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Abstract: The COVID-19 outbreak and ensuing social distancing behaviors resulted in substantial
reduction on traffic, making this a unique experiment on observing the air quality. Such an experiment
is also supplemental to the smart city concept as it can help to identify whether there is a delay on air
quality improvement during or after a sharp decline on traffic and to determine what, if any, factors
are contributing to that time lag. As such, this study investigates the immediate impacts of COVID-19
causing abrupt declines on traffic and NO2 concentration in all Florida Counties through March 2020.
Daily tropospheric NO2 concentrations were extracted from the Sentinel-5 Precursor satellite and
vehicle mile traveled (VMT) estimates were acquired from cell phone mobility records. It is observed
that overall impacts of the COVID-19 response in Florida have started in the first half of the March
2020, two weeks earlier than the official stay-at-home orders, and resulted in 54.07% and 59.68%
decrease by the end of the month on NO2 and VMT, respectively. Further, a cross-correlation based
dependency analysis was conducted to analyze the similarities and associated time lag between 7-day
moving averages of VMT and NO2 concentrations of the 67 counties. Although such reduction is
unprecedented for both data sets, results indicate a strong correlation and this correlation increases
with the identification of a time lag between VMT and NO2 concentration. Majority of the counties
have no time lag between VMT and NO2 concentration; however, a cluster of South Florida counties
presents earlier decrease on NO2 concentration compare to VMT, which indicates that the air quality
improvements in those counties are not traffic related. Investigation on the socioeconomic factors
indicates that population density and income level have no significant impact on the time lag between
traffic and air quality improvements in light of COVID-19.

Keywords: COVID-19; nitrogen dioxide (NO2); traffic; vehicle mile traveled (VMT); Sentinel-5P;
remote sensing

1. Introduction

The coronavirus disease 2019 (COVID-19) and ensuing social distancing behaviors have caused
unprecedented changes in every aspect of modern life. Beyond the devastating impacts on human’s
health, daily life has changed tremendously to stop the spread of the novel coronavirus (SARS-CoV-2).
In late 2019, the first cases of the coronavirus disease 2019 (COVID-19) were reported in Wuhan, China.
It then quickly swept through many countries and was declared as a global pandemic in March 2020.
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Despite the devastating impacts on public health, modern life has completely changed to stop the
spread of the virus by limiting human activities.

As of 31 July, more than 660 thousand people have died and more than 17 million people have
been exposed to this new virus around the world [1]. Meanwhile, most global stock markets reported
severe contractions in March 2020 [2], substantial increases were observed on unemployment, school
campuses were closed, and majority of remaining work activities have been performed remotely.
To combat with this virus and analyze the impacts on various fields, the scientific community all over
the world have come together in a truly unprecedented way.

In regards to the influence on the transportation and mobility, all the published literature states
that overall mobility has dropped significantly due to the spread of the virus [3,4]. The success of a
lockdown policy in China led most of the countries to apply similar countermeasures that mainly
restricted mobility. An analysis carried out by INRIX [5] found a 60% reduction in commuting
travels and 26% improvement on travel times in the City of Seattle using data from early March.
In addition, commercial data providers such as Unacast Inc. [6] or StreetLight Data Inc. [7] provided
free access to their daily county level vehicle miles traveled (VMT) data sets. The global mobility
reports provided by Google [8] revealed a worldwide reduction in the number of trips. As a result
of these unprecedented changes on traffic demand, significant decreases were observed on traffic
accidents, public transportation use, and air pollution [9,10].

It has been known that air pollution is linked to different types of cardiovascular and respiratory
diseases, which leads to millions of premature deaths across the world every year. Indeed, a study
estimated a monthly reduction of 360 premature deaths in the U.S. due to the air quality improvements
as a result of the decrease on traffic and electric use during the outbreak [3]. However, long term
estimations on the immediate impact of COVID-19 may not be an accurate assumption. Short-run
impact on air quality can easily be outweighed in long-run effects of a decreasing clean energy
innovation [10]. Regardless, analyzing the relationship between traffic and air quality especially
during these unprecedented times can help the cities with severe air pollution determine proper traffic
restriction policies. For example, a study from India [11] suggested to continue with selected traffic
restricted zones after observing a significant decrease on air pollution during the COVID-19 conditions.

Short-term effects of COVID-19 on air quality have also been widely studied with remote
sensing technology. NASA has partnered with the European Space Agency (ESA) to analyze how the
shutdowns in response to the pandemic are changing the environment, especially the atmosphere [12].
Preliminary results indicates that COVID-related impacts were harder to see on sulfur dioxide (SO2)
while significant reductions were observed on nitrogen dioxide (NO2) density over China [13] and over
the United States [14]. Similarly, NOAA’s Joint Polar Satellite System indicates an evident drop in NO2

levels and particulate matter (PM) between March 2019 and 2020 [15]. Further analyses are required to
measure the particular impact of traffic reduction on these unusual air quality improvements. However,
remotely sensed air pollution sources specifically show the decreased NO2 concentrations as an impact
of decreased human activity due to COVID-19.

Nitrogen dioxide (NO2) takes a place among the highly reactive gases with other Nitrogen oxides
(NOx). Natural NO2 emission sources such as biomass, nitrates of microbial reactions or atmospheric
lightening process, have a very small contribution compare to the anthropogenic NO2 emission sources,
which mainly include burning of fuel, industrial production, and agricultural burning [16]. NO2

reacts with other chemicals in the air to form particulate matter and ozone, which are harmful to the
respiratory system when inhaled. Additionally, NO2 interacts with water, oxygen, and other chemicals
in the atmosphere to form acid rain, which harms sensitive ecosystems such as lakes and forests.
Therefore, NO2 is considered as one of the six criteria pollutants in National Ambient Air Quality
Standards (NAAQS), which were established by U.S. Environmental Protection Agency (USEPA)
through the Clean Air Act [17,18]. NO2 is continuously monitored across the U.S. so that those areas
where the air quality does not meet the national standards can be identified and state implementation
plans (SIPs) can be developed to combat NO2 pollution [19].
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Given the preliminary results from space, transportation, and environmental agencies, recent
studies analyzing the impact of COVID-19 on the air quality (Table 1) also indicate a decrease on NO2

levels due to COVID-19. Although other air pollutants vary based on the nature of implementation of
the lockdown or additional pollution sources such as coal, a decrease in NO2 has been seen in all studies.
However, all these studies used surface-based sensors to acquire pollutant measurements. Although
current regulatory compliance on air quality is performed mostly by surface sensors, the advancements
in remote sensing methods and the availability of satellite data create new opportunities to use space
level technologies to monitor every part of atmosphere rather than point observations on surface.
The rapid development of the remote sensing monitoring methods of atmospheric satellite have
gradually become critical technical means of global atmospheric monitoring [16]. Thus, there is a need
to evaluate the results with the satellite-retrieved air pollution measurements.

As such, the objective of this study is twofold: first, we evaluated the relationship between traffic
and NO2 concentrations in the wake of COVID 19 to determine whether there was a delay in air quality
improvement during or after a sharp decline in traffic. The second aim is to determine, which, if any,
factors affect this time lag and the overall correlation between traffic and NO2 concentrations. County
level daily NO2 levels are extracted from Sentinel-5P satellite of ESA, expected to change the way the
air quality is monitored today [20] and vehicle mile traveled (VMT) estimates are acquired from cell
phone mobility records. Population density, median income, and the percentage of the households
with no vehicle are also obtained for each county from the U.S. Census’s 2018 American Community
Surveys [21]. Cross-correlation based dependency analysis is conducted with the Pearson’s r statistic
to analyze the similarities and associated time lag between 7-day moving averages of VMT and NO2

concentration of 67 Florida counties. Such evaluation of the time-lag between the vehicle miles travelled
(VMT) and NO2 can be used as a time-offset for smarter cities in order to find ways to link air pollution
and traffic. The novelty of this study as follows:

• Using satellite technology to evaluate the NO2 concentrations and traffic as continuous time
signals in the wake of COVID-19,

• Providing an in-depth county level dependency analysis to determine the time lag between traffic
reduction and air quality improvement,

• Investigating the impact of socioeconomic factors on the traffic–air quality relationship.
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Table 1. Example studies of COVID-19 impacts on air quality and their findings.

Study Location Pollution Data Traffic Data Analysis Periods Key Findings

Berman and Ebisu [22] Continental US Surface Sensors from
OpenAQ [23] N/A

• 8 January–12 March
• 13 March–21 April
• 2017–2019

• Average 25.5% NO2 decrease
• Rural area NO2 decrease is smaller (16.5%)
• Average 4.45% decrease on PM2.5
• States with late or no stay-at-home order have increase (3.51%) on PM2.5 but

11.26% decrease on early stay-at-home order states

Bekbulat et al. [24] Continental US Surface sensors from
USEPA [25] N/A

• After official
stay-at-home order
in each state

• 2010–2019

• Nationwide analysis for PM2.5 and O3 and 3 cities for NO2
• 30% decrease on NO2 but no significant decrease on PM2.5 and O3
• PM2.5 and O3 medians are decreasing 2 weeks before the stay-at-home

orders but after it converges back with national averages.
• For NO2 in NYC, LA, and Seattle decrease starts at 9th week

before shutdown.

Jia [26] Memphis, TN Local stations From
USEPA [25] StreetLight [7]

• Prior Month (25
February–24 March)

• Lockdown (25
March–4 May)

• Baseline
2017–2019 April

• 57% reduction on traffic, no air-monitoring station near roadway.
• No significant reduction on PM2.5, O3 during the lockdown compare to nor

before lockdown neither same days last years
• NO2 measured from only 1 station. Small reduction observed on the mean

compare to prior month and 12% increase compare to the baseline periods
• Estimation models indicate only wind speed is significant on estimating the

NO2 (Not lockdown, temperature, or precipitation). Traffic is not included

Collivignarelli et al. [27] Milan, Italy Surface stations from the
Local Agency N/A

• Control
(7–20 February)

• Partial lockdown
(9–22 March)

• Total lockdown
(23 March–5 April)

• Total lockdown caused 61% and 74.5% reduction in the city center on NO2
and NOx, respectively.

• 47.4% and 48% decrease on PM10 and PM2.5
• Substantial increase on O3 due to minor NO2 concentration
• Study periods are separated based on the temperature, humidity, wind,

precipitation, and solar irradiance.

Mahato et al. [28] Delhi, India Surface Stations from the
Local Agency N/A

• Pre Lockdown
• After Lockdown

• +50% decrease on PM10 and PM2.5
• 52.68% and 30.35% decrease on NO2 and CO respectively

Baldasano [29] Barcelona and
Madrid, Spain

Surface sensors from the
Local Agency Google [8]

• March 2020
• March 2018/19

• 62% and 50% NO2 decrease in Madrid and Barcelona, respectively
• 75% reduction in traffic
• NO2 reduction in urban traffic area higher than urban and rural areas

Kerimray et al. [30] Almaty, Kazakhstan Surface stations from the
Local Agency N/A

• 2–18 March
• 19 March–14 April

• 35% NO2 and 49% CO reduction due to the seasonal changes and
traffic reduction.

• Increase on SO2 (7%) and O3 (15%).
• Seasonal reduction due to the reduction in coal use is more effective than

traffic reduction.
• 21% reduction on PM2.5 compare to last year with high variation.
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2. Materials and Methods

2.1. Study Area

The state of Florida was selected as the test bed in this study. With a population of over 21 million,
Florida is the third-most populous of the 50 states. Florida includes 67 counties where the populations
of these counties range from 2 million to 8000. Figure 1 indicates the population density of each county
where those counties that host cities of Miami, Tampa, Orlando, and Jacksonville appear to be the
most populated ones. In addition, according to the Centers for Disease Control and Prevention (CDC),
the older population (65+) and those with serious medical conditions such as lung disease, diabetes,
liver disease, etc., are at a higher risk of COVID-19 infection [31]. Hence, this becomes a serious issue in
Florida since more than 20% of the total population in the state are 65 years and older [21]. Therefore,
the impact of COVID-19 on these populations becomes all the more confounding in light of their
potential health and other safety concerns.

Energies 2020, 13, x FOR PEER REVIEW 5 of 19 

 

2. Materials and Methods 

2.1. Study Area 

The state of Florida was selected as the test bed in this study. With a population of over 21 

million, Florida is the third-most populous of the 50 states. Florida includes 67 counties where the 

populations of these counties range from 2 million to 8000. Figure 1 indicates the population density 

of each county where those counties that host cities of Miami, Tampa, Orlando, and Jacksonville 

appear to be the most populated ones. In addition, according to the Centers for Disease Control and 

Prevention (CDC), the older population (65+) and those with serious medical conditions such as 

lung disease, diabetes, liver disease, etc., are at a higher risk of COVID-19 infection [31]. Hence, this 

becomes a serious issue in Florida since more than 20% of the total population in the state are 65 

years and older [21]. Therefore, the impact of COVID-19 on these populations becomes all the more 

confounding in light of their potential health and other safety concerns. 

 

Figure 1. Study area. 

2.2. Data Description 

Generally, NO2 pollutant measurement is performed in two different ways: ground-based 

[23,25,26,32] and remote sensing-based methods [16,20,33]. In ground-based methods, NO2 is 

measured in air quality monitoring stations where NO2 values are recorded several times a day 

using a set of sensors specifically designed to perform this task. While surface measurements serve 

as the tools for regulatory compliance, these measurements are limited to a few stations scattered 

Figure 1. Study area.

2.2. Data Description

Generally, NO2 pollutant measurement is performed in two different ways: ground-based [23,25,26,32]
and remote sensing-based methods [16,20,33]. In ground-based methods, NO2 is measured in air
quality monitoring stations where NO2 values are recorded several times a day using a set of sensors
specifically designed to perform this task. While surface measurements serve as the tools for regulatory
compliance, these measurements are limited to a few stations scattered over an area. In the remote
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sensing approach, on the other hand, NO2 and other atmospheric trace gases are identified and
measured by their signature spectral lines left in the reflected sun light on to the spectrometers. In the
recent decades, advances in technology and reduced costs of building and launching satellites have
made remote sensing a popular method for air quality monitoring; however, this method still lacks the
required resolution to measure NO2 and other atmospheric trace gases at the roadway level. A recent
example of remotely monitoring NO2 and other atmospheric trace gases is the Sentinel-5P, which has
reached the city level resolution with 5 km × 3.5 km (3.1 mi × 2.2 mi) pixel size (improved from 7 km ×
3.5 km (4.3 mi × 2.2 mi) in August 2019).

The Copernicus Sentinel-5 Precursor, known as Sentinel-5P, is a satellite in the series of Copernicus
Sentinel satellites dedicated to atmospheric monitoring. This is a joint program between the European
Space Agency (ESA), the European Commission, the Netherlands Space Office, industry, data users,
and scientists. Copernicus Sentinel-5P was successfully launched on 13 October 2017 with a planned
mission of seven years [34]. It aims to provide routine observations of atmospheric trace gases and
aerosols. The sensor on board, tropospheric monitoring instrument (TROPOMI) is a spectral based
device that uses the UV–Visible, NIR, and SWIR bands to measure key atmospheric components such as
ozone (O3), sulphur dioxide (SO2), carbon monoxide (CO), methane (CH4), and formaldehyde (HCHO)
additional to NO2 [33]. Technology in TROPOMI has benefited from its predecessor instruments the
ozone monitoring instrument (OMI) and scanning imaging absorption spectrometer for atmospheric
cartography (SCIAMACHY) [33].

For the purposes of this study, 34 files were downloaded from Sentinel-5P data hub [35].
For each day, there were several files in the data hub repository; however, an attempt was made to
only download those files that had the total coverage over the State of Florida on a given date. There
were 3 days (i.e., March 3, 8, and 19) on which there was no single file with the total coverage of Florida.
Thus, three extra files were downloaded for these days. Next, data preparation was conducted with
Python programming language. Careful attention was paid to ensure that the quality of data was not
compromised. For this purpose, two different filters were applied to the input datasets for masking out
faulty pixel values. The first filter masked out all pixels with NO2 values below zero and the second
filter masked out all pixels with quality-flag below 0.75, which is the recommended value in the user
manual of the data set [36]. The result was a set of pixels with NO2 constriction values above zero
and quality-flag value equal to or above 0.75. In the next step, using a county-level polygon geojson
file (with a resolution of 20 m), each county was carefully extracted along with its associated NO2

pixel values within the county. At this point, each county had a set of masked out and useful pixels.
To estimate the average NO2 over each county on a given day, we only used NO2 values of the useful
pixels. Additionally, we defined a parameter, called the coverage ratio, which indicates the fraction of
useful pixels over a county to the total number of pixels in that county on a given day. The final product
of this procedure was a list of counties with a mean value of NO2 and coverage ratio over that county
for each day of the March 2020. This process is summarized in Figure 2 with a flowchart. Additionally,
NO2 concentration measurements of 2 example dates from March are illustrated in Figure 3. Note that
the immediate impact of COVID is visible especially on the east side where Hillsborough and Pinellas
counties are located. Since NO2 concentration fluctuates between weekdays and weekends [20], 7-day
moving averages were calculated for each county. This also helped interpolating the missing data due
to the quality masking.

The daily vehicle miles traveled (VMT) estimates for each county were extracted from StreetLight
Data Inc. This commercial mobility data provider created a pro bono COVID-19 data set to help
researchers and raise public awareness on social distancing. The data set includes daily VMTs of the
U.S. counties beginning from 1 March. As a baseline, the average January 2020 VMTs are also provided
for each county. StreetLight’s VMT estimates are based on the data collected from the smart phone apps
providing location-based services and GPS trackers on commercial fleets [37]. In general, the daily
VMT estimates were calculated by using the VMT of previous months as the baseline and multiplying
the calculated mean trip length with the total number of trips. More details on their methodological
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and validation approach can be found in [38]. To avoid the fluctuation between weekdays and weekend
VMTs, 7-day moving averages were calculated for the month of March 2020.

In addition, population density, median income and the percentage of the households with no
vehicle data for each county were also obtained from the US Census’s 2018 American Community
Survey [21].
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2.3. Data Analysis Approach

Cross-correlation is a well-known measure of similarity of two series as a function of the
displacement [39]. It measures the sliding dot product of two signals that turns a larger value
when both signals are following a similar pattern and vice versa. Normalization of cross-correlation
is a common approach to test the similarities of signals with different units (i.e., VMT and NO2

concentration), which can be interpreted as time dependent Pearson correlation coefficient [40].
Mathematically, normalized cross correlation can be defined as:
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ρ(τ) =
E[(Xt − µX)(Yt+τ − µY)]

σXσY
(1)

where the correlation between Xt and Yt is calculated by sliding the Yt signal with τ time step- or
so-called lag. ρ(τ) represents the correlation coefficient on the lag τ and takes a place in [−1, 1].
−1 indicates perfect anticorrelation, and 1 indicating perfect correlation between the tested variables.

In this study, maximum cross correlation, ρ(τ∗) was calculated for 7-day moving averages of VMT
and NO2 concentration of each Florida county. τ∗ could be interpreted as the time lag between VMT
and NO2 concentration through March 2020. If this value is negative, it indicates that the NO2 decrease
started after the VMT decrease, which shifts NO2 to the left side on time providing a higher correlation.
Additionally, ρ(0) reveals the natural correlation coefficient between VMT and NO2 concentration
without any time sliding. Finally, a county with a positive τ∗ value has observed the NO2 decline
earlier than the VMT decline and thus sliding its NO2 concentration to the right side resulting in a
higher correlation with VMT.

To understand what effects the time lag between VMT and NO2, other data such as population
density, median income, and the percentage of the households and the heavy vehicle percentage in the
registered vehicles were investigated in each county.

3. Results

3.1. Short-Term Effects of COVID-19 in Daily Travel and NO2 Emissions

Although a nation-wide lockdown has never been initiated in the U.S., social distancing behaviors
such as teleworking and shifting to online teaching have led to a drastic decrease on overall mobility
of the nation. StreetLight Data’s pro bono vehicle mile traveled (VMT) data [7] for the U.S. counties
highlight this impact. Figure 4a indicates the 7-day moving average of VMT for all counties in the U.S.
included in the dataset whereas Figure 4b depicts the 67 Florida Counties along with 7-day moving
averages of tropospheric NO2 concentrations during March 2020. Additionally, January 2020 VMT
averages and a generalized timeline of COVID-19 impact/respond is highlighted in Figure 4. It can be
observed that, in the second half of the analyzing period, traffic demand decreased approximately 60%
in both FL and the entire U.S. Although it varies based on the local government responses, the abrupt
decline starts on 13 March, Friday with the national emergency and global outbreak announcements.
Additionally, most of the universities started their spring break on this date and shifted to online
teaching until the end of the semester. In Florida, stay-at-home order was first mandated 2 weeks
later, on 31 March for only three counties: Miami-Dade, Broward, and Palm Beach, then on 1 April
for the entire state [41]. A study [3] analyzed the mobility differences between the early-policy states
that put a stay-at-home policy in place by 28 March, and the states with no policy by the same date.
Both Florida and the U.S. VMTs fall below the January average on 17th, which is similar to the late or
no policy states found in that study [3].

As aforementioned, the NO2 concentration over an area is strongly related with human activities.
Therefore, it is not surprising that a parallel pattern was observed between 7-day moving averages of
VMT and NO2 concentration. To indicate the short-term effect of COVID-19, percentage decreases of
VMT and NO2 concentration were calculated based on their maximum and minimum values observed
in March for each county:

[(max−min)/max] ∗ 100 (2)

Among 67 Florida Counties, an average of 54.07% and 59.68% decrease were observed for 7-day
moving averages of NO2 and VMT, respectively. The distributions of these percentage decreases are
presented in Figure 5. Furthermore, the distributions for the dates in March when the maximum and
minimum values were observed for 7-day moving averages of VMT and NO2 concentrations in each
county are presented in Figure 6. Results indicate that vehicle use in most of the counties started
to decrease after the Friday, 13 March until the end of the month. This is more than 2 weeks before
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the official stay-at-home order was initiated in Florida on 1 April. This clearly indicates that social
distancing behaviors have affected the traffic and air quality before the official policy enacted and
this should be considered by further studies on the air quality impacts of COVID-19 to determine the
study periods.
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Despite the persistence on the days when the highest and lowest VMT values were observed
in different counties, NO2 concentration observations depicted more variation on the days when
maximum and minimum values were observed. This can be attributed to different reasons including
the weather characteristics of the county, the level of urbanization (i.e., urban or rural), main industry,
and vehicle distribution, which may prevent the NO2 particles to get concentrated or change the
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impact of the COVID at a particular county. The relationship between VMT and NO2 concentration is
visible on the 7-day average diagrams; however, a cross-correlation-based dependency analysis can
investigate the time lag, if there is any.
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Figure 6. Date on which maximum and minimum values were observed for 7-day moving averages of
VMT and NO2 concentrations among Florida counties.

3.2. Dependency Analysis on VMT and NO2 Trends

Even with the abrupt decline, the immediate impact of COVID-19 in March 2020 indicates a
similar behavior for both vehicle mile traveled (VMT) and nitrogen dioxide (NO2) density in Florida.
To investigate this similarity and influencing factors, a cross-correlation analysis was conducted by
calculating the correlation coefficients with step size of 1-day displacement between 7-day moving
averages of VMT and NO2 concentration for each county. As mentioned in methodology section,
the time lag is considered where the maximum correlation is calculated. A particular interest is to
determine whether the socioeconomic factors such as population and income have an impact on the
time lag between the VMT and NO2.
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Figure 7 depicts the positive, zero, and negative time lags (τ*) in each row for the counties with
a high population density on the left column and a low population density on the right column.
For Miami-Dade County, the decrease of NO2 concentration started 5 days earlier than the decrease on
VMT since the correlation increased from 0.65 to 0.80 by shifting the NO2 concentration 5 days further.
Miami-Dade County accommodates the highest number of population compared to other counties of
Florida (19) and it has been hit the hardest by COVID-19. The county currently has approximately the
25% of all confirmed cases in the entire state. Although the first case was confirmed in Hillsborough
County, the VMT and NO2 concentration started to decrease later than Miami-Dade County. Note that
the lowest correlation was observed for the counties where NO2 concentration started to decrease after
VMT. This may occur due the extra fluctuation on the NO2 levels, which can be attributed to many
reasons such as unfavorable weather, commercial, or industrial manufacturing.Energies 2020, 13, x FOR PEER REVIEW 12 of 19 
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Figure 7. Different time lags (τ∗) and correlation ρ(τ∗) between 7-day moving averages of VMT and
NO2 in counties with high population density (left column <0.5 acre per person) and low population
density (right column >2 acre per person).

To investigate the impact of economic status of the counties on the correlation between VMT
and NO2 concentration, counties with higher and lower median household income were compared
in Figure 8. Although the economic status of the area had a significant impact on the overall NO2
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concentration, no significant impact was observed on the correlation between VMT and NO2 from the
median income similar to the one with the population density.Energies 2020, 13, x FOR PEER REVIEW 13 of 19 
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Figure 8. Different time lags (τ∗) and correlation ρ(τ∗) between 7-day moving averages of VMT and
NO2 in counties with higher median income (left column > $55,000) and lower median income (right
column < $40,000).

The map for time lag is presented in Figure 9 to illustrate the overall cross-correlation analysis
results across Florida. In general, the counties in which the NO2 decline was observed before the
VMT decrease were clustered in the southern sections of the state whereas the counties where the
NO2 decrease was observed after VMT were located in the center and northern parts of the state.
Additionally, the distribution for the time lag indicates that most of the counties observed the VMT and
NO2 concentration decreased on the same days. Furthermore, the scatter graphs for time lag (τ∗) and
maximum correlation ρ(τ∗) indicates that the counties in which the NO2 concentration decreased after
the VMT (i.e., the counties with negative (τ∗) value) presented a slightly less correlation compared
to the counties with a positive (τ∗) value. Counties without a time lag (τ∗ = 0) indicate a higher
variation on the correlation coefficient. This revealed that the effect of traffic on NO2 concentration
varies regardless of the time lag.
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Figure 9. Distribution of the time lag between VMT and NO2 concentration among Florida counties and potential factors that can affect the correlation between VMT
and NO2 concentration.
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Additional to the population density and median income, registered heavy vehicle percentage
and the percentage of the households with no vehicle for each county were also evaluated against
the maximum correlation coefficient with different time lags. Surprisingly, a higher correlation was
observed in the counties with higher percentage of households without a vehicle. This indicates that
the increase on the households with no vehicle results in a higher correlation between VMT and NO2.
However, this can be negligible considering very low percentages on the zero-vehicle ownership.

To sum up, no significant impacts from the population, income, and vehicle distribution of county
characteristics were observed on the time lag between VMT and NO2. Future studies shall include
the weather and commercial industry information from each county so that additional impacts on the
relationship between VMT and NO2 concentrations can be tested. Especially since the NO2 production
can also occur due to commercial manufacturing and food manufacturing, such information can help
assess the time lags that occur in different counties.

4. Discussion

Previous studies have investigated the impact of COVID-19 response on air quality and found
a significant improvement in several countries including India [11,28], Italy [27], Spain [29], and
Kazakhstan [30]. The space agencies have also reported a significant improvement on the air quality
by using remote sensing technologies [12,13,15]. This reduction on air pollution, however, was not
observed in the U.S. cities Memphis [26] and New York City [42] concluding that the traffic related
air pollutions (i.e., PM and NO2) have not decreased compared both with previous years and the
previous months in 2020. However, the study conducted in Memphis, TN analyzed only one ground
station measurements for NO2 and this station was not a near-roadway station. Additionally, the study
conducted in New York City evaluated the measurements from only three ground stations for the
NO2 concentrations where two of those stations were in close proximity. On the other hand, another
study [22] evaluated the measurements from all ground stations in the US and found an average of
a 25% reduction on NO2 concentrations compared to previous years. Additionally, another study
using ground stations with nationwide coverage in the U.S. [24] visualized the abrupt reduction on
PM and ozone compared to the previous years starting two weeks before the stay at home orders
and converging back to the historical average shortly after the stay at home orders. NASA’s Scientific
Visualization Studio, also, depicts a significant NO2 reduction in East Coast regions of the U.S. by
comparing the averages of 15 March–15 April 2020 to the averages of the same period from previous
years This conflict in the studies analyzing the U.S. air quality with respect to the impact of COVID
response raises a major issue that the air pollution depends on several local factors and not dependent
only human activities and traffic. Thus, it is difficult to extract the COVID impact on air quality and
more analyses is needed with more data including other environmental factors such as wind.

In this study, we focused on the immediate impact of the COVID-19, which started in 13 March
and converged to a new normal by the end of the month as it can be observed from the national
and statewide VMTs in Figure 4. Although the similar behavior between NO2 and VMT during the
immediate impact period could have been due to several reasons such as environmental conditions as
stated in [43], it reveals valuable information in regard to the relationship between traffic and NO2

concentrations. By using this information, our study confirmed that there was no significant delay on
air quality improvement during or after a sharp decline in traffic.

On the other hand, this study had several limitations. First, we assumed that NO2 distributes
normally in each county and daily NO2 concentration was calculated as the average of the pixel
values that fell in the county. This can be negligible when it considered that there are only 11 surface
measurement stations to observe NO2 air pollution in Florida and those stations scattered around
only the six most populated counties. Second, there are several factors that may affect the NO2

concentrations such as wind, temperature, participation, industrial activities, coil burn for house
heating, etc. However, we focused on the immediate impacts of COVID-19 to observe a specific time
period where traffic substantially decreased. The strength of this study also lay on the relationship
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between traffic and NO2 concentrations. To the best of author’s knowledge, this is the first study to
quantify a time-lag between traffic and NO2 concentrations and our methodology on extracting county
level air quality information from Sentinel 5-P can be used to understand regional air quality trends
where there is no surface station.

5. Conclusions

The impacts of COVID-19 and ensuing social distancing behaviors on traffic have enabled
researchers to analyze an unprecedented experiment on air quality. This study particularly investigates
the correlation and time lag between the traffic and NO2 concentrations in all the Florida Counties
through March 2020 when the immediate impacts of COVID-19 response were observed in the region.
County level daily NO2 concentrations were extracted from Sentinel-5P satellite, which expected to
change the way the air quality is monitored today and vehicle mile traveled (VMT) estimates were
acquired from cell phone mobility records. Population density, median income, and the percentage of
the households with no vehicle are also obtained for each county from the US Census’s 2018 American
Community Survey. A cross-correlation-based dependency analysis was conducted with the Pearson’s
r statistic to analyze the similarities and associated time lag between 7-day moving averages of VMT
and NO2 concentration of 67 counties.

Among the 67 Florida Counties, an average of 54.07% and 59.68% decrease were observed for
NO2 and VMT, respectively. This decrease is higher compared to the previous studies since it indicates
the percentage difference between the observed maximum and minimum values within the month of
March 2020. However, findings indicate that social distancing behaviors have affected the traffic and
air quality before the official policy enacted in Florida and this should be considered by further studies
on the air quality impacts of COVID-19 to determine the study periods. Furthermore, majority of the
counties have no time lag between VMT and NO2 concentration; however, a cluster of South Florida
counties presents an earlier decrease on NO2 concentration compare to VMT. This indicates that the
improvements on air quality among those southern counties are not transportation related and our
investigation on socioeconomics factors such as population and income shows no significant impact
on the time lag.

Future studies shall include the environmental conditions and information on the commercial
industries from each county so that additional impacts on the relationship between VMT and NO2

concentration can be tested. The proposed analysis can also be utilized if other pollutant data sets
can be obtained for CO, CO2, and particulate matter (PM). In addition, these results are very site
specific, and therefore it would be interesting to study other states that had different experiences
with COVID-19.
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