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Abstract

Formation of Stimulus Equivalence classes has been recently modeled through Equiv-
alence Projective Simulation (EPS), which is a modified version of Projective Simula-
tion (PS) learning agent. PS, is endowed with an episodic memory which resembles the
internal representation in the brain and the concept of cognitive map. PS flexibility and
interpretability enables EPS model, and consequently the current model, to simulate a
broad range of behaviors in matching-to-sample experiments. The episodic memory,
which is the basis for agent decision-making, is formed during training phase. Derived
relations in EPS model, that are not trained directly but can be established via the net-
work’s connections, are computed on demand during the test phase trials by likelihood
reasoning. In this article, we investigate the formation of derived relations in the EPS
model using an iterative diffusion process called Network Enhancement (NE) which
yields an offline approach to the agent decision-making at the testing phase. NE pro-
cess is applied after the training phase to denoise the memory network so that derived



relations are formed in the memory network and retrieved during testing phase. Dur-
ing the NE phase, indirect relations get enhanced and the structure of episodic memory
changes. This approach can also be interpreted as agent’s replay after training phase
which is in line with recent findings in behavioral and neuroscience studies. In compar-
ison with EPS, the current model is able to model the formation of derived relations and
other features such as the nodal effect in a more intrinsic manner. Decision-making in
the test phase is not an ad-hoc computational method, but rather a retrieval and update
process of the cached relations from memory network based on the test trial. In order to
study the role of parameters on the agent performance, the proposed model is simulated
and the results are discussed through various experimental settings.

1 Introduction
Stimulus Equivalence (SE) phenomenon was identified and explored by Sidman (1971)
and refers to the condition that members of an equivalence class evoke the same re-
sponse in human and animal subjects. The introduced SE methodology uses matching-
to-sample (MTS) procedure to train arbitrary relations between unfamiliar stimuli, and
test derived relations through mathematical relations in equivalence sets i.e. reflexivity,
symmetry, and transitivity. SE framework, as an efficient learning method, has been
vastly studied by employing humans or animals as experimental participants (see Sid-
man et al., 1974, 1982; Sidman & Tailby, 1982; Sidman et al., 1986; Devany et al.,
1986; Hayes, 1989; Fields et al., 1990; Spencer & Chase, 1996; Groskreutz et al., 2010;
Steingrimsdottir & Arntzen, 2011; Arntzen & Mensah, 2020, to mention a few). Com-
putational models constitute another alternative to understand SE and study variables
that are challenging to examine on humans or animals due to time constrains or ethical
issues (see, e.g., Barnes & Hampson, 1993; Cullinan et al., 1994; Lyddy et al., 2001;
Lew & Zanutto, 2011; Tovar & Westermann, 2017; Ninness et al., 2018, for some com-
putational models of the learning of equivalence relations).

Equivalence Projective Simulation (EPS) is a computational model that has been
proposed to SE in our previous article (Mofrad et al., 2020). In brief, EPS has modeled
formation of SE classes through a MTS procedure. Projective Simulation (PS) frame-
work (Briegel & De las Cuevas, 2012) was the basis of the model and we have proposed
several methods to address the test phase and derived relations, including max-product,
memory sharpness, and random walk on the memory network with absorbing action
sets. The EPS model, similar to the original PS model, has an internal episodic memory
which is updated during training phase which is used to cope with new, derived relations
in the testing phase. The PS model, and therefore EPS model, is pretty flexible and easy
to interpret which allows modeling a broad range of behaviors in MTS experiments in-
cluding typical participants or participants with some disabilities. Many parameters of
the model can be controlled such as learning rate, forgetting rate, and nodal effect.

The EPS model relies on the assumption that the derived relations are derived upon
request, i.e. when they appear in a MTS trial, during the testing phase while updated
during the training phase. We slightly change this assumption and form those relations
in the end of the training phase, thus the output network from training phase of EPS
assumed to be a noisy version of the agent’s memory network that is supposed to contain
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all trained and derived relations. Using a denoising approach, we could produce a
new less noisy clip network that contains information regarding the equivalence class
formation. The trained relations in the training phase are mapped into a transition matrix
whose values describe the strength of the trained relations. By resorting to Network
Enhancement (Wang et al., 2018), we address the formation of SE classes using an
iterative update of the transition matrix. Interestingly, the update process permits to
naturally denoise the transition matrix and enhance indirect relations1 while preserving
the initial direct relations learned during the training phase. The denoised network can
be assimilated to an updated clip network, later used in the test phase. Furthermore, it
can also be used to assess the overall agent performance on eventual equivalence tests.
In summary, the contribution of this paper is as follows:

(a) Instead of using reasoning, i.e. computing the likelihood of the different alterna-
tives during testing by following some indirect paths over the clip network, we
update memory and retrieve the updated memory at the test phase.

(b) As in the EPS model, we still control symmetry relations with a multiplicative
parameter. We are able to control the ability to derive transitivity relations using
parameter α. This turns out to be of great importance when modeling subjects
with learning disabilities.

(c) We further enhance the NE and propose DNE in which we can control the agent
ability to derive symmetry and also control its ability to derive transitivity.

(d) A comparison between PS, EPS and E-EPS together with supporting studies from
neuroscience literature is provided that justify the proposed model.

(e) From computational point of view, the new updating rule has less parameters to
fine tune in comparison with the EPS. The approach to derive relations in EPS
model can be seen as routing in the clip network, with action sets as destination
points. In E-EPS model, a diffusion model explores the clip network by simulta-
neous propagation of flow without a specific target.

(f) The updated clip network can be considered as a cognitive map of the stimuli
which can be used in analysing the results of different settings.

(g) The testing phase in the E-EPS model, involves less computation at the decision
time in comparison with EPS. E-EPS uses the updated network during the testing
phase, rather than processing the trained relations to compute derived relation
links at each test trial.

(h) Using simulation of several configurations, we study the parameters in detail.

(i) We compare three training procedures linear series (LS), many-to-one (MTO),
and one-to-many (OTM) in the final experiment. In line with the main stream
literature in behavior analysis (see, e.g. Arntzen et al., 2010; Arntzen & Hansen,

1According to the theory of SE, indirect relations are derived through reflexivity, symmetry, transitiv-
ity, and equivalence.
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2011; Arntzen, 2012), the model yields better performance in OTM and MTO
cases in comparison with LS which is a qualitative property of our model con-
firming that it is a realistic model.

(j) We provide theoretical analysis of the model and a convergence guarantee see
Appendix A.

In the rest of paper, we begin by a brief overview of SE, EPS, and Network Enhance-
ment in section 2. The architecture of the Enhanced Equivalence Projective Simulation
(E-EPS) model is provided in section 3, where we also compare the new proposed
approach to the original PS model and recent EPS model. We consider seven experi-
mental scenarios to study the parameters of the model in section 4. Finally, section 5 is
a summary of the paper, discussion and concluding remarks.

2 Background and Related Works
First in section 2.1, the concept of SE from behavior analysis perspective is reviewed.
In section 2.2, the EPS model is shortly explained and we provide a brief section about
Network Enhancement (Wang et al., 2018) in section 2.3. It is noteworthy that the up-
dating rule which we have considered as the main approach, is introduced and discussed
in section 3.

2.1 Stimulus Equivalence (SE)
SE is a research method on complex human behavior, including memory and problem
solving (Sidman, 1990). In the MTS or conditional discrimination procedure, which is
used in SE, a given stimulus, sayA1, must be paired withB1 among a given comparison
stimuli set, say B1, B2, and B3. The discrimination happens through programmed
consequences.

The MTS procedure has two phases, the training phase where the participant learns
some relations and the testing phase where the participant is tested with derived rela-
tions. Trial types in the test phase includes baseline, symmetry, transitivity, and equiva-
lence. It is noteworthy that equivalence relations are sometimes referred to as combined
transitivity and symmetry.

The evaluation of participant learning is usually through a threshold or mastery
criterion ratio (e.g., 0.95 − 1). Only if the participant is able to pass the criterion the
derived relations will be tested. In the test phase, there is no programmed consequences
and usually the criterion ratio in the test phase is lower than training phase (e.g., 0.9−1).
Whenever the evidence (passing the criterion for testing) shows the emergence of all
relations, the equivalence class is considered to be formed (Sidman & Tailby, 1982).

In equivalence literature, three training structures have been used in establishing
conditional discrimination with MTS procedure: linear series (LS), many-to-one (MTO),
and one-to-many (OTM) (see Arntzen, 2012, for more details about MTS training and
testing procedures and parameters in SE formation). Generally, a class with n stimuli,
requires training of only (n− 1) stimulus-stimulus relations. The condition is that each
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component of these relations needs to be present in at least one trained relation, and fur-
ther none of the trained relations can have the same two stimuli as components. Even
with these constraints, many possible ways for structuring training relations remain,
some of them might be more efficient than the others (see Fields et al., 1990; O’Mara,
1991; Arntzen & Holth, 1997; Hove, 2003; Lyddy & Barnes-Holmes, 2007; Arntzen
et al., 2010; Arntzen & Hansen, 2011; Fienup et al., 2015, for instance). Appendix B
formally analyzes the size of the training design space which is shown to be exhaustive
even for a small number of categories and number of classes. Therefore, it is complex
to design and run experiments involving human subjects that explore different training
and testing scenarios. Computational models, on the other hand, could be used for ex-
ploring new ideas through simulation. For instance, one could try several configurations
and find the optimum scenario according to some design criterion in the computational
model before running a real experiment. Moreover, components of the computational
model can be easily manipulated, disrupted, impaired, and removed to see the effect of
those components on the results. Having more control over the experimental variables
including a controllable environment is a considerable advantage of these models over
real experiments (Barnes & Hampson, 1993; McClelland, 2009; Ninness et al., 2018).

2.2 Equivalence Projective Simulation (EPS)
EPS is based on PS, which can be seen as an reinforcement learning (RL) model that
can be embodied in an environment, perceive stimuli, execute actions, and learn through
trial and error (see, e.g., Briegel & De las Cuevas, 2012; Melnikov et al., 2017, for
details of PS model).

PS agent, and therefore EPS agent, has an episodic memory which is literally a
directed, weighted network of clips, where each clip represents a remembered percept
or action (stimulus in EPS). Memory can be described as a probabilistic network of
clips so called “clip network”2. The learning in PS is realized by updating weights and
structure through adding new clips and new transition links.

Simulation of MTS procedure via EPS has two phases, the training phase where the
memory network will be formed through trials and guided feedback, and the test phase
in which no new memory clips are created. Even thought there is no guided feedback
in the testing phase connection weights might be updated. The test phase is the main
part of the model and in (Mofrad et al., 2020) three different approaches dealing with
the derived relations are discussed, i.e. max-product, memory sharpness, and absorbing
action sets.

At the beginning of a MTS training phase, the agent memory space which is shown
by C = {c1, · · · , cp} is empty. Based on trial settings, a memorized clip could ei-
ther play the role of percept clip or action clip. At each time step, the environment
(experimenter in the real experiments) shows a sample stimulus and some comparison
alternatives which are referred as percept and actions. The percept and actions belong
to the percept set S and action setA respectively. The sample stimulus (percept, s ∈ S)
and the comparison stimuli (actions a ∈ At) belong to different categories (say cate-
gory A, or B, etc.), where At denotes the action space at time t and consists of set of

2The terms episode and clip are used interchangeably.
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comparison at the given trial. The training phase will be as follows:

• Agent perceives stimulus s ∈ S from environment. Clip cs ∈ C is either created
(the first time) or activated.

• Perceiving action set At from environment, agent establishes and initializes con-
nections between sample and comparison stimuli the first time with h-values
equal to h0. If there exist connections from previous trials there is no need for
initialization.

• Agent computes p(t)(ca|cs), a ∈ At based on the h-values using the “softmax”
distribution function:

p(t)(cj|ci) =
eβh

(t)(ci,cj)∑
k e

βh(t)(ci,ck)
, (1)

where at this stage clip ci = cs and clip cj ∈ At. A larger value of β ≥ 0 creates
a probability distribution that is more biased to the choice of the largest h-value,
and therefore parameter β can be used for tuning the learning rate as well.

• Agent selects one of the actions based on the computed probability distribution
and receives a positive or negative reward from environment, say λ(t) ∈ Λ =

{−1, 1}.3

• Connection weights, h-values, will be updated as a result of the environment
feedback as follows:

h(t+1)(cs, ca) = h(t)(cs, ca)− γ(h(t)(cs, ca)− 1) + λ(t), (2)

Moreover, the opposite link, (ca, cs) will be updated in a similar way, but with
parameter 0 < K ≤ 1:

h(t+1)(ca, cs) = h(t)(ca, cs)− γ(h(t)(ca, cs)− 1) +Kλ(t). (3)

• Environment provides new trials until all training relations meet the mastery cri-
terion.

It is noteworthy that parameterK was used in the learning rule of original PS model (Briegel
& De las Cuevas, 2012) to determine the growth rate of “associative” or “composi-
tional” connections relative to the direct connections. This parameter, for instance,
enables the PS agent to learn faster by recognizing similarity between the existing clips
in memory and new perceptual input (see Figure 11 and Figure 12 in Briegel & De las
Cuevas, 2012, for more detail on associative learning in PS agent). The parameter K

3It is noteworthy that Λ could have any positive or negative values including asymmetric rewards.
For instance, negative feedback might have greater impact (see Baumeister et al., 2001, as an example of
positive-negative asymmetry effect).
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in the EPS model, however, quantifies the relative growth of symmetric relations com-
pared to the direct, or baseline, relations4. This parameter is different from the original
PS in the sense that the stimuli in EPS (and E-EPS) are arbitrary, i.e. have no physical
similarity, and therefore the parameter K does not capture similarity. The notion of as-
sociative memory, however, can be added to the EPS model by introducing compound
stimuli which is not addressed in the current paper.

After that agent passes the training phase, the test phase will be started consequently
in which the formation of derived relations are tested. At this stage, no feedback is
provided from the environment.

• Agent perceives s ∈ S , activates the memory clip cs ∈ C and tries to chooses the
best action among the given action set At based on its memory as follows.

• If connections between the sample and comparisons exist, the agent computes
the p(t)(ca|cs), a ∈ At based on the h-values using a probabilistic distribution
achieved either by softmax or a normalized vector of h-values (called “standard”
in PS and EPS). If such connections do not exist, in the transitivity or equivalence
relation cases, agent computes the transition probabilities using max-product sce-
nario, or absorbing states scenario and selects one of the possible actions.

1. In the max-product case, agent finds the most probable paths between cs
and each action ca, a ∈ At. Please note that there are many possible paths
that might link cs to a particular action ca and thus the procedure might be
computationally exhaustive.

2. The absorbing state scenario can be considered as a random walk in clip
network, starting from cs and ending with a clip in At. So, unlike the max-
product method, the probability of reaching each action from cs is important
but not the path itself. These probabilities, can be computed when actions
ca ∈ At are set to be absorbing states of the underlying Markov chain, at
time t.

• Memory sharpness, 0 ≤ θ ≤ 1, functions as a mechanism to control the formation
of transitivity relations, and also consequently controls equivalence relations and
the effect of the nodal number (see, e.g., Sidman, 1994, for nodal number ), in
line with the baseline relations training. In (Mofrad et al., 2020), this is discussed
as a separate method. However, it can be used in combination with either max-
product or the concept of absorbing states.

It is noteworthy that for the sake of brevity we just review the parts of EPS model
that are necessary for understanding the new perspective on derived relations. More-
over, an overview of some other behavior-analytic computational approaches to forma-
tion of SE classes is provided in the EPS article (see Mofrad et al., 2020, for the detailed
version of EPS model).

4Please note that in (Mofrad et al., 2020) we use K1, K2, K3, and K4 which play the same role as K
in this paper but with a higher level of control.
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2.3 Network Enhancement (NE)
NE (Wang et al., 2018) is a computational approach that has been proposed for denois-
ing biological networks. NE converts a noisy, undirected, weighted network into a new
network possessing the same nodes but with different connections and weights. NE
assumes that nodes which are connected through paths with high weight edges, have a
high chance to be directly connected with a high-weight edge. The diffusion process
of NE uses random walks of length three or less and a regularized information flow in
order to produce new edge weights.

For formal description of NE, let W be the matrix of edge weights and Ni be the
K-nearest neighbors of the i-th node, including node i itself. The localized network T
is constructed from W as follows:

Pi,j ←
Wi,j∑
k∈Ni

Wi,k

I{j∈Ni}, Ti,j ←
n∑
k=1

Pi,kPj,k∑n
v=1 Pv,k

(4)

where I{.} is the indicator function. Then the diffusion process is defined as an iterative
relation:

Wt+1 = αT ×Wt × T + (1− α)T (5)

where α is a regularization parameter, t shows iteration step and W0 can be initialized
with the input matrix W . The update rule in equation 5 for each entry is:

(Wt+1)i,j = α
∑
k∈Ni

∑
l∈Nj

Ti,k(Wt)k,lTl,j + (1− α)Ti,j. (6)

There are many theoretical properties for this diffusion process which are discussed
in (Wang et al., 2018). It is shown that Wt remains a symmetric, doubly stochastic ma-
trix (DSM) for each iteration t and Wt converges to a non-trivial equilibrium network.
Moreover, NE does not change eigenvectors of the initial DSM T , but the spectrum of
the eigenvalues is changed non-linearly so that the eigengap is increased. This effect
of NE process on the eigenspectrum improves the network to achieve more accurate
detection of clusters. Although this method produces promising results in our model,
as we will explain in the results section 4, it is not the main approach for formation of
equivalence classes in the EPS model, but NE and discussions in (Wang et al., 2018)
is the main motivation for the update rule. The method we use does not have all the
properties that NE has and we refer to the theoretical aspect of the diffusion process we
used in Appendix A. In the rest of this paper we refer to NE method due to (Wang et al.,
2018) as Symmetric Network Enhancement (SNE).

3 Enhanced Equivalence Projective Simulation (E-EPS)
The training phase of the proposed E-EPS model is generally the same as the origi-
nal PS and the EPS in the sense that the clip network is formed by adding new clips
and updating the h-values based on the environment feedback. However, since in the
current paper the probability distribution over the action set is modeled using the soft-
max function, we let the network have negative h-values and simplify the training by
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removing some parameters associated to positive h-values. However, the approach to
formation of SE classes and the testing phase is quite different compared to the EPS
model (Mofrad et al., 2020). As explained in section 2.2, after training phase, we have
a network of h-values for baseline relations and the symmetry relations. To add reflex-
ivity to the clip network, we can either consider an updating method during training
phase5 or after training phase. In order to keep the model simpler, we add a self-loop to
each clip after training phase and assign it an h-value equal to the maximum h-value of
input or output connections. The argument is in the case that the agent can identify the
members of a class (say A1, B1, C1), it must be able to differentiate members of each
category (say A1 from A2 and A3). We refer to the adjacency matrix of this network of
h-values as Wh.

In this work we are proposing a new NE model called Directed Network Enhance-
ment (DNE) which can be used for the testing phase, including baseline, reflexivity,
symmetry, transitivity, and equivalence relations. Suppose the following rule as the
update rule (or diffusion process):

Wt+1 = αP ×Wt × P + (1− α)P, (7)

where W0 is a right stochastic matrix achieved from Wh. We put W0 = P where P is
the transition probability matrix of Wh applying softmax function on non-zero values
at each row using βh parameter. P is not symmetric and P1 = 1, where 1 represents
the all-one eigenvector of P associated with eigenvalue one. In other term, P is a right
stochastic matrix so can be used as initial matrix in DNE process. In the theoretical
analysis of SNE process provided by Wang et al. (2018), and the supplementary note 3,
the converged network is proved to be:

Wt→∞ = (1− α)T (I − αT 2)−1. (8)

As it is discussed in appendix A, the convergence in DNE process remains valid for a
network where we substitute T with P in equation 8

Wt→∞ = (1− α)P (I − αP 2)−1. (9)

This post-processing phase transforms the h-value network obtained by training,
into a new network which can represent the agent predictive representations in cognitive
map (or successor representation similar to Momennejad et al., 2017b).

Wt→∞ matrix can be seen as the memory representation where we ignore the effect
of context (or actions) and assume all the transitions in the network is based on the
random walk on the graph (or diffusion). For instance, we can interpret the (i, j) entry
of Wt→∞ matrix as the transition probability from clip i to clip j when there is no
external control.

When it comes to the testing phase, the softmax function with βt is applied to cal-
culate the probability distribution for each test trial. In order to accommodate the con-
trolling effect of the test trials, the input values to the softmax function are set to be

5For instance, this can simply achieved by adding a self loop edge initialized with h0 to each clip the
first time which is perceived by the agent and update it whenever get involved in a trial.
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conditional probabilities given the trial which can be calculated using Bayes’ rule. As
an example, if the test trial consists of A1 as sample stimulus and F = {F1, F2, F3}
as the comparison stimuli, input values for the softmax function are P (A1F1|A1F ),
P (A1F2|A1F ) and P (A1F3|A1F ) where eventA1F is either A1F1, A1F2 or A1F3. These
conditional values can be calculated due to the Bayes’ rule; for instance

P (A1F1|A1F ) =
P (A1F1)P (A1F |A1F1)

P (A1F1)P (A1F |A1F1) + P (A1F2)P (A1F |A1F2) + P (A1F3)P (A1F |A1F3)

=
P (A1F1)

P (A1F1) + P (A1F2) + P (A1F3)

which can be seen as a normalization. Note that all the conditional probabilities in
the right hand side are equal to one and therefore are removed. Parameter βt in the
softmax function can characterize the agent’s memory and ability to link an internal
representation to the real action. When a test trial is given to the agent, the memory
is conditioned based on the test trials (sample and comparison stimuli), and the Bayes’
rule is used to characterize the environment effect.

Another way to formalize the behavior of agent in the test phase is to use a trial-
based βt for softmax function, which is defined as βt divided by the summation over
weights for comparison stimuli. In the above example, A1 as sample stimulus and

F = {F1, F2, F3} as comparison stimuli, uses
βt

P (A1F1) + P (A1F2) + P (A1F3)
as the

β in softmax function. As clear from the example, in this formalization, the results will
remain exactly the same, but opens up room to interpret the agent behavior differently.
Using Bayes’s rule and fixed βt approach, emphasizes the effect of environment and the
agent characteristics separately, but variable βt approach avoids the interpretation that
the agent probabilities are calculated twice.

Before comparing the E-EPS with the original PS and the EPS model, and relating
it to other studies, we summarize the parameters of the agent model as follows:

(a) Parameter 0 < K ≤ 1 controls the formation of symmetry relations. K = 1
means that the relations are bidirectional and the h-value network is symmetric
(see Experiment 2).

(b) Parameter 0 ≤ γ < 1 represents the forgetting rate during training phase. The
training structure (order of relations to be trained) is more important when for-
getting rate is high (see Experiment 4).

(c) Parameter βh > 0 converts h-values to probabilities during training trials and
generates the input matrix W0 for the NE process (see Experiment 1 and 3).

(d) Parameter 0 ≤ α < 1 controls to what extent the NE affects the initially trained
network, when there is no test trial in place. α could characterize the amount of
abstract mental process or replay that the agent performs. Even a small value of
α could form derived relations that are weak in comparison with direct relations,
but the ratio or conditional probabilities (which is used as an input to the softmax
function) is strong. A value close to one for α means too much diffusion which
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can erase the trained relations. One might find the appropriate diffusion based
on the expected agent abilities and the training criterion (see Experiment 5 and
appendix A for more details)

(e) Parameter βt > 0 controls agent’s performance in a test trial (see Experiment 6).

3.1 PS, EPS, and E-EPS: Discussion and Comparison
As mentioned by Briegel & De las Cuevas (2012), the idea of clip network in PS, is
similar to the idea of cognitive maps of Tolman (1948) which refers to a rich internal
model of the world that represents relationships between events and simulates the con-
sequences of actions. Although cognitive maps are mostly used for modeling spatial
behavior (O’keefe & Nadel, 1978), they are more general and cover organization of
knowledge in other types of behaviors including flexible behavior. Cognitive maps can
be constructed from abstract representations to describe relational knowledge and new
cognitive problems can then be considered as inference in this relational basis (Behrens
et al., 2018).

Brain studies suggest multiple solutions to predicting long-term reward in RL prob-
lem (Daw et al., 2005). Learning a model of environment, or cognitive map of en-
vironment, and using it to simulate future states step-by-step to predict long-term re-
ward is one solution, which can be referred to as a model-based RL (Daw et al., 2005,
2011; Sutton & Barto, 2018). Forming simple world models in human hippocampus
for relational knowledge sorting and value spreading across associated stimulus rep-
resentations, is shown to directly influence behaviour in novel decision-making situa-
tions (Wimmer & Shohamy, 2012). Repeating patterns during both awake experiential
states and non-engaged states and reshaping of neural circuits has been studied in both
hippocampus and in the neocortex (see, Liu & Watson, 2020, for a review). Func-
tional magnetic resonance imaging (fMRI) similarity measures in hippocampus and
entorhinal cortex (Stachenfeld et al., 2017; Garvert et al., 2017) suggest the existence
of statistical transitions of discrete state-spaces. The usage of precompiled transition
distances, rather than simulating all possible transitions online, is studied by Momen-
nejad et al. (2017b), where these precompiled distances depend on offline activity, or
replay, in hippocampus and ventral frontal cortex (Momennejad et al., 2017a). Caching
of multi-step predictive representations is also refereed to as “predictive map” (Stachen-
feld et al., 2017). These predictive representations link model-based RL to model-free
mechanisms through an offline replay mechanisms (Russek et al., 2017) resembling
Dyna-style planning (Sutton et al., 2008).

PS is much more primitive than Dyna-style planning. PS only changes the weights
of the clip transition and performs a random walk on the clip network (for detailed
comparison, see Briegel & De las Cuevas, 2012). The multiple reflection in PS model,
is different from “experiment replay” (Lin, 1992) in the sense that PS uses short-term
memory, or emotional tags, to evaluate the result of a simulation and repeat the random
walk if the remembered reward for the chosen action in previous round was negative.
So repeatedly presenting its past experiences to its learning algorithm is not performed
just for the sake of memory consolidation. (see also, Momennejad, 2020, for a review
on role of replay on how the brain learns and generalizes relational structures with a
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focus on RL approach)
In the EPS model (Mofrad et al., 2020), two scenarios called “standard” and “soft-

max” were used for training phase and various ways for deriving relations in the test
phase were studied and discussed due to the aim to define EPS as a general and flexi-
ble model. The EPS (and E-EPS) training phase is similar to the PS model with extra
links and update rule for symmetry relations. In this article, we just survey the training
method that uses softmax function in order to calculate probability distributions over
the action sets. Although, the training phase in this article could be similar to EPS, for
simplicity we just consider the softmax scenario where negative h-values are allowed,
so we can formalize the learning with just one parameter, K, to control the growth ratio
of symmetry relations in comparison with the direct relations.

The main difference with PS, which is the most important part of the EPS (E-EPS)
model, is the testing phase where there is no feedback. In the EPS model, the derived
relations were calculated on demand at the decision time, whenever they appear in a
test trial. The probabilities are either calculated based on the probabilities of the paths
with maximum values, using max-product algorithm, or the probability of reaching
each of the action points having a random walk on the episodic memory started at
sample stimulus. The symmetry relations, as mentioned earlier, are controlled via a
multiplicative parameter and the transitivity could be controlled with a parameter called
memory sharpness.

In EPS test phase, the only change to the clip network h-values is related to the pa-
rameter γ, the forgetting factor, and all the computations for the test trials are performed
at the decision time which can be seen as an ad-hoc computational tool rather than an
intrinsic feature of the model. The perspective to the derived relation in E-EPS, is quite
different where NE, an iterative diffusion process, is used after the training phase. This
alternative approach updates the structure of clip network by adding new connections
between the clips and updating connection weights. In other words, the approach to de-
rive relations in EPS model can be seen as routing in the clip network, where the action
sets play the role of destination, while in E-EPS model, in the absence of test trials, the
approach involves a diffusion model to explore the clip network by simultaneous prop-
agation of flow without an specific target. The NE process is in line with the random
walk based decision-making in the PS approach. It is noteworthy that diffusion models
have been successfully used in various cognitive tasks involving decision-making (see,
e.g., Shrager et al., 1987; Ratcliff et al., 2016). Stella et al. (2019) show that hippocam-
pal circuits can reactivate random trajectories of varying lengths and timescales which
resembling Brownian diffusion. NE process, can also be interpreted as a kind of replay
similar to the offline replay that contributes to generalization via multi-step predictive
representations of upcoming clips (or the successor representation) (Momennejad et al.,
2017b,a; Russek et al., 2017). It is different from the online replay, or multiple reflec-
tion, in the PS model and closer to the offline replay that accommodates planning based
on inferential piecing data together and multi-step dependencies. REMERGE (recur-
rency and episodic memory results in generalization) model of memory trace activa-
tion (Kumaran & McClelland, 2012) also uses replay, and iterative update of episodic
memory, for modeling rapid generalization in, for example, transitive inference task.

The final abilities of the E-EPS agent to master derived relations strongly depends
on two parameters, α, which controls how much the NE affects the initially trained net-
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work, and βt which generates the probability distribution over the comparison stimuli.
The post-processed network, Wt→∞, can be seen as an unconditioned network which
will be biased in present of a test trial. To account for the environment effect, we use a
Bayesian approach and then apply the softmax function (see, McClelland, 2013, for dif-
ferent models of contextual effects on perception). It is noteworthy that, the PS model
uses Bayesian updating and therefore this update is in harmony with the PS agent (see,
Schwöbel et al., 2018; Parr et al., 2019, for modeling goal-directed behavior as an in-
ference process).

The approach to the testing phase in the E-EPS model, needs less computation at
the decision time since it uses the cached updated network, rather than processing the
trained relations to compute derived relation links at each test trial.

In the rest of the paper, we will discuss and conduct experiments on both models
SNE and DNE, but the emphasis will be on the DNE which as we will show is more
adequate for E-EPS model than the SNE.

4 Simulation Results
In this section, we study the model parameters in order to present insight on how param-
eters can be tuned to simulate various behaviors including typical people behavior or
behavior of people with some disabilities. To study the model in more details, we con-
sider a similar training setting as in the experiment by Spencer & Chase (1996) which
is addressed in EPS paper (Mofrad et al., 2020) as well.

Spencer & Chase (1996) study addresses the relatedness or nodal number using
three 7-member stimulus classes. Stimuli are nonsense figures and the training order
is A → B → C → D → E → F → G. The training consists of seven stages as
summarized in Table 16. The first training block contains 48 trials of AB relations.
Since the number of classes are three, this means the block for training AB, contains
16 trials with correct match A1B1, 16 trials with correct match A2B2, and 16 trials with
correct match A3B3. The order of presented trials is random in the block and the order
of comparison stimuli, in this caseB1, B2, B3, is also randomly changed. If we consider
the training of EF relation, for instance, the training block contains six AB relations
(which means each trial with A1B1, A2B2, and A3B3 as the correct pair appears twice),
six BC relations (i.e. each trial with B1C1, B2C2, and B3C3 as the correct pair appears
twice), six CD relations and six DE relations, and finally the new relation EF with 24
relations (i.e. each trial with E1F1, E2F2, and E3F3 as the correct pair appears eight
times). In the baseline maintenance stage no new relation is provided and each correct
relation appears only once. The mastery criterion is set to 0.9 and if agent passes the
mastery criterion for all stages and the final baseline maintenance, then we can test the
agent for formation of derived relations.

6It is noteworthy that in (Spencer & Chase, 1996) each stage of training has 48 trials per stage, due
to simulation ease the fourth stage for DE training is changed, so we consider 9 trials for AB, BC, and
CD relations instead of 8 trials. Therefore, this stage has 51 trials in the simulation instead of original
48.
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Table 1: The training stages in (Spencer & Chase, 1996) study; number and type of
training trials.

Training Number of trials per relation

AB BC CD DE EF FG

AB 48
BC 24 24
CD 12 12 24
DE 9 9 9 24
EF 6 6 6 6 24
FG 3 3 3 6 9 24
Bsl Maint 3 3 3 3 3 3

The reported simulation results are the average over 1000 simulations.

Experiment 1: Step by Step Process

In this experiment, we illustrate the different computation steps. In Figure 1a, the net-
work h-values after training phase (based on Table 1) is depicted where the parame-
ters are set to γ = 0.001, K = 1, βh = 0.1, βt = 4, and α = 0.7. Note that the
symmetry and reflexivity connections in addition to the baseline connections appeared
in Figure 1a. The reflexivity h-values are the maximum h-value at each row (input-
output connections). Moreover, since K = 1, the Wh matrix is symmetric, for instance
A1B1 = B1A1 = 51.82. To compute the transition probability matrix, softmax func-
tion with parameter βh = 0.1 is used. Note that the transition probability matrix is just
row-normalized and not symmetric. All the reported values are rounded either by two
or three decimal places.
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(a) Network clip Wh, composed of h-values at the end of training phase.
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(b) The transition probability matrix P using βh = 0.1. The reported values are rounded
by three decimal places.

Figure 1: A sample configuration of network h-values after training A → B → C →
D → E → F → G; when γ = 0.001, K = 1, and βh = 0.1.

We set W0 = P as the input matrix to the NE . We might either use P for the iter-
ative updates (DNE) or T matrix (SNE). In Figure 2 we address DNE when α = 0.7.
The convergence criterion is that

∑
i,j

|Wt+1 − Wt|i,j < 0.0001. One can also com-

pute the converged network Wt→∞ using the theoretical converged formula provided in
equation 12.
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(a) Converged network Wt→∞ using α = 0.7.
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(b) Category-based probability distributions for the test phase using βt = 4.

Figure 2: The new network adjacency matrix when the regularization parameter is
α = 0.7 with the input matrix W0 = P which is given in Figure 1b. The test phase
probabilities in Figure 2b, are calculated by normalizing the weights for the specific
category and then using softmax function with parameter βt = 4.

Figure 2a shows the general internal map of the network clip before the testing
phase. One can interpret these values as how the stimuli are prioritized in the agent
memory when there is no external trial that measures the accuracy of answers in MTS
trials. Figure 2b shows the performance of agent when it comes to the testing phase.
For instance, if the sample stimulus be A3 and the comparison stimuli be F1, F2 and F3,
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then the agent chooses F1 and F2 with probability 0.092 and selects F3 with probability
0.815.

To calculate these category-based probability distributions, first the conditional prob-
ability for any specific category is calculated based on Bayes’ rule and then softmax
function transfers these vectors to the desired probabilities based on the chosen param-
eter βt. The conditional input aims to show the context, or environment state, effect and
therefore we can apply the same βt, as a characteristic of agent, for all the categories.

If we use SNE, first we have to compute T , which is reported in Figure 3a, and then
update the network using α = 0.7 parameter. The localized network T add weights to
the one-node relations and we have two more diagonals in T in comparison with P .
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(b) Converged network Wt→∞ using α = 0.7.
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(c) Category-based probability distributions
for the test phase using βt = 4.

Figure 3: The new network adjacency matrix using SNE update when the regularization
parameter is α = 0.7 and the input matrix W0 = P which is given in Figure 1b. The
test phase probabilities in Figure 3c, are calculated by normalizing the weights for the
specific category and then using softmax function with parameter βt = 4.

This experiment is supposed to illustrate how both DNE and SNE are working. In
Experiment 2, we compare the two updating methods for symmetry and transitivity
relations and discuss why DNE could be a more appropriate option for enhancing EPS
model.
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Experiment 2: Isolating Symmetry and Transitivity

Two main differences between DNE and SNE is shown in this experiment. In this
regard, we consider two extreme cases to isolate the symmetry and transitivity effects.

First, we isolate the effect of symmetry relations; in other words, we suppose that
agent is able to answer the transitive relations, but unable to derive symmetry relations.
For this, we set the parameters to γ = 0.001, K = 0.01, βh = 0.1, βt = 4, and
α = 0.05.
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(a) Final category-based results applying DNE
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(b) Final category-based results applying SNE

Figure 4: Probability of choosing correct pairs between categories when γ = 0.001,
K = 0.01, βh = 0.1, βt = 4, and α = 0.05. The reported values are calculated by
taking average over all relations in each category.

As illustrated in Figure 4a, the symmetry relations and therefore equivalence re-
lations can be altered by parameter K. However, in Figure 4b, due to the symmetric
behaviour of updates, symmetry relations are exactly the same as baseline relations and
transitive and equivalence relations are altered by setting K = 0.01. We can conclude
that a DNE type agent can handle non-symmetric relations, but SNE agent is unable to
control symmetry relations independently.

Next, we simulate a scenario that agent learns the baseline relations, but no transitive
relation is derived. Suppose the symmetry relations are derived perfectly, so that we
only isolate the transitive relations. Let the parameters of such an agent be γ = 0.001,
K = 1, βh = 0.1, βt = 4, and α = 0.
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(a) Final category-based results applying DNE
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(b) Final category-based results applying SNE

Figure 5: Probability of choosing correct pairs between categories when γ = 0.001,
K = 1, βh = 0.1, βt = 4, and α = 0.

In Figure 5a, using DNE method, the transitive and therefore equivalence relations
are not formed, while the symmetry relations are strong. In Figure 5b we see that the
one-node relations such as AC and BD are derived in SNE. This is expected due to the
definition of T . In the EPS model though, we are seeking to control all the transitive
and equivalence relations.

Therefore, since SNE is not an appropriate method for controlling symmetry and
transitivity completely, we consider DNE as the main approach in this paper to cover
more general cases, such as cases with weak symmetry relations or weak transitivity
relations. In the rest of simulations we just report the results for DNE method.

Experiment 3: Effect of βh Parameter

The softmax function parameter βh, is used in the training phase for checking the mas-
tery criterion as well as computing the transition matrix from Wh. As reported in Ta-
ble 2, a higher value of βh causes that the agent be able to pass the training phase faster,
while for smaller values of βh, it takes much more iterations to pass the training phase
and learning baseline relations. See Table 2 for the learning speed for three values of
βh = 0.2, 0.1 and 0.05 when γ = 0.001, K = 1, βt = 4, and α = 0.05.
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Table 2: The average of required repetition of training blocks until reaching mastery
criterion ratio 0.9 when γ = 0.001, K = 1, βt = 4, and α = 0.05 for three values of
βh = 0.2, 0.1 and 0.05

Training Number of trials per relation Time

AB BC CD DE EF FG βh = 0.2 βh = 0.1 βh = 0.05

AB 48 2.133 3.423 5.907
BC 24 24 2.885 4.757 8.751
CD 12 12 24 2.959 4.977 9.641
DE 9 9 9 24 2.791 4.661 9.469
EF 6 6 6 6 24 2.992 5.208 11.736
FG 3 3 3 6 9 24 3.008 5.339 12.978
Bsl Maint 3 3 3 3 3 3 1.038 1.407 7.561

Table 2 shows that parameter βh can be used to control the learning speed. For
instance, an agent with βh = 0.2 learns AB relations with repeating the training blocks
2.1 times in average. This value will be 3.4 for βh = 0.1 and 5.9 for βh = 0.05.

Another effect of βh appears in computation of probability matrix and consequently
the final network shape. In Figure 6, we report the P matrix and the computed nodal
effect in the test phase for two choices of βh = 0.2 and βh = 0.05 when we keep all
parameters similar; γ = 0.001, K = 1, βt = 4, and α = 0.05.
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(a) The transition probability matrix P using βh = 0.2
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(b) The transition probability matrix P using βh = 0.05
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(d) Final category-based probability of correct
choice in the test phase when βh = 0.05

Figure 6: Comparison of probability matrix out of training and final category-based
probability of correct choice in the test phase for two choices of βh = 0.2 and βh =
0.05, when γ = 0.001, K = 1, βt = 4, and α = 0.05.
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By comparing Figure 6a and Figure 6b, we notice that probability of direct relations
are weaker when βh = 0.05. Since this matrix is considered as W0, the input matrix
to the NE iterative method, the final results will be altered. In Figure 6c, the nodal
effect is negligible and all the transitive and equivalence relations are formed equally
well as baseline relations. Figure 6d, however, shows the nodal effect and agent’s weak
performance in relations with higher nodal number. We conclude that βh can be used
both for controlling the speed of learning and the nodal effect. In other words, if we
fix all other parameters than βh, the smaller value of βh results slower learning and
lower chance to form transitive and equivalence relations with higher nodal number.
It is noteworthy that the effect of βh and γ are somehow intertwined. As we see in
Experiment 4, γ also controls the learning speed and nodal effect. Indeed, if the agent
does not forget at all, i.e. γ = 0, then βh just controls the speed of learning. However,
γ = 0 is not a plausible choice for replication of human behavior.

Experiment 4: Effect of γ Parameter

In (Mofrad et al., 2020), the effect of γ in the training phase of EPS agents has been
studied, where learning speed can be adjusted via γ. In Table 3, average number of
repeating times at each stage is provided for three choices of γ = 0, 0.001 and 0.005.
There is a general trend that increasing the forgetting factor will increase the repetition
times in all stages. But the rate of increase for later stages and the baseline maintenance
are different. The explanation is that forgetting factor affects the initial learned relations
more since at the final blocks we have less of them. In other words, in the final blocks,
we have fewer trials of them, and thus the forgetting factor will cause a stronger adverse
impact. This is why we need around 7 iterations of maintenance phase when γ = 0.002
while we need just one iteration by removing forgetting factor, i.e. γ = 0.

Table 3: The average of required repetition of training blocks until reaching mastery
criterion ratio 0.9 when K = 1, βh = 0.1, βt = 4, and α = 0.05 for three values of
γ = 0, 0.001 and 0.005.
Training Number of trials per relation Time

AB BC CD DE EF FG γ = 0.0 γ = 0.001 γ = 0.002

AB 48 3.318 3.452 3.580
BC 24 24 4.391 4.703 5.088
CD 12 12 24 4.570 4.951 5.584
DE 9 9 9 24 4.200 4.654 5.514
EF 6 6 6 6 24 4.649 5.190 6.951
FG 3 3 3 6 9 24 4.637 5.324 7.884
Bsl Maint 3 3 3 3 3 3 1.089 1.414 7.281

The forgetting factor will affect the final shape of h-values network Wh, and there-
fore for similar parameters we have different probability matrices and therefore final
outcomes in the test phase. In Figure 7, final results of testing phase for three different
values of forgetting factor is provided; γ = 0, 0.001, 0.002.
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(a) Final category-based results when γ = 0.
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(b) Final category-based results when γ =
0.001
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(c) Final category-based results when γ =
0.002

Figure 7: Probability of choosing correct pairs between categories when K = 1, βh =
0.1, βt = 4, and α = 0.05 for three forgetting factors values γ = 0, 0.001 and 0.002.

When γ = 0 (Figure 7a), there is no forgetting and therefore the training order does
not matter and all the relations are considered equally the same. In Figure 7b, still all
the relations are formed but we can easily notice the nodal effect. For instance, if we
test AB relation the probability of correct choice by agent is 0.96 while it is about 0.85
for AG with five nodes in between. Figure 7c shows that a higher forgetting factor can
be used to model impaired equivalence class formation. If we test the agent with AB
relation, the probability of correct choice would be 0.89 while it is about 0.48 for AG.
Comparing correct choice probabilities for AB and FG (0.89 for AB vs. 0.95 for FG),
shows the importance of training order in this setting. The agent forgets the initial stage
relations and these relations need to be repeated. If the training trial blocks are totally
separate, like Experiment 1 in (Mofrad et al., 2020), the initial trained relations drop
dramatically in the case with high forgetting factor.

It is noteworthy that in the EPS model, to show the importance of testing order in the
model, similar to the SE literature, we simulate the test phase with different test orders
so the trials that appear late in the test phase, have weaker results when forgetting factor
is high. Here, for simplicity, we calculate the probability distribution for different test
trials and evaluate the agent behavior based on them. This means the forgetting factor is
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not effective on the test results in the current simulations. However, the forgetting factor
can be used by defining βt as a function of time and γ to model the forgetting in the
test phase of E-EPS. Another argument is that the forgetting might affect the network,
in this case the network weights must be updated in a way to keep each row summing
to one. Therefore, it is not as straightforward as the EPS where matrix with h-values is
the basis for test phase.

Experiment 5: Effect of α Parameter

This parameter shapes the final representation of the clip network (see appendix A for
a theoretical discussion). A smaller value of α biases the converged matrix Wt→∞
to keep the connections from W0 stronger, while a bigger value of α enhances tran-
sitive relations. In the case of α = 0, as represented in Figure 5a, there is no en-
hancement in the network using DNE. Figure 8a and Figure 8b respectively represent
the connection values from A1 and G1 to other stimuli in the converged network for
α = 0, 0.05, 0.35, 0.7, 0.9, 0.95, and 0.99, when γ = 0.001, K = 1, and βh = 0.1.
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(a) The connection weights in the converged
matrix betweenA1 and other stimuli inWt→∞.
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Figure 8: The connection weights in the converged matrix Wt→∞ for A1 and G1 for
α = 0, 0.05, 0.35, 0.7, 0.9, 0.95, 0.99, when γ = 0.001, K = 1, and βh = 0.1.

As depicted in Figure 8, smaller values of α keep the relations in the input network,
i.e. trained relations together with symmetry and reflexivity, stronger. On the other
hand, a higher α value, reinforces the transitive and equivalence relations. For each α
value, the connection weights for all relations must sum to one, for instance the values
for α = 0.9 in all sub-plots of Figure 8a sum to one as they show the transition proba-
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bility from A1 to all other points when using α = 0.9. As a result, increasing the values
for transitive relations means decrease in initial relations, see the decrease in A1A1,
A1B1 relation weights and the increase in other values, say A1C1 and A1G1. Along
with construction and enhancing the desired relations (first columns in Figure 8a and
Figure 8b), the undesired relations are also constructed and enhanced to some extent.
This can be explained by the fact that the values for undesired relations such as A1B2,
A1B3, G1F2, and G1F3 are not zero in the initial matrix; since the training criterion was
set to 0.9. These values could enhance undesired relations especially when α is higher.
For instance, as depicted in Figure 8c, the connection weight for A1C1 relation, which
is a desired relation, decreases for α values higher than 0.9. Similarly, the connection
weight for A1D1 relation decreases at α = 0.99 in comparison with α = 0.9, 0.95. The
connection weight for A1B3 relation, which has a very small weight in the beginning
(i.e. when α = 0) increases with α with acceleration in the rate of change for α val-
ues greater than 0.7. A1C3 and A1E2 are two sample relations that are undesired and
get enhanced during the diffusion process as a function of α value. The same kind of
behavior can be observed for relations from G1. In Figure 8d, relation G1D1 increases
as desired, but when α is too high, i.e. α = 0.95, 0.99, starts to decrease. Undesired
relations such asG1F3 andG1D2 are enhanced with a higher rate when α approaches to
one. Therefore, inappropriate choice of α could play a destructive role; in this example
higher values of α = 0.9 sounds inappropriate.

Different α values and therefore different configurations of Wt→∞ matrix results
into different testing performance. In Figure 9, we report the testing results for four
values of α = 0.05, 0.35, 0.7, 0.95 when γ = 0.001, K = 1, βh = 0.1, and βt = 4.
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(a) Final category-based results when α =
0.05. Average number of iterations is 4.0.
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(b) Final category-based results when α =
0.35. Average number of iterations is 9.0.
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(c) Final category-based results when α = 0.7.
Average number of iterations is 23.96.
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(d) Final category-based results when α =
0.95. Average number of iterations is 102.0.

Figure 9: Probability of choosing correct pairs between categories when γ = 0.001,
K = 1, βh = 0.1, and βt = 4 for four choices of α = 0.05, 0.35, 0.7, and 0.95.

We observe that probability of choosing correct relations in Figure 9c and 9d respec-
tively for α = 0.05 and α = 0.35, are almost the same. In Figure 9a when α = 0.7 the
transitive and equivalence relations are affected negatively. In Figure 9d, we see from
the converged transition matrix that values for all the relations are decreased. Moreover,
for smaller values of α the convergence of the network needs less iterations, compare
4, 9, 23, and 102 for respectively α = 0.05, 0.35, 0.7 and 0.95. For more details in α
parameter effect, see Table 4 where connection weights of AB and AG in Wt→∞ for
different α choices, along with the calculated probabilities based on three choices of
βt = 1, 4, 8 is reported.

Experiment 6: Effect of βt Parameter

To study the effect of βt, first we keep other parameters fixed γ = 0.001, K = 1,
βh = 0.1, α = 0.05, and simulate the agent behavior for three values of βt = 1, 4, 8
(see Figure 10).
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(a) Final category-based results when βt = 1.
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(b) Final category-based results when βt = 4.
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(c) Final category-based results when βt = 8.

Figure 10: Probability of choosing correct relations between categories when γ =
0.001, K = 1, βh = 0.1, and α = 0.05 for three values of βt = 1, 4, 8.

We see a decrease in all types of relations by decreasing the value of βt. In Fig-
ure 10a, when βt = 1 all relations including baseline relations become weaker. When
βt = 4 in Figure 10b we see that the relations are well formed across all nodal num-
bers. Figure 10c shows that with a higher value of βt = 8, all the relations are almost
completely formed. This experiment illustrates that by changing βt one can control the
agent performance in the testing phase and even impair the baseline relations. In Ta-
ble 4, we have a closer look to the simultaneous effect of α and βt when γ = 0.001,
K = 1, βh = 0.1.
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Table 4: The simultaneous effect of α and βt values on the test results for AB and
AG relations. Wt→∞ row reports the weights in the converged network. Wt→∞C

refers
to the input weights conditioned based on the category which softmax function uses
to generate the probability distribution. The C in the index of Wt→∞C

refers to the
conditional weights for the category calculated with Bayes rule.

(α, βt)
Baseline relation AB Derived relation AG

A1B1 A1B2 A1B3 A1G1 A1G2 A1G3

α = 0

Wt→∞ 0.49837 0.00163 0.00163 0 0 0

Wt→∞C
0.99350 0.00325 0.00325 0 0 0

βt = 1 0.57134 0.21419 0.21447 0.33333 0.33333 0.33333
βt = 4 0.9619 0.01904 0.01906 0.33333 0.33333 0.33333
βt = 8 0.99925 0.00037 0.00037 0.33333 0.33333 0.33333

α = 0.05

Wt→∞ 0.49686 0.0017 0.0017 4.1276e−08 5.6875e−09 8.6627e−09

Wt→∞C
0.9932 0.0034 0.0034 0.74202 0.10225 0.15573

βt = 1 0.57115 0.21429 0.21456 0.48349 0.25909 0.25743
βt = 4 0.96178 0.01909 0.01912 0.83865 0.08146 0.07989
βt = 8 0.99925 0.00037 0.00037 0.99049 0.00509 0.00442

α = 0.9

Wt→∞ 0.39782 0.02119 0.0223 0.003 0.00092 0.00112

Wt→∞C
0.90145 0.04802 0.05053 0.59524 0.18254 0.22222

βt = 1 0.51983 0.24069 0.23948 0.4146 0.29794 0.28746
βt = 4 0.91757 0.04108 0.04135 0.69558 0.17058 0.13384
βt = 8 0.99726 0.00137 0.00136 0.96297 0.02154 0.01549

α = 0.95

Wt→∞ 0.34433 0.03844 0.04031 0.00464 0.00185 0.00212

Wt→∞C
0.81387 0.090858 0.095278 0.53891 0.21487 0.24623

βh = 1 0.47784 0.2627 0.25945 0.39334 0.31058 0.29608
βh = 4 0.85289 0.0733 0.0738 0.61673 0.22268 0.16059
βh = 8 0.99183 0.0041 0.00407 0.92776 0.04397 0.02827

In Table 4, baseline relation AB and transitive relation AG with nodal number five
are addressed. We use the conditioned weights (row Wt→∞C

in Table 4) as the input
vector to the softmax function to generate the probability distribution for the test phase.
When α = 0, there is no NE and any choice of βt results to equal probability of all
relations in AG. However, βt could effect AB relation so that agent performs very
poor (chooses A1B1 with probability 0.57134 for βt = 1) or very strong (chooses A1B1

with probability 0.99925 for βt = 8). When α = 0.05, after about just four iterations,
Wt→∞ is achieved. We observe an insignificant reduction in A1B1 weight in Wt→∞
(from 0.49837 to 0.49686) and an insignificant increase in the A1B2, A1B3, A1G1,
A1G2 and A1G3. Interestingly, since we use conditioned weights and apply softmax
function, very tiny values forAG inWt→∞ transfers into noticeable values when condi-
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tioned which could show the formation of derived relations. For instance, with βt = 4,
(A1G1, A1G2, A1G3)Wt→∞ = (4.1276e−08, 5.6875e−09, 8.6627e−09) is transformed to
(0.74202, 0.10225, 0.15573) that using softmax is converted into
(0.83865, 0.08146, 0.07989); i.e. A1G1 relation is formed for the agent. This means a
small value of α and consequently a few steps of NE could produce the desired network
with an appropriate choice of βt. If we consider higher values of α, we see that the wight
of baseline relation A1B1 in Wt→∞ is reduced, but all other relations are enhanced.

It is also noteworthy that increasing the value of A1G1 which happens with higher
choice of α is not equivalent to a better performance in the test phase as it is reported in
Table 4.

The reason is that NE changes the proportion of weights in Wt→∞ which affects
the conditioned vector in favor of undesired options (see Wt→∞C

values), and finally
the probability of correct choice computed through softmax function is reduced. For
instance when α = 0.05 the A1G1 weight is 4.1276e−08 but its proportion in the con-
ditioned vector is 0.74202. For α = 0.95 the A1G1 weight is 0.00464 which is much
higher than α = 0.05, but its proportion in the conditioned vector is 0.53891 which is
less than the case with α = 0.05. So, different configurations of α and βt could produce
different behaviors upon request.

Experiment 7: Study the Training Order; Comparing LS MTO, and OTM

There are many studies on the differences between LS OTM, and MTO training struc-
tures (see, e.g., Arntzen et al., 2010; Arntzen & Hansen, 2011; Arntzen, 2012). In
this experiment we re-arrange the training blocks from LS in Table 1 to similar training
stages for OTM and MTO training structures, represented in Table 5 and Table 6 respec-
tively. For OTM training structure, the training relations in order areAB,AC,AD,AE,AF,
andAG. For MTO training structure the training relations in order areAG,BG,CG,DG,EG,
and FG.

Table 5: The training order for OTM training structure
Training Number of trials per relation

AB AC AD AE AF AG

AB 48
AC 24 24
AD 12 12 24
AE 9 9 9 24
AF 6 6 6 6 24
AG 3 3 3 6 9 24
Bsl Maint 3 3 3 3 3 3
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Table 6: The training order for MTO.
Training Number of trials per relation

AG BG CG DG EG FG

AG 48
BG 24 24
CG 12 12 24
DG 9 9 9 24
EG 6 6 6 6 24
FG 3 3 3 6 9 24
Bsl Maint 3 3 3 3 3 3

The three training structures, LS OTM, and MTO can be studied in various levels
and with several parameter assemblies. But the aim of this experiment is to show the
potential of proposed E-EPS model in reflecting the differences between LS OTM, and
MTO training structures reported in the literature. In Figure 11, the results of the final
test phase of the three cases for an agent with parameters γ = 0.001, K = 1, βh = 0.05,
α = 0.05, and βt = 4 is reported.

31



� �  � � � �
�

�


�
�

�
�

��
� ��
 ���� ���� ���� ��� ����

��
 ��
� ��	� ��� ��� ���� ����

���� ��	� ��
� ��	� ���� ���
 ����

���� ��� ��	� ��
� ��	
 ��	� ��	�

���� ��� ���� ��
 ��
� ��
� ��
�

���� ���� ��� ��	� ��
� ��
� ��
�

���	 ���� ���� ��	 ��
 ��
� ��
�
���

���

���

���

��	

���

(a) Final category-based results for LS.
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(b) Final category-based results for OTM.
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(c) Final category-based results for MTO.

Figure 11: Probability of choosing correct relations between categories when γ =
0.001, K = 1, βh = 0.05, α = 0.05, and βt = 4 for three training structures LS,
MTO,and OTM.

According to Figure 11a, the agent performance when the LS is used is not satis-
factory for higher nodal numbers. The weakest value belongs to AG which is 0.47.
The equivalence classes are not formed in this case. Figure 11b, shows a better perfor-
mance where the weakest connections are for CD and DC and equals to 0.71. This
minimum value is also found in Figure 11c but for relations BC and CB. So in this
experiment, the overall results in terms of formation of equivalence classes are the same
for MTO and OTM, but due to the order of training, the agent might exhibit different
performance for specific relations in MTO and OTM training structures. For instance,
calculated probability for FA relation in OTM is 0.94 and in MTO is 0.86. On the other
hand, calculated probability for DE relation in OTM is 0.75 while in MTO is 0.85.

It is noteworthy that the training time, i.e. number of repetition of each block before
mastery in all three cases for all training procedures are similar. This can be explained
by the independence of designing baseline relations. The reported results in Figure 11
confirms that our model shows better performance in the OTM and MTO cases in com-
parison with LS (see, e.g. Arntzen et al., 2010; Arntzen & Hansen, 2011; Arntzen,
2012).
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5 Conclusion
In summary, the main contribution of this article is to propose a new perspective in
formation of SE classes in recently introduced model, called EPS. EPS is a modified
version of PS model (Briegel & De las Cuevas, 2012), that can be seen as an RL agent
which has a directed, weighted network of clips. Each clip represents a remembered
stimulus that is added to the clip network during the training phase.

To replicate the test phase of SE, i.e. examining the agent ability to encounter with
new relations that can be derived from baseline relations, EPS model relies on some
type of likelihood reasoning whenever tested via a MTS trial. In other words, in the
EPS model, derived relations were calculated on demand in the test phase trials, but the
new alternative approach to the testing phase is an offline approach and relies rather on
memory retrieval during test phase than on complex logical processing. Derived rela-
tions in the new model, called E-EPS, are achieved by applying an iterative diffusion
process so called Network Enhancement (NE) (Wang et al., 2018). During the network
enhancement phase, the structure of clip network changes where indirect relations get
enhanced. The NE is a denoising method and one way to interpret the model is to con-
sider a typical memory as a less noisy memory, whilst a disabled memory is a noisy
memory which can not form equivalence relations. Since in the NE connections are
bidirectional, it is called Symmetric Network Enhancement (SNE) in this paper. We
further modify the SNE and propose Directed Network Enhancement (DNE) in which
the connections are directed and we can control the agent’s ability to derive transitiv-
ity and also control its ability to derive symmetry. One might use SNE in study SE
formation with the assumption that all the relations are bidirectional and transitive and
equivalence relations are formed. DNE is a better option to replicate real experiments
with the possibility of non-formation of classes and non-symmetric relations.

In the simulation part, we study the role of parameters on the agent performance
and show that the model is able to replicate either a typical memory or a disabled mem-
ory with different learning and forgetting rates, and accomplishing the trial tasks in the
test phase. We also compare the main training structures; LS MTO, OTM, and notice
better outcome of MTO and OTM training structures than LS which is consistent with
evidences from behavioral analysis literature. Many other configurations can be con-
sidered in simulations. For instance, we considerK = 1 to reduce the variety of results,
or to study each parameter, we fixed all the other parameters.

Another alternative is to execute the NE phase during training and not merely at
the end of the training. The argument would be that brain does not wait until the end
of training to start process of formation of these relations.Although this might sound a
plausible argument and can be easily added to the model, we avoid NE during training.
The most obvious reason is to keep the model simple with less computations. As we
are studying the agent behavior, the timing of events inside the brain is not the main
priority. Moreover, baseline relations are independent and not derived from each other.
So there is no need to update them earlier when the formation of relations are tested in
the test phase. On the other hand, as discussed in section 3.1, these updates could be
analogous to the replay in brain which generates a predictive map in an offline process.

The probability distribution over comparison stimuli in the test trial is calculated
based on the direct links in the updated clip network. It is similar to the EPS in the sense
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that whenever there are links between the sample stimulus and comparison stimuli, the
probabilities are calculated based on the h-values either by averaging or using softmax
function. In E-EPS, however, there are links through the whole network updated by NE
process, and therefore no extra calculation is made. Although, one might still consider
the random walk on the network similar to PS model, the cyclic nature of the network
in E-EPS model might generate problems and extra conditions (such as gating) might
be necessary. We avoid this scenario, since the calculated weights are based on the
random walk and diffusion and we consider these cached links at the decision time. The
EPS and E-EPS could further be developed to model more complex tasks with more
sophisticated structures that PS model offers. For instance, we might use compound
stimuli and benefit from PS model with associative learning (Briegel & De las Cuevas,
2012), or a multi-layer memory clip where agent is able to generate and add additional
clips to the memory, called wildcard clips (Melnikov et al., 2017). Such multi-layer PS
agent has been further developed to address abstract compositional concepts which is
closer to the concept of SE (Ried et al., 2019).

The mathematical understanding of the properties of the converged network that
guarantees the converged solution is an advantage of NE over other network denoising
methods. DNE maintains many properties of SNE with the advantage of controlling
formation of symmetry and transitivity in the E-EPS model. Finally, it is worth to
mention that we choose NE, as the source of inspiration for updating the network clip,
since in the updates, there is no requirement for supervision or prior knowledge. After
training phase, we have a clip network without further feedback or supervision. Hence,
NE provides a proper solution with the emphasis on the indirect paths, which is what
we have in derived relations.

Abbreviations
DNE Directed Network Enhancement. 3, 9, 13, 15, 17–19, 33, 34, 39–42

DSM doubly stochastic matrix. 8

E-EPS Enhanced Equivalence Projective Simulation. 3, 4, 7, 8, 10–13, 24, 31, 33, 34,
43, 47

EPS Equivalence Projective Simulation. 1–5, 7–13, 17, 19, 22–24, 33, 34, 43, 47

fMRI Functional magnetic resonance imaging. 11

LS linear series. 3, 4, 30–33, 44

MTO many-to-one. 3, 4, 30–33, 44–46

MTS matching-to-sample. 1, 2, 4, 5, 16, 33, 43, 47

NE Network Enhancement. 1–4, 8–10, 12, 15, 22, 29, 30, 33, 34
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OTM one-to-many. 3, 4, 30–33, 44–46

PS Projective Simulation. 1–8, 10–13, 33, 34

RL reinforcement learning. 5, 11, 12, 33

SE Stimulus Equivalence. 1–4, 7, 9, 23, 33, 34

SNE Symmetric Network Enhancement. 8, 9, 13, 17–19, 33, 34
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A Theoretical Analysis of Directed Network Enhance-
ment (DNE)

Here we explain why the proposed diffusion process in equation 7 improves the re-
sults and can be used to form equivalence classes. As mentioned in the main part of
paper, the theoretical analysis in this part is mostly based on the supplementary note
3, of (Wang et al., 2018). However, since Wt in the DNE, is not a symmetric doubly
stochastic matrix, the proofs and discussions need to be revised for DNE. It is notewor-
thy that the largest eigenvalue of each right stochastic matrix, such as P , is 1, associated
with eigenvector 1. In the following first we prove that Wt remains right stochastic in
each iteration of DNE and converges to a non-trivial equilibrium matrix. Then, we
show that DNE preserves the eigenvectors of the stochastic matrix W0, but increases
the gap between large eigenvalues and reduces the gap between small eigenvalues (see
Figure 13). Larger eigengap in the final converged matrix Wt→∞, is associated with
better equivalence class formation.

The convergence of DNE process
We show that Wt remains stochastic during the updates. By definition W01 = 1 , for
all-one eigenvector 1 associated with eigenvalue one. We assume that Wt−11 = 1, and
show that the rows of Wt remain normalized, i.e.
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Wt1 = αPWt−1P1 + (1− α)P1
= αPWt−11 + (1− α)P1
= αP1 + (1− α)P1
= P1
= 1.

(10)

Now, we show that Wt converges to a non-trivial equilibrium graph. A closed form
solution for the final, converged network can be achieved through induction. Consider
the following expression for the network at iteration t

Wt = αtP tW0P
t + (1− α)P

t−1∑
k=0

(αP 2)k. (11)

This formula is similar to equation 6 of the supplementary note 3 by Wang et al. (2018)
where T is replaced by P , and can be guessed by iterating the process for the first few
steps.

• Define W0 = Wt=0. For t = 1, equation 11 holds true:

Wt=1 = αPW0P + (1− α)P

• We assume equation 11 holds true for iteration t, then:

Wt+1 = αPWtP + (1− α)P

= αP

(
αtP tW0P

t + (1− α)P
t−1∑
k=0

(αP 2)k

)
P + (1− α)P

= αt+1P t+1W0P
t+1 + (1− α)P

t−1∑
k=0

(αP 2)k+1 + (1− α)P

= αt+1P t+1W0P
t+1 + (1− α)P

t∑
k=0

(αP 2)k,

which satisfies equation 11. Using geometric series when t → ∞, we have this
non-trivial equilibrium matrix:

Wt→∞ = (1− α)P (I − αP 2)−1. (12)

Spectral Analysis of DNE
We show that DNE process does not change eigenvectors of the input matrix W0 = P
but mapping eigenvalues through a non-linear function.

Suppose (λ, v) be the eigen-pair of P . We know that the absolute value of eigen-
values of any stochastic matrix satisfy |λ| ≤ 1 relation. Let the eigendecomposition
of P be V DV −1 where D is a diagonal matrix formed from eigenvalues of P and the
columns of V are the corresponding eigenvectors of P . We have
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Wt→∞ = (1− α)P (I − αP 2)−1

= (1− α)V DV −1(I − αV DV −1V DV −1)−1
= (1− α)V DV −1(V V −1 − αV DV −1V DV −1)−1

= (1− α)V DV −1
(
V (I − αD2)V −1

)−1
= (1− α)V DV −1

(
V (I − αD2)−1V −1

)
= (1− α)V

(
D(I − αD2)−1

)
V −1

= V
(
(1− α)(D(I − αD2)−1

)
V −1

= V D′V −1.

This testifies that DNE process keeps the eigenvectors unchanged, but the eigenvalues

becomeD′ii =
(1− α)λi
1− αλ2i

. Therefore, DNE process functions non-linearly on the eigen-

values of the input matrix, i.e. the final converged matrix, Wt→∞, transforms (λ, v) to

(fα(λ), v) where fα(λ) =
(1− α)λ

1− αλ2
. It is trivial that fα(λ)(0) = 0, fα(λ)(1) = 1. The

below relations show that the DNE always decreases the absolute value of eigenvalues

1 ≥ |λ|
1 ≥ λ2

α ≥ αλ2

1− α ≤ 1− αλ2
|λ|(1− α) ≤ |λ|(1− αλ2)
|λ|(1− α)

1− αλ2
≤ |λ|,

where the rate of this decrease is higher for eigenvalues with greater absolute values.
Figure 12 depicts the behavior of fα and how does this non-linear function can be regu-
larized with α parameter. Increasing the eigengaps between large eigenvalues, enhances
the robustness of the converged network which in our case means better formation of
classes (see, e.g. Joseph et al., 2016; Wang et al., 2018; Mavroeidis & Bingham, 2010,
for more details in spectral eigengap).
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Figure 12: Role of α on the non-linear transformation of eigenvalues using fα(λ) in
DNE process.

Figure 12 shows that by increasing the regularization parameter, higher eigengaps
are achieved. In Figure 13, the associated eigenvalues of a sample network clip7 and
the new eigenvalues of the converged network with different α values is represented.
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Figure 13: The effect of α on the eigenvalues of the transition matrix of a clip network
obtained from Experiment 1 in the results section 4 (see Table 1 for training structure).

7The training order represented in Table 1, we will explain the experiments in section 4.
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B Training Structure Design Complexity
Here we provide some mathematical calculations to show that how complex the design
of different training structures could be both in real experiments and in artificial EPS or
E-EPS agents.

Let the set of all classes be C, where each class has m members. Each member of
the classes belongs to a separate category; usually labeled by letters A, B, C, etc. As a
result, there arem categories each with n = |C|members, so the total number of stimuli
equals m|C| = mn. In an arbitrary MTS procedure, experimenter usually decides how
to label categories (among m! possibilities) and which stimuli sets form classes (among
mn! possibilities). In real-life experiments, changing the order of two categories (or
label) or how the members of the same class are assembled across different categories,
might have impact on the learning and testing outcome.

However, in the computational model, all the categories and stimuli are abstract
symbols and literally the same. We just use the category labels and class indices to
differentiate the stimuli. By differentiation between categories, as real-life experiment,
the total number of baseline relation configurations, defined as T, would be:

T =

(
m

1

)(
m− 1

1

)(
2

(
2

1

)(
m− 2

1

))(
2

(
3

1

)(
m− 3

1

))
· · ·
(

2

(
m− 1

1

)(
1

1

))
= 2m−2m!(m− 1)!

(13)
In the EPS model, we can remove the repetitions by assuming the category label de-
scribes the order of adding a category. For instance, the first relation for training would
be AB, the next training could be one of AC,BC,CA or CB, etc. The number of
different training configurations for the agent in this case is:

T = 1×
(

2

(
2

1

))
×
(

2

(
3

1

))
· · ·
(

2

(
m− 1

1

))
= 2m−2(m− 1)! (14)

To make these calculations more intuitive, consider the case with seven categories, i.e.
m = 7, with labels A,B,C,D,E, F, and, G each with three members n = 3. In
Figure 14, C1 to C7 refers to the seven categories where at each time step, one relation
to a new category will be added. The first training stage, contains C1 to C2 relation,
which is shown via a directed connection. C1 could be any of seven categories, and C2

could be one of the remained six categories. The next stage, represented with t = 2
is to add C3 which is one of the remained five categories. There are four options to
train: C1C3, C3C1, C2C3, and C3C2, which are shown with undirected connections.
Similarly, we see that for t = 3, there are four choices for categories and 2 × 3 ways
to choose the relation that connects C4 to previous categories. Therefore, we can easily
investigate that the number of possible maps of categories to C1 to C7 is 7! and the
possibilities to connect them with six relations is 25(6!). In total, if we distinguish
between categories and therefore their order, the number of possible training procedures
based on equation 13 and above explanation equals 25(7!)(6!) = 32 × 5040 × 720 =
116, 121, 600.
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Figure 14: C1 to C7 refers to the seven categories and the number of possible maps
from categories to Cis, i = 1, · · · 7 is 7!. Each time step, which is shown by green
dashed lines, a category is added to the previously trained relations. At time t = 1, C1

to C2 relation, which is shown via a directed connection, is trained as the first relation.
This can be any relation. Then at each time step a new category is connected to the
previously trained relations.

If we consider that the order of categories to be the same and map C1 → A, C2 →
B, C3 → C, C4 → D, C5 → E, C6 → F , and C7 → G, different configurations will
be reduced to 25(6!) = 32 × 720 = 23, 040, according to equation 14. This one-to-
one mapping is shown in Figure 15 along with a sample training order in directed red
connections which is not LS, OTM, or MTO; see Table 7 for the summary of training.

Table 7: The Training Order for Training Structure Depicted in Figure 15. A training
block can be formed by only new relation at each stage or a combination of new relation
and previously trained relations.

Time step New relation Possible previous relations

t = 1 AB
t = 2 CB AB
t = 3 AD CB AB
t = 4 EA AD CB AB
t = 5 DF EA AD CB AB
t = 6 GE DF EA AD CB AB
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Figure 15: A possible training structure shown in red: AB,CB,AD,EA,DF,GE
when the order of categories in the training structure is not important.

In Figure 16a and Figure 16b, respectively the order of adding new relations to the
training blocks for OTM and MTO are depicted. Both training structures are addressed
in Experiment 1 and reported in Table 5, and Table 6.
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(a) The order of adding new relations in OTM training structure: AB, AC, AD, AE, AF,
and AG.

𝐴

𝐵

𝐶

𝐵

𝐶

𝐶

𝐷

𝐷

𝐷

𝐷

𝐸

𝐸

𝐸

𝐸

𝐸

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑡 = 6

𝐺

(b) The order of adding new relations in MTO training structure:
AG, BG, CG, DG, EG, and FG.

Figure 16: Graphical representation of training order for OTM and MTO, shown in red.
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Although the above argument and equations 13-14 show the complexity of studying
the effect of training structure in MTS procedure on the participant/agent performance,
it is noticeable that the training structure and training block design is much more com-
plex. We just address the order of adding new training relation to the previously trained
relations. There are many other parameters that can be included in the analysis, such
as: the number of trials in each block, the combination of previously trained relations
together with the new relation, testing derived relations during training or not, testing
order, number of classes (members of each category), and so on. Moreover, the pos-
sibility to train a mixture of relations between two categories, say A1B1, B2A1, A3B3

will increase this amount. An example of such training is simulated in our previous
work (Mofrad et al., 2020). Therefore, finding some optimal training structure either
theoretically or via simulation with EPS or E-EPS is an interesting problem in its own
right, but it is out of the scope of this paper.
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