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Preface

This research report contains the proceedings of the PhD Symposium at iFM’19 on
Formal Methods: Algorithms, Tools and Applications (PhD-iFM’19), which was
held on 3 December, 2019 at Western Norway University of Applied Sciences,
Bergen, Norway. The program of the symposium consisted of an invited talk by
Andreas Griesmayer (ARM, Cambridge, UK) and 11 short presentations. Each
short presentation received advices and feedbacks from a senior researcher.
Among the 11 short presentations, 5 submitted their contributions in the form of

extended abstracts, which were included in this report.
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Static Detection of Distributed Denial of Service Attacks in
Active Object Systems

Elahe Fazeldehkordi, Olaf Owe, and Toktam Ramezanifarkhani

Department of Technology Systems / Department of Informatics, University of Oslo, Norway
{elahefa,olaf,toktamr}@ifi.uio.no

Extended abstract

Denial of Service (DoS) and Distributed DoS (DDoS) attacks, with even higher severity, are
among the major security threats for distributed systems, and in particular in the financial
sector where trust is essential.

In this paper, our aim is to develop an additional layer of defense in distributed agent systems
to combat such threats. We consider a high-level imperative and object-oriented language for
distributed systems, based on the actor model with support of asynchronous and synchronous
method interaction. This setting is appealing in that it naturally supports the distribution of
autonomous concurrent units, and efficient interaction, avoiding active waiting and low-level
synchronization primitives such as explicit signaling and lock operations. It is therefore useful
as a framework for modeling and analysis of distributed service-oriented systems.

Our language supports efficient interaction by features such as asynchronous and non-
blocking method calls and first-class futures, which are popular features applied in many dis-
tributed systems today. However, these mechanisms make it even easier for an attacker to
launch a DDoS attack, because undesirable waiting by the attacker can be avoided with these
mechanisms. We propose an approach consisting of static analysis. We identify and prevent
potential vulnerabilities in asynchronous communication that directly or indirectly can cause
call-based flooding of agents. More precisely, we adapt a general algorithm for detecting call
flooding to the setting of security analysis and for detection of distributed denial of service
attacks adding support for one-to-many and many-to-one attacks. The algorithm detects call
cycles that might cause overflow in the incoming queues of one or more communicating agents.
Each cycle may involve any number of agents, possible involving the attacked agent(s). The
high-level framework considered here is relevant for a large class of programming languages and
service-oriented systems.

The approach is limited to the software level, and we do not consider the network layer
nor the data transport layer. As we are using static detection, there will be a degree of over-
approaximation. The static approach could be complemented with runtime DDoS detection
checking, including also the network layer and the data transport layer. For more detail see a
full version of this paper [1].

As an example of a possible DoS attack, we have considered an attack on customers that
can be caused by a financial institution. This kind of attacks can be intentional by attackers or
unintentional due to a mistake from a financial institution. Here we considered the attack as
a result of an update from the financial institution that was supposed to give better efficiency.
We imagine that the financial institution has a subscription service for customers, so that
customers can subscribe, to receive the latest news about shares, or unsubscribe. In order to
handle many customers, a number of prozies have been used. In the first version, there is a
get method on the proxy side, with the effect that the proxy should wait for the information
related to shares and funds to be available, and then pass it on to the customers. Therefore,
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Figure 1: The graph and call/comp sets for the original version of the program.
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Figure 2: The graph and call/comp sets for the modified version of the program.

there is a waiting time here in the proxy and also heavy network traffic since copies of the
information is transferring over network to all subscribers, however, customers might not need
the information so often. Therefore, the financial institution may think of another solution for
better efficiency and shift the get method to the customer side, which means that the customer
will wait for the information to be available, instead of proxy, and when it’s available and
desired he/she can get it from the future reference. Now, the problem of heavy network traffic
has been solved, and also the prozy does not need to wait and can respond to other requests at
any time. Nevertheless this solution can cause flooding cycles in the program and this can lead
to DoS attack. Following [2], the static analysis of the first version and the modified version
are shown in Figures 1 and 2. Cycles A and B in the modified version are both dangerous and
cause a DoS attack on the system since in contrast to the first version, there is no get method
in the cycles that can regulate the speed of the cycles.
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Learning From Families: Inferring Behavioral Variability
From Software Product Lines
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Abstract

Family models are behavioral specifications extended with variability constraints that
enable efficient model-based analysis of software product lines (SPL). Albeit reasonably
efficient, the creation and maintenance of family models are time-consuming and error-
prone, especially if there are large models or crosscutting features. In this PhD project,
we investigate the problem of learning family models from SPLs. Our initial contributions
are two-fold: (1) partial-Dynamic Ly, a novel adaptive algorithm to speed up automata
learning by exploring models from alternative software versions on-the-fly; and (2) FFSMpis¢s,
a fully automated technique to learn family models by comparing, merging and annotating
finite state machines with variability constraints. Our experiments have shown that our
techniques are more efficient than the state-of-the-art of adaptive learning in terms of
queries and that succinct family models with fewer states can be learnt, especially if there
is high feature reuse. We envisage that our studies can leverage model-based techniques to
cases where models are non-existent or outdated and will scale better than independently
exploring several versions of evolving systems or product models from configurable systems.

1 Introduction

The modeling and analysis of software product lines (SPL) are known to be challenging; they
should incorporate variability to express product-specific behavior to avoid /minimize redundant
computations of shared assets and cater for feature interactions [8]. Thus, substantial effort
has been spent for developing analysis techniques specifically tailored to product families.

Family-based analysis operates on a single artifact, referred to as family model, that is
annotated with variability constraints to express variability in terms of states and transitions
specific to product configurations. This modeling approach paves the way for efficient model-
based testing and verification of SPLs. Nevertheless, the creation and maintenance of test
models are known to be time consuming and error-prone, especially if there are large SPLs or
crosscutting features; and the traceability between the family- and variability models can be
complex due to crosscutting features [3]. Added to this, as requirements change and product
instances evolve, the lack of maintenance may render models outdated [2]. To tackle these
issues, we proposed this PhD project to investigate how automata model learning [9] can be
lifted to the family-based level to support the extraction of family models from SPLs.

Model learning has been a popular approach to automatically derive behavioral models from
a system under learning (SUL) by posing tests as queries, i.e., transfer and separating sequences,
to reach and distinguish states [9]. It has been harnessed for a wide range of problems [1].
However, there is a lack of studies about how to cope with variability in time and space [6].

2 Approach

Applying model learning to real systems can be hampered by constant changes along their
life-cycle [5], as it may require learning from scratch. Adaptive learning attempts to speed up
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learning by reusing knowledge (i.e.,

Damasceno C.D.N.

sequences) from alternative/previous versions of a SUL.

Studies have shown that reusing sequences from pre-existing models can reduce the cost for

learning models from updates.

sequences may render redundant and deprecated queries, respectively [2].

However, after several changes, old separating and transfer

2.1 Learning to Reuse: Adaptive Learning for Evolving Systems [2]

We improve upon the state-of-the-art by introducing partial-Dynamic Lj (JLy), an adaptive
algorithm that runs an on-the-fly exploration of reused models to avoid irrelevant queries [2].

To achieve this, our algorithm explores

transfer sequences to find redundancy. Then, ot ) o T
given a subset of “useful” transfer sequences, E o E
we designed an optimization technique to find = o om0 3 | Sy
deprecated separating sequences and hence, &. ToTa=sr En TR 1 M_,_z
the smallest subset with equivalent separating au\om;;gfggyﬂ;u“ L] :
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machines [7]. Our experiments showed that

OLy is less sensitive to evolution and more
efficient (i.e., requires less queries) than the
state-of-the-art for adaptive learning. The
paper has been published at the iFM’19 [2].

Software evolution
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(Vupat)
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Figure 1: partial-Dynamic Ly

2.2 Learning from Difference:
An Automated Approach for Learning Family Models [3]

Within SPLs, similar challenges may emerge and hamper family-based testing and verification.
Families of software products share a common and managed set of features and hence, their
behavior tend to have commonalities and variabilities [8]. Thus, model learning for SPLs should
avoid redundant effort, and at the same time cater for variability and feature interaction.

We have designed FFSMp;g, an
automated technique to learn fam-
ily models by comparing, merg-
ing and annotating product models.
Our technique is presented in terms
of featured finite state machines
(FFSM) [4], a family-based notation
that unifies Mealy Machines from
SPLs by annotating states and tran-
sitions with variability constraints.
A schematic representation of our
approach is depicted in Figure 2.

Our technique allows to (i) learn succinct FFSMs from two product models, and (ii) include
novel product-specific behavior into an existing FFSM. Our results support the hypothesis that
family models can be effectively merged into succinct FFSMs with fewer states, especially if
there is high feature sharing among products. These findings indicate that FFSMp;s; paves
the way for family model learning techniques, which are still understudied; and efficient family-
based analysis, even if there are no models specified a priori. The full paper has been published
at the 23rd International Systems and Software Product Line Conference (SPLC’19) [3].
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3 Final Remarks and Next Steps

Real systems pass through many changes along their life-cycle and, as we often do not know how
states may have changed, their models tend to become outdated. To deal with these issues,
we have designed two techniques for learning models from evolving systems [2] and product
families [3]. Our techniques improve upon the state-of-the-art and are complementary to each
other in the sense that they pave the way for an active family model learning framework.

As the next step of this PhD project, we A - inm
will propose the concept of active family model

out

learning. In Figure 3, we show our vision of - . morion a1

active family model learning. Our vision of ac-
tive family model learning stands for a frame- @ @
work where SPLs can have their family mod- Y e R A

Product model Product model 9 family model d family model

els harvested by re-using partial family mod- X o F o Kou ;
els, i.e., family models describing subsets of e ot @| | ;52;?.22?;!@@%—‘-" ---------- ‘:
valid product instances from SPLs, to steer an 7ottt T i
active model learning process [9]. We envis-
age that such variability-aware model learning

framework will scale better than exhaustively

and independently applying adaptive learning
to product instances or software releases.

Figure 3: Active family model learning
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1 Introduction

Most of the software are being developed using model-driven software approaches. This allows
to make a step from code-driven to model-driven systems preserving the combination of pro-
gramming language and some models to obtain a scalable modeling language for concurrent
systems. This includes, for example, the use of the standard meta-language (SML) expressions
in a model. One potential candidate to ensure this combination is the colored Petri nets (CPNs)
model [1], which has extensively been used mainly in concurrent and distributed systems [6].
CPNs provide the formal foundation for modeling concurrency and synchronization and a pro-
gramming language provides the primitives for modeling data manipulation and creating com-
pact and parameterizable models. Coverage analysis is important for programs in relation to
fault detection and different structural coverage criteria are required for software safety and
quality design assurance [3]. However, there is no coverage analysis of the SML expressions
integrated into a CPN model, and the same structural coverage criteria used for source code
can also be applied here. In this paper, we combine the dynamic analysis (simulation and state
spaces) of CPN models with coverage analysis of SML guard and arc expressions. We present
some examples using CPN Tools based on modified condition decision coverage (MC/DC) cri-
terion. According to the definition of MC/DC [2, 5], each condition in a decision has to show
an independent effect on that decision’s outcome by: (1) varying just that condition while
holding fixed all other possible conditions or (2) varying just that condition while holding fixed
all other possible conditions that could affect the outcome. MC/DC is required by certification
standards such as, the DO-178C [4] in the domain of avionic software systems, as a coverage
criterion for safety critical software at the conditions level. It is highly recommended due to
its advantages of requiring few test cases (n + 1 for n conditions) and its uniqueness due to
the independence effect of each condition. To observe individual sub-expressions of guards and
arcs, we have to add transitions to the CPN, which do not affect the overall workings of the
net. Our state space exploration (SSE) and simulation results show full MC/DC coverage of
the arc and guard expression. However, the guard expression requires an extra transition to
acquire the false outcome before analyzing MC/DC. Results show that coverage analysis can
be a useful feature in a CPN model.

2 Arc and guard SML expressions coverage analysis

Based on MC/DC criterion, we intend to show that coverage analysis can be a useful feature
for a CPN model and how to collect coverage statistics. Consider the example of CPN model in
Figure 1. A set of inputs of type integer are the initial markings (inputs tokens to start place)
of our model and are equally distributed to the transition through the variable m and mapped
to three variables a, b and ¢. These variables are so far listed as conditions (a > 2,b < 2,¢ > 5)
on the arc expression in order to find a set of input test cases as a Boolean list. The test cases
are evaluated through the arc SML expression (a > 2 A b < 2) V¢ > 5 (highlighted in Figure
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Figure 2: CPN model with SML guard expression

1) which is appended to the tuple of conditions a > 2,b < 2, and ¢ > 5. The place called
"table” contains all conditions evaluations and the number of inputs which evaluated each row
is appended at the beginning of that row. One of the challenges with CPN is that to analyze
coverage, we need to modify the original CPN model. An observational function defining the
MC/DC criterion is written in a separate SML file and is called during the simulation. The
coverage analysis is summarized in the following steps:

1. For a CPN model with an arc SML expression, add the MC/DC coverage analyzer (con-
sisting of additional transitions and places to check coverage of each condition)

2. Start the state space exploration (SSE)

3. Run the simulation: the table contains evaluations of all conditions and the outcome.
The MC/DC covered conditions have the token which has moved from the not covered
place to the covered place. Otherwise the tokens remain in the not covered place.

Let the Boolean guard SML expression be (al A bl) V cl, highlighted in Figure 2, the
” Executed” transition fires only if the predicate (decision) in the guard expression is evaluated
to true. Consequently, only the test cases with true outcome pass and the test cases with false
outcome are blocked. To evaluate MC/DC, we add a parallel transition named ” Blocked” with
a negated guard SML expression (highlighted in Figure 3) with respect to the first transition
guard expression, to allow all blocked test cases to pass through it. A table combining all the
test cases from both transitions is constructed as shown in Figure 3. At this stage, the MC/DC
coverage analysis proceeds in the same manner as explained in steps 2 and 3 above.

Table 1: SSE of standard CPN behavioral properties

Properties Nodes | Arcs | Execution time (seconds)
Arc SML expression without MC/DC 23781 | 122221 221
Arc SML expression with MC/DC 48837 | 189641 300
Guard SML expression without MC/DC | 6561 | 34992 27
Guard SML expression with MC/DC 11052 | 64632 65
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Figure 3: CPN model with MC/DC coverage analysis of SML guard expression

3 Performance evaluation and conclusion

SSE is the main approach to the verification of CPN models. It provides information regarding
the visited nodes, statistics on state space, and strongly connected components. It gives in-
formation on standard behavioral properties such as liveness (list of home markings, dead and
live transitions), boundedness (bounds for the number of tokens on each place), and statistical
information regarding size and time used for state space generation. Table 1 compares results
of the SSE for arc and guard expression model with and without MC/DC coverage analyzer.
The MC/DC coverage analyzer requires additional cost in terms of time and memory due to
the increasing number of arcs and nodes compared to the CPN model without the coverage
analyzer. The number of arcs, nodes, and execution time almost double when the coverage
analyzer is added. However, it provides the means to know if all bindings in the guard and arc
expressions are covered as shown in Figure 3. For the future work, we will reduce the number of
arcs and nodes added by extraction from state space. In addition, we will extend the coverage
analysis to if-then-else expressions, consider other coverage criteria such as branch coverage and
check related properties. Moreover, we plan to investigate how this analysis can be automated.
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Abstract

Analysis or reasoning about data dependences must be fully automatically to be used
as part of compilers or parallelization tools. To this extent, we present our current work-in-
progress on automated reasoning of our logic-based dependence analysis —presented in our
main paper at iFM 2019 (15th International Conference on integrated Formal Methods)—
in presence of loops. For being able to reason about loops our approach relies on loop
invariants that have to be provided manually by the user. Here, we report on our ongoing
work on generating loop invariants for data dependence properties automatically based on
predicate abstraction.

1 Introduction

Analyzing and reasoning about data dependences in programs is necessary, for instance, to per-
form sound program optimizations or to parallelize programs while preserving the computation
behavior of the original program. In our main paper [3] we present a program logic and calculus
tailored towards dependence analysis. For a dependence analysis to be used in compilers (for
program optimization) or parallelization tools (e.g. DiscoPop [8]) high automation is crucial.

Our approach in [3] can be used to reason (almost) fully automatically about data depen-
dences while maintaining high precision. A major drawback is that in presence of loops, loop
invariants are required that have to be provided by the user. Here, we want to focus on how to
reduce (or even eliminate) this hidden interaction by automatically generating loop invariants
for data dependence properties.

2 A Program Logic for Data Dependence Analysis

In [3] we extend the program logic JavaDL [1] for sequential Java with a formal semantics of
read and write data dependences. State-of-the-art tools for parallelization use approaches that
over- as well as under-approximate to compute dependences and they lack a formal foundation.
But our approach can reason about dependences soundly and with full precision. It has been
implemented in the deductive verification tool KeY [1] for the target language Java.

A standard programming language semantics based on traces, i.e. finite or infinite sequences
of states, is insufficient to characterize read and write dependences. Rather than supplying a
special purpose semantic construct, we decided to give a general solution. It is well-known
(e.g., [2]) that non-functional properties (such as dependences) can often be formally specified
with the help of ghost variables. These are memory locations not part of the program under
verification that record meta properties of program execution (e.g., memory access). In our

*This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.
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easychair: Running title head is undefined. easychair: Running author head is undefined.

semantics we introduced a single ghost variable ma (for memory access) that records the whole
history of memory accesses in the current execution as a finite sequence. But how are properties
about the content of ma expressed, given that it is not directly accessible in the syntax? This
is achieved with memory access predicates that allow us to express data dependence properties
of locations: noRAW, noWAR, noWAW, noR, noW.

These predicates take a set of program locations [s as argument and evaluate to true iff in
the memory access history of the current state for no location in s there is a read-after-write,
write-after-read, write-after-write, write or read, respectively. The axiomatization of these
predicates defines the relation between the memory accesses recorded by ma and the presence
or absence of their respective data dependence property.

3 Automatic Loop Invariant Generation

Using the defined predicates made us able to prove the absence of data dependences in loop-
free programs fully automatically. But for reasoning about loops, the user has to provide loop
invariants. This lack of automation in dependence analysis of programs containing loops was
one of the issues we mentioned as future work in the iFM paper [3].

Currently, we are investigating how to make use of loop invariant generation techniques
to derive the necessary invariants automatically. There are many ways for automated loop
invariant generation. In our case heuristics-driven techniques such as predicate abstraction [6]
looks promising. Predicate abstraction is a well-known abstract interpretation [4] technique in
which the abstract domain is constructed from a finite set of predicates over program variables.
These predicates can be generated in a heuristic manner from the program text or specified
manually by the programmer [5,9]. Loop invariants are the Boolean combination of the given
set of predicates.

As pointed out above, we are optimistic to be able to generate loop invariants mostly
automatically via predicate abstraction, because: (i) the domain is specific since the loop
invariants mainly capture properties about memory access; (ii) main properties can be specified
by predicates; (iii) arguments of predicates (memory locations) can be easily abstracted or
approximated.

We want to use the introduced data dependence predicates (noRAW, noWAR, etc.) to construct
a set of atomic formulas from which the loop invariant is generated. Arguments of them
can be obtained based on the accessed program locations in the loop. Then, refined Boolean
combination of these predicates can form the part of the loop invariant which is concerned about
dependence properties. Functional properties of loops also have to be considered, for instance
to ensure that array accesses are within bounds. For these we rely on standard techniques from
predicate abstraction approaches, like [9].

R.Q. 1: How to determine an initial set of atomic data dependence formulas for
predicate abstraction? For the data dependence part we use the set of dependence predicate
symbols as starting point. To construct atomic formulas these predicates need to be equipped
with a set of program locations as argument.

A naive approach is to produce all combinations based on over-approximations of the ac-
cessed program locations in the loop. To reduce the number of candidate program location sets
to be considered, we plan to apply techniques that allow, for instance, to describe partitions of
an array following an approach like [7].

Hence, the above research question reduces to “How can we compute a safe abstraction or
approximation of program locations while having an acceptable level of precision?”
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R.Q. 2: How to reduce the number of loop invariant candidates in presence of data
dependence formulas? From the set S of atomic data dependence formulas determined
in R.Q. 1 loop invariant candidates are generated as Boolean combinations of the formulas
in S. A naive approach again leads to redundant combinations. For example, if we know
that noR({o, f}) is an invariant of the loop then dependent predicates like noRAW({o, f}) and
noWAR({o, f}) do not need to be considered as part of the loop invariant as they are implied.
To answer this research question we will investigate means to reduce the number of candidates
by exploiting these kind of subsumption relations.
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Abstract

In machine learning, it is often necessary to compare data distributions. One way of
doing that is Optimal transport. OT is a useful tool for assessing the difference/divergence
(Wasserstein or Earth mover distance) between probability distributions, histograms etc.,
or for interpolating between them, particularly in case of non-overlapping distributions.

The Cuturi-Sinkhorn algorithm is an efficient means of calculating OT for arbitrary
metrics on the base space. However it is in practice carried out only on a discretised
representation of the distributions.

We implement the Sinkhorn algorithm on a data structure which handles the infinite
dimensionality of the continuous distribution space through lazy evaluation. Apart from
safer, easier handling of what resolution is necessary, this includes the ability to express
with types the mathematical meaning of a function or distribution.

Our Sinkhorn implementation does work, but floating-point instability is observed in
certain cases. Interestingly, it depends on whether the distributions are considered as
functions or dual-functions, a distinction that does not appear in the conventional a-priori
finite-dimensional reduction. We discuss this and whether it is possible to use types to
prevent such issues, or to warn about them.

Probability distributions are the foundation of statistics and its applications. In the discrete
case, such distributions are readily represented by a concrete probability value for each possible
event — i.e. as a function from the set of events X to probabilities [0,1]. Many applications
however require, at least conceptually, probability distribution on continuous spaces X (real
intervals, Euclidean planes, manifolds etc.). Standard procedure is to discretise such spaces to a
finite-dimensional approximation and then carry out any computer algorithms on the resulting
discrete space of distributions.

The resulting view suggests that distributions can still be understood as functions on X,
as probability density functions. Indeed this view has some merit thanks to the Riesz-Fréchet
representation theorem, but fundamentally, distributions are better understood as (normalised)
functionals: as linear mappings from the space of functions X — R to R. That includes in
particular also discrete, point-distributions on the continuous space (the prototype being the
Dirac distribution, which expresses that all the events happen at a single point on the real line,
for example all at 0). Such distributions do not correspond to any function X — R, but they
do correspond to functionals (X — R) — R, namely pointwise evaluation.

A natural question to ask is, given two distributions P, and Pg, how similar or dissimilar
they are. This is of immediate importance in machine learning. In the function-view of distri-
butions, a naive attempt would be to sum/integrate the point-wise difference between them (£*
difference); in practice the Kullback-Leibler [3] divergence family is more common, including
the Jensen-Shannon divergence which can be used as a proper metric on the distribution space.
All of those share the problem that they do not take the topology of the base space X into
account. In particular, point-distributions are almost always classified as infinitely far apart,
even when the points lie arbitrarily close in X. This is for example a problem in generative
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adversarial networks, leading to mode collapse. Resolution-limit / smearing can avoid this,
but at the obvious cost of loss of resolution and without addressing the underlying problem.
What can address it [1] is switching to a metric that does consider the topology of X. The
Wasserstein metric or earth mover distance measures how far the “mass” in the distribution P,
needs to be moved across X in order to obtain P,. This movement process, with the minimum
movement-distance, is called optimal transport.

Sinkhorn algorithm. The optimal transport between P, and P, can be seen as a joint
distribution +, i.e. a distribution on X x X, such that the marginal on one side is P, and on
the other P, and the integrated cost is minimal. The Sinkhorn OT algorithm [2] obtains this
iteratively. The following is a novel formulation of this algorithm, taylored towards distributions
as duals of abstract function spaces.

A function space is a commutative algebra, with both addition and multiplication defined
point-wise. Let A and B be such algebras; we consider P, € A* and Py € B*, i.e. in the dual
space. There is now a multiplication operation available

): A" x A— A*
): B* x B— B*
(u- )¢ :=u(t)-9)

Here, the functional w1 is defined by its result for a function ¢, and v - ¢ denotes the pointwise
multiplication, i.e. standard multiplication in the algebra A or B, respectively.

Furthermore there are division operations of the same types, that use the point-wise recip-
rocal of ¢. This, like the multiplication, is linear in its left argument.

Now, given a positive “matrix”, in the form of a linear mapping K : A* — B and its adjoint
K*: B* — A, and two (normalised) distributions P, € A*, P, € B*, the Sinkhorn algorithm
[5] provides a uniquely-defined v : A — B* of the form

or

(.
(.

v= ()oK o (u)°

with u € A*,v € B* such that y(14) = P, and v*(15) = P,. It does this by iteratively,
alternatingly updating
u <+ Pr/Kk vy v PefKu.

The linear operators for premultiplication, (u-) and (v-), are more commonly described as
diagonal matrices.

The Cuturi-Sinkhorn algorithm [2] uses this to obtain an optimal transport. For A = B =
C(X) (continuous functions), it encodes the metric || || on X into K as

K:(C(X))* = C(X), Kw)(z):=w(\yw— e N==vl)

Then, the fixpoint of the Sinkhorn iteration will be an entropy-limited approximation to the
optimal transport. In the limit A — oo, this approximation becomes arbtrarily good.

Data structures. The usual way Sinkhorn-Cuturi is used is on discrete X or with discre-
tised representations of the functions on it. In this case, C(X) and C(X)* are both types of
vectors/arrays of numbers (in practice usually floating-point). The multiplication operation
is just element-wise multiplication in those arrays. However, natural as this may seem, it is
known from numerical applications (in particular, differential equations) that such a choice
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of spatial-points sampling can be suboptimal. To name one issue, point-wise multiplication
generally leads to frequency aliasing.

In Sagemiiller and Verdier 2019 [4], we proposed a tree data structure to represent functions
and their duals without any a-priori resolution choice. It is a simple transformation closely
related to the standard Haar wavelet transform.

The subject of this work is the use of that structure as the representation for distributions
in Sinkhorn optimal transport. The first attempt was to treat the distributions as functions
in this wavelet expansion, and use the multiplication directly pointwise on those functions,
analogous to pointwise on array on the standard discretised implementations. That however
leads to numerical instability when transporting non-overlapping distributions: namely, the
marginals oscillate in an uncontrolled manner rather than converging towards the desired ones
(as Sinkhorn guarantees they should do, given exact calculations). This appears to arise from
floating-point inaccuracies in connection with the point-wise cancellation that is required to
represent confined distributions in wavelets (or other bases that are not completely local by
construction).

Unlike with finite-dimensional vectors, the structure for duals/distributions in our Haar
representation is not exactly the same as for functions: they have both different strictness, and
different weighting of the coefficients. It turns out that switching to the dual-space view of
Sinkhorn-Cuturi outlined in the previous section does both promise allowing to represent con-
fined distributions better (even point/Dirac-distributions are possible), it is also less susceptible
to the floating-point problems. We discuss reasons for this behaviour. A main way in which
both representations differ is that in the function-space view, the wavelet coefficients describing
a narrow peak grow as the tree branches narrow down (so that numbers of very different mag-
nitude are summed up), whereas the dual space always only cares about the full integral across
a subdomain, which does not change when zooming in so that similar-magnitude numbers are
summed up, which is generally more precise in floating-point.
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