
Received October 16, 2020, accepted November 4, 2020, date of publication November 16, 2020,
date of current version November 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3038228

When the Decomposition Meets the
Constraint Satisfaction Problem
YOUCEF DJENOURI 1, DJAMEL DJENOURI2,3, ZINEB HABBAS4,
JERRY CHUN-WEI LIN 5, (Senior Member, IEEE),
TOMASZ P. MICHALAK6, AND ALBERTO CANO 7, (Senior Member, IEEE)
1SINTEF Digital, 0314 Oslo, Norway
2Department of Computer Science and Creative Technologies, University of the West of England, Bristol BS16 1QY, U.K.
3CERIST Research Center, Algiers 16000, Algeria
4Informatique Department, Lorraine University, 54000 Metz, France
5Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5063 Bergen, Norway
6Institute of Informatics, Warsaw University, 00-927 Warsaw, Poland
7Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284-2512, USA

Corresponding author: Alberto Cano (acano@vcu.edu)

This work was supported by the Polish National Science Centre under Grant 2016/23/B/ST6/03599.

ABSTRACT This paper explores the joint use of decomposition methods and parallel computing for
solving constraint satisfaction problems and introduces a framework called Parallel Decomposition for
Constraint Satisfaction Problems (PD-CSP). The main idea is that the set of constraints are first clustered
using a decomposition algorithm in which highly correlated constraints are grouped together. Next, parallel
search of variables is performed on the produced clusters in a way that is friendly for parallel computing.
In particular, for the first step, we propose the adaptation of two well-known clustering algorithms (k-means
and DBSCAN). For the second step, we develop a GPU-based approach to efficiently explore the clusters.
The results from the extensive experimental evaluation show that the PD-CSP provides competitive results
in terms of accuracy and runtime.

INDEX TERMS CSP, decomposition, scalability, GPU.

I. INTRODUCTION
AConstraint Satisfaction Problem (CSP) is defined as a triple
P =< X ,D,C > where X = {x1, x2, . . . , xn} is a set of n
variables, D = {d1, d2, . . . , dn} is a set of finite domains of
the variables, i.e., each variable xi takes its value in a domain
di, C = {c1, c2, . . . , cm} is a set of m constraints. Each con-
straint, ci, is a pair (S(ci),R(ci)) where S(ci) ⊆ X is a subset
of variables called the scope of ci and R(ci) ⊆

∏
xk∈S(ci) dk is

the constraint relation that specifies the legal combinations
of values. Many problems in artificial intelligence can be
represented as CSPs. For example, scene labeling in computer
vision involves testing a possible interpretation of objects
against relation rules [1]. Other constraint satisfaction prob-
lems include theorem proving [2], scheduling [3], inference
relations [4], and expert systems [5], [6]. Typically, as the
CSP itself, these problems are NP-Complete and require
extensive search over the solution space. The canonical exact

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojie Ju .

method for solving CSPs is the backtrack search which per-
forms a systematic exploration of a search tree until finding
a total instantiation of values to variables that satisfies all
the constraints [7]–[9]. However, since CSP is NP-Complete,
it is extremely difficult to have an efficient general search
algorithm. In fact, while generic solvers are sometimes sur-
prisingly competitive, in many situations they are defeated
because of some particularly difficult subsets of constraints.
The attempts to address this drawback of enumerative search
CSP algorithms can be divided into:

• Improvements based on decomposition, which is a data
mining technique to divide hard problem instances into
many independent but solvable subinstances. As a moti-
vating example, Figure 1 shows that in some cases half
of the of variables are shared by just a little bit more
than 10% of constraints.1 This suggests to treat these
subgroup of constraints separately, solve this subgroup
as a subproblem, and then use the obtained values of

1https://maxsat-evaluations.github.io/2018/benchmarks.html

207034 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0135-7450
https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0001-9027-298X
https://orcid.org/0000-0002-9524-7609

Y. Djenouri et al.: When the Decomposition Meets the CSP

FIGURE 1. The percentage of shared variables of CSP instances.

the shared variables when solving the remaining con-
straints. While the CSP algorithms improved in this
spirit typically used graph-based decomposition tech-
niques, this approach has been recently strengthened by
more advanced data-mining techniques, and tree decom-
position [10]–[12]. The main idea is to treat the cluster-
ing process as a preprocessing phase to extract as much
relevant information as possible about the problem at
hand and its resulting subproblems. This information is
then used to enhance exploration of each subproblem.
These data mining-based solutions are faster than the
traditional approaches. For instance, [11] showed that
their k-means-DPLL algorithm is 13 times faster than
the classical DPLL algorithm for a random instance
of 220 variables.

• Improvements based on parallelization. In order to
fully utilize recent technical developments in hardware,
the algorithms are adapted to exploit high-performance
computing architectures, such as Graphics Processing
Units (GPU). GPU is a piece of hardware consisting of
multiple computational entities, or ‘‘cores’’, just like a
standard CPU, designed mainly for rendering 3D com-
puter graphics [13]. Several solutions based on GPU
computing have been recently developed for solving
CSP problems [14]–[16]. For instance, MaxSAT [14] is
56 times faster than the classical DPLL for solving the
same instance of 220 variables mentioned above.

However, while both the above directions are promising,
they have never been combined together to resolve CSP.
In other words, to the best of our knowledge, no solution
in the current literature is based on both data mining and
high-performance computing techniques. The challenge is to
develop an efficient combination of a clustering technique
(that minimizes the number of shared variables between clus-
ters) and a parallel search technique (that is capable of using
the information obtained from clusters in a productive way).

To fill this gap in the literature, this paper proposes the
first CSP approach that takes advantage of both data mining

and high-performance computing techniques on the GPU.
Our framework, called Parallel Decomposition for Con-
straint Satisfaction Problems (PD-CSP), includes decompo-
sition methods to split a given CSP into a collection of
smaller sub-problems related pair-wise by a set of shared vari-
ables and a dedicated approach for parallel search process.
We adapt data mining clustering algorithms to decompose
the set of constraints into highly correlated clusters and in
the way that can be readily used in the parallel search pro-
cess. In this work, we focus on two well-known algorithms:
k-means [17] and DBSCAN [18]. We also propose a
dedicated parallel search strategy that uses the clusters for
instantiating the variables. This strategy takes into account
the variables shared between clusters. While our framework
is general, we present a use case on a GPU architecture.
We show how to take advantage of the GPU massively
threaded programmingmodel by providing efficient mapping
between the GPU blocks and the clusters of constraints.
We evaluate our approach by studying its time complexity
and comparing it with some existing CSP solvers applied
to different CSP problems. Two case studies are presented
applying PD-CSP to i) MAXSAT , and ii) to Job Scheduling
problems. The results show that our approach advances the
state-of-the-art in terms of both the runtime and effectiveness.
For instance, PD-CSP is 105 times faster than DPLL when
dealing the random instance of 220 variables. Moreover,
the efficient GPU implementation achieves speedup factors,
up to 350x for the MAXSAT problem and 480x for the Job
Scheduling problem on a single GPU machine.

II. RELATED WORK
Constraint Satisfaction Problems (CSP) have attracted inter-
est in the research community for a long time, and many
algorithms have been proposed to date. The first canonical
CSP algorithm is Davis Putnam Logemann Loveland (DPLL)
[19] which uses heuristic techniques to solve hard constraints
including the SAT problem. It starts by designing the tree’s
solver and instantiating one variable at each level. The pro-
cess is repeated until the possible values of all variables are
explored or all constraints are satisfied. DPLL-based meth-
ods [7], [20]–[22] are enumerative and they are successive
versions of backtracking strategy. As mentioned in the intro-
duction, the attempts to address the drawback of enumerative
search algorithms can be divided into the following cate-
gories:

A. DECOMPOSITION-BASED SOLUTIONS
Several decomposition methods of CSPs have been proposed
to date, e.g., tree decomposition techniques [23]–[25] that
have good theoretical properties but their practical efficiency
has not been proven. Generally speaking, the decomposition
methods for CSP can be naturally derived from graph par-
titioning techniques or graph clustering techniques. This is
because the structure of a CSP can be captured by a con-
straint graph where the nodes represent the variables and the
edges correspond to the constraints. The exact decomposition

VOLUME 8, 2020 207035

Y. Djenouri et al.: When the Decomposition Meets the CSP

methods such as the tree decomposition [25] and the hyper-
tree decomposition [26] are not practical. On other hand, clus-
tering techniques combined with heuristics associated with
dedicated functions representing the quality of the decompo-
sition were shown to be promising alternatives [11].

B. PARALLEL-BASED SOLUTIONS
Parallel approaches for solvingCSP problems [27]–[32] com-
mence with the partitioning of the search tree for parallel
solving search, i.e the search tree is split into a collection
of subtrees that will be distributed later among different
processors. The crucial point leading to efficiency of parallel
algorithms is the load balancing issue. The question here is
to choose between static or dynamic load balancing. In the
static case, an initial partitioning of the root nodes in the
search tree is performed before the search is initiated. The
problem is then divided into a number of subproblems pools;
one pool for each processor. Each processor runs a sequential
search algorithm on the pool assigned to it. In the dynamic
case, the subproblems are dynamically distributed. The dif-
ferent dynamic load balancing strategies in the context of
parallel Backtracking are studied in [33], [34]. Thesemethods
have been intensively studied from theoretical point of view.
Unfortunately, these methods have not shown to be practical
when facing real world problems. Parallel approaches can be
grouped into two categories:

i) The first one commences with the partitioning of the
search tree for parallel solving search [27], [28], i.e., the
search tree is split into a collection of subtrees that will
be distributed later among different processors. The cru-
cial point leading to efficiency of parallel algorithms is
the load balancing issue. The question here is to choose
between static or dynamic load balancing. In the static
case, an initial partitioning of the root nodes in the search
tree is performed before the search is initiated. The
problem is then divided into a number of subproblems
pools; one pool for each processor. Each processor runs
a sequential search algorithm on the pool assigned to it.
In the dynamic case, the subproblems are dynamically
distributed. Different dynamic load balancing strate-
gies in the context of parallel Backtracking are studied
in [33], [34].

ii) The second approach is parallel solving on shared
men [29], [35], [36], which consists in splitting the
problem to be solved into sub-problems and proposing
algorithms to solve the sub-problems separately and then
to combine the solutions of the sub-problems to find
the global one. These methods have been intensively
studied from theoretical point of view. Unfortunately,
these methods have not shown to be practical when
facing real world problems.

C. DISCUSSION
The existing CSP-based solutions only consider accurate
decomposition methods such as the tree and hypertree

decomposition mentioned above. These methods generate
huge graphs with a large number of shared variables between
different vertices. It is hard to make these methods run effi-
ciently in a parallel way, and proceed independent jobs on
the whole resulting graph. Moreover, the parallel CSP-based
solutions consider a naive partitioning of the whole con-
straints, which degrades the overall performance of such
methods in terms of load balancing and the communica-
tion between different workers. To address these challenging
issues, we propose in the next section a new parallel approach
that explore the different correlation provided by clustering
algorithms for solving CSP problems.

III. THE GENERIC PD-CSP FRAMEWORK
In this section we first present the overview of the PD-CSP
framework (See Fig. 2 for more details) and then we detail its
components. Finally, we analyze its theoretical complexity.

FIGURE 2. PD-CSP framework.

A. OVERVIEW
PD-CSP is composed of two main steps: decomposition and
parallel propagation. In the first step, the constraints are
divided into homogeneous groups using data mining decom-
position techniques, where a group may be viewed as a subset
of the whole set of constraints. An interesting decomposi-
tion approach is to minimize the number of the shared vari-
ables between clusters, while gathering in the same cluster
constraints that are highly correlated, i.e., those that share
the maximum number of variables. For each cluster, four
types of information are stored: the constraints in the cluster,
the variables shared among them, the variables shared with
other clusters, and the conflicting constraints. These pieces
of information are then used in the second step to establish
parallel search when the best instantiation of variables is
searched for.

B. STEP 1: DECOMPOSITION
A set of constraints C is decomposed into several groups,
G = {Gi}, where each group, Gi, is a subset of constraints
such that Gi ∩ Gj = ∅ for any i 6= j. We denote the
set of variables of group Gi by X (Gi) and define it as

207036 VOLUME 8, 2020

Y. Djenouri et al.: When the Decomposition Meets the CSP

X (Gi) = {
⋃

X (Cj) \ Cj ∈ Gi}. We define G as the set
of groups of the constraints C . We define F as the set of
conflict constraints, the constraints of different clusters shar-
ing variables among them. Suppose that groups in G do not
share any variables, which means ∀(i, j) ∈ [1 . . . k]2 X (Gi)∩
X (Gj) = ∅. This yields the following proposition:
Proposition 1: L = {

⋃k
i=1 Li} where Li is the set of all

instantiations of variables of the cluster Gi.
Proof: Consider ∀(i, j) ∈ [1 . . . k]2 X (Gi)∩X (Gj) = ∅.

We have ∀i ∈ [1 . . . k]: Li = {v ∈ D | Consistent(C,X , v)}.
Note that Consistent(C, X, v) is valid if we instantiate the
variable X by a value v, the set of constraints became sat-
isfied or at least remain consistent. The consistency of the
instantiation of v is based on its consistency in the whole set
of constraints C . The value of v have to be checked in all con-
straints in C , and constraints satisfying v should be returned
for further processing. Now, consider a variable x, the value
v exists in X (Gi), ⇒ x /∈ X (Gj), (∀j ∈ [1 . . . k],∨j 6= i)
⇒ x 6⊆ X (Gj) ⇒ Li = {v ∈ D | Consistent(C,X , v)} ⇒
L = {

⋃k
i=1 Li}. �

If the whole set of constraints is decomposed as per
Proposition 1, we will end up with independent clusters,
i.e., no cluster of constraints share variables with any other
cluster. Then, the clusters could be solved separately. Unfor-
tunately, this is rather unlikely in the general case.

Given the above, our aim is to develop a decomposition
technique that does not necessarily look for a decomposition
with completely independent clusters but rather a decompo-
sition where the number of shared variables, and the conflict
constraints between the clusters are minimized. To this end,
we propose amulti-objective k-means algorithm to efficiently
decompose the constraints, and minimize both the shared
variables and the conflict constraints.
Definition 1 (Constraints Similarity): We define con-

straints similarity by adopting the Jaccard similarity as

JC (Ci,Cj) =
∑

x∈(Ci∩Cj) Sim(Ci,Cj, x)

|Ci| + |Cj| +
∑

x∈(Ci∩Cj) Sim(Ci,Cj, x)
(1)

Note that Sim(Ci,Cj, x) = 1, if x i = x j, 0, otherwise. x i is the
value of the variable x in the constraint Ci.
Definition 2 (Centroids): We define the centroids of

the group of constraints Gi, denoted Gi, by Gi =

{
⋃

maxxl (x
i
l)|xl ∈ X (Gi)}, where maxxl (x

i
l) is the highest

value of the variable xl in group Gi.
The multi-objective k-means for constraints decomposi-

tion aims to optimize the function J =
∑k

j=1
∑

t∈Gj |t −µj|
2

where µj is the centroid of constraints in Gj. First, the
constraints are assigned randomly to k clusters. Second,
a centroid is computed for each cluster. Third, every con-
straint is assigned to a cluster with the closest centroid. The
latter two steps are repeated until there is no further assign-
ment of the constraints to the clusters. The output of our
decomposition step is a triplet, < G, S,F >, where G is the
set of clusters of constraints, S is the set shared variables—the
element sij ∈ S, denoted sijl , will be used to represent the set

of shared variables between the adjacent clusters (Gi andGj).
F represents the set of the conflict constraints of all clusters
in G.

C. STEP 2: PARALLEL PROPAGATION
The clusters derived in the decomposition step are explored in
parallel. Indeed, the search process is applied on each cluster
independently. To use the output of the decomposition step,
i.e., network O, in any parallel architecture, we propose the
following steps:

Step 2.1: Instantiation of the variables shared between
clusters:We begin with instantiating all the variables shared
between clusters because they are a potential source of con-
flict when solving each cluster in parallel. We choose to
give the priority of the instantiation to the variables with
high degree of correlation which we define as |{G′ | ∃ Ci ∈
G′ ∨ x ′ ∈ Ci}| for any variable x ′. In other words, the degree
of correlation of x ′ is the number of clusters in which at least
one constraint contains x ′. By doing so, we first instantiate
variables which potentially may cause the most conflict. This
step is performed on the CPU, where a conventional generate-
and-test strategy is used to find the best instantiation. All
the constraints satisfied the instatiated variables are removed.
Now, we are ready to move on to the parallel computation.

Step 2.2: Computing and storing local results: Each
parallel node is assigned a unique cluster and it applies a
generate-and-test strategy therein, i.e., it generates all the
instantiation of variables from that cluster and stores them in
the set of all the instantiations of all the variables. This latter
set is built following the logic known from the serial imple-
mentations [22]. Once the local instantiation of variables are
calculated, they are sent to the CPU for further processing.

Step 2.3: Merging The local results: The CPU merges
the local instantiation of variables from each cluster into the
global solution. A concatenation of all the local instantiations
and the best instantiation of the shared variables are used.

D. COMPLEXITY
The time complexity of the PD-CSP framework depends on
the clustering algorithm and the CSP solver used. In our
case, the complexity of the k-means algorithm [17] or the
complexity of DBSCAN algorithm [18] is O(m × n). As for
the mining process, let us denote the complexity of a con-
straint CSP solver, A, by O(Cost(A, n,m)). Note that m and n
are the number of constraints and the number of variables,
respectively. For the parallel propagation, the instantiation
of the variables shared between clusters (Step 2.1) requires
O(2|S|) in the worst case. The cost for parallel instantiation
of the clusters’ variables (Step 2.2) is Cost(A, |G?|, |X (G?)|),
where G? is the cluster in G having the maximum number of
variables. Thus, the complexity of the PD-CSP isO((n×m)+
2|S| + Cost(A, |G?|, |X (G?)|)).
Table 1 compares the complexity of some existing CSP

solvers using the PD-CSP framework by varying the function
Cost(A,m, n). Note that, the worst complexity is computed
by considering all exploration of shared variables and all

VOLUME 8, 2020 207037

Y. Djenouri et al.: When the Decomposition Meets the CSP

TABLE 1. Complexity of the existing constraint satisfaction solvers using
the PD-CSP framework.

constraints in the designed clusters. From this table, we may
conclude that by using the PD-CSP framework, the complex-
ity of all solvers is reduced by considering the cluster noted
G? having maximum number of variables. In the worst case,
we have |X (G?)| = n. Tis happens when the number of
cluster is set to 1. Then, the shared variable is an empty set.
In an average case, |X (G?)| � n and the existing CSP solvers
performmuch better when applied in the PD-CSP framework.

IV. PD-CSP ON THE GPU
This section presents the use of GPU for boosting the PD-CSP
performance. The GPU programming model involves two
components: the CPU (host) and the GPU (device). The
former corresponds to the system’s processor and main mem-
ory. The latter comprises a massively multi-threading system
that consists of multiple computing cores, where each core
executes a block of threads. Threads of a block in the same
core communicate with one another using a shared memory,
whereas the communication between blocks relies on a global
memory. The CPU/GPU communication is made possible by
system buses. The application of the three steps defined above
must be carefully designed to fit the hardware at hand. In this
section, we case study of our generic approach on the GPU.
The degree of correlation of all shared variables, and the best
instantiation of these variables are determined on the CPU.
The set of designed clusters except the satisfied constraints
are then sent to the GPU. Each block of threads is mapped
onto one cluster, where the conventional generate-and-test
strategy process is applied on each block. If we consider the
size of the shared memory of each block is r , the first r
non-satisfied constraints of the cluster Gi are allocated to the
shared memory of the block, and the remaining non-satisfied
constraints of the clusterGi is allocated to the global memory
of theGPUhost.We define a local table, tablei, for storing the
instantiation of variables of the cluster Gi. The local table of
each cluster is sent to the CPU for further processing. In this
context, the CPU host performs the merging step to find the
global instantiation of variables by concatenating all local
instantiations and the best instantiation of the shared vari-
ables. Algorithm 1 presents the pseudo-code of the parallel
search using standard GPU-CUDA operations.

From a theoretical standpoint, a GPU implementation
improves the serial implementation by exploiting the mas-
sively threaded computing of GPUs while instantiating the
variables of the non-satisfied constraints in all clusters. It also
minimizes the CPU/GPU communication, by defining only
two points of CPU/GPU communication. The first one takes
place when the non-satisfied constraints is loaded into the

Algorithm 1 Parallel Search on GPU
1: /**********************CPU

Host**************************/
2: Input:
C = {C1,C2 . . . ,Cm}: The set of m constraints
X = {x1, x2 . . . , xn}: The set of n variables
G = {G1,G2 . . . ,Gk}: The set of k clusters
S: The set of shared variables
Algo: The CSP algorithm.

3: Output:
L: The set of all instantiations

4: L ← ∅
5: Solving(L, S, G, Algo)
6: RemoveSatisfiedConstraint(G, L)
7: cudaMemcpy(G′,G, n×m, cudaMemcpyHostToDevice)

8: ParallelSearch�<k, 1024�>(L, G′, Algo)
9: return L
10: /**********************GPU

Device**************************/
11: Kernel ParallelSearch(L, G′, Algo)
12: input

Shared NC []: Array of non-satisfied constraints in
shared memory

13: Output:
L ′: The set of the local instantiations of all blocks

14: idx← blockIdx.x × blockDim.x + threadIdx.x
15: NC[idx]← G′blockIdx.x[idx]
16: Solving(L ′[blockIdx.x], NC, G′, Algo)
17: cudaMemcpy(L ′,L, |L ′|, cudaMemcpyDeviceToHost)

FIGURE 3. The quality of decomposition determined by different
clustering algorithms (Intuitive, k-means, and DBSCAN).

GPU device, and the second one when the local tables are
returned to the CPU. It also provides an efficient memory
management by using different levels of memories including
global and shared memories. However, it may suffer from
synchronization problems between the GPU blocks. This
takes place when the GPU blocks process clusters with differ-
ent number of non-satisfied constraints. This issue degrades

207038 VOLUME 8, 2020

Y. Djenouri et al.: When the Decomposition Meets the CSP

FIGURE 4. Runtime of PD-CSP vs. the state-of-the-art MAXSAT algorithms.

FIGURE 5. Runtime of PD-CSP vs. the state-of-the-art JOB Scheduling algorithms.

VOLUME 8, 2020 207039

Y. Djenouri et al.: When the Decomposition Meets the CSP

FIGURE 6. The speedup of PD-CSP vs. the state-of-the-art algorithms.

FIGURE 7. The percentage of the satisfied constraints by PD-CSP vs. the state-of-the-art MAXSAT algorithms.

the performance of the GPU-based implementation of the
PD-CSP framework. In real scenarios, different number of
non-satisfied constraints per cluster may be obtained. This
depends to the way of the clustering used in the decomposi-
tion step, i.e., the more the sizes of the clusters are different,
the higher the GPU synchronization cost.

V. PERFORMANCE EVALUATION
We carried out extensive experiments to evaluate the PD-CSP
framework on two well-known CSP problems (MAXSAT and
Job Scheduling). The two problems differ from the input
values. The input of MAXSAT is the set of constraints, each

of which is a conjunction of Boolean variables, however
the input of CSP is the set of constraints, each of which is
a relation of continues variables. Therefore, different data
instances are used for both problems. ForMAXSAT , we used
one Random instance ‘‘Ins1’’ containing 110 variables and
50 clauses, one Crafted instance ‘‘Ins2’’ containing 220 vari-
ables and 45 clauses, and two Industrial instances ‘‘Ins3’’
containing 360 variables and 685 clauses, and ‘‘Ins4’’ con-
taining 675 variables and 1286 clauses. For Job Scheduling
we used the large size benchmarks proposed by Taillard [37].
The different instances are denoted by the number of jobs
and the number of machines. We used four instances:

207040 VOLUME 8, 2020

Y. Djenouri et al.: When the Decomposition Meets the CSP

FIGURE 8. The percentage of the satisfied constraints of PD-CSP vs. the state-of-the-art JOB Scheduling algorithms.

‘‘Ins5’’ containing 15 jobs and 15 machines, ‘‘Ins6’’
containing 30 jobs and 20 machines, ‘‘Ins7’’ containing
50 jobs and 20 machines and ‘‘Ins8’’ containing 100 jobs and
20 machines.

A. CLUSTERING QUALITY
Figure 3 presents the quality of decomposition of three differ-
ent clustering algorithms: intuitive, multi-objective k-means,
and DBSCAN, on different dataset instances (MAXSAT and
Job Scheduling). The intuitive clustering is a naive decom-
position that partitions constraints directly to the clusters,
i.e., the first block is assigned to the first cluster, the second
block is assigned to the second cluster, and so on, until all the
blocks are assigned.

Many metrics have been developed to measure the quality
of the decomposition. In our research work, we are inter-
ested to minimize the shared variables among the clusters
of constraints. Therefore, the quality of decomposition is
determined by the percentage of the shared variables between
the clusters. The quality decreases as this percentage goes
up. We also varied the number of clusters from 1 to 50
for each data instance, and the best value is kept for the
experiments. The best values of the number of clusters are
summarized in Table 2. Figure 3 reveals that k-means gives
better decomposition comparing to two other algorithms for
all the data instance. These results are explained by the fact
that k-means is a pure partitioning algorithm inspired by the

TABLE 2. Parameter Setting of multi-objective kmeans.

centroids representing the constraints of the same cluster.
However, DBSCAN is inspired by neighborhood computa-
tion representing the dense regions. It is therefore possible to
have two similar constraints belonging to two closer clusters.
In the remaining of the experiments, we used k-means as the
decomposition algorithm in the PD-CSP framework.

B. RUNTIME
Figures 4 and 5 present the runtime of the PD-CSP and
the state-of-the art algorithms for both MAXSAT and Job
Scheduling. For the MAXSAT , the baseline algorithms are
maxine [14] and Partial DAGs [15]. For the Job Scheduling,
the baseline algorithms are B&B [38] and MILP [39]. For
various data instance sizes, the results reveal that for small
number of variables, the baseline algorithms outperform
the PD-CSP algorithm. This is explained by the fact that

VOLUME 8, 2020 207041

Y. Djenouri et al.: When the Decomposition Meets the CSP

PD-CSP performs further preprocessing step represented by
the decomposition step. However, for larger number of vari-
ables and with using higher number of workers (GPU-blocks
in our context), PD-CSP outperforms the baseline algorithms.
This is due to the intelligent parallel strategy employed in
the search step. Figure 6 shows the speedup of PD-CSP and
the four baseline algorithms by considering 1024 workers
(GPU-blocks). Note that the speedup is determined by the
ratio of runtime of the parallel approach over the runtime of
the sequential approach. This figure reveals the superiority of
PD-CSP compared to the baseline algorithms. The speedup
of PD-CSP exceeds 450 whereas the speedup of the baseline
methods does not reach 300. These results confirm again that
PD-CSP benefits from the intelligent strategy used in parallel
search.

C. SOLUTION QUALITY
Figures 7 and 8 present the percentage of the satisfied con-
straints. The runtime of the running algorithms are set as
follows, 0.5 sec for ‘‘Ins1’’, 2 sec for ‘‘Ins2’’, 400 sec for
‘‘Ins4’’, 40 sec for ‘‘Ins5’’, 350 sec for ‘‘Ins6’’, 2, 500 sec
for ‘‘Ins7’’, and 10, 000 sec for ‘‘Ins8’’. By varying the
number of workers (GPU-blocks) from 128 to 1, 024, our
solution outperforms the baseline algorithms in all cases. This
is explained by the fact that the proposed algorithms explore
large search space compared to the other baseline algorithms,
due to the decomposition and intelligent parallel search steps.

VI. DISCUSSION AND CONCLUSION
We introduced a framework, PD-CSP, that benefits from the
decomposition by analyzing the correlations among the con-
straints. The set of constraints are first partitioned using the
decomposition algorithm, where the highly correlated con-
straints are grouped together. As an instatiation of our general
approach, we adapted two clustering algorithms: k-means
and DBSCAN. Next, we developed a dedicated GPU-based
parallel search to find the best assignment of variables by effi-
ciently exploring the clusters of constraints. The experimental
results on MAXSAT and Job Scheduling problems show the
superiority of PD-CSP against the state-of-the-art algorithms
in terms of reduced computational time and high accuracy
represented by the number of satisfied constraints. Note that
the number of satisfied constraints is obtained by enumerat-
ing the satisfied constraints for the final instantiation derived
during the search process. The first key finding of this study
is that the proposed framework can deal with big constraint
data instances. This is different from previous constraint
satisfaction solvers, which have long execution times as the
whole set of constraints is considered in the solving step. The
proposed framework is able not only to make instantiation
of variables but also to analyze correlations and similarities
between the constraints and to find out disjoint groups among
them. We argue that, in the context of CSP, considering the
decomposition techniques in the preprocessing step allows to
quickly derive the best assignment of variables. Our frame-
work is generic and can be applied to any CSP, contrary to the

other algorithms that can only deal with a particular type of
CSP. Motivated by our promising results, we suggest the fol-
lowing directions for further research. we plan to develop new
strategies for dealing with load balancing. Oneway to address
this issue is to develop decomposition strategies allowing to
find out equitable clusters in terms of number of constraints
per cluster. Another way is to develop new strategies for
repairing clusters and finding clusters with similar number
of constraints.

REFERENCES
[1] A. A. Amini, T. E. Weymouth, and R. C. Jain, ‘‘Using dynamic program-

ming for solving variational problems in vision,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 12, no. 9, pp. 855–867, Sep. 1990.

[2] F. E. Curtis, A. Wächter, and V. M. Zavala, ‘‘A sequential algorithm for
solving nonlinear optimization problems with chance constraints,’’ SIAM
J. Optim., vol. 28, no. 1, pp. 930–958, Jan. 2018.

[3] S. M. Pour, J. H. Drake, L. S. Ejlertsen, K.M. Rasmussen, and E. K. Burke,
‘‘A hybrid constraint programming/mixed integer programming frame-
work for the preventive signaling maintenance crew scheduling problem,’’
Eur. J. Oper. Res., vol. 269, no. 1, pp. 341–352, Aug. 2018.

[4] C. Beierle and S. Kutsch, ‘‘Computation and comparison of nonmonotonic
skeptical inference relations induced by sets of ranking models for the
realization of intelligent agents,’’ Appl. Intell., vol. 49, no. 1, pp. 28–43,
2019.

[5] X.-L. Zheng and L. Wang, ‘‘A two-stage adaptive fruit fly optimiza-
tion algorithm for unrelated parallel machine scheduling problem with
additional resource constraints,’’ Expert Syst. Appl., vol. 65, pp. 28–39,
Dec. 2016.

[6] A. A. Qamhan and I. M. Alharkan, ‘‘Note on ‘a two-stage adaptive fruit
fly optimization algorithm for unrelated parallel machine scheduling prob-
lem with additional resource constraints,’’ Expert Syst. Appl., vol. 128,
pp. 81–83, Aug. 2019.

[7] V. Kumar, ‘‘Algorithms for constraint-satisfaction problems: A survey,’’ AI
Mag., vol. 13, no. 1, p. 32, Mar. 1992.

[8] M. Mouhoub and A. Sukpan, ‘‘Managing dynamic CSPs with prefer-
ences,’’ Int. J. Speech Technol., vol. 37, no. 3, pp. 446–462, Oct. 2012.

[9] K. W. Yong and M. Mouhoub, ‘‘Using conflict and support counts
for variable and value ordering in CSPs,’’ Appl. Intell., vol. 48, no. 8,
pp. 2487–2500, 2018.

[10] S. De Givry, T. Schiex, and G. Verfaillie, ‘‘Exploiting tree decomposition
and soft local consistency in weighted CSP,’’ in Proc. AAAI, vol. 6, 2006,
pp. 1–6.

[11] Y. Djenouri, Z. Habbas, and D. Djenouri, ‘‘Data mining-based decompo-
sition for solving the MAXSAT problem: Toward a new approach,’’ IEEE
Intell. Syst., vol. 32, no. 4, pp. 48–58, 2017.

[12] Y. Djenouri, Z. Habbas, D. Djenouri, and P. Fournier-Viger, ‘‘Bee swarm
optimization for solving the MAXSAT problem using prior knowledge,’’
Soft Comput., vol. 23, no. 9, pp. 3095–3112, May 2019.

[13] K. Pawłowski, K. Kurach, K. Svensson, S. Ramchurn, T. P. Michalak, and
T. Rahwan, ‘‘Coalition structure generation with the graphics processing
unit,’’ in Proc. AAMAS, 2014, pp. 293–300.

[14] M. Alviano, C. Dodaro, and F. Ricca, ‘‘A MaxSAT algorithm using cardi-
nality constraints of bounded size,’’ in Proc. IJCAI, 2015, pp. 2677–2683.

[15] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, ‘‘SAT-
based exact synthesis: Encodings, topology families, and parallelism,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 4,
pp. 871–884, Apr. 2020.

[16] A. Belhadi, Y. Djenouri, J. Lin, and A. Cano, ‘‘A general-purpose dis-
tributed pattern mining system,’’ Appl. Intell., vol. 50, pp. 2647–2662,
2020.

[17] J. MacQueen, ‘‘Some methods for classification and analysis of multivari-
ate observations,’’ inProc. 5th Berkeley Symp.Math. Statist. Probab., 1967,
vol. 1, no, 14, pp. 281–297.

[18] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, 1996, vol. 96, no. 34, pp. 226–231.

[19] M. Davis and H. Putnam, ‘‘A computing procedure for quantification
theory,’’ J. ACM, vol. 7, no. 3, pp. 201–215, Jul. 1960.

207042 VOLUME 8, 2020

Y. Djenouri et al.: When the Decomposition Meets the CSP

[20] S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer, ‘‘Approximate
constraint satisfaction requires large LP relaxations,’’ J. ACM, vol. 63,
no. 4, pp. 1–22, Nov. 2016.

[21] C. Carbonnel and M. C. Cooper, ‘‘Tractability in constraint satisfaction
problems: A survey,’’ Constraints, vol. 21, no. 2, pp. 115–144, Apr. 2016.

[22] D. A. Cohen, M. C. Cooper, P. G. Jeavons, and S. Živný, ‘‘Binary con-
straint satisfaction problems defined by excluded topological minors,’’ Inf.
Comput., vol. 264, pp. 12–31, Feb. 2019.

[23] R. Dechter and J. Pearl, ‘‘Tree clustering for constraint networks,’’ Artif.
Intell., vol. 38, no. 3, pp. 353–366, Apr. 1989.

[24] G. Gottlob, N. Leone, and F. Scarcello, ‘‘A comparison of structural
CSP decomposition methods,’’ Artif. Intell., vol. 124, no. 2, pp. 243–282,
Dec. 2000.

[25] Z. Miklós, ‘‘Understanding tractable decompositions for constraint satis-
faction,’’ Ph.D. dissertation, Univ. Oxford, Oxford, U.K., 2008.

[26] G. Gottlob, G. Greco, N. Leone, and F. Scarcello, ‘‘Hypertree decompo-
sitions: Questions and answers,’’ in Proc. 35th ACM SIGMOD-SIGACT-
SIGAI Symp. Princ. Database Syst. (PODS), 2016, pp. 57–74.

[27] C.McCreesh and P. Prosser, ‘‘The shape of the search tree for themaximum
clique problem and the implications for parallel branch and bound,’’ ACM
Trans. Parallel Comput., vol. 2, no. 1, pp. 1–27, May 2015.

[28] S. Smirnov and V. Voloshinov, ‘‘On domain decomposition strategies to
parallelize branch-and-bound method for global optimization in everest
distributed environment,’’ Procedia Comput. Sci., vol. 136, pp. 128–135,
2018.

[29] A. Goldman, J. Lepping, Y. Ngoko, and D. Trystram, ‘‘Combining parallel
algorithms solving the same application: What is the best approach?’’ in
Proc. IEEE Int. Symp. Parallel Distrib. Process., Workshops Phd Forum,
May 2013, pp. 1859–1868.

[30] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, ‘‘The distributed con-
straint satisfaction problem: Formalization and algorithms,’’ IEEE Trans.
Knowl. Data Eng., vol. 10, no. 5, pp. 673–685, Sep./Oct. 1998.

[31] R. Marino, G. Parisi, and F. Ricci-Tersenghi, ‘‘The backtracking survey
propagation algorithm for solving randomK-SAT problems,’’Nature Com-
mun., vol. 7, no. 1, pp. 1–8, Dec. 2016.

[32] N. A. El-Taweel and H. E. Z. Farag, ‘‘Voltage regulation in islanded
microgrids using distributed constraint satisfaction,’’ IEEE Trans. Smart
Grid, vol. 9, no. 3, pp. 1613–1625, May 2018.

[33] Y. Hamadi, S. Jabbour, and L. Sais, ‘‘ManySAT: A parallel SAT solver,’’
J. Satisfiability, Boolean Model. Comput., vol. 6, no. 4, pp. 245–262,
Jun. 2009.

[34] C. Truchet, A. Arbelaez, F. Richoux, and P. Codognet, ‘‘Estimating parallel
runtimes for randomized algorithms in constraint solving,’’ J. Heuristics,
vol. 22, no. 4, pp. 613–648, Aug. 2016.

[35] Z. Habbas, M. Krajecki, and D. Singer, ‘‘Decomposition techniques for
parallel resolution of constraint satisfaction problems in shared memory:
A comparative study,’’ IJCSE, vol. 1, nos. 2–4, pp. 192–206, 2005.

[36] R. Martins, V. Manquinho, and I. Lynce, ‘‘An overview of parallel SAT
solving,’’ Constraints, vol. 17, no. 3, pp. 304–347, Jul. 2012.

[37] E. Taillard, ‘‘Benchmarks for basic scheduling problems,’’ Eur. J. Oper.
Res., vol. 64, no. 2, pp. 278–285, Jan. 1993.

[38] A. Dabah, A. Bendjoudi, A. AitZai, D. El-Baz, and N. N. Taboudjemat,
‘‘Hybrid multi-core CPU and GPU-based B&B approaches for the block-
ing job shop scheduling problem,’’ J. Parallel Distrib. Comput., vol. 117,
pp. 73–86, Jul. 2018.

[39] K. Fleszar and K. S. Hindi, ‘‘Algorithms for the unrelated parallel machine
scheduling problem with a resource constraint,’’ Eur. J. Oper. Res.,
vol. 271, no. 3, pp. 839–848, Dec. 2018.

YOUCEF DJENOURI received the Ph.D. degree
in computer engineering from the University
of Science and Technology Houari Boumediene
(USTHB), Algiers, Algeria, in 2014. He was a
Postdoctoral Research with Southern Denmark
University, Norwegian University of Science and
Technology, in 2017, where he has working on
urban traffic data analysis. He is currently a
Research Scientist with SINTEF, Oslo, Norway.
He has published more than 60 research papers in

peer-reviewed international conferences and journals, which have received
more than 900 citations.

DJAMEL DJENOURI received the Ph.D. degree
in computer science from the University of Sci-
ence and Technology (USTHB), Algiers, Algeria,
in 2007. He is currently an Associate Professor
with the University of the West of England, Bris-
tol, U.K. He published more than 100 papers in
international peer-reviewed journals and confer-
ence proceedings and two books. He is holding two
national patents. His research interests include the
Internet of Things, wireless and mobile networks,

machine learning, and application for smart cities and green applications.

ZINEB HABBAS received the Ph.D. degree in
computer science from the Institute National Poly-
technique of Grenoble. She is currently a Professor
with Lorraine University. Her research interests
include solving optimization problems, constraint
satisfaction problems, synergy between data min-
ing techniques and optimization, exact and heuris-
tic methods, and parallel algorithms.

JERRY CHUN-WEI LIN (Senior Member, IEEE)
received the Ph.D. degree in computer science
and information engineering from National Cheng
Kung University, Tainan, Taiwan, in 2010. He is
currently working as an Associate Professor with
the Department of Computing, Mathematics, and
Physics, Western Norway University of Applied
Sciences (HVL), Bergen, Norway. He is the
co-leader of the popular SPMF open-source data-
mining library. He has published more than

300 research papers in peer-reviewed international conferences and journals,
which have received more than 4000 citations. His research interests include
data mining, privacy-preserving and security, big data analytics, and social
networks. He is a member of the Editorial Board of Intelligent Data Analysis.
He is also the Editor-in-Chief of Data Mining and Pattern Recognition
(DSPR) and an Associate Editor of the Journal of Internet Technology and
IEEE ACCESS.

TOMASZ P. MICHALAK received the Ph.D.
degree in applied economics from the University
of Antwerp, Belgium, in 2009. He was a Postdoc-
toral Researcher with the University of Liverpool,
Southampton, and Oxford. He is currently an
Assistant Professor with the Institute of Infor-
matics, Faculty of Mathematics, Informatics, and
Mechanics, University of Warsaw. His research
interests include artificial intelligence, machine
learning applications, social networks, and game
theory.

ALBERTO CANO (Senior Member, IEEE)
received the B.Sc. degree in computer engineering
and the B.Sc. degree in computer science from the
University of Cordoba, Spain, in 2008 and 2010,
respectively, and the M.Sc. and Ph.D. degrees in
intelligent systems and computer science from the
University of Granada, Spain, in 2011 and 2014,
respectively. He is currently an Assistant Professor
with the Department of Computer Science, Vir-
ginia Commonwealth University, USA, where he

heads the High-Performance DataMining Laboratory. He has published over
50 articles in high-impact factor journals, 50 contributions to international
conferences, two book chapters, and one book in the areas of machine
learning, data mining, and parallel, distributed, and GPU computing. His
research interests include machine learning, data mining, general-purpose
computing on graphics processing units, Apache Spark, and evolutionary
computation. His research is supported by an Amazon AWS Machine
Learning Award, in 2018, and the VCU Presidential Research Quest Fund,
in 2018. He is an Associate Editor of IEEE ACCESS, Applied Intelligence, and
PeerJ Computer Science.

VOLUME 8, 2020 207043

