tats from being included in our input model landscapes. We also 
only mapped obviously pollinator-relevant agri-environment fea-
tures and used a simplistic approach of placing boundary features 
around the entire perimeter of the containing land parcel, due to 
lack of information on feature placement.

• Limitations of mapping data: No accounting for within-habitat 
heterogeneity. Large-scale systematic differences in habitat 
quality between regions (e.g. due to management) could in-
fluence the calibrated attractiveness scores, while small-scale 
within-habitat heterogeneity will influence measured abun-
dances in the field but will not be present in the mapping data, 
which is predominantly derived from the 25 × 25 m resolution 
LCM2015 dataset.

• Dataset asynchrony and dynamic landscapes. Crop rotation means 
that our study landscapes are likely to contain roughly the right pro-
portions of crops but not necessarily in exactly the right places due 
to asynchrony of our mapping and survey data. Although we forced 
the surveyed crop fields to contain the correct crop, erroneous at-
tractiveness scores may be obtained for crops that are adjacent in 
our mapped landscapes but were not adjacent in reality at the time 
of the survey. Lack of crop rotation information also means we can-
not account for the legacy of past flowering crop distributions on 
current year pollinator population size/distribution.

• Non-stationary populations and flight seasons. We compared the 
observed data to the predicted spring visitation rates using a sur-
vey date co-variable. For bumblebees, this reflects the fact that 
numbers increase as spring-foraging queens produce summer- 
foraging workers. The model only permits solitary bees to fly in 
one season (with no allowance for primitive eusocial or multi- 
voltine behaviour) and so in order to compare spring visitation rates,  
we simulated only spring-flying solitaries. By comparing spring 
solitary bee and bumblebee numbers to survey data collected 
throughout spring–summer with a date co-variable, we are as-
suming that spring and summer abundance obey the same cor-
relation over time in different landscapes, which is unlikely to be 
true if some landscapes contain a high proportion of landclasses 
with very temporally restricted floral cover scores (Persson & 
Smith, 2013). An improvement would therefore be to explicitly 
model both spring- and summer-flying solitary bees and to match 
surveys to the appropriate seasonal visitation rate. However, this 
adds an extra layer of complexity to an already complex process 
and can produce very different results depending on where the 
(arbitrary and latitude-dependent) cut-off between spring and 
summer is placed.

• Choice of parameters to calibrate. We did not calibrate the floral 
cover scores, leaving these fixed at their expert opinion estimates 
to enable decoupling of the guilds. However, experts can struggle 
to accurately assess floral cover (Baey et al., 2017) and quanti-
tative sampling (e.g. Baude et al., 2016; Hicks et al., 2016) can 
provide more accurate estimates. Under/over-estimated floral 
cover scores could cause higher/lower floral attractiveness scores 
respectively.

• Parameter degeneracy. Crop sites consisted of observational 
data collected within a single landclass, however, without multiple 
simultaneous observations in adjacent landclasses with differ-
ent nesting/floral properties, the calibration process will strug-
gle to disentangle which (i.e. nesting/floral/both) attractiveness 
scores for the landclasses should be altered to match the data. 
Measurements in multiple nearby landclasses are needed to cap-
ture the movement of bees from good nesting to good foraging 
areas and so break this degeneracy. This is another certain cause 
of unrealistic calibrated scores for agricultural landclasses in 
particular.

• Structural limitations of model. The model does not account for 
density-dependent competition for floral resources, land-use fac-
tors such as pesticide risk, or flexibility in foraging range. Changes 
in guild species composition with habitat may cause a change in 
the typical foraging range for that guild, which may impact cali-
brated attractiveness scores.

The fact that our expert-informed prioritised calibration pro-
cess also produced some unrealistic scores raises the question of 
whether this expert-informed calibration was informed enough. 
Perhaps we should have gone further and restricted the parameter 
space searched, for example, by using the expert opinion scores as 
Bayesian priors (e.g. Choy et al., 2009). However, the suburban floral 
attractiveness scores highlight why we might be cautious about tak-
ing such a strongly expert-influenced a priori approach; this would 
potentially have prevented the calibration from even exploring the 
preferred range identified by both tested calibration methods for all 
guilds.

There are good reasons why expert opinion scores may be inac-
curate or not yield the most appropriate values within our modelling 
scenario:

• Expert elicitation method. Experts scored landclasses inde-
pendently. A more sophisticated elicitation method, such as the 
Delphi process (O'Hagan, 2019), may have provided more reliable 
final scores with lower variance, by allowing the experts to collec-
tively review all opinions and iteratively refine and discuss their 
scores. In addition, we calculated the certainty-weighted mean 
score and variance across all experts and used these to parame-
terise a beta distribution uncertainty profile for each score. Other 
studies (e.g. Koh et al., 2016) assign beta uncertainty distributions 
to the individual expert scores and average these, which may yield 
a broader mean uncertainty distribution and a slightly different 
weighted mean.
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• Semantic uncertainties. Each landclass that occurred in the 
mapping data had to be matched to one of the 35 expert opin-
ion landclasses, generating semantic uncertainties. For example, 
experts scored ‘garden’ attractiveness and this was applied to all 
‘suburbs’ in LCM2015, where gardens are diluted by less attrac-
tive landclasses such as buildings and roads. This could explain 
the calibrated/expert discrepancy for suburbs. Semantic uncer-
tainties also arise where different experts assign different scores 
to the same landclass due to different interpretations of a land-
cover term, for example, based on field experience in different 
geographical regions.

• Knowledge gaps. There was a trend for the calibrated nesting 
scores to be higher than the experts predicted. It is difficult to 
find nests in the field and therefore plausible that experts in gen-
eral may be less reliable at assessing nesting quality.

Clearly, we can improve on expert opinion estimates by including 
data-driven calibration, which relates observational data more directly 
to the modelling environment (e.g. Groff et al., 2016). However, eco-
logical survey data cannot be treated as ‘true’ due to its own inherent 
observational biases. Ideally, expert opinion data would be entirely 
supplanted with field data on nesting and floral attractiveness, but 
require specialised efforts to obtain, are hard to determine (e.g. Baey 
et al., 2017; Bahlai & Landis, 2016; Osborne et al., 2008) and can vary 
strongly between species even within guilds (Falk, 2015). The collec-
tion of large-scale systematic pollinator monitoring data (as proposed 
by Carvell et al., 2016) could help our data-driven calibration to derive 
more realistic, consistent estimates with lower temporal/regional bi-
ases, but no such data are currently available for the United Kingdom. 
This means some expert moderation is essential to identify unrealistic 
parameter values, which may reflect the limitations and biases of our 
current datasets and the insensitivities of our model more than the 
preferences of the species we are modelling.

Our results show that a totally expert opinion parameterisation 
and a purely data-driven calibration both have limitations in their 
ability to yield accurate parameter estimates. Our maps of pollina-
tor visitation illustrate how differences in the parameter values ob-
tained by these two approaches can produce enormous differences 
in model outputs (e.g. factor of 107 increase in TNBB visitation in 
some locations) when used to predict abundance on a landscape 
scale. This emphasises the need to reconcile these two approaches 
and obtain the most reliable/realistic estimate for each parameter 
and, crucially, the approach which yields the most reliable estimate 
may be different for each parameter. The fact that our expert- 
informed prioritised calibration also yielded unrealistic parameter 
values suggests that a more integrated, iterative approach may be 
better.

We propose a solution is to integrate data-driven calibration re-
sults within a Delphi-like process, so adding a data-driven ‘expert’ 
to the human members of the panel. Expert opinion is not imposed 
a priori, but an initial independent data-driven calibration is con-
ducted for comparison with expert opinion. Each calibrated param-
eter can then be discussed, examining reasons why the data-driven 

calibration may be preferred over the expert estimate and vice 
versa. Unrealistic parameter values can be identified, appropriate 
limits (priors) set if over adjustment is suspected and the calibration 
process repeated. Model predictions generated using the final hy-
brid parameter values can then be compared to the original survey 
data, to ensure significant agreement is still maintained.

5  | CONCLUSIONS

Reliably modelling pollinator abundance is essential if we are to 
identify areas of pollination service deficit and effectively target re-
sources to support pollinator populations. The central-place forag-
ing behaviour of many pollinators favours a process-based model in 
order to accurately reflect how the distribution of nesting/floral re-
sources affects landscape-level pollinator abundance. We selected 
the most advanced process-based pollinator abundance model avail-
able and calibrated it against observational data collected across 
Great Britain, to assess its suitability for generating spatially explicit 
estimates of national pollinator abundance.

In its initial expert-parameterised version, the model showed 
significant agreement with the survey data, which further improved 
with calibration for three out of four modelled pollinator guilds. This 
demonstrates the model's potential to reliably map pollination ser-
vice/natural capital, identify target areas for interventions and form 
the basis of novel tools to inform land-use decision-making. Our aim 
was to identify the parameter set that produced the best fit to the 
survey data and could be used with confidence to predict the conse-
quences of land-use change on UK pollinator populations. Although 
the calibrated parameterisations satisfy the former, their inclusion of 
unrealistic parameter values means they fail at the latter; adopting the 
calibrated parameters for the sake of a small increase in R2 would (far 
more seriously) cause the model to predict that increasing cereal cover 
is beneficial for many pollinators, which is generally not the case. This 
demonstrates that our concept of model accuracy must include both 
accurate prediction within the calibration/validation environment and 
ecological realism of underlying parameters (given our wider knowl-
edge base) to enable meaningful model application outside it.

Our work highlights the universal challenges faced when cali-
brating any spatially explicit, process-based ecological model. The 
desire to realistically represent complex ecological processes in 
finely mapped landscapes necessarily generates models with large 
numbers of parameters. Computational limitations and model in-
sensitivities may preclude calibration of all parameters making some 
use of expert estimates a necessity. This, combined with survey and 
geographical data biases, may lead purely data-driven calibration to 
easily identify spurious parameter values. We suggest that treating 
expert elicitation and data-driven calibration as complementary 
parts of one single iterative process, which integrates model calibra-
tion and credibility assessment, may provide the best opportunity 
to obtain realistic parameter estimates for process-based models, in 
ecological systems with expert knowledge gaps and patchy/biased 
ecological data.
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