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Abstract
Skull stripping in brain imaging is the removal of the parts of images
corresponding to non-brain tissue. Fast and accurate skull stripping
is a crucial step for numerous medical brain imaging applications, e.g.
registration, segmentation and feature extraction, as it eases subsequent
image processing steps. In this work, we propose and compare two novel
skull stripping methods based on 2D and 3D convolutional neural networks
trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted
MRI images from 1681 healthy subjects. We investigated the performance of
the models by testing them on 927 images from 324 subjects set aside from
our collection of data, in addition to images from an independent, large brain
imaging study: the IXI dataset (n = 556). Our models achieved mean Dice
scores higher than 0.978 and Jaccard indices higher than 0.957 on all tests
sets, making predictions on new unseen brain MR images in approximately
1.4s for the 3D model and 12.4s for the 2D model. A preliminary exploration
of the models’ robustness to variation in the input data showed favourable
results when compared to a traditional, well-established skull stripping
method. With further research aimed at increasing the models’ robustness,
such accurate and fast skull stripping methods can potentially form a useful
component of brain MRI analysis pipelines.

1 Introduction
Magnetic resonance imaging of the brain
Magnetic resonance imaging (MRI) is a medical imaging technology (modality) used
in radiology to acquire information in space and time about structure (anatomy) and
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function (physiology) of tissues and organs in the body. MRI scanners use a combination
of strong magnetic fields, magnetic field gradients for spatial encoding and decoding
of nuclear spin populations, typically protons (e.g. water) in different chemical and
microstructural environments, radio waves, and image reconstruction algorithms working
in complex-valued Fourier space. This is used to generate 2D, 3D, 3D+time, or even
higher dimensional images of organs, providing information about tissue states and
physiological and biochemical processes. Among the most frequent organs subject to
MRI examinations is the brain. There are several reasons for this: (i) MRI measurements
can collect unsurpassed rich and detailed soft tissue information from the living brain in
health and disease with little risk for the patient, and at multiple times during a disease
process; (ii) compared to most other parts of the body the brain is an organ for which
invasive biopsies (tissue samples) are rarely indicated, for obvious reasons; (iii) the brain
within the skull can be kept rather stationary in the head coil during MR measurement
time (total examination time is usually 15 - 45 min) in contrast to e.g. the beating heart
or abdominal organs that move due to respiration and pulsations causing displacements
and movement artifacts that are challenging to correct for, and finally (iv) most of the new
MRI measurement techniques (e.g. high resolution structural MRI, diffusion MRI and
functional MRI) and advanced image analysis developments tend to first enter the brain
and neuro-imaging field before being adapted and applied to other organs.

Deep learning in brain imaging
Recent years’ surge of interest in image analysis approaches based on deep learning is a
case in point [1]. Considerable advances in computers’ ability to extract meaningful,
actionable information from complicated and heterogeneous datasets have resulted in
remarkable achievements in general computer vision, natural language processing, data
synthesis, sequence analysis, robotics, the analysis of tabular structured datasets, and
more. Driven by these advances, the field of artificial intelligence is experiencing a
tremendous amount of attention from researchers, industry, funding agencies, government
and entrepreneurs, leading to rapid progress in methods, applications and products.
Artificial intelligence in medicine has a long history, dating back to at least the early
1970s1, but the field hasn’t yet had a broad impact on medical practice [3]. Recently,
the possibilities of using deep learning on medical data has proven to be highly potent,
leading to a torrent of publications across many medical disciplines: radiology, psychiatry,
dermatology, pathology, ophthalmology, cardiology, electronic health records, drug
discovery, genome sequencing, and much more. See the continuously updated review
https://greenelab.github.io/deep-review.2

What is skull stripping?
Skull stripping, also called brain extraction, is the task of extracting the cerebrum and the
cerebellum, including cerebrospinal fluid (CSF) in the subarachnoid space from a given
3D MRI head acquisition (cf. Fig. 1). The brainstem is cut according to a specified level
(e.g. distal part of medulla oblongata), assuming this level of the central nervous system
is located within the field of view of the image. See the white arrow in Fig. 2 d) for an
illustration. Inclusion of extra-dural tissue, e.g. skull, scalp, muscle or fat, or exclusion of
brain parenchyma proper, e.g. cuts into gray matter or white matter, are considered skull
stripping failures.

1e.g. the Mycin system of [2] aimed at identifying bacterial infections and recommending antibiotics
2A soon-to-be-updated published version of the survey from 2018 is available in [4]

https://greenelab.github.io/deep-review


Figure 1: Anatomy of the head related to the brain extraction task. A coronal slice from a 3D
T1-weighted (T1w) MRI recording from the head showing the different anatomical structures
relevant to the segmentation task of skull stripping or brain extraction (data from [5]). Fully
automated segmentation of brain (ribbon) including gray matter (gm) and white matter (wm) of
the left and right hemisphere and the outer pial boundary of the brain (white continuous tracing
and the surface rendering in the small insert) was performed using Freesurfer v.7.1.1. CFS
= cerebrospinal fluid. A color version of the image is available here: https://tinyurl.com/
skull-NIK2020-figure1.

Skull stripping is important
Skull stripping is essentially a region of interest (ROI) segmentation procedure for
subsequent analysis of structural and functional image-derived properties, spatially
restricted to the brain, the brainstem (midbrain, pons, medulla oblongata) and the
cerebellum. Considering signal intensities, several tissues outside the skull will have
intensity distributions that overlap with principal tissue types within the brain. E.g.
skeletal muscle in the head have very similar signal intensities in T1w MRI acquisitions
to those observed in cerebral gray matter, and blood perfusion time courses or water
diffusion properties outside the skull might have similar shape or characteristics as
observed within the brain. Thus, for visualization purposes and for quantification (e.g.
mean value of an imaging-derived parameter with in the brain) a skull stripping procedure
is essential. Moreover, a spatially meaningful restriction of a 2D, 3D or 4D (multispectral
3D or 3D+time) image will help subsequent segmentation algorithms in further spatial
refinement and increased anatomical and functional granularity within the brain (e.g.
tissue classification in health and disease, or functional connectivity analysis from fMRI
recordings assuming all nodes in a network graph are located within the brain, or a sub-
region of the brain).

Skull stripping is difficult
There are many sources of difficulty for brain MRI image analysis methods, ranging from
scanner and acquisition protocol variation, to subject motion and varying head position
in the coil. One important challenge is the presence of a bias field. This is is usually
perceived as a low-frequency, smooth variation of intensities across a slice image that
degrades the MRI recording. The same tissue occurring at different locations within the
image can have different signal intensity, invalidating the piecewise constant property of
ideal images. Such MRI bias field is caused by an improper image acquisition process,
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such as radio frequency coil (B1) non-uniformity or inhomogeneity of the main magnetic
field (B0), this being more prevalent in older MRI scanners or in ultra high-field (B0≥ 7 T)
scanners. Trained radiologist are hardly influenced by this, as they easily compensate for
this non-biological intensity variation in image regions. However, the bias field can pose a
difficulty for quantitative image analysis algorithms assuming a spatially invariant relation
between signal intensity (gray level) distribution and underlying tissue type or state. In
the context of skull stripping and brain segmentation, a bias field correcting algorithm is
therefore typically applied as a preprocessing step. See Fig. 2 for an example.

Figure 2: Bias field correction and skull stripping using fsl_anat (same subject as in Fig. 1). a)
Original acquisition with substantial signal intensity inhomogeneity due to the presence of a bias
field. b) The bias field estimate (low-frequency and smooth intensity variation across the image).
c) Bias field corrected (i.e. suppressed) image. d) Skull stripping of the bias field corrected image.
Arrow indicate the cut of the brainstem, defining the lower boundary of the brain.

Related work
As it is such a fundamental task in brain image analysis there has been a lot of
research into skull stripping since the advent of brain MRI image analysis, leading to
many proposed methods. These can be roughly categorized into machine learning- and
conventional non-machine learning-based approaches. Among conventional methods
there’s a wide variety of approaches, based on surfaces, morphology, image intensity,
templates, or hybrids of these, resulting in a number of well-established, frequently used
skull stripping tools in brain image analysis pipelines [6], e.g. the Brain Extraction Tool
(BET) [7] of the FMRIB Software Library (FSL), v.6.0 [8], antsBrainExtraction
from Advanced Normalization Tools (ANTs) [9] and the 3dSkullStrip tool in AFNI
[10]. The machine learning approaches are either based on “classical" machine learning
models, e.g. SVMs, region growing, active contours, or based on deep neural networks.
It is the latter category that our own work belongs. Two recent illustrative examples of
related approaches are presented below.

In [11] the authors developed an automated skull stripping algorithm called HD-
BET that works for pre-contrast T1w, post-contrast T1w, T2w and FLAIR sequences.
Their three-dimensional U-Net-like CNN was trained on 6.586 MR images from 1568
exams of 372 patients collected at 25 different institutions in the EORTC-2610 study.
As ground truth brain masks they used BET as a starting point then had a radiologist do
visual inspection and corrections (i.e. a single rater). During training, the images were



resampled to isotropic spacing of 1.5mm3 and patches of size 1283 voxels were randomly
sampled from the four different input modalities before being fed to the model. They
used a relatively large set of data augmentation techniques: randomly mirroring the image
patches along all axes, scaling, rotation and elastic deformations, gamma augmentation,
adding additive Gaussian noise, and Gaussian blurring. They scored their model on five
independent test sets: one created using the data from 12 institutions in the EORTC-2610
study not present in their training data, and the three openly available datasets LPBA40
from LONI, NFBS and CC-359, for which manually constructed ground truth masks are
available. On T1w images from the EORTC-2610 study, their model had a median Dice
score of 97.6 (97.0-98.0 IQR) and a median Hausdorff distance of 3.3 (2.2-3.3 IQR). On
the three openly available datasets their model obtained a Dice score of 97.5 (17.4-97.7),
98.2 (98.0-98.4), 96.9 (96.7-97.1), respectively, when compared to the provided ground
truth reference masks.

The CompNets of [12] are multi-pathway two-dimensional U-Net-like models with
an embedded W-Net-like component [13], tasked with extracting information from both
the brain and non-brain tissue in the input images. Their models were trained on T1w
images from 406 subjects aged 18-96 from the OASIS dataset, using the brain masks
provided with the OASIS dataset release as ground truth labels. All images were of
size 2563, and their models were trained using 2D slices of the 3D images, with no
data augmentation. After making predictions, the masks for each slice were stacked into
3D images. No postprocessing of the resulting predicted brain masked was performed.
In a two-fold cross-validation setup were the OASIS subjects are equally divided into
two chunks for training and testing, their best model achieved an average Dice score of
98.27±0.30.

Main contributions of our work
1. We construct high-performing skull-strip models from a large, heterogeneous

dataset sourced from seven different brain imaging studies. Our results compare
favourably with other state-of-the-art models based on deep learning, although
direct comparisons between methods are difficult because of the lack of an agreed
upon ground truth. This is an issue we discuss in our work.

2. With a novel combination of the MONAI deep learning library and our own extension
of the fastai library to 3D problems, we are able to use multiple interesting state-
of-the-art techniques for the construction and training of models.

3. We evaluate the performance of our models on data completely unseen during
model construction. Some of which were gathered by a brain imaging study using
different combinations of scanners and scanning protocols than those represented
in the training data.

4. Once a skull stripping approach reaches a certain average performance level, then
arguably the robustness to variation in the input data becomes more important than
increased average performance. Our work indicates that CNN-based approaches to
skull stripping have some robustness advantages over traditional methods.

5. The data used in our study is available to researchers through various project
websites (linked below), easing reproductions and comparisons with other skull
stripping methods.



2 Methods and materials
Image datasets
We compiled a large collection of T1w images of healthy volunteers from a number of
different data sources3: ADNI, AIBL, IXI, PPMI, SLIM, Calgary-Campinas and SALD.
This is a highly heterogeneous collection, involving a large number of subjects, scanners
and scanner protocols, image sizes and voxel spacings, making it a challenge for any
model to make predictions, but also leading to models that are more robustness to such
variation. The studies were approved by the relevant Institutional Review Boards at each
site and informed consent was obtained from all subjects prior to enrollment. All methods
were carried out in accordance with relevant guidelines and regulation. Part of the data
material used was sourced from the ADNI database. The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI, positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of Mild Cognitive Impairment (MCI) and early
Alzheimer’s Disease (AD) [14]. We also used data collected by the AIBL study group.
AIBL study methodology has been reported previously [15].

Note that we selected the subjects that were marked as healthy throughout all these
longitudinal studies.

Image preprocessing and label generation
The steps used to automatically construct ground truth labels were performed using a set
of well-established, validated tools. There are no manual steps in this process, making it
easy to scale our approach to a large number of images. The DICOM recordings were first
converted to NIfTI data format using dicom2niix (v1.0.20190902, [16]). To reduce the
effect of scanner variation, we performed bias field correction, before producing masks
indicating the location of the brain. These last two steps were done using a combination
of multiple tools from the FMRIB Software Library (FSL) v.6.0 [8], collected in the
fsl_anat pipeline4: (i) reorientation to match the MNI152 standard template orientation
using reorient2std in FSL, (ii) bias field correction using FAST [17], (iii) linear and
nonlinear registration to standard MNI152 space using FLIRT and FNIRT [18, 19], from
which the brain was extracted [7]. The entire set of preprocessing steps takes on average
less than 10 minutes per volume on a standard workstation computer (e.g. on an Intel Core
i7-7700K CPU running Ubuntu 18.04 GNU/Linux). Finally, all volumes were resampled
to isotropic 1.0×1.0×1.0 mm3 voxel size with the use of the Convert3D Tool.

The preprocessed images and ground truth masks were used to create training and
testing datasets. Our 2D and 3D setups were based on exactly the same underlying
subjects and images, placed in common training and test sets. The training dataset for
our 3D model contained 2791 NIfTI files, while the two test sets, tes and IXI, consisted
of 934 and 561 images, respectively. For the 2D approach, each 3D volume (∼ 170 axial
slices) was split into a set of 2D axial cross-sections. The total number of image files used
to train the 2D model was then 469.116, while the two test datasets contained 157.036
and 95.520 image files, respectively.

3Links to all the data sources used in this work can be found here: https://github.com/MMIV-ML/
Skull-stripping-NIK2020

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat
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2D U-Net 3D U-Net

Optimizer Adam Adam

Base learning rate 0.0001 0.01

Loss function Binary Cross-Entropy Based on the Jaccard Index

Image size 128 x 128 160 x 160 x 92

Data augmentation Random rotation [−15°, 15°] and scaling [1.0, 1.05] Random rotation [−10°, 10°] and scaling [1.0, 1.1]

Dropout 0.5 0.5

Weight decay 0.01 0.01

Batch size 128 8

GPU NVIDIA Titan RTX 24GB 4 x NVIDIA Tesla V 1000 32GB

Table 1: Experimental settings for our 2D and 3D U-Net models.

Constructing and training the 2D and 3D models
We used two different U-Net models in this work: (i) A dynamic 2D U-Net using
a ResNet-34 model pre-trained on the ImageNet dataset for image feature extraction
(encoder) and PixelShuffle [20] with ICNR initalization [21] for upsampling (decoder),
implemented in the PyTorch-based fastai v1; (ii) a 3D U-Net implemented using
MONAI, a PyTorch based library for deep learning in healthcare imaging, and trained
using our own extension of the fastai library. The computer vision implementations
of the fastai library are mostly tailored to 2D imaging. We adapted the library to 3D
MR images by constructing new data loaders and data augmentation capabilities, as well
as adapting various 2D-specific functionality in the fastai library. This enables the use
of custom 3D CNNs while still supporting the highly impactful training techniques of
fastai. This includes the learning rate finder to find the optimum learning rate and the
one-cycle policy (e.g., learning rate changes during the training, related to what is called
superconvergence [22]). See Table 1 for details about experimental settings.

Performance evaluation
We evaluated the models using the two different test sets described above: (i) data put
aside from the training data repositories, 10% of each, making sure there were no subjects
appearing in both training and test and controlling for age by stratification over age
groups; (ii) the IXI dataset, i.e. data from a completely independent study of 561 subjects,
simulating a more realistic use-case for the models. For the hold-out set in (i), we report
both the overall results and the results on each repository.

As performance metrics we used the Sørensen-Dice similarity coefficient (DSC) and
the Jaccard index (Jacc), measuring the degree of overlap between the ground truth masks
generated by FSL and the model predictions. We also used the Hausdorff distance (Haus)
between the two masks as a metric. The DSC is the mean overlap of the masks, while



Jacc is the union overlap, and Haus is a measure of extreme deviation between the masks:

DSC =
2|X ∩Y |
|X |+ |Y |

, Jacc =
|X ∩Y |

|X |+ |Y |− |X ∩Y |
, Haus = max{(h(X ,Y ),h(Y,X)}

where h(X ,Y ) identifies the voxel x ∈ X that is farthest from any voxel of Y and measures
the distance from x to its nearest neighbor in Y . This means that h(X ,Y ) first looks for
the nearest voxel in Y for every voxel in X , and then the largest of these values are taken
as the distance, which is the most mismatched point of X . Similarly for h(Y,X), meaning
that Haus(X ,Y ) is able to measure the degree of mismatch between ground truth X and
prediction Y from the distance of the point of X that is farthest from any point of Y , and
vice versa.

A data filter
While looking at some training images and their corresponding ground truth labels,
we observed a few images that were incorrectly labeled as shown in Fig. 3.

Figure 3: Three instances of fsl_anat seg-
mentation failure observed in our dataset.

In order to cope with this issue, we trained
a model on the entire training set (training
and validation) for a few epochs, and
manually looked at the data having DSC
< 0.8.

By applying this approach we ended up
removing 14 images from the training set
before training our final model. Note that
we used the same Dice threshold to look at
predictions made on test data and IXI with
our final model, which led to removing
additional 12 images (7 test + 5 IXI). Note
also that all images that were removed were clear FSL failures, not prediction failures,
confirmed by visual inspection.

3 Results
Figure 4 depicts pair-wise 2D/3D comparative violin plots with jittering showing the
distribution of the Dice coefficient for all MRI examinations across the collection of
test data cohorts. From this, we observe close to negligible differences in performance
between our 2D and 3D models. This is further illustrated by the results in Table 2,
showing only small differences in the performance metrics.



Figure 4: Violin plot of the Dice scores obtained by our models on the test dataset. Column
names at the bottom of the plot refer to their database sources. The dots along the lower
tail of the DSC distributions indicate outliers. A color version of the image is available here:
https://tinyurl.com/skull-NIK2020-figure4.

Test IXI

Dice Jaccard Hausdorff Dice Jaccard Hausdorff

2D U-Net 0.9778 (0.0131) 0.9569 (0.024) 5.6711 (4.7215) 0.9791 (0.0076) 0.9591 (0.0140) 5.7811 (5.4826)

3D U-Net 0.9781 (0.0133) 0.9574 (0.024) 5.0558 (6.4009) 0.9796 (0.0077) 0.9601 (0.0140) 5.9220 (2.7330)

Table 2: The average (SD) values of Dice score, Jaccard Index and Hausdorff distance on the test
datasets (Test and IXI) for our 2D U-Net and 3D U-Net models.

On a standard CPU, making predictions, including loading the image data into
memory, on the two test datasets (test and IXI) took 1.38± 0.05 s and 1.37± 0.02 s
for the 3D model and 12.36±0.57 s and 11.82±0.54 s for the 2D model5.

4 Discussion
Using a large collection of T1w MR images sourced from a variety of openly available
datasets and a well-established set of FSL tools for automated generation of “ground
truth" brain masks, we have constructed 2D and 3D models for fast and accurate skull
stripping. On independent test sets our models were able to produce brain masks that
are very close to those produced by the much slower FSL-based process (∼ 10 mins
per volume), and even in some cases demonstrating higher robustness than the slower
approach (Fig. 5).

5On a single GPU the time for inference for the 3D model was 0.59± 0.05 s and 0.57± 0.01 s on the
two test datasets

https://tinyurl.com/skull-NIK2020-figure4


Figure 5: Comparison of (a) the brain mask produced by our 3D U-Net model on a dataset
from ADNI achieving a poor Dice score, DSC < 0.9, and the corresponding ground truth FSL
mask, and (b) the same comparison of the HD-BET model from [11]. Note the large amount
of misclassification (extra-cerebral detection) of brain tissue by the “ground truth" FSL skull
stripping procedure. This indicate that CNN-models may have some robustness advantages over
FSL and perhaps also other traditional skull stripping . A color version of the image is available
here: https://tinyurl.com/skull-NIK2020-figure5.

In our comparisons between the 2D and 3D approaches we found similar performance
as measured by Dice scores, Jaccard Index and Hausdorff distance, but also that the slice-
by-slice based predictions necessary for the 2D approach made it significantly slower.

To decrease the variation in the training data images we performed bias-field
correction before the images were fed to the network. This means that the networks
have seen less bias than naturally occurs. To investigate the impact of this design decision
we evaluated the trained models on the non-bias field corrected test images, reoriented to
the standard MNI152 orientation, and also on and image with a high bias field shown in
Fig. 2. Our 3D model had a Dice score of 0.978±0.014 on the test set and 0.979±0.008
on the IXI dataset when fed the uncorrected images. On the single high-bias field image
displayed in Fig. 2, the model had a Dice score of 0.956 on the bias-field corrected image
and a Dice score of 0.955 on the uncorrected image (Fig. 6).

Figure 6: Predicition on a T1w image recorded at our own institution [5]. A color version of the
image is available here: https://tinyurl.com/skull-NIK2020-figure6.

Having a fast and accurate skull stripping method can have practical utility as it
can speed up larger image processing pipelines, e.g. for subcortical segmentation or
segmentation of other regions of interest like brain tumors or lesions. Once the accuracy
reaches a certain threshold, issues related to defining the ground truth becomes more

https://tinyurl.com/skull-NIK2020-figure5
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important than increased accuracy at reproducing said ground truth labels. This can be
illustrated by the different labels used in our work and in the HD-BET work of [11]
described above. Feeding our test images through the trained HD-BET model results in
an average Dice score of 0.9615±0.0295. This does not mean that their model performs
worse than ours at skull stripping, only that the ground truth labels used when training the
models differs. Robustness also becomes more important than increasing the accuracy.
As indicated in Fig. 5, CNN-based models may have an advantage here, but this requires
further investigation.

Using our approach in a setting with various pathologies will require further
investigations of its robustness to such variation in the images, and also clarification of
“ground truth" consensus. Training the models on datasets that includes images with
pathologies, and also adding an automized MRI quality control system based on e.g.
MRIQC [23], would be natural next steps.

For thorough validation in a realistic setting, embedding the models in established
workflows is key. At our hospital we have recently established a PACS, RIS and EDC
system for research that integrates with the clinical systems. This enables real-world
testing of this and other image processing methods, a crucial step for bringing deep
learning research into practice [24].
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