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Abstract

In this paper we investigate several families of monomial functions with APN-like
exponents that are not APN, but are partially 0-APN for infinitely many extensions
of the binary field F2. We also investigate the differential uniformity of some bi-
nomial partial APN functions. Furthermore, the partial APN-ness for some classes
of multinomial functions is investigated. We show also that the size of the pAPN
spectrum is preserved under CCZ-equivalence.
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1 Introduction

The objects of this study are functions over the field with 2n elements and some of their
differential properties. For more on these objects the reader can consult [3, 7, 8, 11]. We
will introduce here only some needed notions.

Let F2n be the finite field with 2n elements for some positive integer n. We call a
function from F2n to F2 a Boolean function on n variables and denote the set of all such
functions by Bn. For a Boolean function f : F2n → F2 we define the Walsh-Hadamard



transform to be the integer valued function

Wf (u) =
∑
x∈F2n

(−1)f(x)+Trn1 (ux),

where Trn1 : F2n → F2 is the absolute trace function, Trn1 (x) =
∑n−1

i=0 x
2i .

Given a Boolean function f , the derivative of f in direction a ∈ F2n is the Boolean
function DaF defined by Daf(x) = f(x+ a) + f(x).

A vectorial Boolean function (often called an (n,m)-function) is a map F : Fn2 → Fm2
for some positive integers m and n. When m = n, it can be uniquely represented as a
univariate polynomial over F2n (up to some linear equivalence using the identification of
the finite field with the vector space), namely

F (x) =
2n−1∑
i=0

aix
i, ai ∈ F2n .

Any positive integer k ≤ 2n − 1 can be represented as a sum k =
∑n−1

i=0 ki · 2i, with
ki ∈ {0, 1}. The 2-weight of k is then wt(k) =

∑n−1
i=0 ki, i.e. the number of powers of

two that add up to k. The algebraic degree of the function is then the largest 2-weight
of an exponent i with ai 6= 0.

In general, for an (n,m)-function F , we define the Walsh transform WF (a, b) to be
the Walsh-Hadamard transform of its component function Trm1 (bF (x)) at a, that is,

WF (a, b) =
∑
x∈F2n

(−1)Tr
m
1 (bF (x))+Trn1 (ax).

For an (n, n)-function F , and a, b ∈ F2n , we let ∆F (a, b) = |{x ∈ F2n |F (x + a) +
F (x) = b}|. We call the quantity ∆F = max{∆F (a, b) : a, b ∈ F2n , a 6= 0} the differential
uniformity of F . If ∆F ≤ δ, then we say that F is differentially δ-uniform. If δ = 2,
then F is an almost perfect nonlinear (APN) function. There are several equivalent
characterizations of APN-ness, and we state some below.

Lemma 1.1. ([8, 10, 16]) Let F be an (n, n)-function.

(i) The following inequality is always true:∑
a,b∈F2n

W4
F (a, b) ≥ 23n+1(3 · 2n−1 − 1),

with equality if and only if F is APN.

(ii) If, in addition, F is APN and satisfies F (0) = 0, then∑
a,b∈F2n

W3
F (a, b) = 22n+1(3 · 2n−1 − 1).
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(iii) (Rodier Condition) F is APN if and only if all the points x, y, z satisfying

F (x) + F (y) + F (z) + F (x+ y + z) = 0,

fulfill (x+ y)(x+ z)(y + z) = 0.

We introduced in [6] a notion of partial APN-ness in our attempt to resolve the open
problem of the highest possible algebraic degree of an APN function [5].

Definition 1.2. For a fixed x0 ∈ F2n, we call an (n, n)-function a (partial) x0-APN
function (which we typically refer to as simply x0-APN, partially APN or pAPN for
short) if all points, x, y, satisfying

F (x0) + F (x) + F (y) + F (x0 + x+ y) = 0 (1)

belong to the curve
(x0 + x)(x0 + y)(x+ y) = 0. (2)

We refer to the set of points x0 for which F is x0-APN as the pAPN spectrum of F .

Certainly, a function is APN if and only if it is x0-APN for any x0 ∈ F2n . We refer
to equation (1) as the Rodier equation.

An alternative way to express the fact that a given function F is x0-APN is to say
that, for any a 6= 0, the equation F (x + a) + F (x) = F (x0 + a) + F (x0) has only two
solutions x, namely x0 and x0 + a.

The remainder of the paper is organized as follows. In the next section, we show
that the size of the pAPN spectrum is preserved under CCZ-equivalence. Next, in Sec-
tion 3, we theoretically and experimentally investigate the partial APN-ness of monomial
functions. We consider monomial functions which are known to be APN under certain
conditions, and find conditions under which they are partially APN. In Section 4, we
show that the binomial F (x) = x2

n−1 + x2
n−2 over F2n is 1-APN but not 0-APN for

n ≥ 3. In Section 5 we derive some conditions under which a polynomial of the form
F (x) = x(Ax2+Bxq+Cx2q)+x2(Dxq+Ex2q)+Gx3q for q = 2k, 2k+1 with 1 ≤ k ≤ n−1
is (not) partially APN (this class of polynomials was suggested by Dillon as containing
potential APN or differentially 4-uniform functions). Since every APN function is 0-
APN as well, some of the results from Sections 3, 4 and 5 imply non-existence results
for APN functions.

2 The size of the pAPN spectrum is preserved under CCZ-
equivalence

We first recall that two functions F,G : F2n → F2m are CCZ-equivalent [9] if there exists
an affine permutationA on F2n×F2m such that {(x,G(x)), x ∈ F2n}=A ({(x, F (x)), x ∈ F2n}).
As in [9], we use the identification of the elements in F2n with the elements in Fn2 , and
denote by x both an element in F2n and the corresponding element in Fn2 .
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Theorem 2.1. The size of the pAPN spectrum is preserved under CCZ-equivalence.
More precisely, if F and G are two CCZ-equivalent (n, n)-functions and A is the corre-
sponding CCZ-isomorphism, and denoting the respective pAPN spectra of F,G by SF , SG,
if x0 ∈ SF , and (x̃0, G(x̃0)) = A(x0, F (x0)), we have that x̃0 ∈ SG.

Proof. We first decompose the affine permutation as an affine block-matrix, Au =(
A11 A12

A21 A22

)
u+

(
c
d

)
, for an input vector u, where A11,A21, A12,A22 are n×n matrices

with entries in F2, and

(
c
d

)
is a column vector in F22n .

We assume that F is x0-APN, and we want to show that G is x̃0-APN, where
x̃0 = A11x0 + A12F (x0) + c. For that, we consider the Rodier equation of G at x̃0,
namely

G(x̃0) +G(x̃) +G(ỹ) +G(x̃0 + x̃+ ỹ) = 0. (3)

To simplify notation, we let z̃ = x̃0 + x̃ + ỹ. We know that there exist x0, x, y, z such
that

x̃0 = A11x0 +A12F (x0) + c, x̃ = A11x+A12F (x) + c,

ỹ = A11y +A12F (y) + c, z̃ = A11z +A12F (z) + c,

G(x̃0) = A21x0 +A22F (x0) + d, G(x̃) = A21x+A22F (x) + d,

G(ỹ) = A21y +A22F (y) + d, G(z̃) = A21z +A22F (z) + d.

(4)

Observe that if x̃0 + x̃+ ỹ + z̃ = 0, then

A12 (F (x0) + F (x) + F (y) + F (z)) = A11 (x0 + x+ y + z) .

Similarly, the Rodier equation (3) for G at x̃0 becomes

A22 (F (x0) + F (x) + F (y) + F (z)) = A21 (x0 + x+ y + z) .

We can write the previous identities in matrix form, namely

A
((

x0
F (x0)

)
+

(
x

F (x)

)
+

(
y

F (y)

)
+

(
z

F (z)

))
= 0,

to which we can apply A−1, obtaining

x0 + x+ y + z = 0 and F (x0) + F (x) + F (y) + F (z) = 0. (5)

Now, since z = x0 + x + y and F is x0-APN, then equation (5) has only the trivial
solutions on (x0 + x)(x0 + y)(x + y) = 0. Therefore, (x̃0 + x̃)(x̃0 + ỹ)(x̃ + ỹ) = 0, and
the result is shown.
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3 Partial x0-APN monomials

In [6], a list of exponents i for which xi is 0-APN but not APN over F2n was computed.
This list is given as Table 1 in this paper (exponents are taken up to cyclotomic cosets).
We observe that the function x21 appears for various dimensions, which raises the natural
question of whether this is merely a coincidence or is the consequence of a more general
rule. As our first result, we show that the latter is true.

n Exponents i ∆F

1-5 - -

6 27 12

7
7,21,31,55 6
19,47 4

8

15,45 14
21,111 4
51 50
63 6

9
7,21,35,61,63,83,91,111,117,119,175 6
41,187 8
45,125 4

10

15, 27, 45, 75, 111, 117, 147, 189, 207, 255 6
21, 69, 87, 237, 375 4
51 8
93 92
105, 351 10
231, 363, 495 42
447 12

11

79, 109, 183, 251, 367, 463, 695, 703 4
7, 11, 15, 21, 29, 31, 37, 47, 49, 51, 53, 55, 67, 71, 73, 75, 81, 83, 85, 99, 101, 103, 111

6

113, 121, 125, 127, 137, 139, 149, 153, 155, 157, 159, 167, 171, 173, 179, 181, 185, 187,
189, 191, 201, 203, 205, 213, 215, 217, 219, 221, 223, 229, 247, 255, 293, 295, 301, 307,
309, 311, 317, 319, 331, 333, 335, 339, 341, 343, 347, 351, 359, 371, 373, 375, 379, 381,
383, 423, 427, 443, 469, 471, 475, 477, 479, 491, 493, 495, 507, 511, 687, 727, 731, 735,
751, 763, 767, 879, 887, 959, 991
19, 25, 27, 39, 41, 45, 61, 77, 87, 91, 105, 119, 123, 141, 147, 163, 165, 175, 199, 211,

8
233, 235, 237, 239, 349, 363, 415, 429, 431, 439, 501, 503, 699, 895
59, 93, 169, 243, 303, 509 10
245, 447 16
23, 69, 115, 207, 253, 299, 437, 759 22
89, 445 88

Table 1: Power functions F (x) = xi over F2n for 1 ≤ n ≤ 10 that are 0-APN but not
APN

Proposition 3.1. The function F (x) = x21 is 0-APN if and only if n is not a multiple
of 6.

Proof. Let F (x) = x21, and x0 = 0. Then the conditions expressed by (1) and (2) state
that the equality

x21 + y21 + (x+ y)21 = 0 (6)

5



implies
xy(x+ y) = 0.

Assuming y 6= 0 (since otherwise the condition (x0 +x)(x0 + y)(x+ y) = 0 is already
satisfied) and dividing both sides of (6) by y21, we get

a21 + (a+ 1)21 + 1 = 0

where a = x/y. Assume further that x 6= 0, hence a 6= 0; this is then equivalent to

a19 + a16 + a15 + a4 + a3 + 1 = 0,

which can be written as

(a+ 1)(a6 + a3 + 1)(a6 + a4 + a3 + a+ 1)(a6 + a5 + a3 + a2 + 1) = 0. (7)

Note that F (x) = x21 is 0-APN if and only if a = 1 is the only root of the polynomial
on the left-hand side of (7).

It can be easily verified that each of the three polynomials of degree six is irreducible
over F2. We now use [15, Theorem 3.46], which states that if a degree ` polynomial f is
irreducible over Fq and n ∈ N, then f factors into d irreducible polynomials in Fqn [x] of
the same degree `/d, where d = gcd(`, n). Therefore, the polynomial from (7) has roots
other than 1 if and only if the dimension n of F2n is a multiple of six.

The experimentally computed differential properties of x21 for dimensions n ≤ 15 are
given in Table 2. The differential spectrum is the multiset {∆F (a, b) : a ∈ F∗2n , b ∈ F2n},
with the multiplicity of a given value in this multiset given as a superscript after the
value; e.g. the differential spectrum of x21 for n = 2 contains the value 0 six times and
the value 2 six times.

Dimension Differential uniformity Differential spectrum

1 2 01, 21

2 2 06, 26

3 6 042, 27, 67

4 2 0120, 2120

5 2 04962496

6 20 03780, 12126, 20126

7 6 09906, 25461, 6889

8 4 038760, 220400, 46120

9 6 0159432, 278694, 418396, 65110

10 4 0585156, 2401016, 461380

11 6 02523951, 21285516, 4337755, 645034

12 20 09541350, 26183450, 41031940, 148190, 208190

13 6 041323595, 219175131, 45430633, 61171313

14 8 0163338510, 280538828, 420642580, 63211068, 8688086

15 8 0649474707, 2327866602, 482081335, 612320392, 81966020

Table 2: Differential uniformity and differential spectrum of x21 over F2n for 1 ≤ n ≤ 15
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The approach described above can easily be generalized to any power function F (x) =
x`: the polynomial x` + 1 + (x + 1)` can be expressed as the product pr11 p

r2
2 . . . prkk of

powers of F2-irreducible polynomials p1, p2, . . . , pk. If at least one of these polynomials
has degree at least 2, then F is 0-APN over infinitely many fields F2n , and is not 0-APN
over infinitely many fields. More precisely, F is not 0-APN over F2n if n is a multiple of
the degree of some pi with deg(pi) ≥ 2 (since this polynomial will split into a product
of linear terms by [15, Theorem 3.46]), and is 0-APN if n is not divisible by the least
common multiple of all of those degrees.

We can also try to characterize those power functions F (x) = x` which are 0-APN
over any finite field, regardless of its dimension. By the above discussion, the polynomial
x` + 1 + (x + 1)` in this case can only have two irreducible factors, viz. x and (x + 1).
Suppose we have the decomposition

x` + 1 + (x+ 1)` = xα(x+ 1)β.

Let k = deg(xl + (x + 1)l + 1), i.e. k is the second largest exponent in (x + 1)l after l.
Thus,

xk + · · ·+ x`−k = xα+β + · · ·+ xα

so that we get k = α+ β and `− k = α, which implies ` = 2α+ β.

Theorem 3.2. Suppose x` + 1 + (x+ 1)` can be written as

x` + 1 + (x+ 1)` = xα(x+ 1)β,

for some α, β ∈ N. Then α = β = `/3, and ` = 3 · 2k for some k > 0. Furthermore,
F (x) = x` with ` = 3 · 2k are the only power functions which are 0-APN over any finite
binary field. All other power functions are 0-APN and not 0-APN over infinitely many
finite binary fields.

Proof. Let f(x) be the polynomial x` + 1 + (x+ 1)`. Then

xα(x+ 1)β + xβ(x+ 1)α = f(x) + f(x+ 1) = 0

for any x ∈ F2n . Suppose α ≥ β and x /∈ {0, 1}. Dividing both sides of the above
equation by xβ(x+ 1)β, we obtain

xα(x+ 1)β + xβ(x+ 1)α

xβ(x+ 1)β
= xα−β + (x+ 1)α−β = 0

for all x ∈ F2n \ {0, 1}. Therefore, if α − β 6= 0, the polynomial xα−β + (x + 1)α−β has
more roots than its degree, which is impossible. So α = β, and hence xα−β + (x+ 1)α−β

is the null polynomial. Thus we have

x` + 1 + (x+ 1)` = (x(x+ 1))α.
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We now prove that x` + 1 + (x + 1)` can be written in the form (x(x + 1))α if and
only if ` = 3 · 2k for some k ∈ N. First, observe that we can restrict ourselves to the case
of ` odd, since if we have ` = 2`′, then

(x(x+ 1))α = x` + 1 + (x+ 1)` = (xl
′
+ 1 + (x+ 1)l

′
)2

implies x`
′
+ 1 + (x+ 1)`

′
= (x(x + 1))α/2. Thus, let ` = 2m+ 1 for m ∈ N. Note that

the binomial coefficients
(
2m+1

1

)
=
(
2m+1
2m

)
= 2m + 1 are always odd, so that x2m is the

term with largest exponent and x is the term with smallest exponent in x`+1+(x+1)`.
Suppose α > 1. Then the term with smallest exponent in (x(x + 1))α is xα which
contradicts x being the term with smallest exponent. Thus α = 1, and x`+1+(x+1)` =
x(x+ 1). It is now easy to see that this implies ` = 3. Hence, the exponents ` for which
x` + 1 + (x+ 1)` is of the form (x(x+ 1))α are precisely those of the form ` = 3 · 2k, and
α = 2k. Finally, from the above discussion, we have that the exponents ` = 3 · 2k are
precisely those for which x` is 0-APN over all finite fields F2n , regardless of the dimension
n.

Remark 3.3. The same approach can be used for a polynomial function F as well,
however it is not possible to restrict the choice of (x, y) to pairs of the type (x, 1) in
general so that we would have to factorize F (x) +F (y) +F (x+ y) for all possible values
of y in order to obtain a necessary and sufficient condition for F to be 0-APN. Selecting
some concrete y, e.g. y = 1, would however allow us to obtain a necessary condition for
the 0-APN-ness of F .

It is also interesting whether a characterization of 1-APN-ness as the one discussed
in this section can be obtained for e.g. F (x) = x21. In this case, we consider the equation
x21 + y21 + (x+ y + 1)21 + 1 = 0 which can be written as(

x

y + 1

)20

+

(
x

y + 1

)17

+

(
x

y + 1

)16

+

(
x

y + 1

)5

+

(
x

y + 1

)4

+

(
x

y + 1

)
+

y

(y + 1)17
+

y4

(y + 1)5
+

y16

(y + 1)20
= 0.

This seems more difficult to handle than the 0-APN-ness by this method, however.

We showed in [6] that the Gold function f1(x) = x2
t+1 is 0-APN if and only if

gcd(n, t) = 1, which is known to be also equivalent to f1 being APN. One would wonder
(as we suggested in [6] for monomial functions) if perhaps under gcd(n, t) 6= 1, the Gold
function is 1-APN. We shall see below that in reality, the Gold function is not x0-APN for
any x0 ∈ F2n , under gcd(n, t) = d 6= 1. Note that the derivatives of the Gold functions
are known to be 2d-to-1 maps, so that such a function is either APN if d = 1, or not
x0-APN for any x0 if d > 1. We now state and prove our main theorem in this section.

Theorem 3.4. The following are true:

(i) Let f1(x) = x2
t+1 be the Gold function on F2n (known to be APN for gcd(t, n) = 1).

If gcd(n, t) = d > 1, then f1 is not x0-APN for any x0 ∈ F2n.
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(ii) Let f2(x) = x2
r−2t+1, r > s, be the generalization of the Kasami function x 7→

x2
2t−2t+1 on F2n (known to be APN for gcd(t, n) = 1). Then, f2 is 0-APN if and

only if gcd(t, n) = gcd(r − t, n) = d = 1. Moreover, if gcd(t, r − t, n) > 1, then f2
is not x0-APN for any x0 6= 0.

(iii) Let f3(x) = x2
r+2t−1, r > t, be the generalization of the Niho function x 7→

x2
2t+2t−1 on F2n (known to be APN for n = 2r + 1, 2t = r; or, n = 2t + 1 and

2r = 3t + 1). Then, f3 is 0-APN if and only if gcd(r, n) = gcd(t, n) = 1. Note
that, for t = 2, this includes f(x) = x2

r+3, the Welch function (known to be APN
for n = 2r+ 1). In this case, f is 0-APN if and only if n is odd and gcd(r, n) = 1.
If t = 1, this case includes the Gold function f1 with x0 = 0.

(iv) Let f4(x) = x2
2t+2t+1 be the Bracken-Leander function on F2n (we do not neces-

sarily impose the condition n = 4t). If t is odd, then f4 is not 0-APN on any F2n

when n is even. If n = 4t and t even, then f is 0-APN.

(v) Let f5(x) = x2
n−2s (which coincides with the inverse function x−1 extended by

0−1 = 0 for s = 1). Then, f5 is 0-APN if and only if gcd(n, s+ 1) = 1.

Proof. We proved in [6] that f1 is 0-APN if and only if gcd(n, t) = 1. In the same paper
we also proved that a quadratic function is x0-APN (for some x0) if and only if it is
APN. Therefore, f1 is not x0-APN for any x0 ∈ F2n , under gcd(n, t) > 1.

Now, let f2(x) = x2
r−2t+1 be the generalization of the Kasami function. Multiplying

the Rodier equation for f2 at 0 by (x+ y)2
t
, we get

0 = (x+ y)2
t
(
x2

r−2t+1 + y2
r−2t+1 + (x+ y)2

r−2t+1
)

=
(
x2

t
+ y2

t
)(

x2
r−2t+1 + y2

r−2t+1
)

+ (x+ y)2
r
(x+ y)

= x2
r−2t+1y2

t
+ y2

r−2t+1x2
t

+ x2
r
y + xy2

r
.

Label y = ax. Then, assuming xy 6= 0, a 6= 0, 1, the equation above becomes

0 = a2
r

+ a2
t

+ a2
r−2t+1 + a

= a2
t
(a2

r−2t + 1) + a(a2
r−2t + 1)

= (a2
t

+ a)(a2
t(2r−t−1) + 1)

= a(a2
t−1 + 1)(a2

r−t−1 + 1)2
t
.

Having some a 6= 1 satisfy a2
t−1+1 = 0 is equivalent to gcd(2t−1, 2n−1) = 2gcd(t,n)−1 >

1, that is, gcd(t, n) > 1. Similarly, having a2
r−t−1 + 1 = 0 for a 6= 1 is equivalent to

gcd(2r−t − 1, 2n − 1) = 2gcd(r−t,n) − 1 > 1, that is, gcd(r − t, n) > 1.
We conclude that the above equation has no solutions outside of a = 0, 1 if and only

if gcd(t, n) = gcd(r − t, n) = 1.
Next, let gcd(t, r− t, n) = d > 1, and let x0 ∈ F2n . Let ζ be a (2n− 1)-primitive root

of unity, and write x0 = ζk, for some 0 ≤ k ≤ 2n − 2. Multiplying the Rodier equation
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of f2 at ζk by (x+ y + ζk)2
t
, we get

(x+ y + ζk)2
t
(
x2

r−2t+1 + y2
r−2t+1 + ζk(2

r−2t+1)
)

+ (x+ y + ζk)2
r
(x+ y + ζk)

= x2
t
y2

r−2t+1 + y2
t
x2

r−2t+1 + y2
t
ζk(2

r−2t+1) + x2
t
ζk(2

r−2t+1)

+ζk2
t
(x2

r−2t+1 + y2
r−2t+1) + yx2

r
+ xy2

r
+ ζk(x2

r
+ y2

r
) + ζk2

r
(x+ y),

and using ζk(2
t−1) = ζk(2

r−1) = 1 (both identities can be shown by observing that
k = m · 2n−1

2d−1 for some integer m and so, both k(2t − 1) and k(2r − 1) are multiples of
2n − 1), along with the substitution y = ax, we get

x2
r+1(a2

r
+ a2

r−2t+1 + a2
t

+ a) + x2
r
ζk(a2

r
+ 1)

+x2
t
ζk(a2

t
+ 1) + x2

r−2t+1ζk(a2
r−2t+1 + 1) + x(1 + a)ζk = 0.

Taking a ∈ F2d \ F2, and so, a2
d−1 = 1, which implies a2

t−1 = 1, and observing that the
first term above is zero, we get

x2
r
ζk(a+ 1) + x2

t
ζk(a+ 1) + x2

r−2t+1ζk(a+ 1) + xζk(a+ 1) = 0,

that is,

x2
r

+ x2
t

+ x2
r−2t+1 + x = x(x2

t−1 + 1)(x2
r−t−1 + 1)2

t
= 0,

which has nontrivial solutions if gcd(t, n) > 1. By Proposition 4.1 of [6], if a power
function is x0-APN for some x0 6= 0 then it is not x0-APN for all x0 6= 0.

For f3(x) = x2
r+2t−1, the Rodier equation at 0 is

0 = x2
r+2t−1 + y2

r+2t−1 + (x+ y)2
r+2t−1,

which multiplied by x+ y gives

0 = x2
r+2t + y2

r+2t + yx2
r+2t−1 + xy2

r+2t−1 + (x2
r

+ y2
r
)(x2

t
+ y2

t
)

= xy2
r+2t−1 + yx2

r+2t−1 + x2
r
y2

t
+ y2

r
x2

t
.

Writing y = xa, the above equation becomes (assuming x 6= 0)

0 = a2
r+2t−1 + a2

r
+ a2

t
+ a

= a(a2
r−1 + 1)(a2

t−1 + 1).

Thus, f is 0-APN if and only if gcd(r, n) = gcd(t, n) = 1.
The Rodier equation (1) for f4(x) = x2

2t+2t+1 at 0 becomes

0 = x2
2t+2t+1 + y2

2t+2t+1 + (x+ y)2
2t+2t+1

= x2
2t+2t+1 + y2

2t+2t+1 + (x+ y)2
2t

(x+ y)2
t
(x+ y)

= x2
2t+1y2

t
+ x2

2t
y2

t+1 + x2
t+1y2

2t
+ x2

t
y2

2t+1 + x2
2t+2ty + xy2

2t+2t .

10



Taking y = ax, a 6= 0, 1, and dividing by x2
2t+2t+1 6= 0, we obtain

0 = a2
2t+2t + a2

2t+1 + a2
2t

+ a2
t+1 + a2

t
+ a, (8)

or, equivalently,

0 = (a2
t+1 + a2

t
+ a)2

t
+ a(a2

t
+ a+ 1)2

t
. (9)

If t is odd and n is even, then 3 | gcd(2t−1 − 1, 2n − 1) = 2gcd(t−1,n) − 1 and so, we can
choose a ∈ F22 \ F2. Then a 6= 0, 1 and a2 + a + 1 = 0. Further, a2

t
+ a + 1 = 0 (since

a2
t−1

= a) and the equation above becomes

(a(a+ 1) + (a+ 1) + a)2
t

= (a2 + a+ 1)2
t

= 0,

which certainly holds, and so, f4 is not 0-APN.
Assume now that n = 4t for t even (hence gcd(t− 1, n) = 1 and gcd(2t− 1, n) = 1).

As in [2], we apply the relative trace Tr4tt (x) = x+ x2
t
+ x2

2t
+ x2

3t
to equation (8) and

obtain

0 = Tr4tt

(
a2

2t+2t + a2
2t+1 + a2

2t
+ a2

t+1 + a2
t

+ a
)

= a2
2t+2t + a2

2t+1 + a2
2t

+ a2
t+1 + a2

t
+ a

+a2
3t+22t + a2

3t+2t + a2
3t

+ a2
2t+2t + a2

2t
+ a2

t

+a2
4t+23t + a2

4t+22t + a2
4t

+ a2
3t+22t + a2

3t
+ a2

2t

+a2
5t+24t + a2

5t+23t + a2
5t

+ a2
4t+23t + a2

4t
+ a2

3t

= a2
2t+2t + a2

2t+1 + a2
2t

+ a2
t+1 + a2

t
+ a

+a2
3t+22t + a2

3t+2t + a2
3t

+ a2
2t+2t + a2

2t
+ a2

t

+a2
3t+1 + a2

2t+1 + a+ a2
3t+22t + a2

3t
+ a2

2t

+a2
t+1 + a2

3t+2t + a2
t

+ a2
3t+1 + a+ a2

3t

= a+ a2
t

+ a2
2t

+ a2
3t
, (10)

since a2
4t

= a. Adding the first and second powers of (10) to (8) renders

a2 + a2
3t+1 + a2

2t+2t + a2
3t

= 0. (11)

Taking the 22t powers of both sides of this last equation, we get

a2
2t+1

+ a2
5t+22t + a2

4t+23t + a2
5t

= a2
2t+1

+ a2
2t+2t + a2

3t+1 + a2
t

= 0,

which added to (11) gives

a2
3t

+ a2
2t+1

+ a2
t

+ a2 = 0.

Using (10), we obtain

a2
2t+1

+ a2
2t

+ a2 + a = 0,

11



implying
(a+ a2

2t
)2 + a+ a2

2t
= (a2

2t
+ a)(a2

2t
+ a+ 1) = 0,

which has solutions if and only if a+ a2
2t

= 0, or 1 + a+ a2
2t

= 0. Substituting a2
2t

= a
into (8) renders

a2
t+1 + a2 + a+ a2

t+1 + a2
t

+ a = 0,

that is,
0 = a2

t
+ a2 = a2(a2

t−2 + 1) = a2(a2
t−1−1 + 1)2,

and so a2
t−1−1 = 1, which is impossible under gcd(t− 1, n) = 1. If a2

2t
= a+ 1, then (8)

becomes a2 + a+ 1 = 0, which implies that a2
2t

= a2. This is equivalent to a2
2t−1−1 = 1,

which is impossible if gcd(2t− 1, n) = 1.
Lastly, the Rodier equation for f5(x) = x2

n−2s at 0 is

x2
n−2s + y2

n−2s + (x+ y)2
n−2s = 0.

Suppose that x, y 6= 0, 1, and that x 6= y. Let y = xa, with a 6= 0, 1. Then, we can
rewrite the equation as

x2
n−2s (1 + a2

n−2s + (1 + a)2
n−2s) = 0.

Since x 6= 0, this implies that 1 + a2
n−2s + (1 + a)2

n−2s = 0. Multiplying by (1 + a)2
s
,

renders a2
n−2s + a2

s
= a2

s
(a2

n−s−1−1 + 1)2
s+1

= 0. This equation has solutions if and
only if gcd(n, s+ 1) > 1.

Remark 3.5. Note that the case (iv) includes the function F (x) = x21. In that par-
ticular case, however, we were able to prove a stronger result than the one contained in
(iv) above.

Remark 3.6. We could have referred to (reversed) Dickson polynomials [13] in some of
the arguments above, but we felt that in this case it would not bring further light to the
proofs.

As in Remark 3.5, it is not difficult to find specific values of exponents that are
0-APN for infinitely many extensions of F2n , but, in this paper, we prefer to give more
general results. On the other hand, there are polynomials for which we can find general
conditions not to be partial APN (and, consequently, not APN), and we provide such
instances below.

Proposition 3.7. Let s and n be positive integers, then the following functions over F2n

are not 0-APN:
1) f6(x) = x2

2s+1+2s+1+2s−1 when n ≥ 4 is even;
2) f7(x) = x2

4s+23s+22s+2s−1 (a Dobbertin-like function known to be APN for n = 5s)
when s is odd and n is even;
3) f8(x) = x2

2s+1+5 when n is even.

12



Proof. The Rodier equation for f6 at x0 = 0 is

x2
2s+1+2s+1+2s−1 + y2

2s+1+2s+1+2s−1 + (x+ y)2
2s+1+2s+1+2s−1 = 0,

rendering, in the same way as before, for y = ax (under 0 6= x 6= y 6= 0)

a2
s+2s+1+22s+1−1 + a2

s+1+22s+1
+ a2

s+22s+1
+ a2

s+2s+1
+ a2

2s+1
+ a2

s+1
+ a2

s
+ a = 0.

Since n is even, then we can take a ∈ F22 \ F2, and so a3 = 1, implying a2 + a+ 1 = 0.

For such an a, observe that a2
s+1

= a2
s
+1, a2

2s+1
= a2

2s
+1, and the previous expression

becomes

a2
s−1(a2

s
+ 1)(a2

2s
+ 1) + (a2

s
+ 1)(a2

2s
+ 1) + a2

s
(a2

2s
+ 1)

+ a2
s
(a2

s
+ 1) + a2

2s
+ 1 + a2

s
+ 1 + a2

s
+ a

=a2
2s+2s+1−1 + a2

2s+2s−1 + a2
s+1−1 + a2

s−1 + a2
2s+2s + a2

2s

+ a2
s

+ 1 + a2
2s+2s + a2

s
+ a2

s+1
+ a2

s
+ a2

2s
+ a

=a2
2s−1(a2

s
+ 1) + a2

2s+2s−1 + a2
s+1−1 + a2

s−1 + a2
s

+ a2
s

+ 1 + 1 + a

=a2
2s+2s−1 + a2

2s−1 + a2
2s+2s−1 + a2

s+1−1 + a2
s−1 + a

=a2
2s−1 + a2

s+1−1 + a2
s−1 + a = a−1

(
a2

2s
+ a2

s+1
+ a2

s
+ a2

)
=a−1

(
a2

2s
+ a2

s
+ 1 + a2

s
+ a2

)
= a−1

(
a2

2s
+ a2 + 1

)
= 0,

since a2
2s

= a2
2s−1

+1 = a2
2s−2

= · · · = a2
2s−2s

= a, and so a2
2s

+a2 +1 = a+a2 +1 = 0.
Similarly, the Rodier equation for the 0-APN-ness of f7 implies

a2
s+22s+23s+24s + a1+22s+23s+24s + a1+2s+23s+24s + a1+2s+22s+24s

+ a1+2s+22s+23s + a1+23s+24s + a1+22s+24s + a1+2s+24s + a1+22s+23s

+ a1+2s+23s + a1+22s+2s + a1+24s + a1+23s + a1+22s + a1+2s + a2 = 0.

Using a similar method as in the first part of our proposition, with n even, and taking
a ∈ F22 \F2 and s odd, one can show that the above expression is zero, and so, f7 is not
0-APN.

The Rodier equation for f8 is

x2
2s+1+5 + y2

2s+1+5 + (x+ y)2
2s+1+5 = 0,

which, when y = ax, a 6= 0, 1, x 6= 0, becomes

0 = 1 + a2
2s+1+5 + (1 + a2

2s+1
)(1 + a)5

= 1 + a2
2s+1+5 +

(
1 + a2

2s+1
) (

1 + a+ a4 + a5
)

= a+ a4 + a5 + a2
2s+1

+ a2
2s+1+1 + a2

2s+1+4.

Since n is even, we can take a ∈ F22 \ F2, and so a3 = 1, implying a2 + a + 1 = 0.

For such an a, observe that a4 = a, a5 = a2, a2
2s+1

= a2, a2
2s+1+4 = a2

2s+1+1, and the
previous expression becomes a+ a+ a2 + a2 + a2

s+1 + a2
s+1 = 0, implying that f8 is not

0-APN.
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4 Binomial partial APN functions

It was observed in [6] that if a monomial is 0-APN and x0-APN for some 0 6= x0 ∈ F2n ,
then it is APN. We also know that for any quadratic (n, n)-function F and for any x0 ∈
F2n , F is x0-APN if and only if it is APN. Similarly, it was suggested and consequently
shown in [6] that any partially 1-APN monomial function is APN. It is natural to wonder
if such a statement is true for other types of functions. We give below an instance when
such a claim fails.

Theorem 4.1. Let F (x) = x2
n−1 +x2

n−2 be defined on F2n. Then F is 1-APN, but not
0-APN, for all n ≥ 3. Furthermore, F is differentially 4-uniform.

Proof. Let F (x) = x2
n−1 + x2

n−2, and x0 = 1. Then, the Rodier condition (1) becomes

x2
n−1 + x2

n−2 + y2
n−1 + y2

n−2 + (x+ y + 1)2
n−1 + (x+ y + 1)2

n−2 = 0,

which is equivalent to (since x2
n−1 = 1, for x ∈ F∗2n),

1 + x−1 + 1 + y−1 + 1 + (x+ y + 1)−1 = 0, assuming xy(x+ y + 1) 6= 0.

Multiplying the previous equation by xy(x+ y + 1), we obtain

y(x+ y + 1) + x(x+ y + 1) + xy(x+ y + 1) + xy = 0⇐⇒ (x+ y)(1 + x)(1 + y) = 0,

which proves the first claim.
To show that F is not 0-APN, let us consider the Rodier equation for x0 = 0,

x2
n−1 + x2

n−2 + y2
n−1 + y2

n−2 + (x+ y)2
n−1 + (x+ y)2

n−2 = 0

⇐⇒ 1 + x−1 + 1 + y−1 + 1 + (x+ y)−1 = 0

⇐⇒ y(x+ y) + x(x+ y) + xy(x+ y) + xy = 0

⇐⇒ (x+ y)2 + xy(x+ y) + xy = 0

⇐⇒ 1 +
xy

x+ y
+

xy

(x+ y)2
= 0. (12)

We will find 0 6= x 6= y 6= 0 to satisfy the previous equation. Let t = x + y. Then, the
previous equation is equivalent to

t2 + x(x+ t)(t+ 1) = 0, (observe that t 6= 1)

⇐⇒ x2 + tx+
t2

t+ 1
= 0

⇐⇒
(x
t

)2
+
x

t
+

1

t+ 1
= 0.

Labeling z = x
t , we obtain the equation

z2 + z +
1

t+ 1
= 0.
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We now use the fact that for 0 6= v ∈ F2n the equation X2 +X = v has solutions in F2n

if and only if Trn1 (v) = 0 (see Berlekamp et al. [1]). Taking any of the 2n−1−1 nontrivial
values of v ∈ F∗2n for which Trn1 (v) = 0, t = 1 + v−1 6= 0 and z a solution of X2 +X = v,
we have that x = tz, y = t(z + 1) will satisfy equation (12) and 0 6= x 6= y 6= 0, hence F
is not 0-APN.

We next show that F is differentially 4-uniform. We first write the equationDaF (x) =
b, under a 6= 0, b ∈ F2n , namely,

x2
n−1 + x2

n−2 + (x+ a)2
n−1 + (x+ a)2

n−2 = b, (13)

with x ∈ F2n . Case 1. Let b = 1 + a−1. We can see that x = 0, x = a are solutions
of (13). Further, if x 6= 0, x 6= a, then (13) becomes x2

n−2 + (x + a)2
n−2 = b, which is

equivalent to x−1 + (x+ a)−1 = b = 1 + a−1, that is,

(a+ 1)x2 + (a2 + a)x+ a2 = 0. (14)

We can see that a 6= 1 and so, a2 + a 6= 0, and therefore, by taking y = xa−1, we obtain
that (14) is equivalent to y2 + y = (a+ 1)−1, which, by [1] has solutions y (and thus x)
if and only if Trn1 ((a+ 1)−1) = 0. There certainly exist a ∈ F2n satisfying this condition,
in which case equation (14) has two more solutions, in addition to 0, a.
Case 2. Let b 6= 1 + a−1. Then x is not equal to 0 or to a in (13) and so, the first and
third terms are equal to 1, and (13) becomes

x−1 + (x+ a)−1 = b, (15)

that is, bx2 + abx + a = 0, which has at most two solutions x (in general, the equation
above may have four solutions if b = a−1, namely {0, a, aα, aα2}, where α ∈ F22 \ F2,
but we removed 0, a from the possibilities because of (13)). In fact, we know exactly
when equation (15) has no solutions, namely, when Trn1

(
1
ab

)
= 1.

In conclusion, equation (13) has at most 4 solutions (with that bound attained), and
therefore F is differentially 4-uniform.

Remark 4.2. The non-0-APN-ness of the above function can also be derived from [6,
Thm. 5.5], but we preferred to give a self-contained argument above.

5 Partial APN functions based on Dillon’s polynomial

Dillon [12] suggested investigating functions of the form

F (x) = x(Ax2 +Bx2
k

+ Cx2
k+1

) + x2(Dx2
k

+ Ex2
k+1

) +Gx3·2
k

(16)

over F2n , with n = 2k, as candidates for APN or differentially 4-uniform functions. An
infinite family of APN functions of this type was constructed in [4]. In this section,
we investigate several such functions for being partial APN functions, and consequently,
APN functions (recall that we showed in [6] that for quadratic functions, pAPN property
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is equivalent to the APN property). The motivation for this section is to point out that
any of the functions coming from F can be investigated quite easily for APN-ness using
the not so restrictive concept of pAPN-ness.

First, we write the Rodier condition at x0 = 0 for the function F above, which we
generalize by taking arbitrary 1 ≤ k ≤ n − 1. Now, letting y = ax, a 6= 0, 1, x 6= 0, we
obtain

0 =Ax3(a+ a2) +Bx2
k+1

(
a+ a2

k
)

+ Cx2
k+1+1

(
a+ a2

k+1
)

+Dx2
k+2

(
a2 + a2

k
)

+ Ex2
k+1+2

(
a2 + a2

k+1
)

+Gx2
k+1+2k

(
a2

k
+ a2

k+1
)
.

(17)

We will not provide the proof of the next theorem (whose proof is not that complicated,
containing cases that are known via APN-ness), but we will provide the proof of the last
theorem of this section, since it is more involved.

Theorem 5.1. Let 1 ≤ k ≤ n−1 and consider the function F from (16). The following
functions are not x0-APN for any x0 ∈ F2n:

(i) F1(x) = Ax3 + Bx2
k+1 if AB 6= 0, gcd(k − 1, n) = 1, k ≥ 1, and F2(x) =

Ax3 + Cx2
k+1+1 if AC 6= 0 and gcd(k, n) = 1.

(ii) F3(x) = Ax3 +Dx2
k+2 if AD 6= 0 and gcd(k, n) = 1, k > 1.

(iii) F4(x) = Ax3 + Ex2
k+1+2 if AE 6= 0 and gcd(k + 1, n) = 1.

(iv) F5(x) = Ax3 + Gx3·2
k

if AG 6= 0, A
G ∈ F2k−1

2n and there exists z such that

Trn1 ((A/G)1/(2
k−1)/z3) = 0.

(v) F6(x) = Bx2
k+1 + Cx2

k+1+1 if BC 6= 0 and k ≥ 1.

(vi) F7(x) = Bx2
k+1 +Dx2

k+2 if BD 6= 0.

(vii) F8(x) = Bx2
k+1 + Ex2

k+1+2 if BE 6= 0, and gcd(k, n) > 1, or n is odd and
gcd(k, n) = 1.

(viii) F9(x) = Bx2
k+1 +Gx2

k+1+2k if BG 6= 0 and gcd(k + 1, n) = 1.

(ix) F10(x) = Cx2
k+1+1 +Dx2

k+2 if CD 6= 0 and gcd(k, n) = 1.

(x) F11(x) = Cx2
k+1+1 + Ex2

k+1+2 if CE 6= 0.

(xi) F12(x) = Cx2
k+1+1 +Gx2

k+1+2k if CG 6= 0.

(xii) F13(x) = Dx2
k+2 + Ex2

k+1+2 if DE 6= 0.

(xiii) F14(x) = Dx2
k+2 +Gx2

k+1+2k if DG 6= 0 and gcd(k, n) = 1.

(xiv) F15(x) = Ex2
k+1+2 +Gx2

k+1+2k if EG 6= 0 and gcd(k − 1, n) = 1.
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We can certainly go beyond binomials and we do so in the next theorem without
attempting to be exhaustive.

Theorem 5.2. Let Let 1 ≤ k ≤ n− 1, G 6= 0, gcd(k, n) > 1, n odd, and A/G ∈ F2k−1
2n .

Then F16(x) = Ax3 +Bx2
k+1 + Ex2

k+1+2 +Gx2
k+1+2k is not x0-APN for any x0.

Proof. The Rodier equation (17) for F16 at x0 = 0 is equivalent to

x3(a+ a2)
(
A+Gx3·(2

k−1)(a+ a2)2
k−1
)

+ x2
k+1a

(
1 + a2

k−1
)(

B + Ex2
k+1

(
a+ a2

k
))

= 0.

If gcd(k, n) > 1, then taking a 6= 0, 1 such that a2
k−1 = 1, the second term is zero.

Furthermore (a + a2)2
k−1 = a2

k−1(a + 1)2
k−1 = (a+1)2

k

a+1 = a2
k
+1

a+1 = a+1
a+1 = 1, and so the

first term becomes x3(a+ a2)
(
A+Gx3·(2

k−1)
)

, which is zero for the unique solution x

of x3 =
(
A
G

)1/(2k−1)
, which exists since n is odd (that is, gcd(3, 2n − 1) = 1).

A quadratic function is pAPN for some x0 if and only if it is APN [6]. Hence the claim
of the theorem follows.

We now replace 2k by 2k + 1 in Dillon’s polynomial (16).

Theorem 5.3. Let 1 ≤ k ≤ n− 1. The following statements hold:

(i) If AC 6= 0, then the functions H1(x) = Ax3 + Cx2
k+1+3 (respectively, H2(x) =

Ax3 + Cx2
k+3) is not 0-APN.

(ii) If AG 6= 0, then the functions H3(x) = Ax3 + Gx2
k+1+2k+3 is not 0-APN if n is

odd; if n is even, then H3 is 0-APN if and only if
(
A
G

)2−k

/∈ {u3 : x ∈ F2n}.

(iii) If BC 6= 0, and gcd(2k + 1, 2n − 1) = 1, which happens if n is odd, or n ≡ 2

(mod 4) and k is even, then H4(x) = Bx2
k+2 + Cx2

k+1+3 is not 0-APN.

(iv) If BD 6= 0, H5(x) = Bx2
k+2 +Dx2

k+3 is never 0-APN.

(v) If BG 6= 0, and gcd(2k+1 + 1, 2n − 1) = 1 (which happens if n is odd, or n ≡ 2

(mod 4) and k is odd), then H6(x) = Bx2
k+2 +Gx2

k+1+2k+3 is not 0-APN.

(vi) If CDEG 6= 0, then H7(x) = Cx2
k+1+3 +Dx2

k+3, H8(x) = Cx2
k+1+3 +Ex2

k+1+4,

and H9(x) = Cx2
k+1+3 +Gx2

k+1+2k+3 are never 0-APN.

(vii) If DE 6= 0, and gcd(2k + 1, 2n − 1) = 1, which happens if n is odd, or n ≡ 2

(mod 4) and k is even, then H10(x) = Dx2
k+3 + Ex2

k+1+4 is not 0-APN.

(viii) If DG 6= 0, then H11(x) = Dx2
k+3 +Gx2

k+1+2k+3+1 is never 0-APN.
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(ix) If EG 6= 0 and gcd(k, n) = 1, then H12(x) = Ex2
k+1+4 + Gx2

k+1+2k+3 is not
0-APN.

Proof. Let us replace 2k by 2k + 1 in Dillon’s polynomial (16); as before, letting y = ax,
x 6= 0, a 6= 0, 1, in the Rodier equation for Dillon’s polynomial we obtain

0 = Ax3(a+ a2) +Bx2
k+2

(
a2 + a2

k
)

+ Cx2
k+1+3

(
a+ a2 + a3 + a2

k+1
+ a2

k+1+1 + a2
k+1+2

)
+Dx2

k+3
(
a+ a2 + a3 + a2

k
+ a2

k+1 + a2
k+2
)

+ Ex2
k+1+22

(
a4 + a2

k+1
)

+Gx2
k+1+2k+3

(
a2

k+1+2k+3 + (a+ 1)2
k+1+2k+3 + 1

)
= Ax3(a+ a2) +Bx2

k+2
(
a2 + a2

k
)

+ Cx2
k+1+3

(
1 + a+ a2

) (
a+ a2

k+1
)

+Dx2
k+3

(
1 + a+ a2

) (
a+ a2

k
)

+ Ex2
k+1+22

(
a4 + a2

k+1
)

(18)

+Gx2
k+1+2k+3

(
a2

k+1+2k+3 + (a+ 1)2
k+1+2k+3 + 1

)
.

We only consider combinations rendering non-quadratic functions. Let AC 6= 0,
H1(x) = Ax3 + Cx2

k+1+3 (similarly, for AD 6= 0, H2(x) = Ax3 + Dx2
k+3). The Rodier

equation (18) for H1 at 0 is therefore

Ax3(a+ a2) = Cx2
k+1+3

(
1 + a+ a2

) (
a+ a2

k+1
)
,

that is x2
k+1

= A(1+a)

C(1+a+a2)
(
1+a2k+1−1

) (recall that a 6= 0, 1 and if a is a primitive third root

of unity then the displayed equation above cannot hold for nontrivial solutions x). Since
this last equation always has nontrivial solutions, the function H1 cannot be 0-APN.

Next, H3(x) = Ax3 +Gx2
k+1+2k+3 whose Rodier equation at 0 is

Ax3(a+ a2) = Gx2
k+1+2k+3

(
a2

k+1+2k+3 + (a+ 1)2
k+1+2k+3 + 1

)
,

which is equivalent to (the expression in the parentheses on the right-hand side cannot
be zero, otherwise there are no non-trivial solutions)

x3·2
k

=
A(a+ a2)

G
(
a2k+1+2k+3 + (a+ 1)2k+1+2k+3 + 1

) . (19)

If n is odd, then equation (19) will always have nontrivial solutions. If n is even, taking
2k-th roots on both sides, we obtain

u3 =

(
A

G

)2−k

,
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where

u = x

(
a2

k+1+2k+3 + (a+ 1)2
k+1+2k+3 + 1

a+ a2

)2−k

is any of the 2k roots. The claim is inferred.
Next, take BC 6= 0, and H4(x) = Bx2

k+2 + Cx2
k+1+3. The Rodier equation at 0 is

now

x2
k+1 =

B
(
a2 + a2

k
)

C (1 + a+ a2)
(
a+ a2k+1

) .
If gcd(2k + 1, 2n − 1) = 1 (which happens if n is odd, or n ≡ 2 (mod 4) and k is even),
then the equation above has nontrivial solutions (certainly, for example, for a such that
a /∈ F∗4).

If BD 6= 0, then it is straightforward to check that the cubic H5(x) = Bx2
k+2 +

Dx2
k+3 is never 0-APN, since its Rodier equation at 0 is equivalent to

x =
B
(
a2 + a2

k
)

D (1 + a+ a2)
(
a+ a2k

) ,
which obviously has nontrivial solutions (certainly, for a such that the denominator
above is not zero).

If BG 6= 0, then the Rodier equation at 0 for H6(x) = Bx2
k+2 +Gx2

k+1+2k+3 is

x2
k+1+1 =

B
(
a2 + a2

k
)

G
(
a2k+1+2k+3 + (a+ 1)2k+1+2k+3 + 1

) .
If gcd(2k+1 + 1, 2n − 1) = 1 (which happens if n is odd, or n ≡ 2 (mod 4) and k is
odd), then the equation above has nontrivial solutions (certainly, for a such that the
denominator above is not zero, which can easily be achieved).

If CD 6= 0, the Rodier equation at 0 for the cubic H7(x) = Cx2
k+1+3 +Dx2

k+3 is

x2
k

=
D
(
a+ a2

k
)

C
(
a+ a2k+1

) .
Since gcd(2k, 2n − 1) = 1, the above equation always has nontrivial solutions (for an
a that is not a (2k+1 − 1) root of 1). A similar straightforward analysis can be done,

under CEG 6= 0, for the cubics H8(x) = Cx2
k+1+3 +Ex2

k+1+4 and H9(x) = Cx2
k+1+3 +

Gx2
k+1+2k+3.
If DE 6= 0, the Rodier equation at 0 for H10(x) = Dx2

k+3 + Ex2
k+1+4 renders

x2
k+1 =

D(1 + a+ a2)
(
a+ a2

k
)

E
(
a4 + a2k+1

) ,
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a similar equation as for H4. If DG 6= 0, the Rodier equation at 0 for H11(x) =

Dx2
k+3 +Gx2

k+1+2k+3 is similar to the one of H7.
If EG 6= 0, the Rodier equation for the quartic H12(x) = Ex2

k+1+4 +Gx2
k+1+2k+3 is

equivalent to

x2
k−1 =

E
(
a4 + a2

k+1
)

G
(
a2k+1+2k+3 + (a+ 1)2k+1+2k+3 + 1

) ,
which has a nontrivial solution x if gcd(k, n) = 1 (for any value of a for which the
denominator does not vanish).

Thus, the theorem is shown.

Certainly, there are other values of q, for which one can investigate the pAPN prop-
erty of various combinations of terms in Dillon’s polynomial. Furthermore, a fruitful
direction for future work is to check and find conditions for pAPN-ness of other classes
of multinomials, like the generalization proposed by Budaghyan and Carlet in [4], or per-
haps, as a separate and quite interesting venue, to find classes of pAPN permutations.
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