Probing the Effects of Strong Electromagnetic Fields with Charge-Dependent Directed Flow in Pb-Pb Collisions at the LHC

S. Acharya et al.*
(A Large Ion Collider Experiment Collaboration)

(Received 25 November 2019; revised 22 April 2020; accepted 19 May 2020; published 6 July 2020)

The first measurement at the LHC of charge-dependent directed flow \(\langle v_1 \rangle \) relative to the spectator plane is presented for Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV. Results are reported for charged hadrons and \(D^0 \) mesons for the transverse momentum intervals \(p_T > 0.2 \) GeV/c and \(3 < p_T < 6 \) GeV/c in the 5%–40% and 10%–40% centrality classes, respectively. The difference between the positively and negatively charged hadron \(\langle v_1 \rangle \) has a positive slope as a function of pseudorapidity \(\eta \): \(\Delta \langle v_1 \rangle / \Delta \eta \) = \[1.68 \pm 0.49 \text{(stat)} \pm 0.41 \text{(syst)}\] \times 10^{-4}. The same measurement for \(D^0 \) and \(\bar{D}^0 \) mesons yields a positive value \(\Delta \langle v_1 \rangle / \Delta \eta \) = \[4.9 \pm 1.7 \text{(stat)} \pm 0.6 \text{(syst)}\] \times 10^{-4}, which is about 3 orders of magnitude larger than the one of the charged hadrons. These measurements can provide new insights into the effects of the strong electromagnetic field and the initial tilt of matter created in noncentral heavy ion collisions on the dynamics of light (u, d, and s) and heavy (c) quarks. The large difference between the observed \(\Delta \langle v_1 \rangle \) of charged hadrons and \(D^0 \) mesons may reflect different sensitivity of the charm and light quarks to the early time dynamics of a heavy ion collision. These observations challenge some recent theoretical calculations, which predicted a negative and an order of magnitude smaller value of \(\Delta \langle v_1 \rangle / \Delta \eta \) for both light flavor and charmed hadrons.

DOI: 10.1103/PhysRevLett.125.022301

Quantum chromodynamic (QCD) calculations on the lattice [1–6] predict at high temperatures the existence of a deconfined state of quarks and gluons, known as the quark–gluon plasma (QGP). Characterizing the QGP properties is among the main goals of the experimental program with ultrarelativistic heavy ion collisions at the Large Hadron Collider (LHC). Measurements of the anisotropic transverse flow [7–11], quantified by the second \(\langle v_2 \rangle \) and higher order \((n > 2) \) harmonic coefficients \(v_n \), allow one to characterize the different phases of a heavy ion collision and constrain the properties of the QGP [12–16].

The directed flow, \(v_1 \), has a special role due to its sensitivity to the three-dimensional spatial profile of the initial conditions and the pre-equilibrium early time dynamics in the evolution of the collision. The space momentum correlations in particle production from a longitudinally tilted source result in a nonzero \(v_1 \). The tilt arises from the asymmetries in the number of forward and backward moving participant nucleons at different positions in the transverse plane [17–19]. The directed flow of charged hadrons at the LHC [20] has significantly smaller magnitude compared to that at lower relativistic heavy ion collider (RHIC) energies [21], which can be interpreted as a smaller initial tilt at the LHC [22–24].

Charm quarks are produced early in the collision via hard scattering processes. Their emission region is not tilted in the longitudinal direction [19] unlike the one of light quarks, which are predominantly produced in soft processes at later stages of the collision [18,25]. Consequently, the region of charm quark production in the transverse plane is shifted with respect to that of light quarks and gluons, resulting in an enhanced dipole asymmetry in the charm quark distribution [19]. During the system expansion, charm quarks would be dragged by the flow of the light quarks in the transverse direction of the shift, which is predicted to result in a larger \(v_1 \) of charm hadrons compared to light flavor hadrons [19,26]. Consequently, the measurements of the charge-integrated directed flow of hadrons containing light (u, d, and s) and heavy (c) quarks together with their difference in magnitude are of great interest and allow one to probe the three-dimensional space-time evolution of the produced matter.

Heavy ion collisions are also characterized by extremely strong electromagnetic fields primarily induced by spectator protons, which do not undergo inelastic collisions. There is strong interest in characterizing the time evolution of these fields, which are estimated to reach \(10^{18–10^{19}} \) Gauss in the early stages (<0.5 fm) of Pb-Pb collisions at

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
LHC energies [27,28]. Phenomena predicted to occur in the presence of this strong electromagnetic field include the chiral magnetic effect (CME), which is driven by the generation of an electric current along the magnetic field in a medium with chiral imbalance [29–32]. While experimental results for charge-dependent correlations are in qualitative agreement with theoretical expectations for the CME [33–35], possible background contributions, such as effects of local charge conservation coupled with the anisotropic flow, prevent their unambiguous interpretation [36] and have led to upper limits on the CME at LHC energies. Thus, it is fundamental to use other observables with direct sensitivity to the electromagnetic fields in order to constrain their magnitudes and time evolution in heavy ion collisions.

The charge dependence of the produced particle directed flow relative to the spectator plane is directly sensitive to the presence of electromagnetic fields. The spectator plane is defined by the deflection direction of the collision spectators. On average, its orientation is perpendicular to the direction and are installed at 112.5 m distance from the detector center along the beam direction are analyzed. Two forward scintillator arrays (V0A and V0C) [43] are used to determine the collision centrality. For the most central (0%–5%) collisions, the small number of spectators prevents an accurate reconstruction of their deflection. In the 5%–10% centrality interval, the large combinatorial background does not allow the measurement of the D⁰ and D^0̅ v₁.

The deflection direction of the collision spectators is reconstructed from spectator neutrons detected using two zero degree calorimeters (ZDCs) [44,45]. The ZDCs have a 2 x 2 segmentation in the plane transverse to the beam direction and are installed at 112.5 m distance from the detector center on both sides of the interaction point, covering the “projectile” (η > 8.78) and the “target” (η < −8.78) spectator regions. For each ZDC, a flow vector is constructed following the procedure described in [20]:

\[\mathbf{Q}_{i}^{\mu} = (Q_{i}^{\mu x}, Q_{i}^{\mu y}) = \sum_{i=1}^{4} \mathbf{n}_{i}E_{i}^{\mu} / \sum_{i=1}^{4} E_{i}^{\mu}, \]

where \(\mu \) and \(t \) denote the ZDC on the projectile and target side, \(E_{i}^{\mu} \) is the measured signal, and \(\mathbf{n}_{i} = (x_{i}, y_{i}) \) are the coordinates of the center of the \(i \)th ZDC segment.

The deflection direction of the spectator neutrons is estimated event by event with the \(\mathbf{Q}_{i}^{\mu} \) vectors corrected for the run-dependent variation of the LHC beam crossing position [46]. In midcentral collisions, this deflection direction is strongly correlated with the magnetic field orientation. The deflection is expected to be opposite (anticorrelated) for the projectile and the target sides, i.e., \(\langle Q_{i}^{x}Q_{i}^{y} \rangle = \langle Q_{i}^{y}Q_{i}^{x} \rangle < 0 \) and \(\langle Q_{i}^{x}Q_{i}^{x} \rangle + \langle Q_{i}^{y}Q_{i}^{y} \rangle = 0 \). A deviation from these expectations, mostly for peripheral collisions with centrality above 40%, is observed even after applying the flow vector correction. These residual variations are used in the estimation of the systematic uncertainty as described in [20] and discussed below.

The directed flow is measured using the scalar product method [47] as follows:

\[v_{1}^{\mu} = \frac{\langle \mathbf{u} \mathbf{Q}_{i}^{\mu} \rangle}{\sqrt{\langle \mathbf{Q}_{i}^{\mu} \mathbf{Q}_{i}^{\mu} \rangle}} = \frac{\langle u_{x}Q_{i}^{x} + u_{y}Q_{i}^{y} \rangle}{\sqrt{\langle Q_{i}^{x}Q_{i}^{x} + Q_{i}^{y}Q_{i}^{y} \rangle}}. \]

where \(\mathbf{u} = (\cos \varphi, \sin \varphi) \) is the unit flow vector of the charged hadron or D⁰ meson candidate with azimuthal angle \(\varphi \). The directed flow is calculated as \(v_{1} = (v_{1}^{x} - v_{1}^{y})/2 \). The sign of \(v_{1} \) is defined relative to the deflection of the projectile spectators, corresponding to the rapidity odd component of the \(v_{1} \) discussed in [20]. The measurement of \(v_{1} \) using

About 23(19) × 10⁶ Pb-Pb collisions in the 5%–40% (10%–40%) centrality interval are used for the charged hadron (D⁰ and D^0̅) v₁ measurements. Only events with a primary vertex reconstructed within ±10 cm from the detector center along the beam direction are analyzed.
spectators does not require any treatment of the momentum conservation unlike the measurements based on correlations between particles produced at midrapidity [48]. This is justified by the observation of a vanishing relative momentum shift along the spectator plane at $\eta = 0$ [20].

The charged hadron v_1 is measured from tracks reconstructed with the Inner Tracking System (ITS) [49] and the time projection chamber (TPC) [50] and selected requiring $p_T > 0.2$ GeV/c, $|\eta| < 0.8$, at least 70 (out of a maximum of 159) TPC space points and $x^2/ndf < 2$ for the momentum fit in the TPC. In order to reduce the contamination from secondary particles, only tracks with a maximum distance of closest approach (DCA) to the reconstructed primary vertex in both the transverse (DCA$_{xy} < 2.4$ cm) and the longitudinal direction (DCA$_z < 3.2$ cm) are accepted.

The D^0 and \bar{D}^0 mesons are reconstructed using the decay channel $D^0 \rightarrow K^-\pi^+$ and its charge conjugate for $3 < p_T < 6$ GeV/c. Pions and kaons are reconstructed in the TPC and ITS detectors. Tracks are selected requiring $|\eta| < 0.8$, $p_T > 0.4$ GeV/c, at least 70 hits in TPC, and at least two hits (out of a maximum of six) in the ITS, out of which at least one has to be in the two innermost layers. Particle identification is based on measurements of the specific ionization energy loss dE/dx in the TPC and the flight time from the interaction point to the time of flight (TOF) detector [51]. The charge of the identified pions and kaons allows one to distinguish between the $D^0 \rightarrow K^-\pi^+$ and $\bar{D}^0 \rightarrow K^+\pi^-$ candidates. Geometrical selections on the displaced decay vertex topology are applied to reduce the combinatorial background [52].

The v_1^D is extracted separately for D^0 and \bar{D}^0 mesons via a simultaneous fit to the number $N(M)$ of $K^\mp\pi^\pm$ pairs and their $v_1(M)$ as a function of the invariant mass, M:

$$N(M) = N_D(M) + N_{bg}(M),$$

$$v_1(M) = [v_1^D N_D(M) + v_1^{bg}(M) N_{bg}(M)]/[N_D(M) + N_{bg}(M)].$$

An example of the simultaneous fit is shown in Fig. 1. The invariant mass distribution is fitted with the sum of a Gaussian function $N_D(M)$ for the D^0 and \bar{D}^0 signal and an exponential function $N_{bg}(M)$ for the background. The invariant mass dependence of the directed flow of background candidates $v_1^{bg}(M)$ is parameterized by a linear function.

Candidates that satisfy both the $K^-\pi^+$ and $K^+\pi^-$ hypotheses (reflected kinematics) and therefore cannot be tagged uniquely as D^0 or \bar{D}^0 are rejected. This removes about 35% of the signal and increases the signal to background ratio by about 30%–40%, with a net result of a negligible reduction of the statistical significance of the D^0 and \bar{D}^0 yield. The extracted v_1^D includes contributions from both prompt D^0 mesons and feed-down D^0 mesons from beauty hadron decays. The fraction of prompt D^0 meson is about 85% for the analyzed centrality class and p_T interval [53].

Common sources of systematic uncertainty between charged hadrons and D mesons are related to the resolution of the spectator plane and to the dependence on the ALICE magnet polarity. The absolute systematic uncertainty related to the residual asymmetry in the spectator plane estimation is given by the difference between the v_1 obtained separately from $\langle u_i Q_i \rangle$ and $\langle u_i Q_y \rangle$ correlations with the ZDCs in Eq. (2). It is about $3.5 \times 10^{-5} (2 \times 10^{-2})$ for charged hadrons (D^0 and \bar{D}^0 mesons). Effects related to track reconstruction and geometrical alignment of the detectors, which could influence positive and negative tracks differently, are estimated by comparing the v_1 results obtained using data taken with opposite magnet polarity. This comparison also probes the bias in the spectator plane estimation due to the nonzero beam crossing angle in the vertical plane, which had opposite values (± 60 μrad) for the opposite magnet polarities. The absolute difference between the v_1 values obtained with the two field polarities is $2.5 \times 10^{-5} (2 \times 10^{-2})$ for charged hadrons (D^0 and \bar{D}^0). These systematic uncertainties are correlated in pseudorapidity for charged hadrons, while for D^0 and \bar{D}^0 mesons no significant correlation, beyond statistical uncertainties, is observed.
For charged hadrons, the track quality selections are varied and an absolute systematic uncertainty of \(2.5 \times 10^{-5}\) is assigned. The contribution from secondaries is varied by changing the maximum DCA, which resulted in a negligible variation of \(v_1\). The contamination due to TPC tracks originating from pileup collisions during the readout time of the TPC is estimated by varying the selections on the misidentified tracks from pileup. The uncertainty due to the \(\bar{D}^0\) and \(D^+\) variation of \(v_1\) and \(v_1(M)\), (ii) fixing the Gaussian width and mean to the values extracted from Monte Carlo simulations, and (iii) varying the invariant mass fit range. The absolute systematic uncertainty assigned to \(v_1\) due to the \(D^0\) and \(\bar{D}^0\) signal extraction is estimated by varying (i) the fit functions in Eqs. (3) and (4) for \(N(M)\) and \(v_1(M)\), (ii) the fit range. The absolute systematic uncertainty due to the \(D^0\) signal extraction is estimated by varying (i) the fit functions in Eqs. (3) and (4) for \(N(M)\) and \(v_1(M)\), (ii) fixing the Gaussian width and mean to the values extracted from Monte Carlo simulations, and (iii) varying the invariant mass fit range. The absolute systematic uncertainty assigned to \(v_1\) due to the \(D^0\) and \(\bar{D}^0\) yield extraction is \(2 \times 10^{-2}\). The possible bias due to the \(p_T\)-dependent efficiency in the \(\bar{D}^0\) and \(D^0\) \(v_1\) analysis is tested by reweighting both signal and background with the inverse value of the signal reconstruction efficiency as a function of \(p_T\). The assigned absolute systematic uncertainty is \(10^{-2}\).

The total systematic uncertainty on \(v_1\) is obtained by adding in quadrature the contributions described above.

In the calculation of \(\Delta v_1(D)\), all individual systematic uncertainties are propagated as fully uncorrelated between \(D^0\) and \(\bar{D}^0\). For charged hadrons, the systematic uncertainties due to the asymmetry in the spectator plane estimation and the magnet polarity are correlated between positive and negative tracks and largely cancel in \(\Delta v_1(h)\).

The pseudorapidity dependence of the directed flow of positively and negatively charged hadrons for the 5%–40% centrality class in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV is shown in the upper left panel of Fig. 2. The negative slope of \(v_1\) is usually attributed to the effect of the initial tilt [18] or rotation [25] of the particle-emitting source. The charge-integrated \(v_1\) at \(\sqrt{s_{NN}} = 5.02\) TeV agrees within uncertainties with the results at \(\sqrt{s_{NN}} = 2.76\) TeV [20].

The difference \(\Delta v_1(h)\) between the \(v_1\) of positively and negatively charged hadrons as a function of pseudorapidity is shown in the lower left panel of Fig. 2. The rapidity slope \(d\Delta v_1/d\eta\), extracted with a linear fit (constrained to \(v_1 = 0\) at \(\eta = 0\)), is \(d\Delta v_1/d\eta = [1.68 \pm 0.49\text{(stat)} \pm 0.41\text{(syst)}] \times 10^{-4}\) with a significance of \(2.6\sigma\) for having a positive value. The \(d\Delta v_1/d\eta\) is expected to reflect different effects, including those originating from the early time magnetic field dynamics [19,26,41] and the Coulomb interaction with charged spectators [54], as well as the transport to midrapidity via the baryon stopping mechanism [17] of the positive charge carried by the protons from the colliding

![Graphical illustration](image-url)
The importance of baryon stopping for the charge dependence of unidentified hadron v_1 is supported by the observed difference, even at top RHIC energy, between proton and antiproton v_1 [22,55,56]. The baryon stopping effects are expected to decrease with increasing collision energy, as supported by the observation of a smaller magnitude of v_1 [20] and of a proton to antiproton ratio closer to unity at the LHC as compared to RHIC [57]. Despite the overall decrease, the baryon stopping can contribute significantly to the proton and antiproton v_1 difference and, as such, to the charge dependence of the inclusive hadron v_1.

The charged hadron $d\Delta v_1/dq$ at $\sqrt{s_{NN}} = 5.02$ TeV is 1 order of magnitude larger and has an opposite sign with respect to calculations for charged pions at $\sqrt{s_{NN}} = 2.76$ TeV [38] based on the analytic solution of relativistic hydrodynamics [58] with a constant electrical conductivity of the QGP. More recent calculations [54], using viscous hydrodynamic calculations [59], yield an absolute value of $d\Delta v_1/dq$ of similar magnitude as the one measured for charged hadrons but with opposite sign.

The D^0 and \bar{D}^0 v_1 as a function of pseudorapidity is shown in the upper right panel of Fig. 2. The data suggest a positive slope for the rapidity dependence of the v_1 of D^0 and a negative slope for \bar{D}^0, with a significance of about 2σ in both cases. The slopes are different from the measurements in Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV [42], where a negative value is observed for both D^0 and \bar{D}^0. Additionally, the v_1 for D^0 and \bar{D}^0 mesons with $3 < p_T < 6$ GeV/c ($\langle p_T \rangle \approx 4.2$ GeV/c) in the 10%-40% centrality interval is about 3 orders of magnitude larger than that of charged hadrons with $p_T > 0.2$ GeV/c ($\langle p_T \rangle \approx 0.7$ GeV/c) in the 5%-40% centrality class. The different p_T intervals used for the charged hadron and D^0 meson v_1 measurements are imposed by the statistical precision of the data, which simultaneously limits the yield of high p_T charged hadrons and results in low significance of the D^0 and \bar{D}^0 meson yield at low p_T. The charged hadron v_1 at the LHC has a weak centrality dependence and changes sign around $p_T \approx 1.5$ GeV/c [20]. The differences in centrality and transverse momentum intervals should not be responsible for the observed difference between the magnitude of the v_1 of charged hadrons and D^0 and \bar{D}^0 mesons. The D^0 and \bar{D}^0 v_1 is an order of magnitude larger than the predictions from the transport [41] and hydrodynamic [19,26] model calculations. The difference between the v_1 values of D^0 and \bar{D}^0 mesons $\Delta v_1(D)$ is shown in the lower right panel of Fig. 2. The value of $d\Delta v_1/dq = [4.9 \pm 1.7(stat) \pm 0.6(syst)] \times 10^{-4}$ corresponds to a significance of 2.7σ to have a positive slope. A negative value for $d\Delta v_1/dq$ was predicted in [41] and is observed in Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV [42]. The opposite sign of the measured D^0 meson and charged hadron Δv_1 slope with respect to model calculations might indicate a stronger effect of the Lorentz force relative to the Coulomb one. These results demonstrate the sensitivity of the v_1 to the interplay among the effects of the rapidly decreasing magnetic field and the initial tilt of the source.

In summary, first measurements of the charge dependence of v_1 relative to the spectator plane in midcentral Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV are presented. The v_1 and the difference Δv_1 between positively and negatively charged hadrons and D^0 mesons are sensitive to the effects of the electromagnetic fields induced by spectator protons, baryon number transport, and the initial tilt or rotation of the particle-emitting source for noncentral collisions. An indication of a positive slope $d\Delta v_1/dq$ of the charge-dependent v_1 at midrapidity for both charged hadrons and D^0 and \bar{D}^0 mesons is observed. The slope $d\Delta v_1/dq$ is $[1.68 \pm 0.49(stat) \pm 0.41(syst)] \times 10^{-4}$ for charged hadrons with $p_T > 0.2$ GeV/c and $[4.9 \pm 1.7(stat) \pm 0.6(syst)] \times 10^{-4}$ for D^0 and \bar{D}^0 mesons with $3 < p_T < 6$ GeV/c, with significance of 2.6σ and 2.7σ for having a positive value, respectively. The measured values of v_1 for D^0 and \bar{D}^0 mesons are about 3 orders of magnitude larger than the measured value of charged hadrons. These measurements together with those at RHIC [42] provide new insights and can constrain the theoretical modeling [38,41] of electromagnetic effects. Further constraints will be set by future higher precision measurements at the LHC [60,61].

ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. ALICE Collaboration gratefully acknowledges the resources and support provided by all grid centers and the Worldwide LHC Computing Grid (WLCG) collaboration. ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF) [Grant No. M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Ensino e Pesquisa (FAPESP), and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science and Technology of China (MSTC), and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba;
Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN, and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Centre National de la Recherche Scientifique (CNRS), and Région des Pays de la Loire, France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC), and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi–Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation, and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Center Kurchatov Institute, Russian Science Foundation, and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research, and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA), and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation (NSF) and U.S. Department of Energy, Office of Nuclear Physics (DOE NP), USA.

B. Abelev et al. (ALICE Collaboration), Charge Separation Relative to the Reaction Plane in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. Lett. 110, 012301 (2013).

J. Adam et al. (STAR Collaboration), First Observation of the Directed Flow of D^0 and \bar{D}^0 in Au + Au Collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. Lett. 123, 162301 (2019).

E. Abbas et al. (ALICE Collaboration), Performance of the ALICE VZERO system, J. Instrum. 8, P10016 (2013).

A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
3Boise Institute, Department of Physics, Kolkata, India
3bCentre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
4Budker Institute for Nuclear Physics, Novosibirsk, Russia
5California Polytechnic State University, San Luis Obispo, California, USA
6Central China Normal University, Wuhan, China
7Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
8Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
11Chicago State University, Chicago, Illinois, USA
12China Institute of Atomic Energy, Beijing, China
13Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
14COMSATS University Islamabad, Islamabad, Pakistan
15Creighton University, Omaha, Nebraska, USA
16Department of Physics, Aligarh Muslim University, Aligarh, India
17Department of Physics, Pusan National University, Pusan, Republic of Korea
18Department of Physics, Sejong University, Seoul, Republic of Korea
19Department of Physics, University of California, Berkeley, California, USA
20Department of Physics, University of Oslo, Oslo, Norway
21Department of Physics and Technology, University of Bergen, Bergen, Norway
22aDipartimento di Fisica dell’Università ‘La Sapienza’, Rome, Italy
22bSezione INFN, Rome, Italy
23aDipartimento di Fisica dell’Università, Cagliari, Italy
23bSezione INFN, Cagliari, Italy
24aDipartimento di Fisica dell’Università, Trieste, Italy
24bSezione INFN, Trieste, Italy
25aDipartimento di Fisica dell’Università, Turin, Italy
25bSezione INFN, Turin, Italy
26aDipartimento di Fisica e Astronomia dell’Università, Bologna, Italy
26bSezione INFN, Bologna, Italy
27aDipartimento di Fisica e Astronomia dell’Università, Catania, Italy
27bSezione INFN, Catania, Italy
28aDipartimento di Fisica e Astronomia dell’Università, Padova, Italy
28bSezione INFN, Padova, Italy
29aDipartimento di Fisica ‘E.R. Caianiello’ dell’Università, Salerno, Italy
29bGruppo Collegato INFN, Salerno, Italy
30aDipartimento DISAT del Politecnico e Sezione INFN, Turin, Italy
30bSezione INFN, Turin, Italy
31aDipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
31bDipartimento Interateneo di Fisica ‘M. Merlin’, Bari, Italy
31cSezione INFN, Bari, Italy
32aEuropean Organization for Nuclear Research (CERN), Geneva, Switzerland
33Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
34Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
35Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
36Faculty of Science, P.J. Šafárik University, Košice, Slovakia
37Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
38Fudan University, Shanghai, China
39Gangneung-Wonju National University, Gangneung, Republic of Korea
41	Gauhati University, Department of Physics, Guwahati, India
42	Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
43	Helsinki Institute of Physics (HIP), Helsinki, Finland
44	High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
45	Hiroshima University, Hiroshima, Japan
46	Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
47	Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
48	Indian Institute of Technology Bombay (IIT), Mumbai, India
49	Indian Institute of Technology Indore, Indore, India
50	Indonesian Institute of Sciences, Jakarta, Indonesia
51	INFN, Laboratori Nazionali di Frascati, Frascati, Italy
52	INFN, Sezione di Bari, Bari, Italy
53	INFN, Sezione di Bologna, Bologna, Italy
54	INFN, Sezione di Cagliari, Cagliari, Italy
55	INFN, Sezione di Catania, Catania, Italy
56	INFN, Sezione di Padova, Padova, Italy
57	INFN, Sezione di Roma, Rome, Italy
58	INFN, Sezione di Torino, Turin, Italy
59	INFN, Sezione di Trieste, Trieste, Italy
60	Inha University, Incheon, Republic of Korea
61	Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
62	Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
63	Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
64	Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
65	Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
66	Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
67	Institute of Space Science (ISS), Bucharest, Romania
68	Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
69	Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
70	Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
71	Institute of Physics, Universidad Nacional Autónoma de México, Mexico City, Mexico
72	Institute of Physics, University of Cape Town, Cape Town, South Africa
73	Jeonbuk National University, Jeonju, Republic of Korea
74	Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
75	Joint Institute for Nuclear Research (JINR), Dubna, Russia
76	Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
77	KTO Karatay University, Konya, Turkey
78	Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
79	Lawerence Berkeley National Laboratory, Berkeley, California, USA
80	Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
81	Nagasaki Institute of Applied Science, Nagasaki, Japan
82	Nara Women’s University (NWU), Nara, Japan
83	National and Kapodistrian University of Athens, School of Science, Department of Physics, Greece
84	National Centre for Nuclear Research, Warsaw, Poland
85	National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
86	National Nuclear Research Center, Baku, Azerbaijan
87	National Research Centre Kurchatov Institute, Moscow, Russia
88	Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
89	National institute for subatomic physics, Amsterdam, Netherlands
90	NRC Kurchatov Institute IHEP, Protvino, Russia
91	NRC «Kurchatov Institute»—ITEP, Moscow, Russia
92	NRNU Moscow Engineering Physics Institute, Moscow, Russia
93	Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
94	Nuclear Physics Institute of the Czech Academy of Sciences, Režu Prahy, Czech Republic
95	Oak Ridge National Laboratory, Tennessee, USA
96	Ohio State University, Columbus, Ohio, USA
97	Petersburg Nuclear Physics Institute, Gatchina, Russia
98	Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
99	Physics Department, Panjab University, Chandigarh, India
Deceased.

*Dipartimento DET del Politecnico di Torino, Turin, Italy.
*M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
*Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
*Institute of Theoretical Physics, University of Wroclaw, Poland.