

HVL-rapport nr. 14

2020

Proceedings of the PhD Symposium at
iFM’19 on Formal Methods: Algorithms,
Tools and Applications (PhD-iFM’19)

Violet Ka I Pun and Volker Stolz

© Violet Ka I Pun

Faculty of Engineering and Science

Department of Computer Science, Electrical Engineering and Mathematical Sciences

Høgskulen på Vestlandet

2020

HVL-rapport frå Høgskulen på Vestlandet nr. 14

ISSN 2535-8103

ISBN 978-82-93677-34-5

Utgjevingar i serien vert publiserte under Creative Commons 4.0. og kan fritt distribuerast,
remixast osv. så sant opphavspersonane vert krediterte etter opphavsrettslege reglar.
https://creativecommons.org/licenses/by/4.0/

Preface

This research report contains the proceedings of the PhD Symposium at iFM’19 on

Formal Methods: Algorithms, Tools and Applications (PhD-iFM’19), which was

held on 3 December, 2019 at Western Norway University of Applied Sciences,

Bergen, Norway. The program of the symposium consisted of an invited talk by

Andreas Griesmayer (ARM, Cambridge, UK) and 11 short presentations. Each

short presentation received advices and feedbacks from a senior researcher.

Among the 11 short presentations, 5 submitted their contributions in the form of

extended abstracts, which were included in this report.

Table of Contents

Static Detection of Distributed Denial of Service Attacks in Active
Object Systems
Elahe Fazeldehkordi, Olaf Owe, and Toktam Ramezanifarkhani 1

Learning From Families: Inferring Behavioral Variability From Soft-
ware Product Lines
Carlos Diego Nascimento Damasceno . 4

Coverage Analysis of SML Expressions in CPN Models
Faustin Ahishakiye, Volker Stolz, and Lars Michael Kristensen 7

Automatic Loop Invariant Generation Using Predicate Abstraction
for Dependence Analysis
Asmae Heydari Tabar, Richard Bubel, and Reiner Hähnle 10

Towards Better Data Structures for Numerics such as Optimal
Transport
Justus Sagemüller, Olivier Verdier, and Volker Stolz . 13

Static Detection of Distributed Denial of Service Attacks in

Active Object Systems

Elahe Fazeldehkordi, Olaf Owe, and Toktam Ramezanifarkhani

Department of Technology Systems / Department of Informatics, University of Oslo, Norway
{elahefa,olaf,toktamr}@ifi.uio.no

Extended abstract

Denial of Service (DoS) and Distributed DoS (DDoS) attacks, with even higher severity, are
among the major security threats for distributed systems, and in particular in the financial
sector where trust is essential.

In this paper, our aim is to develop an additional layer of defense in distributed agent systems
to combat such threats. We consider a high-level imperative and object-oriented language for
distributed systems, based on the actor model with support of asynchronous and synchronous
method interaction. This setting is appealing in that it naturally supports the distribution of
autonomous concurrent units, and e�cient interaction, avoiding active waiting and low-level
synchronization primitives such as explicit signaling and lock operations. It is therefore useful
as a framework for modeling and analysis of distributed service-oriented systems.

Our language supports e�cient interaction by features such as asynchronous and non-
blocking method calls and first-class futures, which are popular features applied in many dis-
tributed systems today. However, these mechanisms make it even easier for an attacker to
launch a DDoS attack, because undesirable waiting by the attacker can be avoided with these
mechanisms. We propose an approach consisting of static analysis. We identify and prevent
potential vulnerabilities in asynchronous communication that directly or indirectly can cause
call-based flooding of agents. More precisely, we adapt a general algorithm for detecting call
flooding to the setting of security analysis and for detection of distributed denial of service
attacks adding support for one-to-many and many-to-one attacks. The algorithm detects call
cycles that might cause overflow in the incoming queues of one or more communicating agents.
Each cycle may involve any number of agents, possible involving the attacked agent(s). The
high-level framework considered here is relevant for a large class of programming languages and
service-oriented systems.

The approach is limited to the software level, and we do not consider the network layer
nor the data transport layer. As we are using static detection, there will be a degree of over-
approaximation. The static approach could be complemented with runtime DDoS detection
checking, including also the network layer and the data transport layer. For more detail see a
full version of this paper [1].

As an example of a possible DoS attack, we have considered an attack on customers that
can be caused by a financial institution. This kind of attacks can be intentional by attackers or
unintentional due to a mistake from a financial institution. Here we considered the attack as
a result of an update from the financial institution that was supposed to give better e�ciency.
We imagine that the financial institution has a subscription service for customers, so that
customers can subscribe, to receive the latest news about shares, or unsubscribe. In order to
handle many customers, a number of proxies have been used. In the first version, there is a
get method on the proxy side, with the e↵ect that the proxy should wait for the information
related to shares and funds to be available, and then pass it on to the customers. Therefore,

1

Prevention of DDoS Attacks in Distributed Financial Agent Systems Fazeldehkordi, Owe, Ramezanifarkhani

Sp

Pd:1

Xp:2

Xp

Cs:4

Sp:5 Xp:6

get:1

Pd

Ng:3

put:5

put:6 put:2

put:1

cycle	A	
calls	=	{1,2,3,4,5}	
comps	=	{1,2,3,5}	

Ng

put:3

get:3 await
cycle	A	

cycle	B	

cycle	B	
calls	=	{4,6}	
comps	=	{1,6}	

Cs

put:4

call	edge	

flow	edge	

put	edge	

start

call/get/
await

put

Figure 1: The graph and call/comp sets for the original version of the program.

Sp

Pd:1

Xp:2

Xp

Cs:4

Sp:5 Xp:6

Pd

Ng:3

put:5

put:6 put:2

put:1

cycle	A:	
calls	=	{1,2,4,5}	
comps	=	{2,5}	

get:3

cycle	A	

cycle	B	

cycle	B:	
calls	=	{4,6}	
comps	=	{6}	

Ng

put:3

await

Cs

put:4

get:1

call	edge	

flow	edge	

put	edge	

start

call/get/
await

put

Figure 2: The graph and call/comp sets for the modified version of the program.

there is a waiting time here in the proxy and also heavy network tra�c since copies of the
information is transferring over network to all subscribers, however, customers might not need
the information so often. Therefore, the financial institution may think of another solution for
better e�ciency and shift the get method to the customer side, which means that the customer
will wait for the information to be available, instead of proxy, and when it’s available and
desired he/she can get it from the future reference. Now, the problem of heavy network tra�c
has been solved, and also the proxy does not need to wait and can respond to other requests at
any time. Nevertheless this solution can cause flooding cycles in the program and this can lead
to DoS attack. Following [2], the static analysis of the first version and the modified version
are shown in Figures 1 and 2. Cycles A and B in the modified version are both dangerous and
cause a DoS attack on the system since in contrast to the first version, there is no get method
in the cycles that can regulate the speed of the cycles.

References

[1] E. Fazeldehkordi, O. Owe, and T. Ramezanifarkhani. A language-based approach to prevent DDoS
attacks in distributed financial agent systems. In 1st International Workshop on Security for Finan-

2

Prevention of DDoS Attacks in Distributed Financial Agent Systems Fazeldehkordi, Owe, Ramezanifarkhani

cial Critical Infrastructures and Services (FINSEC’19), ESORICS’19. To appear in LNCS, Springer,
Sep., 2019. (16 pages).

[2] O. Owe and C. McDowell. On detecting over-eager concurrency in asynchronously communicating
concurrent object systems. J. Logical and Alg. Methods in Prog., 90:158 – 175, 2017.

3

Learning From Families: Inferring Behavioral Variability

From Software Product Lines

Carlos Diego Nascimento Damasceno

University of Sao Paulo (BR) and University of Leicester (UK)
damascenodiego@usp.br

Abstract
Family models are behavioral specifications extended with variability constraints that

enable e�cient model-based analysis of software product lines (SPL). Albeit reasonably
e�cient, the creation and maintenance of family models are time-consuming and error-
prone, especially if there are large models or crosscutting features. In this PhD project,
we investigate the problem of learning family models from SPLs. Our initial contributions
are two-fold: (1) partial-Dynamic L⇤M , a novel adaptive algorithm to speed up automata
learning by exploring models from alternative software versions on-the-fly ; and (2) FFSMDiff,
a fully automated technique to learn family models by comparing, merging and annotating
finite state machines with variability constraints. Our experiments have shown that our
techniques are more e�cient than the state-of-the-art of adaptive learning in terms of
queries and that succinct family models with fewer states can be learnt, especially if there
is high feature reuse. We envisage that our studies can leverage model-based techniques to
cases where models are non-existent or outdated and will scale better than independently
exploring several versions of evolving systems or product models from configurable systems.

1 Introduction

The modeling and analysis of software product lines (SPL) are known to be challenging; they
should incorporate variability to express product-specific behavior to avoid/minimize redundant
computations of shared assets and cater for feature interactions [8]. Thus, substantial e↵ort
has been spent for developing analysis techniques specifically tailored to product families.

Family-based analysis operates on a single artifact, referred to as family model, that is
annotated with variability constraints to express variability in terms of states and transitions
specific to product configurations. This modeling approach paves the way for e�cient model-
based testing and verification of SPLs. Nevertheless, the creation and maintenance of test
models are known to be time consuming and error-prone, especially if there are large SPLs or
crosscutting features; and the traceability between the family- and variability models can be
complex due to crosscutting features [3]. Added to this, as requirements change and product
instances evolve, the lack of maintenance may render models outdated [2]. To tackle these
issues, we proposed this PhD project to investigate how automata model learning [9] can be
lifted to the family-based level to support the extraction of family models from SPLs.

Model learning has been a popular approach to automatically derive behavioral models from
a system under learning (SUL) by posing tests as queries, i.e., transfer and separating sequences,
to reach and distinguish states [9]. It has been harnessed for a wide range of problems [1].
However, there is a lack of studies about how to cope with variability in time and space [6].

2 Approach

Applying model learning to real systems can be hampered by constant changes along their
life-cycle [5], as it may require learning from scratch. Adaptive learning attempts to speed up

4

Inferring Behavioral Variability from SPLs Damasceno C.D.N.

learning by reusing knowledge (i.e., sequences) from alternative/previous versions of a SUL.
Studies have shown that reusing sequences from pre-existing models can reduce the cost for
learning models from updates. However, after several changes, old separating and transfer
sequences may render redundant and deprecated queries, respectively [2].

2.1 Learning to Reuse: Adaptive Learning for Evolving Systems [2]

We improve upon the state-of-the-art by introducing partial-Dynamic L⇤M (@L⇤M), an adaptive
algorithm that runs an on-the-fly exploration of reused models to avoid irrelevant queries [2].

Software evolution
Δ

∂ L*M

1) On-the-fly
Exploration

2) Build
Experiment Cover

 Out

OTR' = (SR , Er , TR')

OTR = (SR, ER, TR)

 M
Q

s
/ E

Q
s

M
Q

s

manually specified
or learnt

OTu
Eu

Su
Su · Iu

off itv rain off

manually or
automatically built

OTr
Er

Sr
Sr · Ir

In

Mr

3) Algorithm L*M

SUL
(vupdt)

Reference
(vref)

Mu

 fo
rm

ul
at

es

itvprmoff rain

Figure 1: partial-Dynamic L⇤M

To achieve this, our algorithm explores
transfer sequences to find redundancy. Then,
given a subset of “useful” transfer sequences,
we designed an optimization technique to find
deprecated separating sequences and hence,
the smallest subset with equivalent separating
capability, named experiment cover. These
subsets of transfer and separating sequences
initialize the L⇤M algorithm for learning Mealy
machines [7]. Our experiments showed that
@L⇤M is less sensitive to evolution and more
e�cient (i.e., requires less queries) than the
state-of-the-art for adaptive learning. The
paper has been published at the iFM’19 [2].

2.2 Learning from Di↵erence:
An Automated Approach for Learning Family Models [3]

Within SPLs, similar challenges may emerge and hamper family-based testing and verification.
Families of software products share a common and managed set of features and hence, their
behavior tend to have commonalities and variabilities [8]. Thus, model learning for SPLs should
avoid redundant e↵ort, and at the same time cater for variability and feature interaction.

Product 1: (AGM & N & ¬B)

TRUE N
Start/1

Exit / 1

Start/0Exit/0
Pause/0

Product 2: (AGM & B & ¬N)

TRUE B
Start/1

Start/0
Exit/0

Exit/0
Pause/0

AGM

B N

AGM

B N

 Product 1 | 2: (AGM & N & ¬B) | (AGM & B & ¬N)

TRUE [B|N]
Start[B|N]/1

Exit[N]/1

Start[B|N]/0
Exit[B]/0

Exit[B|N]/0
Pause[B|N]/0 AGM

B NFi
nd

 c
om

m
on

 s
ta

te
s

+
Fe

at
ur

e
co

ns
tra

in
ts

 c
on

st
ru

ct
io

n

Sy
st

em
ca

lcu
la

tio
n

Figure 2: FFSMDi↵

We have designed FFSMDi↵ , an
automated technique to learn fam-
ily models by comparing, merg-
ing and annotating product models.
Our technique is presented in terms
of featured finite state machines
(FFSM) [4], a family-based notation
that unifies Mealy Machines from
SPLs by annotating states and tran-
sitions with variability constraints.
A schematic representation of our
approach is depicted in Figure 2.

Our technique allows to (i) learn succinct FFSMs from two product models, and (ii) include
novel product-specific behavior into an existing FFSM. Our results support the hypothesis that
family models can be e↵ectively merged into succinct FFSMs with fewer states, especially if
there is high feature sharing among products. These findings indicate that FFSMDi↵ paves
the way for family model learning techniques, which are still understudied; and e�cient family-
based analysis, even if there are no models specified a priori. The full paper has been published
at the 23rd International Systems and Software Product Line Conference (SPLC’19) [3].

5

Inferring Behavioral Variability from SPLs Damasceno C.D.N.

3 Final Remarks and Next Steps

Real systems pass through many changes along their life-cycle and, as we often do not know how
states may have changed, their models tend to become outdated. To deal with these issues,
we have designed two techniques for learning models from evolving systems [2] and product
families [3]. Our techniques improve upon the state-of-the-art and are complementary to each
other in the sense that they pave the way for an active family model learning framework.

in

 SUL
 Prod n

in

 SUL
 Prod 02

out

 SUL
 Prod 01

out

Active automata
learning

Active family
model learning

Product model

Prod 1

Product model

Prod 2

∂ family model

Prod {1,2}

∂ family model

Prod {1,2,n}

FFSMDiff

out

in

in

out

Figure 3: Active family model learning

As the next step of this PhD project, we
will propose the concept of active family model
learning. In Figure 3, we show our vision of
active family model learning. Our vision of ac-
tive family model learning stands for a frame-
work where SPLs can have their family mod-
els harvested by re-using partial family mod-
els, i.e., family models describing subsets of
valid product instances from SPLs, to steer an
active model learning process [9]. We envis-
age that such variability-aware model learning
framework will scale better than exhaustively
and independently applying adaptive learning
to product instances or software releases.

References

[1] Bernhard K. Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi, Martin Tappler, and
Masoumeh Taromirad. Model learning and model-based testing. In Amel Bennaceur, Reiner Hähnle,
and Karl Meinke, editors, Machine Learning for Dynamic Software Analysis: Potentials and Limits:
International Dagstuhl Seminar 16172, pages 74–100, Cham, 2018. Springer.

[2] Carlos Diego N. Damasceno, Mohammad Reza Mousavi, and Adenilso Simao. Learning to reuse:
Adaptive model learning for evolving systems. In Integrated Formal Methods - 15th International
Conference, IFM 2019, Bergen, Norway, December 2-6, 2019, Proceedings. Springer, 2019.

[3] Carlos Diego Nascimento Damasceno, Mohammad Reza Mousavi, and Adenilso da Silva Simao.
Learning from di↵erence: An automated approach for learning family models from software product
lines. In Proceeedings of the 23rd International Systems and Software Product Line Conference -
Volume 1, SPLC 2019, Paris, France, 2019. ACM Press.

[4] Vanderson Hafemann Fragal, Adenilso Simao, and Mohammad Reza Mousavi. Validated Test Mod-
els for Software Product Lines: Featured Finite State Machines, pages 210–227. Springer Interna-
tional Publishing, Cham, 2017.

[5] David Huistra, Jeroen Meijer, and Jaco van de Pol. Adaptive learning for learn-based regression
testing. In Falk Howar and Jiri Barnat, editors, Formal Methods for Industrial Critical Systems,
Lecture Notes in Computer Science, pages 162–177, Switzerland, 9 2018. Springer.

[6] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, Secaucus, NJ, USA, 2005.

[7] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In Ana Cavalcanti and Dennis R.
Dams, editors, FM 2009: Formal Methods, pages 207–222, Berlin, Heidelberg, 2009. Springer.

[8] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A classification
and survey of analysis strategies for software product lines. ACM Comput. Surv., 47, June 2014.

[9] Frits Vaandrager. Model learning. Commun. ACM, 60(2):86–95, January 2017.

6

Coverage Analysis of SML Expressions in CPN Models

Faustin Ahishakiye, Volker Stolz, and Lars Michael Kristensen

Western Norway University of Applied Sciences, Bergen, Norway
firstname.lastname@hvl.no

1 Introduction

Most of the software are being developed using model-driven software approaches. This allows
to make a step from code-driven to model-driven systems preserving the combination of pro-
gramming language and some models to obtain a scalable modeling language for concurrent
systems. This includes, for example, the use of the standard meta-language (SML) expressions
in a model. One potential candidate to ensure this combination is the colored Petri nets (CPNs)
model [1], which has extensively been used mainly in concurrent and distributed systems [6].
CPNs provide the formal foundation for modeling concurrency and synchronization and a pro-
gramming language provides the primitives for modeling data manipulation and creating com-
pact and parameterizable models. Coverage analysis is important for programs in relation to
fault detection and di↵erent structural coverage criteria are required for software safety and
quality design assurance [3]. However, there is no coverage analysis of the SML expressions
integrated into a CPN model, and the same structural coverage criteria used for source code
can also be applied here. In this paper, we combine the dynamic analysis (simulation and state
spaces) of CPN models with coverage analysis of SML guard and arc expressions. We present
some examples using CPN Tools based on modified condition decision coverage (MC/DC) cri-
terion. According to the definition of MC/DC [2, 5], each condition in a decision has to show
an independent e↵ect on that decision’s outcome by: (1) varying just that condition while
holding fixed all other possible conditions or (2) varying just that condition while holding fixed
all other possible conditions that could a↵ect the outcome. MC/DC is required by certification
standards such as, the DO-178C [4] in the domain of avionic software systems, as a coverage
criterion for safety critical software at the conditions level. It is highly recommended due to
its advantages of requiring few test cases (n + 1 for n conditions) and its uniqueness due to
the independence e↵ect of each condition. To observe individual sub-expressions of guards and
arcs, we have to add transitions to the CPN, which do not a↵ect the overall workings of the
net. Our state space exploration (SSE) and simulation results show full MC/DC coverage of
the arc and guard expression. However, the guard expression requires an extra transition to
acquire the false outcome before analyzing MC/DC. Results show that coverage analysis can
be a useful feature in a CPN model.

2 Arc and guard SML expressions coverage analysis

Based on MC/DC criterion, we intend to show that coverage analysis can be a useful feature
for a CPN model and how to collect coverage statistics. Consider the example of CPN model in
Figure 1. A set of inputs of type integer are the initial markings (inputs tokens to start place)
of our model and are equally distributed to the transition through the variable m and mapped
to three variables a, b and c. These variables are so far listed as conditions (a � 2, b 2, c � 5)
on the arc expression in order to find a set of input test cases as a Boolean list. The test cases
are evaluated through the arc SML expression (a � 2 ^ b 2) _ c � 5 (highlighted in Figure

7

Figure 1: CPN model with SML arc expression

Figure 2: CPN model with SML guard expression

1) which is appended to the tuple of conditions a � 2, b 2, and c � 5. The place called
”table” contains all conditions evaluations and the number of inputs which evaluated each row
is appended at the beginning of that row. One of the challenges with CPN is that to analyze
coverage, we need to modify the original CPN model. An observational function defining the
MC/DC criterion is written in a separate SML file and is called during the simulation. The
coverage analysis is summarized in the following steps:

1. For a CPN model with an arc SML expression, add the MC/DC coverage analyzer (con-
sisting of additional transitions and places to check coverage of each condition)

2. Start the state space exploration (SSE)

3. Run the simulation: the table contains evaluations of all conditions and the outcome.
The MC/DC covered conditions have the token which has moved from the not covered
place to the covered place. Otherwise the tokens remain in the not covered place.

Let the Boolean guard SML expression be (a1 ^ b1) _ c1, highlighted in Figure 2, the
”Executed” transition fires only if the predicate (decision) in the guard expression is evaluated
to true. Consequently, only the test cases with true outcome pass and the test cases with false
outcome are blocked. To evaluate MC/DC, we add a parallel transition named ”Blocked” with
a negated guard SML expression (highlighted in Figure 3) with respect to the first transition
guard expression, to allow all blocked test cases to pass through it. A table combining all the
test cases from both transitions is constructed as shown in Figure 3. At this stage, the MC/DC
coverage analysis proceeds in the same manner as explained in steps 2 and 3 above.

Table 1: SSE of standard CPN behavioral properties

Properties Nodes Arcs Execution time (seconds)
Arc SML expression without MC/DC 23781 122221 221

Arc SML expression with MC/DC 48837 189641 300
Guard SML expression without MC/DC 6561 34992 27

Guard SML expression with MC/DC 11052 64632 65

8

Figure 3: CPN model with MC/DC coverage analysis of SML guard expression

3 Performance evaluation and conclusion

SSE is the main approach to the verification of CPN models. It provides information regarding
the visited nodes, statistics on state space, and strongly connected components. It gives in-
formation on standard behavioral properties such as liveness (list of home markings, dead and
live transitions), boundedness (bounds for the number of tokens on each place), and statistical
information regarding size and time used for state space generation. Table 1 compares results
of the SSE for arc and guard expression model with and without MC/DC coverage analyzer.
The MC/DC coverage analyzer requires additional cost in terms of time and memory due to
the increasing number of arcs and nodes compared to the CPN model without the coverage
analyzer. The number of arcs, nodes, and execution time almost double when the coverage
analyzer is added. However, it provides the means to know if all bindings in the guard and arc
expressions are covered as shown in Figure 3. For the future work, we will reduce the number of
arcs and nodes added by extraction from state space. In addition, we will extend the coverage
analysis to if-then-else expressions, consider other coverage criteria such as branch coverage and
check related properties. Moreover, we plan to investigate how this analysis can be automated.

References

[1] Kurt Jensen and Lars M. Kristensen. Colored Petri Nets: A graphical language for formal modeling
and validation of concurrent systems. Communications of the ACM, 58:61–70, 05 2015.

[2] Chilenski John J. and Miller Steven P. Applicability of modified condition/decision coverage to
software testing. Software Engineering Journal, 9(5):193–200, 1994.

[3] Hayhurst Kelly J., Veerhusen Dan S., Chilenski John J., and Rierson Leanna K. A Practical Tutorial
on Modified Condition/Decision Coverage. Technical report, NASA, 2001.

[4] Frederic Pothon. DO-178C/ED-12C versus DO-178B/ED-12B: Changes and Improvements. Tech-
nical report, AdaCore, 2012.

[5] Leanna Rierson. Developing Safety-Critical Software: A Practical Guide for Aviation Software and
DO-178C Compliance. CRC Press, 2013.

[6] Hong Zhu and Xudong He. A theory of testing high level Petri nets. In Proceedings of International
Conference on Software: Theory and Practice, 16th IFIP World Computer Congress, 2000.

9

Automatic Loop Invariant Generation Using Predicate

Abstraction for Dependence Analysis⇤

Asmae Heydari Tabar, Richard Bubel, and Reiner Hähnle

Technische Universität Darmstadt, Department of Computer Science,
64289 Darmstadt, Germany

{heydaritabar,bubel,haehnle}@cs.tu-darmstadt.de

Abstract

Analysis or reasoning about data dependences must be fully automatically to be used
as part of compilers or parallelization tools. To this extent, we present our current work-in-
progress on automated reasoning of our logic-based dependence analysis –presented in our
main paper at iFM 2019 (15th International Conference on integrated Formal Methods)–
in presence of loops. For being able to reason about loops our approach relies on loop
invariants that have to be provided manually by the user. Here, we report on our ongoing
work on generating loop invariants for data dependence properties automatically based on
predicate abstraction.

1 Introduction

Analyzing and reasoning about data dependences in programs is necessary, for instance, to per-
form sound program optimizations or to parallelize programs while preserving the computation
behavior of the original program. In our main paper [3] we present a program logic and calculus
tailored towards dependence analysis. For a dependence analysis to be used in compilers (for
program optimization) or parallelization tools (e.g. DiscoPop [8]) high automation is crucial.

Our approach in [3] can be used to reason (almost) fully automatically about data depen-
dences while maintaining high precision. A major drawback is that in presence of loops, loop
invariants are required that have to be provided by the user. Here, we want to focus on how to
reduce (or even eliminate) this hidden interaction by automatically generating loop invariants
for data dependence properties.

2 A Program Logic for Data Dependence Analysis

In [3] we extend the program logic JavaDL [1] for sequential Java with a formal semantics of
read and write data dependences. State-of-the-art tools for parallelization use approaches that
over- as well as under-approximate to compute dependences and they lack a formal foundation.
But our approach can reason about dependences soundly and with full precision. It has been
implemented in the deductive verification tool KeY [1] for the target language Java.

A standard programming language semantics based on traces, i.e. finite or infinite sequences
of states, is insu�cient to characterize read and write dependences. Rather than supplying a
special purpose semantic construct, we decided to give a general solution. It is well-known
(e.g., [2]) that non-functional properties (such as dependences) can often be formally specified
with the help of ghost variables. These are memory locations not part of the program under
verification that record meta properties of program execution (e.g., memory access). In our

⇤This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.

10

easychair: Running title head is undefined. easychair: Running author head is undefined.

semantics we introduced a single ghost variable ma (for memory access) that records the whole
history of memory accesses in the current execution as a finite sequence. But how are properties
about the content of ma expressed, given that it is not directly accessible in the syntax? This
is achieved with memory access predicates that allow us to express data dependence properties
of locations: noRAW, noWAR, noWAW, noR, noW.

These predicates take a set of program locations ls as argument and evaluate to true i↵ in
the memory access history of the current state for no location in ls there is a read-after-write,
write-after-read, write-after-write, write or read, respectively. The axiomatization of these
predicates defines the relation between the memory accesses recorded by ma and the presence
or absence of their respective data dependence property.

3 Automatic Loop Invariant Generation

Using the defined predicates made us able to prove the absence of data dependences in loop-
free programs fully automatically. But for reasoning about loops, the user has to provide loop
invariants. This lack of automation in dependence analysis of programs containing loops was
one of the issues we mentioned as future work in the iFM paper [3].

Currently, we are investigating how to make use of loop invariant generation techniques
to derive the necessary invariants automatically. There are many ways for automated loop
invariant generation. In our case heuristics-driven techniques such as predicate abstraction [6]
looks promising. Predicate abstraction is a well-known abstract interpretation [4] technique in
which the abstract domain is constructed from a finite set of predicates over program variables.
These predicates can be generated in a heuristic manner from the program text or specified
manually by the programmer [5, 9]. Loop invariants are the Boolean combination of the given
set of predicates.

As pointed out above, we are optimistic to be able to generate loop invariants mostly
automatically via predicate abstraction, because: (i) the domain is specific since the loop
invariants mainly capture properties about memory access; (ii) main properties can be specified
by predicates; (iii) arguments of predicates (memory locations) can be easily abstracted or
approximated.

We want to use the introduced data dependence predicates (noRAW, noWAR, etc.) to construct
a set of atomic formulas from which the loop invariant is generated. Arguments of them
can be obtained based on the accessed program locations in the loop. Then, refined Boolean
combination of these predicates can form the part of the loop invariant which is concerned about
dependence properties. Functional properties of loops also have to be considered, for instance
to ensure that array accesses are within bounds. For these we rely on standard techniques from
predicate abstraction approaches, like [9].

R.Q. 1: How to determine an initial set of atomic data dependence formulas for
predicate abstraction? For the data dependence part we use the set of dependence predicate
symbols as starting point. To construct atomic formulas these predicates need to be equipped
with a set of program locations as argument.

A naive approach is to produce all combinations based on over-approximations of the ac-
cessed program locations in the loop. To reduce the number of candidate program location sets
to be considered, we plan to apply techniques that allow, for instance, to describe partitions of
an array following an approach like [7].

Hence, the above research question reduces to “How can we compute a safe abstraction or
approximation of program locations while having an acceptable level of precision?”

2
11

easychair: Running title head is undefined. easychair: Running author head is undefined.

R.Q. 2: How to reduce the number of loop invariant candidates in presence of data
dependence formulas? From the set S of atomic data dependence formulas determined
in R.Q. 1 loop invariant candidates are generated as Boolean combinations of the formulas
in S. A naive approach again leads to redundant combinations. For example, if we know
that noR({o, f}) is an invariant of the loop then dependent predicates like noRAW({o, f}) and
noWAR({o, f}) do not need to be considered as part of the loop invariant as they are implied.
To answer this research question we will investigate means to reduce the number of candidates
by exploiting these kind of subsumption relations.

References

[1] Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deductive
Software Verification—The KeY Book: From Theory to Practice, LNCS, vol. 10001. Springer (2016)

[2] Albert, E., Bubel, R., Genaim, S., Hähnle, R., Dı́ez, G.R.: A formal verification framework for
static analysis—as well as its instantiation to the resource analyzer COSTA and formal verification
tool KeY. Software & Systems Modeling 15(4), 987–1012 (2016)

[3] Bubel, R., Hähnle, R., Tabar, A.H.: A program logic for dependence analysis. In: Ahrendt, W.,
Tapia Tarifa, S.L. (eds.) Integrated Formal Methods - 15th International Conference, IFM 2019.
Lecture Notes in Computer Science, vol. 11918, pp. 83–100. Springer (2019)

[4] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Graham, R.M., Harrison, M.A., Sethi,
R. (eds.) Conference Record of the Fourth Symposium on Principles of Programming Languages.
pp. 238–252. ACM (1977)

[5] Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Launchbury, J.,
Mitchell, J.C. (eds.) The 29th Symposium on Principles of Programming Languages. pp. 191–202.
ACM (2002)

[6] Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
Computer Aided Verification, 9th Intl. Conf., CAV, Haifa, Israel. LNCS, vol. 1254, pp. 72–83.
Springer (1997)

[7] Hähnle, R., Wasser, N., Bubel, R.: Array abstraction with symbolic pivots. In: Ábrahám, E.,
Bonsangue, M.M., Johnsen, E.B. (eds.) Theory and Practice of Formal Methods - Essays Dedicated
to Frank de Boer on the Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol.
9660, pp. 104–121. Springer (2016)

[8] Huda, Z.U., Atre, R., Jannesari, A., Wolf, F.: Automatic parallel pattern detection in the algorithm
structure design space. In: 30th IEEE Intl. Parallel and Distributed Processing Symp. pp. 43–52.
IEEE Computer Society (2016)

[9] Weiß, B.: Predicate abstraction in a program logic calculus. In: Leuschel, M., Wehrheim, H. (eds.)
Integrated Formal Methods, 7th International Conference, IFM 2009. Lecture Notes in Computer
Science, vol. 5423, pp. 136–150. Springer (2009)

3
12

hQr�`/b "2ii2` .�i� ai`m+im`2b 7Q` LmK2`B+b bm+? �b
PTiBK�H h`�MbTQ`i

Cmbimb a�;2KɃHH2`1- PHBpB2` o2`/B2`1- �M/ oQHF2` aiQHx1

q2bi2`M LQ`r�v lMBp2`bBiv Q7 �TTHB2/ a+B2M+2b- "2`;2M- LQ`r�v
&Db�;-Qp2`-pbiQ'!?pHXMQ

�#bi`�+i

AM K�+?BM2 H2�`MBM;- Bi Bb Q7i2M M2+2bb�`v iQ +QKT�`2 /�i� /Bbi`B#miBQMbX PM2 r�v Q7
/QBM; i?�i Bb PTiBK�H i`�MbTQ`iX Ph Bb � mb27mH iQQH 7Q` �bb2bbBM; i?2 /Bz2`2M+2f/Bp2`;2M+2
Uq�bb2`bi2BM Q` 1�`i? KQp2` /Bbi�M+2V #2ir22M T`Q#�#BHBiv /Bbi`B#miBQMb- ?BbiQ;`�Kb 2i+X-
Q` 7Q` BMi2`TQH�iBM; #2ir22M i?2K- T�`iB+mH�`Hv BM +�b2 Q7 MQM@Qp2`H�TTBM; /Bbi`B#miBQMbX

h?2 *mim`B@aBMF?Q`M �H;Q`Bi?K Bb �M 2{+B2Mi K2�Mb Q7 +�H+mH�iBM; Ph 7Q` �`#Bi`�`v
K2i`B+b QM i?2 #�b2 bT�+2X >Qr2p2` Bi Bb BM T`�+iB+2 +�``B2/ Qmi QMHv QM � /Bb+`2iBb2/
`2T`2b2Mi�iBQM Q7 i?2 /Bbi`B#miBQMbX

q2 BKTH2K2Mi i?2 aBMF?Q`M �H;Q`Bi?K QM � /�i� bi`m+im`2 r?B+? ?�M/H2b i?2 BM}MBi2
/BK2MbBQM�HBiv Q7 i?2 +QMiBMmQmb /Bbi`B#miBQM bT�+2 i?`Qm;? H�xv 2p�Hm�iBQMX �T�`i 7`QK
b�72`- 2�bB2` ?�M/HBM; Q7 r?�i `2bQHmiBQM Bb M2+2bb�`v- i?Bb BM+Hm/2b i?2 �#BHBiv iQ 2tT`2bb
rBi? ivT2b i?2 K�i?2K�iB+�H K2�MBM; Q7 � 7mM+iBQM Q` /Bbi`B#miBQMX

Pm` aBMF?Q`M BKTH2K2Mi�iBQM /Q2b rQ`F- #mi ~Q�iBM;@TQBMi BMbi�#BHBiv Bb Q#b2`p2/ BM
+2`i�BM +�b2bX AMi2`2biBM;Hv- Bi /2T2M/b QM r?2i?2` i?2 /Bbi`B#miBQMb �`2 +QMbB/2`2/ �b
7mM+iBQMb Q` /m�H@7mM+iBQMb- � /BbiBM+iBQM i?�i /Q2b MQi �TT2�` BM i?2 +QMp2MiBQM�H �@T`BQ`B
}MBi2@/BK2MbBQM�H `2/m+iBQMX q2 /Bb+mbb i?Bb �M/ r?2i?2` Bi Bb TQbbB#H2 iQ mb2 ivT2b iQ
T`2p2Mi bm+? Bbbm2b- Q` iQ r�`M �#Qmi i?2KX

S`Q#�#BHBiv /Bbi`B#miBQMb �`2 i?2 7QmM/�iBQM Q7 bi�iBbiB+b �M/ Bib �TTHB+�iBQMbX AM i?2 /Bb+`2i2
+�b2- bm+? /Bbi`B#miBQMb �`2 `2�/BHv `2T`2b2Mi2/ #v � +QM+`2i2 T`Q#�#BHBiv p�Hm2 7Q` 2�+? TQbbB#H2
2p2Mi Ĝ BX2X �b � 7mM+iBQM 7`QK i?2 b2i Q7 2p2Mib X iQ T`Q#�#BHBiB2b [0, 1]X J�Mv �TTHB+�iBQMb
?Qr2p2` `2[mB`2- �i H2�bi +QM+2Tim�HHv- T`Q#�#BHBiv /Bbi`B#miBQM QM +QMiBMmQmb bT�+2b X U`2�H
BMi2`p�Hb- 1m+HB/2�M TH�M2b- K�MB7QH/b 2i+XVX ai�M/�`/ T`Q+2/m`2 Bb iQ /Bb+`2iBb2 bm+? bT�+2b iQ �
}MBi2@/BK2MbBQM�H �TT`QtBK�iBQM �M/ i?2M +�``v Qmi �Mv +QKTmi2` �H;Q`Bi?Kb QM i?2 `2bmHiBM;
/Bb+`2i2 bT�+2 Q7 /Bbi`B#miBQMbX

h?2 `2bmHiBM; pB2r bm;;2bib i?�i /Bbi`B#miBQMb +�M biBHH #2 mM/2`biQQ/ �b 7mM+iBQMb QM X-
�b T`Q#�#BHBiv /2MbBiv 7mM+iBQMbX AM/22/ i?Bb pB2r ?�b bQK2 K2`Bi i?�MFb iQ i?2 _B2bx@6`û+?2i
`2T`2b2Mi�iBQM i?2Q`2K- #mi 7mM/�K2Mi�HHv- /Bbi`B#miBQMb �`2 #2ii2` mM/2`biQQ/ �b UMQ`K�HBb2/V
7mM+iBQM�Hb, �b HBM2�` K�TTBM;b 7`QK i?2 bT�+2 Q7 7mM+iBQMb X → R iQ RX h?�i BM+Hm/2b BM
T�`iB+mH�` �HbQ /Bb+`2i2- TQBMi@/Bbi`B#miBQMb QM i?2 +QMiBMmQmb bT�+2 Ui?2 T`QiQivT2 #2BM; i?2
.B`�+ /Bbi`B#miBQM- r?B+? 2tT`2bb2b i?�i �HH i?2 2p2Mib ?�TT2M �i � bBM;H2 TQBMi QM i?2 `2�H HBM2-
7Q` 2t�KTH2 �HH �i yVX am+? /Bbi`B#miBQMb /Q MQi +Q``2bTQM/ iQ �Mv 7mM+iBQM X → R- #mi i?2v
/Q +Q``2bTQM/ iQ 7mM+iBQM�Hb (X → R)→ R- M�K2Hv TQBMirBb2 2p�Hm�iBQMX

� M�im`�H [m2biBQM iQ �bF Bb- ;Bp2M irQ /Bbi`B#miBQMb P` �M/ P;- ?Qr bBKBH�` Q` /BbbBKBH�`
i?2v �`2X h?Bb Bb Q7 BKK2/B�i2 BKTQ`i�M+2 BM K�+?BM2 H2�`MBM;X AM i?2 7mM+iBQM@pB2r Q7 /Bbi`B@
#miBQMb- � M�śp2 �ii2KTi rQmH/ #2 iQ bmKfBMi2;`�i2 i?2 TQBMi@rBb2 /Bz2`2M+2 #2ir22M i?2K UL1

/Bz2`2M+2Vc BM T`�+iB+2 i?2 EmHH#�+F@G2B#H2` (j) /Bp2`;2M+2 7�KBHv Bb KQ`2 +QKKQM- BM+Hm/BM;
i?2 C2Mb2M@a?�MMQM /Bp2`;2M+2 r?B+? +�M #2 mb2/ �b � T`QT2` K2i`B+ QM i?2 /Bbi`B#miBQM bT�+2X
�HH Q7 i?Qb2 b?�`2 i?2 T`Q#H2K i?�i i?2v /Q MQi i�F2 i?2 iQTQHQ;v Q7 i?2 #�b2 bT�+2 X BMiQ
�++QmMiX AM T�`iB+mH�`- TQBMi@/Bbi`B#miBQMb �`2 �HKQbi �Hr�vb +H�bbB}2/ �b BM}MBi2Hv 7�` �T�`i-
2p2M r?2M i?2 TQBMib HB2 �`#Bi`�`BHv +HQb2 BM XX h?Bb Bb 7Q` 2t�KTH2 � T`Q#H2K BM ;2M2`�iBp2

13

�/p2`b�`B�H M2irQ`Fb- H2�/BM; iQ KQ/2 +QHH�Tb2X _2bQHmiBQM@HBKBi f bK2�`BM; +�M �pQB/ i?Bb-
#mi �i i?2 Q#pBQmb +Qbi Q7 HQbb Q7 `2bQHmiBQM �M/ rBi?Qmi �//`2bbBM; i?2 mM/2`HvBM; T`Q#H2KX
q?�i +�M �//`2bb Bi (R) Bb brBi+?BM; iQ � K2i`B+ i?�i /Q2b +QMbB/2` i?2 iQTQHQ;v Q7 XX h?2
q�bb2`bi2BM K2i`B+ Q` 2�`i? KQp2` /Bbi�M+2 K2�bm`2b ?Qr 7�` i?2 ǳK�bbǴ BM i?2 /Bbi`B#miBQM P`
M22/b iQ #2 KQp2/ �+`Qbb X BM Q`/2` iQ Q#i�BM P;X h?Bb KQp2K2Mi T`Q+2bb- rBi? i?2 KBMBKmK
KQp2K2Mi@/Bbi�M+2- Bb +�HH2/ QTiBK�H i`�MbTQ`iX

aBMF?Q`M �H;Q`Bi?KX h?2 QTiBK�H i`�MbTQ`i #2ir22M P` �M/ P; +�M #2 b22M �b � DQBMi
/Bbi`B#miBQM γ- BX2X � /Bbi`B#miBQM QM X ×X- bm+? i?�i i?2 K�`;BM�H QM QM2 bB/2 Bb P` �M/ QM
i?2 Qi?2` P;- �M/ i?2 BMi2;`�i2/ +Qbi Bb KBMBK�HX h?2 aBMF?Q`M Ph �H;Q`Bi?K (k) Q#i�BMb i?Bb
Bi2`�iBp2HvX h?2 7QHHQrBM; Bb � MQp2H 7Q`KmH�iBQM Q7 i?Bb �H;Q`Bi?K- i�vHQ`2/ iQr�`/b /Bbi`B#miBQMb
�b /m�Hb Q7 �#bi`�+i 7mM+iBQM bT�+2bX

� 7mM+iBQM bT�+2 Bb � +QKKmi�iBp2 �H;2#`�- rBi? #Qi? �//BiBQM �M/ KmHiBTHB+�iBQM /2}M2/
TQBMi@rBb2X G2i A �M/ B #2 bm+? �H;2#`�bc r2 +QMbB/2` P` ∈ A∗ �M/ P; ∈ B∗- BX2X BM i?2 /m�H
bT�+2X h?2`2 Bb MQr � KmHiBTHB+�iBQM QT2`�iBQM �p�BH�#H2

(·) : A∗ ×A→ A∗

Q` (·) : B∗ ×B → B∗

(u · ψ)φ := u(ψ · φ)

>2`2- i?2 7mM+iBQM�H u ·ψ Bb /2}M2/ #v Bib `2bmHi 7Q` � 7mM+iBQM φ- �M/ ψ ·φ /2MQi2b i?2 TQBMirBb2
KmHiBTHB+�iBQM- BX2X bi�M/�`/ KmHiBTHB+�iBQM BM i?2 �H;2#`� A Q` B- `2bT2+iBp2HvX

6m`i?2`KQ`2 i?2`2 �`2 /BpBbBQM QT2`�iBQMb Q7 i?2 b�K2 ivT2b- i?�i mb2 i?2 TQBMi@rBb2 `2+BT@
`Q+�H Q7 φX h?Bb- HBF2 i?2 KmHiBTHB+�iBQM- Bb HBM2�` BM Bib H27i �`;mK2MiX

LQr- ;Bp2M � TQbBiBp2 ǳK�i`BtǴ- BM i?2 7Q`K Q7 � HBM2�` K�TTBM; K : A∗ → B �M/ Bib �/DQBMi
K∗ : B∗ → A- �M/ irQ UMQ`K�HBb2/V /Bbi`B#miBQMb P` ∈ A∗- P; ∈ B∗- i?2 aBMF?Q`M �H;Q`Bi?K
(8) T`QpB/2b � mMB[m2Hv@/2}M2/ γ : A→ B∗ Q7 i?2 7Q`K

γ = (v·) ◦K ◦ (u·)∗

rBi? u ∈ A∗, v ∈ B∗ bm+? i?�i γ(RA) = P; �M/ γ∗(RB) = P`X Ai /Q2b i?Bb #v Bi2`�iBp2Hv-
�Hi2`M�iBM;Hv mT/�iBM;

u← P`/K
∗
v; v ← P;/Ku.

h?2 HBM2�` QT2`�iQ`b 7Q` T`2KmHiBTHB+�iBQM- (u·) �M/ (v·)- �`2 KQ`2 +QKKQMHv /2b+`B#2/ �b
/B�;QM�H K�i`B+2bX

h?2 *mim`B@aBMF?Q`M �H;Q`Bi?K (k) mb2b i?Bb iQ Q#i�BM �M QTiBK�H i`�MbTQ`iX 6Q` A = B =
C(X) U+QMiBMmQmb 7mM+iBQMbV- Bi 2M+Q/2b i?2 K2i`B+ ‖ ‖ QM X BMiQ K �b

K : (C(X))∗ → C(X), K(w)(x) := w(\y '→ e−λ·‖x−y‖).

h?2M- i?2 }tTQBMi Q7 i?2 aBMF?Q`M Bi2`�iBQM rBHH #2 �M 2Mi`QTv@HBKBi2/ �TT`QtBK�iBQM iQ i?2
QTiBK�H i`�MbTQ`iX AM i?2 HBKBi λ→∞- i?Bb �TT`QtBK�iBQM #2+QK2b �`#i`�`BHv ;QQ/X

.�i� bi`m+im`2bX h?2 mbm�H r�v aBMF?Q`M@*mim`B Bb mb2/ Bb QM /Bb+`2i2 X Q` rBi? /Bb+`2@
iBb2/ `2T`2b2Mi�iBQMb Q7 i?2 7mM+iBQMb QM BiX AM i?Bb +�b2- C(X) �M/ C(X)∗ �`2 #Qi? ivT2b Q7
p2+iQ`bf�``�vb Q7 MmK#2`b UBM T`�+iB+2 mbm�HHv ~Q�iBM;@TQBMiVX h?2 KmHiBTHB+�iBQM QT2`�iBQM
Bb Dmbi 2H2K2Mi@rBb2 KmHiBTHB+�iBQM BM i?Qb2 �``�vbX >Qr2p2`- M�im`�H �b i?Bb K�v b22K- Bi Bb
FMQrM 7`QK MmK2`B+�H �TTHB+�iBQMb UBM T�`iB+mH�`- /Bz2`2MiB�H 2[m�iBQMbV i?�i bm+? � +?QB+2

14

Q7 bT�iB�H@TQBMib b�KTHBM; +�M #2 bm#QTiBK�HX hQ M�K2 QM2 Bbbm2- TQBMi@rBb2 KmHiBTHB+�iBQM
;2M2`�HHv H2�/b iQ 7`2[m2M+v �HB�bBM;X

AM a�;2KɃHH2` �M/ o2`/B2` kyRN (9)- r2 T`QTQb2/ � i`22 /�i� bi`m+im`2 iQ `2T`2b2Mi 7mM+iBQMb
�M/ i?2B` /m�Hb rBi?Qmi �Mv �@T`BQ`B `2bQHmiBQM +?QB+2X Ai Bb � bBKTH2 i`�Mb7Q`K�iBQM +HQb2Hv
`2H�i2/ iQ i?2 bi�M/�`/ >��` r�p2H2i i`�Mb7Q`KX

h?2 bm#D2+i Q7 i?Bb rQ`F Bb i?2 mb2 Q7 i?�i bi`m+im`2 �b i?2 `2T`2b2Mi�iBQM 7Q` /Bbi`B#miBQMb
BM aBMF?Q`M QTiBK�H i`�MbTQ`iX h?2 }`bi �ii2KTi r�b iQ i`2�i i?2 /Bbi`B#miBQMb �b 7mM+iBQMb
BM i?Bb r�p2H2i 2tT�MbBQM- �M/ mb2 i?2 KmHiBTHB+�iBQM /B`2+iHv TQBMirBb2 QM i?Qb2 7mM+iBQMb-
�M�HQ;Qmb iQ TQBMirBb2 QM �``�v QM i?2 bi�M/�`/ /Bb+`2iBb2/ BKTH2K2Mi�iBQMbX h?�i ?Qr2p2`
H2�/b iQ MmK2`B+�H BMbi�#BHBiv r?2M i`�MbTQ`iBM; MQM@Qp2`H�TTBM; /Bbi`B#miBQMb, M�K2Hv- i?2
K�`;BM�Hb Qb+BHH�i2 BM �M mM+QMi`QHH2/ K�MM2` `�i?2` i?�M +QMp2`;BM; iQr�`/b i?2 /2bB`2/ QM2b
U�b aBMF?Q`M ;m�`�Mi22b i?2v b?QmH/ /Q- ;Bp2M 2t�+i +�H+mH�iBQMbVX h?Bb �TT2�`b iQ �`Bb2 7`QK
~Q�iBM;@TQBMi BM�++m`�+B2b BM +QMM2+iBQM rBi? i?2 TQBMi@rBb2 +�M+2HH�iBQM i?�i Bb `2[mB`2/ iQ
`2T`2b2Mi +QM}M2/ /Bbi`B#miBQMb BM r�p2H2ib UQ` Qi?2` #�b2b i?�i �`2 MQi +QKTH2i2Hv HQ+�H #v
+QMbi`m+iBQMVX

lMHBF2 rBi? }MBi2@/BK2MbBQM�H p2+iQ`b- i?2 bi`m+im`2 7Q` /m�Hbf/Bbi`B#miBQMb BM Qm` >��`
`2T`2b2Mi�iBQM Bb MQi 2t�+iHv i?2 b�K2 �b 7Q` 7mM+iBQMb, i?2v ?�p2 #Qi? /Bz2`2Mi bi`B+iM2bb- �M/
/Bz2`2Mi r2B;?iBM; Q7 i?2 +Q2{+B2MibX Ai im`Mb Qmi i?�i brBi+?BM; iQ i?2 /m�H@bT�+2 pB2r Q7
aBMF?Q`M@*mim`B QmiHBM2/ BM i?2 T`2pBQmb b2+iBQM /Q2b #Qi? T`QKBb2 �HHQrBM; iQ `2T`2b2Mi +QM@
}M2/ /Bbi`B#miBQMb #2ii2` U2p2M TQBMif.B`�+@/Bbi`B#miBQMb �`2 TQbbB#H2V- Bi Bb �HbQ H2bb bmb+2TiB#H2
iQ i?2 ~Q�iBM;@TQBMi T`Q#H2KbX q2 /Bb+mbb `2�bQMb 7Q` i?Bb #2?�pBQm`X � K�BM r�v BM r?B+?
#Qi? `2T`2b2Mi�iBQMb /Bz2` Bb i?�i BM i?2 7mM+iBQM@bT�+2 pB2r- i?2 r�p2H2i +Q2{+B2Mib /2b+`B#BM;
� M�``Qr T2�F ;`Qr �b i?2 i`22 #`�M+?2b M�``Qr /QrM UbQ i?�i MmK#2`b Q7 p2`v /Bz2`2Mi K�;@
MBim/2 �`2 bmKK2/ mTV- r?2`2�b i?2 /m�H bT�+2 �Hr�vb QMHv +�`2b �#Qmi i?2 7mHH BMi2;`�H �+`Qbb
� bm#/QK�BM- r?B+? /Q2b MQi +?�M;2 r?2M xQQKBM; BM bQ i?�i bBKBH�`@K�;MBim/2 MmK#2`b �`2
bmKK2/ mT- r?B+? Bb ;2M2`�HHv KQ`2 T`2+Bb2 BM ~Q�iBM;@TQBMiX

_272`2M+2b
(R) JX �`DQpbFv- aX *?BMi�H�- �M/ GX "QiiQmX q�bb2`bi2BM ;2M2`�iBp2 �/p2`b�`B�H M2irQ`FbX AM S`Q@

+22/BM;b Q7 i?2 j9i? AMi2`M�iBQM�H *QM72`2M+2 QM J�+?BM2 G2�`MBM;- pQHmK2 dy Q7 S`Q+22/BM;b Q7
J�+?BM2 G2�`MBM; _2b2�`+?- T�;2b kR9Ĝkkj- AMi2`M�iBQM�H *QMp2MiBQM *2Mi`2- av/M2v- �mbi`�HB�-
yeĜRR �m; kyRdX SJG_X

(k) JX *mim`BX aBMF?Q`M /Bbi�M+2b, GB;?ibT22/ +QKTmi�iBQM Q7 QTiBK�H i`�MbTQ`i�iBQM /Bbi�M+2bX �`sBp
2@T`BMib- T�;2 �`sBp,RjyeXy3N8- kyRjX

(j) aX EmHH#�+F �M/ _X �X G2B#H2`X PM BM7Q`K�iBQM �M/ bm{+B2M+vX h?2 �MM�Hb Q7 J�i?2K�iB+�H
ai�iBbiB+b- kkURV,dNĜ3e- K�` RN8RX

(9) CX a�;2KɃHH2` �M/ PX o2`/B2`X G�xv 2p�Hm�iBQM BM BM}MBi2@/BK2MbBQM�H 7mM+iBQM bT�+2b rBi? r�p2H2i
#�bBbX AM S`Q+22/BM;b Q7 i?2 3i? �*J aA:SG�L AMi2`M�iBQM�H qQ`Fb?QT QM 6mM+iBQM�H >B;?@
S2`7Q`K�M+2 �M/ LmK2`B+�H *QKTmiBM; @ 6>SL* kyRNX �*J S`2bb- kyRNX

(8) _X aBMF?Q`MX .B�;QM�H 2[mBp�H2M+2 iQ K�i`B+2b rBi? T`2b+`B#2/ `Qr �M/ +QHmKM bmKbX h?2 �K2`B+�M
J�i?2K�iB+�H JQMi?Hv- d9U9V,9ykĜ9y8- RNedX

15

