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Education is mandatory, and much research has been invested in this sector. An important aspect of education is how to evaluate
the learners’ progress. Multiple-choice tests are widely used for this purpose. The tests for learners in the same exam should come
in equal difficulties for fair judgment. Thus, this requirement leads to the problem of generating tests with equal difficulties, which
is also known as the specific case of generating tests with a single objective. However, in practice, multiple requirements
(objectives) are enforced while making tests. For example, teachers may require the generated tests to have the same difficulty and
the same test duration. In this paper, we propose the use of Multiswarm Multiobjective Particle Swarm Optimization (MMPSO)
for generating k tests with multiple objectives in a single run. Additionally, we also incorporate Simulated Annealing (SA) to
improve the diversity of tests and the accuracy of solutions. The experimental results with various criteria show that our ap-

proaches are effective and efficient for the problem of generating multiple tests.

1. Introduction

In the education sector, evaluation of students’ study
progress is important and mandatory. There are many
methods such as oral tests or writing tests to evaluate their
knowledge and understanding about subjects. Because of
the scalability and ease of human resources, writing tests
are used more widely for the final checkpoints of assess-
ment (e.g., final term tests), where a large number of
students must be considered. Writing tests can be either
descriptive tests, in which students have to fully write their
answers, or multiple-choice tests, in which students pick
one or more choices for each question. Even though de-
scriptive tests are easier to create at first, they consume a

great deal of time and effort during the grading stage.
Multiple-choice tests, on the other hand, are harder to
create at first as they require a large number of questions for
security reasons, as in Ting et al. [1]. However, the grading
process can be extremely fast, automated by computers,
and bias-free from human graders. Recently, many re-
searchers have invested their efforts to make computers
automate the process of creating multiple-choice tests using
available question banks, as in the work of Cheng et al. [2].
The results were shown to be promising and, thus, make
multiple-choice tests more feasible for examinations.

One of the challenges in generating multiple-choice tests is
the difficulty of the candidate tests. The tests for all students
should have the same difficulty for fairness. However, it can be
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seen that generating all tests having the same level of difficulties
is an extremely hard task, even in the case of manually choosing
questions from a question bank, and the success rate of gen-
erating multichoice tests satisfying a given difficulty is low and
time-consuming. Therefore, to speed up the process, some
authors chose to automatically generate tests with the use of
computers and approximate the difficulties of the required
difficulties. This is also known as generating tests with a single
objective where the level of difficulty is the objective. For ex-
ample, Bui et al. [3] proposed the use of particle swarm opti-
mization to generate tests with approximating difficulties to the
required levels from users. The tests are generated from question
banks that consist of various questions with different difficulties.
The difficulty value of each question is judged and adapted
based on users via previous real-life exams. The work evaluates
three random oriented approaches, which are Genetic Algo-
rithms (GAs) by Yildirim [4, 5] and Particle Swarm Optimi-
zation (PSO). The experiment result shows that PSO gives the
best performance concerning most of the criteria by Bui et al.
[3]. Previous works only focused on solving a single objective of
the extracting test based on the difficulty level requirement of
the user defined. In practice, exam tests can depend on multiple
factors such as questions’ duration and total testing time. Thus,
designing a method that can generate tests with multiple ob-
jectives is challenging. Furthermore, the proposed approaches
can only extract a single test at each run. To extract multiple
tests, the authors have to execute their application multiple
times. This method is time-consuming, and duplicate tests can
occur because each run is executed separately. Besides, they do
not have any information about each other to avoid duplication.

In this paper, we propose a new approach that uses Mul-
tiswarm  Multiobjective  Particle Swarm  Optimization
(MMPSO) to extract k tests in a single run with multiple ob-
jectives. Multiswarms are the same as the multitest in extracting
k tests. However, they are based on their search on multiple
subswarms instead of one standard swarm that executes their
application multiple times to extract multiple tests. The use of
diverse subswarms to increase performance when optimizing
their tests is studied in Antonio and Chen [6]. Additionally, we
use Simulated Annealing (SA) to initialize the first population
for PSO to increase the diversities of generated tests. We also
aim to improve the results on various criteria such as diversities
of solutions and accuracy.

The main contributions of this paper are as follows:

(1) We propose a multiswarm multiobjective approach
to deal with the problem of extracting k tests
simultaneously.

(2) We propose the use of SA in combining with PSO for
extracting tests. SA was selected as it is capable of
escaping local optimum solutions.

(3) We propose a parallel version of our serial algo-
rithms. Using parallelism, we can control the overlap
of extracted tests to save time.

The rest of this paper is organized as follows. Section 2
describes the related research. The problem of extracting k
tests from question banks is explained in Section 3.
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Correlated studies of normal multiswarm multiobjective
PSO and multiswarm multiobjective PSO with SA for the
problem of extracting k tests from question banks are
presented in Sections 4 and 5. The next section analyzes and
discusses the experimental results of this study. Finally, the
future research trends, and the conclusions of the paper are
provided in Section 6.

2. Related Work

Recently, evolutionary algorithms have been applied to
many fields for optimization problems. Some of the most
well-known algorithms are Genetic Algorithms (GAs) and
Particle Swarm Optimization (PSO). GAs were invented
based on the concept of Darwin’s theory of evolution, and
they seek solutions via progressions of generations. Heuristic
information is used for navigating the search space for
potential individuals, and this can achieve globally optimal
solutions. Since then, there have been many works that used
GAs in practice [7-11].

Particle swarm optimization is a swarm-based tech-
nique for optimization that is developed by Eberthart and
Kennedy [12]. It imitates the behavior of a school of fishes
or the flock of birds. PSO optimizes the solutions via the
movements of individuals. The foundation of PSO’s
method of finding optima is based on the following
principles proposed by Eberhart and Kennedy: (1) All
individuals (particles) in swarms tend to find and move
towards possible attractors; (2) each individual remembers
the position of the best attractor that it found. In particular,
each solution is a particle in a swarm and is denoted by two
variables. One is the current location, denoted by present(],
and the other is the particle’s velocity, denoted by v[]. They
are two vectors on the vector space R", in which n changes
based on the problems. Additionally, each particle has a
fitness value that is given by a chosen fitness function. At
the beginning of the algorithm, the initial generation
(population) is created either in a random manner or by
some methods. The movement of each particle individual is
affected by two information sources. The first is Py, which
is the best-known position of the particle visited in the past
movements. The second is Gyp.g, Which is the best-known
position of the whole swarm. In the original work proposed
by Eberhart and Kennedy, particles traverse the search
space by going after the particles with strong fitness values.
Particularly, after disjointed periods, the velocity and po-
sition of each individual are updated with the following
formulas:

t+l t t
v =v +clrand * P — present

+c2.rand * Gy, — present’, (1)

t+1 t t+1
present ~ = persent + v

where rand() is a function that returns a random number in
the range (0,1) and cl, ¢2 are constant weights.

While PSO is mostly used for the continuous value
domain, recently, some works have shown that PSO can also
be prominently useful for discrete optimization. For
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example, Sen and Krishnamoorthy [13, 14] transformed the
original PSO into discrete PSO for solving the problem of
transmitting information on networks. The work result
proves that the proposed discrete PSO outperforms Simu-
lated Annealing (SA).

To further improve the performance for real-life ap-
plications, some variants of PSO have been proposed and
exploited such as multiswarm PSO. Peng et al. [15]
proposed an approach for multiswarm PSO that pairs the
velocity update of some swarms with different methods
such as the periodically stochastic learning strategy or
random mutation learning strategy. The experiments have
been run on a set of specific benchmarks. The results
showed that the proposed method gives a better quality of
solutions and has a higher chance of giving correct so-
lutions than normal PSO. Vafashoar and Meibodi [16]
proposed an approach that uses Cellular Learning
Automata (CLA) for multiswarm PSO. Each swarm is
placed on a cell of the CLA, and each particle’s velocity is
affected by some other particles. The connected particles
are adjusted overtime via periods of learning. The results
indicate that the proposed method is quite effective for
optimization problems on various datasets. In order to
balance the search capabilities between swarms, Xia et al.
[17] used multiswarm PSO in combination with various
strategies such as the dynamic subswarm number, sub-
swarm regrouping, and purposeful detecting. Nakisa et al.
[18] proposed a strategy to improve the speed of con-
vergence of multiswarm PSO for robots’ movements in a
complex environment with obstacles. Additionally, the
authors combine the local search strategy with multi-
swarm PSO to prevent the robots from converging at the
same locations when they try to get to their targets.

In practice, there exist a lot of optimization problems
with multiple objectives instead of a single objective. Thus,
a lot of work for multiobjective optimization has been
proposed. For example, Li and Babak [19] proposed
multiobjective PSO combining with an enhanced local
search ability and parameter-less sharing. Kapse and
Krishnapillai [20] also proposed an adaptive local search
method for multiobjective PSO using the time variance
search space index to improve the diversity of solutions
and convergence. Based on crowded distance sorting,
Cheng et al. [21] proposed an improved version, circular
crowded sorting, and combined with multiobjective PSO.
The approach scatters the individuals of initial pop-
ulations across the search space in order to be better at
gathering the Pareto frontier. The method was proven to
improve the search capabilities, the speed of convergence,
and diversity of solutions. Similarly, Adel et al. [22] used
multiobjective with uniform design instead of traditional
random methods to generate the initial population. Based
on R2 measurement, Alan et al. [23] proposed an ap-
proach that used R2 as an indicator to navigate swarms
through the search space in multiobjective PSO. By
combining utopia point-guided search with multi-
objective PSO, Kapse and Krishnapillai [24] proposed a
strategy that selects the best individuals that are located
near the utopia points. The authors also compared their

method with other algorithms such as NSGA-II (Non-
dominated Sorting Genetic Algorithm II) by Deb et al.
[25] or CMPSO (Coevolutionary multiswarm PSO) by
Zhan et al. [26] on several benchmarks and demonstrated
the proposed method’s effectiveness. Saxena and Mishra
[27] designed a multiobjective PSO algorithm named
MOPSO tridist. The algorithm used triangular distance to
select leader individuals which cover different regions in
Pareto frontier. The authors also included an update
strategy for Pbest with respect to their connected leaders.
MOPSO tridist was shown to outperform other multi-
objective PSOs, and the authors illustrated the algorithm’s
application with the digital watermarking problem for
RBG images. Based on chaotic particle swarm optimiza-
tion, Liansong and Dazhi [28] designed a multiobjective
optimization for chaotic particle swarm optimization and
based on comprehensive learning particle swarm opti-
mization, and Xiang and Xueqing [29] proposed an ex-
tension, the MSCLPSO algorithm, and incorporated
various techniques from other evolutionary algorithms. In
order to increase the flexibility of multiobjective PSO,
Mokarram and Banan [30] proposed the FC-MOPSO
algorithm that can work on a mix-up of constrained,
unconstrained, continuous, and/or discrete optimization
problems. Recently, Mohamad et al. [31] reviewed and
summarized the disadvantages of multiobjective PSO.
Based on that, they proposed an algorithm, M-MOPSO.
The authors also proposed a strategy based on dynamic
search boundaries to help escape the local optima.
M-MOPSO was proven to be more efficient when com-
pared with several state-of-the-art algorithms such as
Multiobjective Grey Wolf Optimizer (MOGWO), Multi-
objective Evolutionary Algorithm based on Decomposi-
tions (MOEA/D), and Multiobjective Differential
Evolution (MODE).

An extension of multiple objective optimization prob-
lems is the dynamic multiple objective optimization prob-
lems, in which each objective would change differently
depending on the time or environment. To deal with this
problem, Liu et al. [32] proposed CMPSODMO which is
based on the multiswarm coevolution strategy. The author
also combined it with special boundary constraint pro-
cessing and a velocity update strategy to help with the di-
versity and convergence speed.

To make it easier for readers, Table 1 summarizes dif-
ferent application domains in which PSO algorithms have
been applied for different purposes.

The abovementioned works can be effective and efficient
for the optimization problems in Table 1; however, applying
them for the problem of generating k test in a single run with
multiple objectives is not feasible according to the work of
Nguyen et al. [33]. Therefore, in this work, we propose an
approach that uses Multiswarm Multiobjective Particle
Swarm Optimization (MMPSO) combined with Simulated
Annealing (SA) for generating k tests with multiple objec-
tives. Each swarm, in this case, is a test candidate, and it runs
on a separate thread. The migration happens randomly by
chance. We also aim to improve the accuracy and diversity of
solutions.
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3. Problem Statement

3.1. Problem of Generating Multiple Tests. In our previous
works [3, 33], we have proposed a PSO-based method to
multichoice test generation; however, it was a single-ob-
jective approach. In this paper, we introduce a multi-
objective approach of multichoice test generation by
combining PSO and SA algorithms.

Let Q=1{q1, 92> 43> -- > 4u} be a question bank with n
questions. Each question g; € Q contains four attributes {QC,
SC, QD, OD}. QC is a question identifier code and is used to
avoid duplication of any question in the solution. SC denotes
a section code of the question and is used to indicate which
section the question belonged to. QD denotes a time limit of
the question, and OD denotes a real value in the range [0.1,
0.9] that represents an objective difficulty (level) of the
question. QC, SC, and QD are discrete positive integer
values as in the work of Bui et al. [3] and Nguyen et al. [33].

The problem of generating multiple k tests (or just
multiple tests) is to generate k number of tests simulta-
neously in a single run, e.g., our objective is to generate a set
of tests, in which each test E;={q;1, iz, gi3» - - » @im} (qij € Q,
1<j<m, 1<i<k, k<n) consists of m (m<n) questions.
Additionally, those tests must satisfy both the requirements
of objective difficulty ODR and testing time duration TR that
were given by users. For example, ODR=0.8 and TR =45
minutes mean that all the generated tests must have ap-
proximately the level of difficulty equal to 0.8 and the test
time equal to 45 minutes.

The objective difficulty of a test E; is defined as
ODyg, = Z;”zl g;; - OD/m, and the duration of the test E; is
determined by Ty, = ¥, q;; - QD.

Besides the aforementioned requirements, there are
additional constraints each generated test must satisfy as
follows:

Cl: each question in a generated test must be unique
(i.e., a question cannot appear more than once in a test).

C2: in order to make the test more diverse, there exists
no case that all questions in a test have the same dif-
ficulty value as the required objective difficulty ODR.
For example, if ODR=06, then 3gyeTy:
qii-OD #0.6.

C3: some questions in a question bank must stay in the
same groups because their content is relating to each
other. The generated tests must ensure that all the
questions in one group appear together. This means if a
question of a specific group appears in a test, the
remaining questions of the group must also be pre-
sented in the same test [3, 33].

C4: as users may require generated tests to have several
sections, a generated test must ensure that the required
numbers of questions are drawn out from question
banks for each section.

3.2. Modeling MMPSO for the Problem of Generating Multiple
Tests. The model for MMPSO for the problem of generating
multiple tests can be represented as follows:
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min fl (xl, ng x3s e )xm)s
min f, (X}, X5, X3, .. .5 X,,)5 @)
min fk (xl,xz, X3, e ;Xm)>

where f,, f,,..., fr are swarms that represent multiple
tests; x,, ..., x,, are the number of questions in the test.

Assume that F is an objective function for multiobjective
of the problem; it can be formulated as follows:

F= Z“iFi: (3)

where ¢; is a weight constraint («; € (0,1]) and Y o; = 1 and
F; is a single-objective function. In this paper, we use an
evaluation of the two functions, which are the average levels
of difficulty requirements of the tests F; and total test du-
ration F,.

F) = f(qi;-OD) = (L., qi; - OD/m) — ODR, where
F, satisfies the conditions {C1, C2, C3, C4} and m is the total
number of questions in the test, g;;- OD is the difficulty
value of each question, and ODR is the required difficulty
level.

F,=f(q-QD) =1~ (X, gi; - QD/TR), where F,
satisfies the conditions {C1, C2, C3, C4} and m is the total
number of questions in the test, g;; - QD is the duration for
each question, and TR is the required total time of tests.

The objective function F is used as the fitness function in
the MMPSO, and the results of the objective function are
considered the fitness of the resulting test.

In this case, the better the fitness, the smaller the F
becomes. To improve the quality of the test, we also take into
account the constraints C1, C2, C3, and C4.

For example, provided that we have a question bank as in
Table 2, the test extraction requirements are four questions, a
difficulty level of 0.6 (ODR = 0.6), a total duration of the test
of 300 seconds (TR =300), and a weight constraint (a«=0.4).
Table 3 illustrates a candidate solution with its fitness =0.1
computed by using formula (3).

4. MMPSO in Extracting Multiple Tests

4.1. Process of MMPSO for Extracting Tests. This paper pro-
poses a parallel multiswarm multiobjective PSO (MMPSO) for
extracting multiple tests (MMPSO) based on the idea in Bui
et al. [3]. It can be described as follows. Creating an initial
swarm population is the first step in PSO, in which each
particle in a swarm is considered a candidate test; this first
population also affects the speed of convergence to optimal
solutions. This step randomly picks questions in a question
bank. The questions, either stand-alone or staying in groups
(constraint C3), are drawn out for one section (constraint C4)
until the required number of questions of the section is reached
and the drawing process is repeated for next sections. When the
required number of questions of the candidate test and all the
constraints are met, the fitness value of the generated test will
be computed according to formula (3).

The Gpey and Py, position information is the contained
questions. All Py, slowly move towards Gy by using the
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TaBLE 2: The question banks.

QC 01 02 03 04 05 06 07 08 09 10
OD 0.3 0.2 0.8 0.7 0.4 0.6 0.5 0.8 0.2 0.3
QD 100 110 35 40 65 60 60 35 110 100

TABLE 3: An example of test results.

QC 05 08 01 04

An individual that satisfies the requirement OD 04 08 03 0.7
QD 65 35 100 40

Fitness (1) (ODR=0.6; TR =300; « =0.4)
(0.4 x |(2.2/4) — 0.6]) + [(1 - 0.4) x |1 — (240/300)|] = 0.1

location information of Gy The movement is the re-
placement of some questions in the candidate test according
to the velocity Py.. If the fitness value of a newly found P, .
of a particle is smaller than the particle’s currently best-
known P, (i.e., the new position is better than the old),
then we assign a newly found position value to P ..

Gpest moves towards the final optimal solution in ran-
dom directions. The movement is achieved by replacing its
content with some random questions from the question
bank. In a similar way to Py, if the new position is no better
than the old one, the Gy value will not be updated.

The algorithm ends when the fitness value is lower than
the fitness threshold ¢ or the number of movements (iter-
ation loops) surpasses the loop threshold A. Both of the
thresholds are given by users.

4.2. Migration Parallel MMPSO for the Extracting Test
(Parallel MMPSO). Based on the idea in Nguyen et al. [33];
we present the migration parallel approach of MMPSO for
increasing performance. Each swarm now corresponds to a
thread, and the migration happens by chance between
swarms. The migration method starts with locking the
current thread (swarm) to avoid interference from other
threads in.

In the dual-sector model [34], Lewis describes a rela-
tionship between two regions, the subsistence sector and
the capitalist sector. We can view the two types of economic
sectors here as the strong (capitalist) sectors and the weak
(subsistence) sectors (while ignoring other related aspects
of the economy). Whether a sector is strong or weak de-
pends on the fitness value of Gy, positions of its swarm.
However, when applying those theories, some adjustments
are made so that the parallel MMPSO can yield better
optimal solutions.

The direction of migration changes when individuals
with strong Py ., (strong individuals) in strong sectors move
to weak sectors. The weak sectors’ Gy, may be replaced by
the incoming Py, and the fitness value of the weak swarms
should make a large lift, as in the work of Nguyen et al. [33].

Backward migration from the weak swarms to strong
swarms also happens alongside forwarding migration. For
every individual that moves from a strong swarm to a weak
swarm, there is always one that moves from the weak swarm
back to the strong swarm. This is to ensure that the number
of particles and the searching capabilities of the swarms do
not significantly decrease.

The foremost condition for migration to happen is that
there are changes in the fitness values of the current Gy
compared to the previous Gpeg.

The probability for migration is denoted as y, and the
unit is a percentage (%).

The number of migrating particles is equal to § x the size
of the swarm (i.e., the number of existing particles in the
swarm), where § denotes the percentage of migration.

The migration parallel MMPSO-based approach to ex-
tract multiple tests is described in a form of a pseudocode in
Algorithm 1.

The particle updates its velocity (V) and positions (P)
with the following formulas:

V=V b <V

phest + 72 XV, (4)

gbest>

where V .., is the velocity of Py, with V. determined
by V jpest = @ X m3 V o is the velocity of Gpest, With V gpeg
determined by V . = Bxm, a,f € (0,1), ry,r, are ran-
dom values, and m is the number of questions in the test
solutions.

Pt+1 — Pt + Vt+1. (5)

The process of generating multiple tests at the same time
in a single run using migration parallel MMPSO includes
two stages. The first stage is generating tests using multi-
objective PSO. In this stage, the algorithm proceeds to find
tests that satisfy all requirements and constraints using
multiple threads. Each thread corresponds to each swarm
that runs separately. The second stage is improving and
diversifying tests. This stage happens when there is a change
in the value of Gy of each swarm (for each thread) in the
first stage. In this second stage, migration happens between
swarms to exchange information between running threads
to improve the convergence and diversity of solutions based
on the work of Nguyen et al. [33]. The complete flowchart
that applies the parallelized migration method to the
MMPSO algorithm is shown in Figure 1.

4.3. Migration Parallel MMPSO in Combination with Simu-
lated Annealing. As mentioned above, the initial population
affects the convergence speed and diversity of test solutions.
The creation of a set of initial solutions (population) is
generally performed randomly in PSO. It is one of the
drawbacks since the search space is too wide, so the
probability of getting stuck in a local optimum solution is
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For each available thread t do
Generate the initial population with random questions;
While stop conditions are not met do
Gather Gy and all P,
Foreach Py

Update velocity using equation (4);
Update position using equation (5);
End for

If the probability for migration y is met then
Execute function Migration_MMPSO with £
End if
End while
End for

threads to the current thread during migration procedure.

Unlock the other threads except for chosen thread;
Set the status of the chosen thread to “Exchanging”;
Move the A selected individuals to the chosen thread;
Remove those A selected individuals;
Select the A weakest individuals in the chosen thread;
Add those A weakest individuals to the current thread;
Set the status of chosen thread to “Available”;

Unlock the current thread and the chosen thread;

Function Migration_Par_ MMPSO: Extracting tests using Migration Parallel MMPSO

Move Ppes towards Gpes; using location information of Gpegt;

Gpest moves in a random direction to search for the optimal solution;

Function Migration _MMPSO: Improving solutions with migration method
Lock the current thread (i.e., block all modifications from other threads to the current thread) to avoid interference from other

Select A, which are the set of stronger individuals for migration except for the Gy
Lock other threads so that no unintended changes will happen to them during the migration:
Choose a thread that has a Gy, weaker than the one in the current thread;

ALGORITHM 1: Pseudocode: migration parallel MMPSO.

also high. In order to improve the initial population, we
apply SA in the initial population creation step of migration
parallel MMPSO instead of the random method. SA was
selected since it is capable of escaping local optimums in
Kharrat and Neji [35]. In this study, the process of finding
new solutions using SA is improved by moving Py . t0 Gpest
using the received information about the location of Gy
(which is commonly used in PSO). The MMPSO with SA is
described by a pseudocode in Algorithm 2.

5. Experimental Studies

5.1. Experimental Environment and Data. Bui et al. [3]
evaluated different algorithms such as the random method,
genetic algorithms, and PSO-based algorithm for extracting
tests from a question bank of varying sizes. The results of the
experiment showed that the PSO-based algorithms are better
than others. Hence, the experiment in this paper only
evaluated and compared the improved SA parallel MMPSO
algorithm with the normal parallel MMPSO algorithm in
terms of the diversity of tests and the accuracy of solutions.

All proposed algorithms are implemented in C# and
run on 2 computers which are a 2.5 GHz Desktop PC (4-
CPUs, 4GB RAM, Windows 10) and a 2.9 GHz VPS (16-
CPUs, 16 GB RAM, Windows Server 2012). The experi-
mental data include 2 question banks. One is with 998

different questions (the small question bank) and the other
one is with 12000 different questions (the large question
bank). The link to the data is https://drive.google.com/file/
d/1_EdCUNyqC9IGziFUIf4mqs0G1qHtQyGI/view. The
small question bank consists of multiple sections, and each
section has more than 150 questions with different diffi-
culty levels (Figure 2). The large question bank includes
12,000 different questions in which each part has 1000
questions with different difficulty levels (Figure 3). The
experimental parameters of MMPSO are presented in
Table 4. The results are shown in Tables 5 and 6 and
Figures 4 and 5.

Our experiments focus on implementing formula (3)
and an evaluation of the two functions, which are the average
levels of difficulty requirements of the tests F; and total test
duration F,.

5.2. Evaluation Method. In this part, we present the formula
for the evaluation of all algorithms about their stability to
produce required tests with various weight constraints ().
The main measure is the standard deviation, which is defined
as follows:

A2 0 T) 6)

z-1 "~


https://drive.google.com/file/d/1_EdCUNyqC9IGziFUIf4mqs0G1qHtQyGI/view
https://drive.google.com/file/d/1_EdCUNyqC9IGziFUIf4mqs0G1qHtQyGI/view
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Input of extraction
requirements

Thread 1 Thread 2 Thread k
Using SA to generate
initial population
v
F=%uaF; 4— Gy, approaches the goal

Single PSO
combine with SA

Migration
condition

Migration

-

Gpest and Py, selection

Check stopping

conditions

/ Get the solution /

End

A

Py approaches Gy

Fi1GURE 1: The flowchart of the MMPSO algorithm in migration parallel.

For each available thread ¢ do

solutions;
While stop conditions are not met do
Gather Gy and all Py
For each Py

Apply velocity update using (4),
Apply position update using (5),
End for

If the probability for migration y is met then
Execute function Migration_MMPSO with ¢
End if
End while
End for

Move Ppeg towards G using location information of Gpeg,

Gpest moves in a random direction to search for the optimal solution;

Function Migration_Par_ MMPSO_SA: Extracting tests using Migration Parallel MMPSO and SA

Generate the initial population by using SA as it is capable of escaping local minimums. In this stage, the process of finding new solutions
using SA is improved by moving Py t0 Gpes using the received information about the location of Gyesy and remove any incorrect

ALGORITHM 2: Pseudocode: migration parallel MMPSO with SA.
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The allocation of difficulty level and time of question
in small question bank
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FIGURE 2: The allocation of the difficulty level and time of question in the small question bank.

The allocation of difficulty level and time of question
in large question bank
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F1GURE 3: The allocation of the difficulty level and time of question in the large question bank.

TABLE 4: Experimental parameters.

The required level of difficulty (ODR) 0.5

The total test time (TR) 5400 (seconds)
The value of « [0.1, 0.9]
The number of required questions in a test 100

The number of questions in each section in the
test

10




Scientific Programming 11

TaBLE 4: Continued.

The number of simultaneously generated tests

in each run 100

The number of questions in the bank 1000 and 12,000

The number of particles in each swarm: 10
Random value r1, 2 are in [0,1]
The percentage of Py, individuals which receive position information from Gpes; (C1): 5%
The percentage of Gpese Which moves to final goals (C2): 5%
The percentage of migration J: 10%
The percentage of migration probability y: 5%
The stop condition: either when the tolerance fitness <0.001 or when the number of
movement loops >1000

The PSO’s parameters

Initial temperature: 100
Cooling rate: 0.9
Termination temperature: 0.01
Number of iterations: 100

The SA’s parameters

TaBLE 5: Experimental results in the small question bank.

Weight Av.erage Average Average

Aloorithms constraint Number  Successful  runtime for number of  Average dulicate Standard
8 of runs times extracting tests  iteration fitness b deviation

() (%)

(second) loops

0.1 50 11 61.3658 999.75 0.003102 2.43 0.0007071
0.2 50 445 47.9793 981.03 0.003117 2.64 0.0014707
0.3 50 425 35.8007 957.53 0.004150 2.73 0.0021772
Parallel multiswarm 0.4 50 530 30.5070 928.10 0.004850 2.80 0.0027973
multiobjective PSO 0.5 50 774 29.5425 877.65 0.004922 2.85 0.0033383
(parallel MMPSO) 0.6 50 1410 22.6973 754.82 0.003965 291 0.0034005
0.7 50 2900 14.9059 470.13 0.002026 2.97 0.0022461
0.8 50 3005 16.7581 488.31 0.001709 3.01 0.0017271
0.9 50 3019 28.5975 619.34 0.001358 3.04 0.0009634
0.1 50 4 142.2539 999.98 0.003080 2.98 0.0006496
0.2 50 2912 132.3828 900.42 0.001265 3.27 0.0007454
Parallel multiswarm 0.3 50 3681 111.9513 650.42 0.001123 3.38 0.0008364
multiobjective PSO with 0.4 50 3933 100.0204 47491 0.001085 3.44 0.0009905
SA (parallel MMPSO with 0.5 50 4311 91.7621 318.75 0.000938 3.48 0.0008439
SA) 0.6 50 4776 84.7441 161.23 0.000746 3.53 0.0005124
0.7 50 4990 81.1127 76.75 0.000666 3.54 0.0002421
0.8 50 4978 84.6747 131.32 0.000679 3.52 0.0002518
0.9 50 4937 98.8690 339.89 0.000749 3.41 0.0002338
0.1 50 575 51.3890 959.29 0.002138 5.19 0.0008091
0.2 50 1426 33.2578 837.87 0.002119 5.60 0.0011804
Migration parallel 0.3 50 1518 25.3135 779.76 0.002587 5.82 0.0017130
multiswarm multiobjective 0.4 50 1545 21.0524 745.36 0.002977 5.89 0.0021845
PSO (migration parallel 0.5 50 1650 17.9976 710.92 0.003177 5.95 0.0025374
MMPSO) 0.6 50 1751 16.0573 680.97 0.003272 5.92 0.0028531
0.7 50 2463 12.9467 540.21 0.002243 5.94 0.0022161
0.8 50 3315 12.7420 402.75 0.001374 5.90 0.0012852
0.9 50 3631 19.1735 439.27 0.001067 5.85 0.0006259
0.1 50 816 139.6821 952.42 0.002183 3.82 0.0009039
0.2 50 3641 111.4438 638.08 0.001039 519 0.0005336
Migration parallel 0.3 50 3958 98.9966 463.53 0.000984 5.36 0.0006349
multiswarm multiobjective 0.4 50 4084 92.6536 357.13 0.000973 5.30 0.0007475
PSO with SA (migration 0.5 50 4344 88.3098 255.46 0.000898 5.10 0.0007442
parallel MMPSO with SA) 0.6 50 4703 83.4776 144.00 0.000758 4.90 0.0004939
0.7 50 4874 81.2981 84.57 0.000697 4.70 0.0003271
0.8 50 4955 84.2094 106.68 0.000683 4.45 0.0002609

0.9 50 4937 94.1685 267.30 0.000746 4.19 0.0002345
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TaBLE 6: Experimental results in the large question bank.

Weight Average Average Average
. . Number  Successful ~ runtime for number of  Average . Standard
Algorithms constraint £ . . . . fit duplicate deviati
(@) of runs times extracting tests iteration ness (%) eviation
(second) loops
0.1 50 2931 23.50 888.85 0.001137 0.95 0.000476
0.2 50 4999 14.05 484.33 0.000725 1.03 0.000219
0.3 50 4997 9.56 296.80 0.000689 1.04 0.000234
Parallel multiswarm 0.4 50 4999 5.99 190.55 0.000676 1.04 0.000233
multiobjective PSO 0.5 50 5000 3.61 121.24 0.000668 1.05 0.000236
(parallel MMPSO) 0.6 50 5000 2.77 79.32 0.000663 1.05 0.000235
0.7 50 5000 3.22 92.33 0.000669 1.05 0.000238
0.8 50 5000 4.92 173.19 0.000673 1.04 0.000231
0.9 50 5000 10.98 384.13 0.000738 1.02 0.000213
0.1 50 3055 99.75 890.40 0.001095 0.96 0.000432
0.2 50 5000 84.90 469.23 0.000709 1.04 0.000224
Parallel multiswarm 0.3 50 5000 74.43 275.54 0.000686 1.05 0.000230
multiobjective PSO with 0.4 50 5000 73.03 168.91 0.000668 1.06 0.000237
SA (parallel MMPSO with 0.5 50 5000 69.88 99.92 0.000663 1.07 0.000235
SA) 0.6 50 5000 67.34 61.42 0.000662 1.07 0.000236
0.7 50 5000 53.43 69.02 0.000661 1.07 0.000235
0.8 50 5000 70.06 132.27 0.000676 1.06 0.000236
0.9 50 5000 79.58 319.36 0.000734 1.03 0.000211
0.1 50 2943 33.52 886.90 0.001144 0.95 0.000482
0.2 50 4995 19.33 488.60 0.000724 1.02 0.000219
Migration parallel 0.3 50 4998 12.43 295.69 0.000688 1.04 0.000231
multiswarm multiobjective 0.4 50 5000 8.57 190.20 0.000667 1.04 0.000238
PSO (migration parallel 0.5 50 4999 6.02 120.88 0.000665 1.05 0.000240
MMPSO) 0.6 50 5000 4.44 78.89 0.000669 1.04 0.000234
0.7 50 5000 4.98 92.53 0.000668 1.05 0.000234
0.8 50 5000 7.94 171.98 0.000669 1.04 0.000236
0.9 50 5000 15.76 383.09 0.000738 1.02 0.000209
0.1 50 3122 102.00 888.48 0.001091 0.96 0.000436
0.2 50 5000 85.68 469.50 0.000716 1.04 0.000222
Migration parallel 0.3 50 5000 77.35 276.03 0.000678 1.05 0.000235
multiswarm multiobjective 0.4 50 5000 73.19 167.84 0.000674 1.06 0.000234
PSO with SA (migration 0.5 50 5000 69.62 99.66 0.000665 1.06 0.000238
parallel MMPSO with SA) 0.6 50 5000 67.83 61.33 0.000660 1.07 0.000237
0.7 50 5000 64.19 69.02 0.000666 1.07 0.000237
0.8 50 5000 61.46 133.45 0.000673 1.06 0.000234
0.9 50 5000 71.62 319.68 0.000731 1.03 0.000213
Experimental results of the small question bank
0.00515
140 0.00465
120 0.00415
3 100 0.00365
P 000315 £
g 0 0.00265 é"’a
2 0.00215 =
0.00165
20 0.00115
0 0.00065

Weight constraint («)

Parallel MMPSO (runtime) —s— Migration parallel MMPSO (runtime)
Parallel MMPSO with SA (runtime) —+— Migration parallel MMPSO with SA (runtime)
—o— Parallel MMPSO (fitness value) —a— Migration parallel MMPSO (fitness value)

—&— Parallel MMPSO with SA (fitness value) —s— Migration parallel MMPSO with SA (fitness value)

FIGURE 4: Experimental results of the runtime and fitness value are in Table 4.
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Experimental results of the large question bank

0.00125

Runtime (s)

0.00115

0.00105

0.00095

Fitness value

0.00085

0.00075

- 0.00065

Weight constraint («)

Parallel MMPSO (runtime) ——
Parallel MMPSO with SA (runtime) ——
—o— Parallel MMPSO (fitness value) —a—
—g— Parallel MMPSO with SA (fitness value) —o—

Migration parallel MMPSO (runtime)

Migration parallel MMPSO with SA (runtime)
Migration parallel MMPSO (fitness value)
Migration parallel MMPSO with SA (fitness value)

Ficure 5: Experimental results of the runtime and fitness value are in Table 5.

where z is the number of experimental runs. ¥ is the average
fitness of all runs. y; is a fitness value of run i

The standard deviation is used to assess the stability of
the algorithms. If its value is low, then the generated tests of
each run do not have much difference in the fitness value.
The weight constraint « is also being examined as it bal-
ances the objective functions. In our cases, a change in «
can shift the importance towards the test duration con-
straint, the test difficulty constraint, or the balance between
those two. We can select « to suit what we require, em-
phasizing more on either the test duration or the test
difficulty.

5.3. Experimental Results. The experiments are executed
with the parameters following Ridge and Kudenko [36] in
Table 3, and the results are presented in Table 5 (run on
computer 4-CPUs) and Table 6 (run on computer 16-CPUs).
The comparisons of runtime and fitness of the small and
large question bank are presented in Figures 4 and 5. Re-
garding Tables 5 and 6, each run extracts 100 tests simul-
taneously, and each test has a fitness value. Each run also
requires several iteration loops to successfully extract 100
candidate tests. The average runtime for extracting tests is
the average runtimes of all 50 experimental runs. The av-
erage number of iteration loops is the average of all required
loops of all 50 runs. The average fitness is the average of all
fitness values of 5000 generated tests. The average duplicate
indicates the average number of duplicate questions among
100 generated tests of all 50 runs. The average duplicate is
also used to indicate the diversity of tests. The lower the
value, the more diverse the tests.

When « is at the lower range [0.1, 0.5], the correctness
for difficulty value of each generated test is emphasized more
than that of the total test time. Based on the average fitness
value, all algorithms appear to have a harder time generating
tests at the lower range [0.1, 0.5] compared with at the higher
range [0.5, 0.9]. Additionally, when & increases, the runtime
starts to decrease, the fitness gets better (ie., the fitness
values get smaller), and the numbers of loops required for
generating tests decrease. Apparently, satisfying the

requirement for the test difficulty requirement is harder than
satisfying the requirement for total test time. The experiment
results also show that integrating SA gives a better fitness
value without SA. However, runtimes of algorithms with SA
are longer as a trade-off for better fitness values.

All algorithms can generate tests with acceptable per-
centages of duplicate questions among generated tests. The
duplicate question proportions between generated tests
depend on the sizes of the question bank. For example, if the
question bank’s size is 100, we need to generate 50 tests in a
single run and each test contains 30 questions, and then,
some generated tests should contain similar questions of the
other generated tests.

Based on the standard deviation in Tables 5 and 6, all
MMPSO algorithms with SA are more stable than those
without SA since the standard deviation values of those with
SA are smaller. In other words, the differences in fitness
values between runs are smaller with SA than without SA.
The smaller standard deviation values and smaller average
fitness values also mean that we less likely need to rerun the
MMPSO with SA algorithms many times to get the gen-
erated tests that better fit the test requirements. The reason is
that the generated tests we obtain at the first run are likely
close to the requirements (due to the low fitness value) and
the chance that we obtain those generated tests with less fit to
requirements is low (due to the low standard deviation
value).

6. Conclusions and Future Studies

Generation of question papers through a question bank is an
important activity in extracting multichoice tests. The
quality of multichoice questions is good (diversity of the
level of difficulty of the question and a large number of
questions in question bank). In this paper, we propose the
use of MMPSO to solve the problem of generating multi-
objective multiple k tests in a single run. The objectives of the
tests are the required level of difficulty and the required total
test time. The experiments evaluate two algorithms, MMPSO
with SA and normal MMPSO. The results indicate that
MMPSO with SA gives better solutions than normal
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MMPSO based on various criteria such as diversities of
solutions and numbers of successful attempts.

Future studies may focus on investigating the use of the
proposed hybrid approach [37, 38] to solve other NP-hard
and combinatorial optimization problems, which focus on
fine-tuning the PSO parameters by using some type of
adaptive strategies. Additionally, we will extend our problem
to provide feedback to instructors from multiple-choice
data, such as using fuzzy theory [39], and PSO with SA for
mining association rules to compute the difficulty levels of
questions.
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The data used in this study are available from the corre-
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