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Abstract
A nonholonomic system is a mechanical system with velocity constraints not orig-
inating from position constraints; rolling without slipping is the typical example. A
nonholonomic integrator is a numerical method specifically designed for nonholo-
nomic systems. It has been observed numerically that many nonholonomic integrators
exhibit excellent long-time behaviour when applied to various test problems. The
excellent performance is often attributed to some underlying discrete version of
the Lagrange–d’Alembert principle. Instead, in this paper, we give evidence that
reversibility is behind the observed behaviour. Indeed, we show that many stan-
dard nonholonomic test problems have the structure of being foliated over reversible
integrable systems. As most nonholonomic integrators preserve the foliation and
the reversible structure, near conservation of the first integrals is a consequence of
reversible KAM theory. Therefore, to fully evaluate nonholonomic integrators one
has to consider also non-reversible nonholonomic systems. To this end we construct
perturbed test problems that are integrable but no longer reversible (with respect to
the standard reversibility map). Applying various nonholonomic integrators from the
literature to these problems we observe that no method performs well on all problems.
This further indicates that reversibility is the main mechanism behind near conserva-
tion of first integrals for nonholonomic integrators. A list of relevant open problems
is given toward the end.
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1 Introduction

Many models in mechanics and physics are described by dynamical systems with
constraints. If the constraints do not originate from position constraints (so called
holonomic constraints), the system is called nonholonomic. A typical example is
a disc rolling on a surface without slipping. The governing differential equations
are obtained from the Lagrange–d’Alembert principle (see Sect. 2), which is not
a variational principle (contrary to Hamilton’s principle in Lagrangian mechanics).
Therefore, nonholonomic systems do not, in general, preserve a symplectic structure,
although total energy is conserved.1 Motivated by the success of symplectic integra-
tors for Hamiltonian systems, various discrete versions of the Lagrange–d’Alembert
principle have nevertheless been suggested, with the objective of deriving “structure
preserving” time-stepping algorithms for nonholonomic systems [6–8,10,14,15,17].
Such algorithms are often called nonholonomic integrators; they are observed to
nearly conserve first integrals when applied to some standard nonholonomic test prob-
lems. The near conservation is often attributed to the discrete Lagrange–d’Alembert
principle.

In this paper we give numerical and theoretical results suggesting that reversibility
lies behind the observed good behaviour of nonholonomic integrators, regardless of
any underlying discrete Lagrange–d’Alembert principle. Our results in fact reveal
that the standard nonholonomic test problems have a bias: they are all reversible
integrable. We therefore construct a family of nonholonomic test problems that are
still integrable but not reversible (that is, not reversible with respect to a standard
reversibility map). We apply several nonholonomic integrators from the literature on
the new test problems. None of them exhibit structure preservation for all problems.

The underlying philosophy of nonholonomic integrators is well summarised by
Cortés Monforte and Martïnez [7, § 1] as follows: “by respecting the geometric
structure of nonholonomic systems, one can create integrators capturing the essen-
tial features of this kind of systems.” Because of our limited geometric understanding
of nonholonomic dynamics, it is, however, unclear whether nonholonomic integrators
at all possess special properties making them superior to other methods (in the same
sense as symplectic integrators for Hamiltonian systems possess properties making

1 Anopen question iswhether energy conservation is the only geometric property of nonholonomic systems.
That is, given a system on amanifoldN with a first integral, is it always possible to view it as the underlying
ODE of a nonholonomic system? [16].
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them superior to non-symplectic methods). Except for exact conservation of momen-
tum maps corresponding to horizontal symmetries [7, § 5], there are no theoretical
results pertaining to structure preserving properties of nonholonomic integrators (by
contrast, the excellent long-time behaviour of symplectic integrators for Hamiltonian
systems and reversible integrators for reversible system is fully explained by KAM
theory in combination with backward error analysis, see Hairer, Lubich, and Wan-
ner [12] and references therein). Nonholonomic integrators nevertheless often display
“very good energy behaviour” [9, § 1]. Such statements are based on experimental
evidence—how well the integrators perform on standard test problems. Thus, a non-
holonomic integrator is “structure preserving” if it nearly conserves the first integrals
of such test problems over long integration times. With this definition, if we extend
the test problem suite to include our unbiased nonholonomic problems, then, as far
as we know, there are no structure preserving nonholonomic integrators (all tested
integrators fail to be structure preserving for some of the problems). Our aspiration
for the new set of unbiased test problems is to serve the community as a more complete
suite for evaluating structure preservation of nonholonomic integrators.

We now summarize the contributions in the paper:

• We show that five classical nonholonomic test problems are part of a larger family
of nonholonomically coupled systems (Sects. 2, 2.2).

• We show that a subset of nonholonomically coupled systems (that includes many
classical test problems) are foliations over reversible integrable systems (Theo-
rem 3.3, Sects. 4, 5). We thereby obtain a new family of reversible integrable
nonholonomic systems that extends existing systems.

• We use the result in Theorem 3.3 together with reversible KAM theorem to explain
the excellent long-time behaviour of nonholonomic integrators observed experi-
mentally (Sect. 3.3).

• Wepropose new, perturbed test problems for nonholonomic integrators (Sect. 2.2).
While still integrable, these problems are not reversible and therefore avoid exper-
imental bias.

• We carry out numerical experiments with five commonly used nonholonomic inte-
grators on both reversible (biased) and non-reversible (unbiased) test problems
(Sect. 3). The behaviour in the numerical simulations is consistent with our pre-
dictions from the theory (Sect. 3.4). (One of themethods still yields good long-time
behaviour on one of the unbiased problems without explanation, but this method
fails for other test problems.)

The paper is organised as follows. In Sect. 2 we describe a family of nonholonomic
systems; this family contains some of the classical nonholonomic systems in the lit-
erature. In Sect. 3 we run numerical experiments on some particular systems in that
family, and measure the conservation of the integrals of those systems. In Sect. 3.3
we show how reversible KAM theory in combination with Theorem 3.3 explain near
conservation of integrals. In Sect. 3.4 we then verify our theory against the numerical
simulations. In Sects. 4 and 5 we prove results leading to Theorem 3.3.
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408 K. Modin, O. Verdier

2 Nonholonomically coupled systems

The Lagrange–d’Alembert principle states that a motion curve q(t), for a system with
Lagrangian function L(q, q̇) and nonholonomic constraints A(q)q̇ = 0 fulfils

δ

∫ b

a
L(q(t), q̇(t)) dt = 0,

for all virtual displacements δq with A(q(t))δq(t) = 0. Throughout this paper we
assume that the Lagrangian is of the form

L(q, q̇) = 1

2
q̇�q̇ − V (q),

for a potential function V . The equations of motion are then given by

q̈ = −∇V (q) + A(q)�λ

0 = A(q)q̇
(1)

where λ ∈ R
r are the Lagrange multipliers (see [4,6] for details).

As we shall see in Sect. 2.2, the continuously varying transmission, the nonholo-
nomic oscillator and nonholonomic particle, the knife edge, vertical rolling disk, are all
part of a greater family of nonholonomically coupled systems, where two independent
subsystems are coupled through the constraints.

Definition 2.1 A nonholonomically coupled system is a nonholonomic system with
Lagrangian of the form

L(x, ξ︸︷︷︸
q

, ẋ, ξ̇︸︷︷︸
q̇

) = 1

2
ẋT ẋ + 1

2
ξ̇2 − U (x) − V (ξ), x ∈ R

n−1, ξ ∈ R,

and constraints of the form

A(ξ) ẋ = 0, (2)

where for any ξ , the matrix A(ξ) has a kernel of dimension one. The (ξ, ξ̇ ) subsystem
is called the driving system.

Remark 2.2 Note that, in the examples of Sect. 2.2, some components of x, or ξ , may
be periodic (see Table 1). In the rest of the paper we will nevertheless assume that
x ∈ R

n−1 and ξ ∈ R, for the sake of simplicity.

Remark 2.3 Note that the matrix A in Eq. (2) is not the same as the one appearing
in (1). The difference is that now A depends only on ξ , and applies only on ẋ. This
slight abuse of notation should not be confusing.
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What makes nonholonomic integrators work? 409

Notice that the driving system is a self-contained unconstrained Lagrangian system.
As indicated, one may think of it as the “driver” for the remaining system.

We write the total energy H as

H(x, ξ, ẋ, ξ̇ ) = 1

2
ẋT ẋ + U (x) + h(ξ, ξ̇ ), (3)

where h(ξ, ξ̇ ) := 1
2 ξ̇

2 + V (ξ) is the energy of the driving system.
Given a nonholonomically coupled system, let k(ξ) be a kernel vector of A(ξ) such

that ‖k(ξ)‖ = 1. We then define

v := ẋTk(ξ).

Since k(ξ) spans the kernel of A(ξ), it follows from the constraint equation (2) that ẋ =
vk(ξ). Also note that since 1

2 ẋ
T ẋ = 1

2v
2, we have

H(x, ξ, ẋ, ξ̇ ) = 1

2
v2 + U (x) + h(ξ, ξ̇ ).

Both the total energy H and the energy h of the driving system are first integrals,
so we obtain that

d

dt
H = d

dt

(
1

2
v2 + U (x)

)
+ d

dt
h

︸︷︷︸
0

= v
dv

dt
− F(x)T ẋ = 0,

where F(x) := −∇U (x). We now use ẋ = vk(ξ), which, if v �= 0, gives

v̇ = k(ξ)TF(x). (4)

Note that, even though this derivation assumes v = 0, one can check that (4) is still
valid when v = 0 by directly computing the Lagrange multiplier from the equation of
motion (1).

The equation of motion are thus

ẋ = k(ξ)v

v̇ = k(ξ)TF(x)

where ξ is a solution of the independent Lagrangian system (the driving system in
Definition 2.1)

ξ̈ + V ′(ξ) = 0. (5a)
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Thus, every nonholonomically coupled system can be reduced to a system of ordinary
differential equations of the form (5), with first integrals given by the passenger energy

E(x, v) := 1

2
v2 + U (x) (6)

and the driver energy

h(ξ, ξ̇ ) = 1

2
ξ̇2 + V (ξ). (7)

Notice that the total energy (3) is the sum of the driver and passenger energies.

2.1 Quadratic potentials

We now assume that the potential is quadratic, i.e.,

U (x) = 1

2
xTK x − f Tx,

where K is a symmetric positive semi-definite matrix and f ∈ R
n−1 is a constant

vector. The corresponding force F(x) = − ∂U
∂x is given by

F(x) = −K x + f .

Using the spectral decomposition, removing eigenvectors corresponding to zero
eigenvalues, the matrix K can be factorised as

K = κTκ,

for a rectangular m × (n − 1) matrix κ of full rank. We define

y := κx,

k0(ξ) := κk(ξ),

and the projection

π(x, v, ξ, ξ̇ ) := (κx, v, ξ, ξ̇ ) = ( y, v, ξ, ξ̇ ). (8)

From (5) we have v̇ = k(ξ)T(−κTκx + f ), so we get v̇ = −k0(ξ)T y + k(ξ)T f .
The projection π therefore intertwines the original system (5) with the reduced system

ẏ = k0(ξ)v

v̇ = −k0(ξ)T y + k(ξ)T f
(9)
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What makes nonholonomic integrators work? 411

where again, ξ fulfills equation (5a). There is thus a stack of three systems above one
another, summarised by the following chain of projections:

(x, v, ξ, ξ̇ ) �−→ ( y, v, ξ, ξ̇ ) �−→ (ξ, ξ̇ ).

The system (9) can be written in matrix notations, using an auxilliary variable ε

with initial condition 1, as

d

dt

⎡
⎣ y

v

ε

⎤
⎦ =

⎡
⎣ 0 k0(ξ) 0

−k0(ξ)T 0 k(ξ)T f
0 0 0

⎤
⎦

⎡
⎣ y

v

ε

⎤
⎦ (10)

We observe that the matrix in (10) is an element of se(m + 1), the Lie algebra of the
semidirect product Lie group SO(m + 1) � R

m+1, where m is the rank of κ . If f is
zero, the group reduces to SO(m + 1). If m = 0, the group reduces to R. The Lie
algebra structure of Eq. (10) is central for the reversibility analysis in Sect. 4.

2.2 Examples

Here we give several examples of nonholonomic systems of the form presented in
Sect. 2.1. The standard formof these problems are used in the literature as test problems
for nonholonomic integrators. We also suggest new modifications of the standard
systems, constructed so that they fail to be reversible integrable (as detailed in Sect. 4).

A summary of the problems in this section in terms of the symbols in Sect. 2 is
given in Table 1.

2.2.1 CVT and nonholonomic particle

The continuously variable transmission (CVT) problem is a family of coupled non-
holonomic system of the form in Sect. 2.1 with

f = 0

and

κ =
[
1 0
0 1

]
.

It is a simple model for a variable transmission gearbox, as illustrated in Fig. 1. The
driving system determines the gear ratio. We consider different driver systems.

First, the harmonically driven CVT. In this case, the driver is a harmonic oscillator,
in other words, V (ξ) = ξ2/2. The nonholonomic constraint is then

A(ξ) = [
1 ξ

]
.

Under the name contact oscillator this case is considered as a test problem in [17].
The system is shown to be reversible integrable in [18]; together with reversible KAM
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Fig. 1 Illustration of the principle of the continuous variable transmission (CVT) gearbox. The driving
subsystem (ξ, ξ̇ ) determines the location of the belt which in turn determines the gear ration between the
shafts. A nonholonomic system describing the motion is given in Sect. 2.2.1

theory this gives a theoretical explanation of the excellent numerical results observed
in [17].

The vector spanning the kernel of A(ξ) is

k(ξ) = 1√
1 + ξ2

[−ξ

1

]
.

Since f = 0 and κ is the identity, the evolution matrix (10) is in this case

[
0 k(ξ)

−k(ξ)T 0

]
,

so the matrix subalgebra is so(3).
The second type of driver system is the pendulum driven CVT. Here, the gear

ratio (driving system) is governed by a nonlinear pendulum instead of the harmonic
oscillator. The potential for the nonlinear pendulum is now

V (ξ) = cos(ξ) − ε sin(2ξ)/2, (11)

where ε is an arbitrary perturbation parameter, and the nonholonomic constraint is
now given by

A(ξ) = [
1 sin(ξ)

]
.

The vector spanning the kernel of A(ξ) is

k(ξ) = 1√
1 + sin(ξ)2

[− sin(ξ)

1

]
.
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414 K. Modin, O. Verdier

We refer to the CVT problemwith the driving potential (11) as the pendulum driven
CVT. As we shall see in Sect. 3.2, ε �= 0 corresponds to a non-reversible perturbation,
which tends to destroy the good long-time behavior of reversible integrators.

For convenience, the equations of motion are

ẍ1 = −x1 + λ

ẍ2 = −x2 + sin(ξ)λ

ξ̈ = −∇V (ξ)

0 = ẋ1 + sin(ξ)ẋ2.

(12)

The last type of driver system is the nonholonomic particle, considered in [7]. It is
a degenerate case of harmonically driven CVT, where the spring of one of the shafts
has zero stiffness, so

κ = [
0 1

]
.

This gives

k0(ξ) = κk(ξ) = 1

1 + ξ2
.

Thus, the evolution matrix (10) is

[
0 k0(ξ)

−k0(ξ)T 0

]
,

so the Lie subalgebra is g = so(2).

2.2.2 Knife edge

The knife edge (as denoted in [4, §1.6]), or skate on an inclined plane (as denoted
in [19, §9.1] and [2, §1.2.5]), is given by

ẍ1 = 1 − λ sin(ξ)

ẍ2 = λ cos(ξ)

ξ̈ = 0

0 = −ẋ1 sin(ξ) + ẋ2 cos(ξ).

(13)

An illustration is given in Fig. 2. In terms of the data in Sect. 2, the system is defined
by

f =
[
1
0

]

V (ξ) = 0

A(ξ) = [− sin(ξ) cos(ξ)
]
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What makes nonholonomic integrators work? 415

Fig. 2 Illustration of the knife edge system (13). The contact point of the knife edge, or skate, is sliding
under gravity on the inclined plane. The direction of sliding is determined by the angle ξ ; one may think of
a “one-legged skater”, changing direction of his skate according to the driving system

and κ = 0 (it is a 0× 2 matrix), so y = [ ] (the empty vector). The kernel vector k(ξ)

is

k(ξ) =
[
cos(ξ)

sin(ξ)

]
, (14)

and the evolution equation of the reduced system (9) is simply

v̇ = k(ξ)T f = cos(ξ).

Since y = [ ], the matrix in (10) is given by

[
0 cos(ξ)

0 0

]
,

so the underlying group is R.
Consider now a slightly perturbed version of the knife edge, where

A(ξ) = [− sin(ξ) cos(ξ) − ε
]
.

When ε = 0 this is exactly the knife edge. As we shall see in Sect. 3.1, ε �= 0 implies
non-integrability.
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416 K. Modin, O. Verdier

Fig. 3 Illustration of the vertical disk, or rolling penny, given by (15). The rotation of the penny is described
by x3 (measured from the z-axis) and the position of the contact point by (x1, x2). The directional angle is
described by ξ . Because of conservation of angular momentum, we have ξ̈ = 0

2.2.3 Vertical rolling disk andmobile robot

The vertical rolling disk is a standard example of a nonholonomic system [4, §1.4].
It is given by

ẍ1 = λ1

ẍ2 = λ2

ẍ3 = λ1 cos(ξ) + λ2 sin(ξ)

ξ̈ = 0

0 = ẋ1 + cos(ξ)ẋ3
0 = ẋ2 + sin(ξ)ẋ3. (15)

An illustration is given in Fig. 3. In terms of Sect. 2, the data are

κ = 0

f = 0

A(ξ) =
[
1 0 cos(ξ)

0 1 sin(ξ)

]

V (ξ) = 0
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What makes nonholonomic integrators work? 417

so the kernel k(ξ) is given by

k(ξ) = 1√
2

⎡
⎣− cos(ξ)

− sin(ξ)

1

⎤
⎦ .

Since y is the empty vector and f = 0, the reduced Eq. (9) is simply v̇ = 0, so the
underlying group is the trivial group 1.

A modification of the vertical rolling disk is the mobile robot [7], for which

V (ξ) = sin(ξ).

Thus, the driving system for the mobile robot is

ξ̈ = − cos(ξ).

Everything else is identical to the vertical rolling disk.

3 Numerical experiments

In this section we give examples and counter-examples of good long-time behaviour
for nonholonomic integrators applied to the test problems of Sect. 2.2. The counter-
examples stem for the perturbed versions of the knife edge and the CVT. The two
perturbed problems correspond to two differentmechanisms destroying the good long-
time behaviour of nonholonomic integrators: (i) by removal of the integrable structure
(perturbed knife edge), and (ii) by removal of the reversible structure (perturbed CVT).

As representatives for nonholonomic integrators we use five different methods:

(1) DLAα suggested by Cortés Monforte and Martïnez [7], with α = 1/2. Since
α = 1/2, the resulting integrator is reversible. The method is given by Eq. (28)
in appendix Sect. A.1.

(2) DLAα with α = 0.4, making it a non-reversible integrator. The method is given
by Eq. (27) in appendix Sect. A.1.

(3) DLA0,1 suggested by McLachlan and Perlmutter [17]. The method is given by
Eq. (29) in appendix Sect. A.1.

(4) The leap-frog method (LF) for nonholonomic systems, suggested by [17] and
later revisited by Ferraro, Iglesias, and Martín de Diego [8]. The method is given
by Eq. (30) in appendix Sect. A.2.

(5) The discrete derivative method (DD), initially suggested for Hamiltonian systems
by Gonzalez [11] and later adopted to nonholonomic systems by Betsch [3]. The
method is given in Sect. A.3.
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Fig. 4 Evolution of the error |H − H(0)| of the energy integral for 5 methods applied to the knife edge. The
data are convoluted by a runningmean with a window of about 3 time units. For all methods except DLA0.4,
the error for the unperturbed system (ε = 0) is bounded in time. For the perturned system (ε = 0.1) all
methods except DD show energy drift

3.1 Knife edge

The initial data is

x1(0) = 0, x2(0) = 0, ξ(0) = π/2, ẋ1(0) = 0, ẋ2(0) = 0, ξ̇ (0) = 1.

This corresponds to an initially horizontal skate which is rotated by the driving system
thereby picking up speed in the direction of the skate due to gravity. The unperturbed
(ε = 0) and perturbed (ε = 0.1) systems are integrated using 5 methods:

DLA0.5,DLA0.4,DLA0,1,DD, and LF.

The stepsize for all methods is �t = π/10. The integration interval is [0, 100].
Notice that the dynamics of the driver system (ξ, ξ̇ ) is trivial for the knife edge

(simply ξ̈ = 0). Thus, all the integrators provide the exact solution of the driver
system (by integrator consistency). Consequently, all the integrators exactly preserve
the energy h of the driving system.

The evolution of the energy error |H(t)− H(0)| for all 5 methods is given in Fig. 4.
Wemake the following observations. For the unperturbed system, all integrators except
DLA0.4 exactly or nearly preserves the energy integral H . For the perturbed system,
all integrators except DD give a drift in the total energy H .

3.2 Continuously variable transmission (CVT)

The system here is the CVT with potential for the driver system given by (11). We
consider two different sets of initial data. First,

x1(0) = 1, x2(0) = 1, ξ(0) = 0, ẋ1(0) = 0, ẋ2(0) = 0, ξ̇ (0) = 1.8973666
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Fig. 5 Phase diagrams for the (ξ, ξ̇ ) subsystem of the CVT problem, with ε = 0 (left) and ε = 0.5
(right). The circular (oscillating driver) and upper (rotating driver) paths correspond, respectively, to the low
(H0 = 2.8) and high (H0 = 5.0) energy levels. Both diagrams are symmetric under the standard reversibility
map ξ̇ �→ −ξ̇ . Notice that the left diagram also is symmetric under the ‘non-physical’ reversibility map
ξ �→ −ξ , whereas the right diagram does not have this symmetry (due to the perturbation)

corresponding to total energy H0 = 2.8. Second,

x1(0) = 1, x2(0) = 1, ξ(0) = 0, ẋ1(0) = 0, ẋ2(0) = 0, ξ̇ (0) = 2.82842712

corresponding to total energy H0 = 5.0. The two different sets of initial data yield two
different types of behaviour for the driver system.When the energy level is low (H0 =
2.8) the phase diagram of the driver system corresponds to a nonlinear pendulum
going back and forth: we call this the oscillating driver. When the energy level is
high (H0 = 5.0) the phase diagram of the driver system corresponds to a nonlinear
pendulumwith enough kinetic energy so that it does not turn back, but keep on rotating
in the same direction: we call this the rotating driver. The setup is illustrated in Fig. 5.

The unperturbed (ε = 0) and perturbed (ε = 0.1) CVT systems, for both choices
of initial data, are integrated using 5 methods:

DLA0.5,DLA0.4,DLA0,1, LF, and DD.

The stepsize for all methods is �t = 0.1. The integration interval is [0, 3000].
The evolution of the passenger energy error |E(t)− E(0)| for all 5 methods is given

in Fig. 6. The evolution of the driver energy error |h(t) − h(0)| for all 5 methods is
given in Fig. 7. Since the CVT system is integrable (as detailed in Sects. 4 and 5), there
is an additional integral that is not available explicitly (see Proposition 5.3). Although
an explicit formula is not available, we can study this integral at the Poincaré section
given by sampling every period of the driver system. It can be interpreted as the latitude
along a certain direction (depending on the initial data) of the vector (x1, x2, v) with
v given by (4); we therefore call it the latitude integral. The evolution of the latitude
integral error (at the Poincaré section) for all 5 methods is given in Fig. 8.

Remark 3.1 Since the first preprint of this paper, the asymmetrically perturbed CVT
problem has been used as a test problem for energy–momentum type integrators [5]. In
that paper, however, the authors evaluate the performance solely based on conservation
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Fig. 6 Error in the passenger energy (6) for the 5methods applied to the pendulum driven CVT problem (12)
for both the oscillating and rotating driver, and two different values of ε. The data are convoluted by a running
mean with a window of 30 time units. In the bottom right diagram, a systematic drift of the energy occurs
for all methods but LF

of energy. This misses the point; to say if an integrators performs well or not on this
problem one has to study all the integrals, in particular the latitude integral (for which
there is no simple formula).

3.3 Mechanism for near conservation of integrals

The perturbation theory of Kolomogorov, Arnold, and Moser (KAM theory) comes in
two flavours: symplectic and reversible. In short, it states that Hamiltonian/reversible
perturbations of Hamiltonian/reversible integrable systems nearly preserve invariant
tori. In combination with backward error analysis of numerical integrators, KAM the-
ory rigorously explains near conservation of first integrals for symplectic/reversible
integrators applied to Hamiltonian/reversible integrable systems. For a thorough treat-
ment we refer to the monograph by Hairer et al. [12] and references therein.

KAM theory, however, is not readily applicable to nonholonomic systems: it applies
to integrable systems of ODE. A main result of this paper is that the class of nonholo-
nomically coupled systems introduced in Sect. 2 can be made compatible with the
setting of reversible KAM theory for backward error analysis of reversible integrators,
provided that the nonholonomic systems and integrators are reversible with respect
to the same reversibility map. We now state this result, which in turn relies on results
proved in Sects. 4 and 5.
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Fig. 7 Error in the driver energy (7) for the 5 methods applied to the pendulum driven CVT problem (12)
for both the oscillating and rotating driver, and two different values of ε. The data are convoluted by a
running mean with a window of 30 time units. The only method that does not nearly conserve the driver
energy is DD. Notice that even DLA0.4 gives a good behaviour, despite not being reversible: this is fully
explained by the fact that the driver system in itself is a Hamiltonian system and DLA0.4 is a symplectic
integrator in absence of constraints, so backward error analysis of symplectic integrators (cf. [12, § IX.3])
fully explains the near conservation

As always when analyzing constrained systems, the first step is to reduce the con-
strained system to an ordinary differential equation on a state space manifold M.
Details of how this is done for the nonholonomically coupled systems are given in
Sect. 4 below.

Definition 3.2 Consider a vector field X on M. We assume that there is a surjection
π : M → N . (In our case,M andN are vector spaces or cylinders, and this surjection
is just a linear map.) Assume that X descends to a vector field Y , i.e., π∗ X = Y . We
now say that X is fibrated over an R-integrable system if there is an involution R
defined onN , and the system Y is R-integrable (in the precise sense of Definition 5.1
below).

Theorem 3.3 The state space formulation of each unperturbed (ε = 0) coupled non-
holonomic system defined in Sect. 2.2 is fibrated over a reversible integrable system
(Definition 3.2).

Proof The theorem is a consequence of the results presented in Sects. 4 and 5 below,
in particular the final result Proposition 5.4.

We now describe the mechanism by which reversible KAM and backward error
analysis can be adopted to ODEs fibrated over integrable systems. Given a nonholo-
nomic system whose state space formulation is fibrated over a reversible integrable
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Fig. 8 Error in the latitude integral corresponding to the extra first integral due to integrable structure of
the CVT problem (see Proposition 5.3). This first integral is ‘hidden’: we have no explicit formula for it.
We can only compute it on a Poincaré section by sampling every period of the driver system. The data is
convoluted by a running mean with a window of 30 time units. If the numerical integrator is reversible, then
preservation of this integral is fully explained by reversible KAM theory, as discussed in Sect. 3.3. Notice
that this explains all but one of the results: For the oscillating driver, where reversibility in the driver system
is still preserved (corresponding to the green curve in Fig. 5), or when ε = 0, all reversible integrators
exhibit no drift. For the rotating driver with ε �= 0, every integrator fails except the leap-frog method. It is
an open problem to explain why the leap-frog method works for that particular system (note how leap-frog
exhibits drift for the perturbed knife edge problem, see Fig. 4)

system, with a projection π and a reversibility map (an involution) R : N → N as in
Definition 3.2, suppose that a nonholonomic integrator h : M → M is compatible
with π and R in the following sense:

(i) It descends to a method �h : N → N , i.e.,

�h ◦ π = π ◦ h .

(ii) The descending integrator �h preserves the reversibility structure R, i.e.,

R ◦ �h ◦ R = �−1
h .

Thus, �h is a reversible integrator for the reversible integrable system on N corre-
sponding to the vector field Y . By backward error analysis of numerical integrators
on manifolds (see [12, Ch. IX.2] or [13]) we then get, up to exponentially small terms
and for exponentially long times, that the integrator �h corresponds to the exact flow
of a reversible vector field Yh . By the reversible KAM Theorem [20, Th. 2], this
explains the near conservation of the first integrals for the reversible system on N .
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Since these integrals are unaffected by the fibre motion in the fibrationM → N , and
since the numerical integrator preserves the fibration, they are also nearly conserved
as first integrals of the system on M. This explains near conservation of integrals
for reversible perturbations of reversible integrable nonholonomic systems. The final
step is to verify that the conditions (i) and (ii) above for the integrators in 1. This is
straightforward. Consider, for example, the knife edge example (Sect. 2.2.2). In this
case, the projection π is just π(x, v, ξ, ξ̇ ) = (v, ξ, ξ̇ ). The condition (i) is true for all
methods in 1 except DD (the discrete derivative method). Next, the reversibility map
is ρ(v, ξ, ξ̇ ) = (v, ξ,−ξ̇ ). A direct calculations shows that condition (ii) holds for all
DLA methods, except DLAα with α �= 1

2 .
To summarize our findings: if a nonholonomic integrator is compatible with the

fibrated integrable structure of a nonholonomic coupled system, and at the same time
respects the reversible structure of the integrable system, then reversible KAM theory
fully explains the good long time behaviour. If, however, the nonholonomic integrator
fails to preserve either the fibration structure or the reversible structure of the underly-
ing integrable ODE, then one cannot expect good long time behaviour. The perturbed
problems are exactly constructed to break these structures: The perturbed Knife Edge
breaks the fibration over an integrable system, whereas the perturbed CVT for the high
energy level, although still fibrated over an integrable system, breaks reversibility. Let
us now discuss how our predictions adhere to the numerical results.

3.4 Explanation of the numerical results

From the previous section we extract the following properties of the 5 nonholonomic
integrators used in the examples above:

DLA0.5 DLA0.4 DLA0,1 DD LF

Preserves fibration
√ √ √ × √

Preserves reversibility
√ × √ √ √

Let us now go through the two numerical examples (knife edge and CVT) and relate
the performance of each method to our theoretical predictions.

By Theorem 3.3 the unperturbed (ε = 0) knife edge is fibrated over a reversible
integrable system. By our theoretical predictions, everymethod that preserves both the
fibration and the reversibility should performwell. And indeed they do, as confirmed in
the left diagram of Fig. 4.We also see that the non-reversible method, DLA0.4, exhibits
drift. This constitutes strong evidence that reversibility, not the discrete Lagrange–
d’Alembert principle, is behind near conservation. Notice that DD exactly preserves
the energy by construction. Consider now the more interesting case of the perturbed
(ε = 0.1) knife edge. Recall that this perturbation is constructed to destroy the fibration
structure, so in this case our theoretical results cannot be applied. In the right diagram
of Fig. 4 we see that all methods, except of course DD, exhibit energy drift. This shows
that reversibility alone is not enough for near conservation; it is more intricate.
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We now turn to the unperturbed (ε = 0) CVT problem. Recall that this problem has
three first integrals: (i) the driver energy, (ii) the passenger energy, and (ii) the more
complicated latitude integral. Also recall that there are two types of drivers depending
on the initial conditions: oscillating and rotation (see Fig. 5). By Theorem 3.3 the
system is fibrated over a reversible integrable system. As expected from our theory, we
see in the left columns of Figs. 6, 7 and 8 that themethods that are both fiber preserving
and reversible nearly conserve the integrals. Notice also that DD exhibit drift in all the
integrals, although total energy is exactly conserved by construction. This illustrates
that methods that are “forced” to preserve one of the integrals generally do not perform
well on other integrals.2 Notice in the left column of Fig. 7 that the driver energy
is nearly conserved for DLA0.4 despite this integrator not being reversible. This is
expected since the driver subsystem is independent from the rest of the dynamics and is
actually aHamiltonian subsystem. Thus, sinceDLA0.4 applied toHamiltonian systems
is a symplectic integrator (albeit not reversible), the standard theory of backward error
analysis for symplectic integrators explains the near conservation of the driver energy.
(The passenger energy, however, is not conserved for DLA0.4.)

Finally, we turn to the perturbed (ε = 0.5) CVT problem. It is constructed to still
be fibrated over an integrable system, but it is no longer reversible with respect to the
standard reversibility map (being integrable it is, of course, still reversible with respect
to a different, more complicated reversibility map). Actually, there are two possible
reversibility maps, reflection in the q-plane or the p-plane, and the reversible meth-
ods preserve both of these. ε �= 0 destroys the q-reversibility, but the p-reversibility
remains. However, when the driver is rotating the p-reversibility becomes “invisi-
ble” to the dynamics as illustrated in Fig. 5. Therefore, according to our theoretical
predictions, the fibre preserving and reversible methods should perform well with an
oscillating driver. Indeed they do, as can be seen in the upper left diagram of Figs. 6, 7,
and 8: only the non-reversible DLA0.4 and non-descending DD methods exhibit drift.
Since the independent driver subsystem is Hamiltonian, we also see for the rotating
driver at the bottom right of Fig. 7 that all methods that are symplectic when applied
to Hamiltonian systems preserve the driver energy, regardless of weather they are
reversible or not. So far, our theory is perfectly aligned with the numerical simulations
in “both directions”: whenever the theory is applicable we observe near conservation
(simply verifying the theoretical results), but also, whenever the theory is not appli-
cable we observe drift. According to this, we expect for a rotating driver (where our
theory does not apply) to see drift in the passenger energy in all the methods. In the
bottom right of Fig. 6 we observe drift for all methods but LF. This fact, that LF con-
serves the first integrals of a non-reversible nonholonomic problem, came as a surprise.
At this stage we have no explanation for it. We predict, however, that there is some
reversibility map, or some modified symplectic structure, shared by that particular
problem and the integrator map, and which would allow us to apply KAM theory.

In the remainder of the paper we prove results leading to Theorem 3.3 above.

2 There are generalizations of DD that preserves more than just one integral (so called energy–momentum
methods). We could have used such a method to preserve also the driver energy. However, our point is that
hidden integrals, for which explicit formulae are not available, are not conserved by energy–momentum
methods.
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4 Linear, periodic systems: averaging and reversibility

Systems of the form (10) in Sect. 2.2 can be written generally as

u̇ = A(ξ)u

where ξ is the solution of the driving system (5a) andA(ξ) takes values in a Lie algebra
g. Assume now that the energy function of the driving system h(ξ, ξ̇ ) = ξ̇2/2+ V (ξ)

has bounded level sets, so that solutions are periodic. After a change of variables, the
system (ξ, ξ̇ ) can be rewritten using an angle variable θ such that θ ′ = ω(h) for some
function of the energy h (the action variable). We are thus led to study systems of the
form

u̇ = A(θ)u, (16)

where A is periodic in θ .
The first aim of this section is to show that systems of the form (16) can be trans-

formed into autonomous linear systems by means of averaging. The second aim is to
give conditions under which this averaging transformation is a reversible map.

The results in this section (Theorems4.2 and4.4) are generalizations ofTheorem3.1
and Theorem 3.2 in [18].

4.1 Averaging

We first study averaging of systems of the form (16). Averaging means that after a
reparametrization, the system (16) is equivalent to a system of the same form but with
a constant matrix A, which can be interpreted as the average of A. We first reformulate
systems of the form (16) as follows:

Definition 4.1 Let g be a Lie subalgebra of gl(n, R). A g-periodic differential equation
is a system of the form

u′ = A
(
θ
)
u

θ ′ = 1
(17)

where (u, θ) ∈ R
n × R/Z and A : R/Z → g is a smooth mapping.

Theorem 4.2 Consider a g-periodic system (Definition 4.1). Then there is a smooth
change of variables

� : R
n × R/Z  (u, θ) �→ (v(u, θ), θ) ∈ R

n × R/Z

such that the g-periodic system (17) expressed in the new variables (v, θ) takes the
form

v′ = Av

θ ′ = 1
(18)

for a constant “average” element A ∈ g.
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Proof One defines the flow map (τ) as the solution operator of the differential
equation defined for all τ ∈ R by

dw(τ )

dτ
= A(τ )w(τ ) (19)

with initial condition at τ = 0—the initial time matters because the differential equa-
tion is not autonomous. This means that if w is a solution of (19), then

w(τ ) = (τ)w(0) ∀τ ∈ R, (20)

and vice versa.
Since A(τ ) ∈ g for all τ , the flow map after one period, i.e., (1), is an element

of G. Let G ⊂ GL(n, R), the connected Lie group corresponding to the Lie algebra g.
As the exponential is surjective from g to G, there exists A ∈ g such that

(1) = exp(A). (21)

We define the mapping � : R
n × R → R

n × R by �(u, τ ) = (
v(u, τ ), τ

)
and

v(u, τ ) := exp(Aτ)(τ)−1u.

Recall that, as A is periodic, for any integer n ∈ Z and any τ ∈ R we have (cf.
Floquet theory [1, § 28])

(n + τ) = (τ)(n). (22)

Now, v(u, τ ) is periodic in τ , of period one, because, due to (22), and the definition (21)
of A,

exp
(
A(τ + 1)

)
(τ + 1)−1 = exp(Aτ) exp(A)(1)−1(τ)−1 = exp(Aτ)(τ)−1.

As a result, the mapping � induces a mapping � : R
n × R/Z → R

n × R/Z. Note
that, as � is a smooth change of variables, so is �. We now proceed to show that �

sends solutions of (17) to solutions of (18).
Consider a solution

(
u(t), τ (t)

)
of the differential equation

u′(t) = A
(
τ(t)

)
u(t)

τ ′(t) = 1

Define t0 = −τ(0). Clearly we then have τ(t) = t − t0 and u′(t) = A(t − t0)u(t).
By defining w(σ ) := u(σ + t0) we obtain w′(σ ) = u′(σ + t0) = A(σ )u(σ + t0) =
A(σ )w(σ ), so w is a solution of (19). As a result, w(σ ) = (σ)w(0), which, using
u(t) = w

(
τ(t)

)
, gives u(t) = 

(
τ(t)

)
u(t0). We thus obtain that along a solution(

u(t), τ (t)
)
,


(
τ(t)

)−1u(t) = u(t0).
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As a result, we obtain
v′(t) = A exp(Aτ)u(t0) = Av(t),

which proves the result for the mapping � and thus also for �.

4.2 Reversibility

We now turn to the question of whether the mapping � defined in Theorem 4.2 can
preserve a reversibility structure. We namely equip the space R

n × R/Z with a linear
involution R, defined as

R(u, θ) := (ρu,−θ), (23)

for a given linear involution ρ.
We first observe the following condition on ρ which will turn out to be essential

for the preservation of the reversibility structure R in Theorem 4.4.

Lemma 4.3 The g-system (Definition 4.1) is reversible with respect to R if and only if

ρA(θ)ρ = −A(−θ). (24)

Proof Let f (u, θ) := (A(θ)u, 1) be the vector field defining the differential equa-
tion (17).

As R is linear, reversibility with respect to R means that− f (u, θ) = R f (R(u, θ)).
Note that f (R(u, θ)) = f (ρu,−θ) = (A(−θ)ρu, 1). This gives the condition
(−A(θ)u,−1) = (ρA(−θ)ρu,−1), which proves the claim. ��

We now turn to the main result of this section.

Theorem 4.4 Assume that (24) holds. Assume further that the average matrix A ∈ g
defined in Theorem 4.2 is such that

A ⊂ �,

where � is a subset of g where the exponential is injective, and such that −� ⊂ �,
and that ρ�ρ ⊂ �. Then the averaging mapping � : R

n ×R/Z → R
n ×R/Z, defined

in Theorem 4.2, preserves reversibility, i.e., R ◦ � = � ◦ R.

Proof Recall that the flow map  is defined by (20). Using (24), one shows that

ρ(−τ) = (τ)ρ.

This implies in particular that ρ(−1) = (1)ρ, so using (22), we obtain

ρ(1)−1 = (1)ρ. (25)

Now, recalling the definition of A in (21), we notice that (25) implies that

exp(−A) = ρ exp(A)ρ = exp(ρAρ).
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Fig. 9 An illustration of the setting of the examples treated in this paper. The actual system is represented by
the spirals in the manifoldM. The system, however, sits above an integrable system, which foliation in tori
is represented downstairs on N . If the numerical integrator descends to a reversible integrator downstairs,
then there is no drift in the first integral of that system. Moreover, as the energy depends only on these
invariants, there is no energy drift either

As −A ∈ −� ⊂ � and ρAρ ∈ ρ�ρ ⊂ �, we use the injectivity of the exponential
and deduce that −A = ρAρ. We therefore obtain

exp(−Aτ)ρ = ρ exp(Aτ). (26)

By combining (25) and (26) we get

v(ρu,−τ) = exp(−Aτ)(−τ)−1ρu

= exp(−Aτ)ρ(τ)−1u

= ρ exp(Aτ)(τ)−1u

so we finally obtain
v(ρu,−τ) = ρv.

This finishes the proof. ��

5 Fibrations over reversible integrable systems

The goal of this section is to show that all the nonholonomically coupled systems
studied in Sect. 2.2 are fibrated over a reversible integrable system, as summarized in
Table 1. The situation is illustrated in Fig. 9.

5.1 Reversible integrability

We briefly recall the definition of an R-integrable, or reversible integrable, sys-
tem [20].

Definition 5.1 Consider a manifold N , equipped with an involution R. A dynamical
system, i.e., a vector field Y on the manifold N , is R-integrable if there is a map
ϕ : N → R

p × (R/Z)k , which we denote by ϕ(x) = (I (x), θ(x)), such that
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(i) ϕ ◦ R = (I ,−θ)

(ii) the induced vector field is İ = 0 and θ̇ = ω(I ) for a given frequency map ω

(iii) the image of the frequency map ω does not lie in a proper linear subspace.

Remark 5.2 The last condition (iii) is called a nondegeneracy, or non resonance, con-
dition [20]. Note that the usual non resonance condition (also called diophantine
condition [12, §X.2.1]) is not strong enough for our examples, as discussed in [18].

We first make a statement about some g-periodic systems (Definition 4.1).

Proposition 5.3 Consider a g-periodic system. We assume that the average matrix A
from Theorem 4.2 is either zero, or, if n ≤ 3, an element of so(n). Suppose further that
there exists a map ρ fulfilling (24). Then the system is R-integrable (Definition 5.1),
with R defined in (23).

Proof The assumptions of Theorems 4.2 and 4.4 are fulfilled, so we obtain a variable
transformation which brings the system to the form (18). If A is zero, there are only
action variables. IfA is in so(n) for n ≤ 3, we have onemore angle variable determined
by the only angle of the rotation matrix exp(A). ��
Proposition 5.4 All the reduced systems defined in Sect. 2.2 fulfill the assumptions of
Proposition 5.3.

Proof The only nontrivial case is that of the knife edge, where the group is R. The
average matrix A computed in Theorem 4.4 can be computed explicitly in that case:

A =
[
0 k

T
f

0 0

]

where

k := 1

2π

∫ 1

0
k(ξ)dξ,

which, following (14), is simply zero.
We define the reversibility structure R from (23), where ρ is defined as follows.

For the CVT, ρ is
ρ( y, v) = ( y,−v).

For the remaining systems, ρ is
ρ(v) = v.

In both cases, ρ fulfils (24). ��

6 Conclusions and open problems

In this section we summarize the main points of our paper and, based on our findings,
list a set of open problems. These problems are aimed for the nonholonomic integrators
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community; our goal is that work on them shall lead to a better understanding of
geometric integration algorithms for nonholonomic systems.

We start with the conclusions. The field of nonholonomic integrators aims to con-
struct numerical methods specifically designed for nonholonomic systems, aspiring
to outperform standard integration schemes. The starting point for designing such
integrators is most often some discrete emulation of the Lagrange–d’Alembert prin-
ciple. Contrary, however, to the holonomic case, where Hamilton’s principle leads to
conservation of symplecticity, the phase space flow structure induced by theLagrange–
d’Alembert principle is not fully understood; total energy is always conserved but are
there any additional structures? This lack of understanding is reflected in the literature
on nonholonomic integrators. Indeed, several different, incompatible discrete versions
of the Lagrange–d’Alembert principles have been suggested and it is unclear if one or
the other yield better performance. (Compare, for example, theDLA-principle in [7,17]
with the GNI approach in [8].) All the suggested discrete frameworks do, however,
have a common feature: if the nonholonomic system is reversible (with respect to the
standard reversibility map), then the discrete phase flow map preserves reversibility.
Since all standard nonholonomic test problems are reversible (and typically also inte-
grable), one can expect that the observed numerical behaviour is explained by theory
for reversible dynamical systems (for example reversible KAM theory). In this paper
we have concluded this to be the case for a large class of nonholonomic test prob-
lems (fibrations over reversible integrable systems). To verify that reversibility alone
is responsible for the good long-time behaviour we have developed a new class of per-
turbed nonholonomic test problems that are still integrable, but no longer reversible
with respect to the standard reversibility map. Our simulations show that none of the
tested nonholonomic integrators perform well on all of these problems. Of course, our
specific selection of test problems does not cover all nonholonomic problems studied
in the literature. They do, however, in many ways represent the simplest non-trivial
nonholonomic systems and are therefore worthy for primary investigations of non-
holonomic integrators (the notion being that before moving on to more complicated
problems, an integrator should perform well on the simplest non-trivial problems).

In addition to nonholonomic integrators based on discrete emulation of the
Lagrange–d’Alembert principle, another approach is to start directly from conser-
vation of energy and momentum and construct algorithms that exactly preserve these
conservation laws (energy–momentum methods, see e.g. [3]). Our numerical simula-
tions with a commonly used method from this class shows that, although both energy
and reversibility are preserved, the fibration structure of the test problems is not pre-
served, even for the reversible problems,which leads to a drift in the “hidden” integrals.
This numerical observation is in agreement with our theory based on reversible KAM
theory, which cannot be applied unless the fibration structure is also preserved. We
thus conclude that forcing conservation of first integrals is not enough to obtain good
long-time behaviour.
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Open problems

We have formulated a set of problems that reflect, in our opinion, the core challenges
for the nonholonomic integrator community. The problems are listed from most to
least general.

(1) Backward error analysis for relevant classes of nonholonomic systems In lack
of a complete characterization of nonholonomic systems, one can still develop
a numerical backward error analysis (cf. [12]) for subclasses of nonholonomic
dynamics where the (reduced) phase space geometry is understood. We suggest
to start with the class of integrable nonholonomically coupled systems described
in this paper. Thus, the problem consists in developing nonholonomic integrators
such that, when they are applied to integrable nonholonomically coupled systems,
their modified vector fields on the reduced phase space preserve the structure of
being fibrated over integrable systems.

(2) Explain leap-frog performance in Fig. 6 The lower right diagram of Fig. 6
indicates that the leap-frogmethod nearly conserves the driver energy of a rotating,
non-reversible driver. As pointed out, this is the only near conservation behaviour
we have seen that is not (directly) explained by reversible KAM theory. The open
problem is to come up with a rigorous understanding of why near conservation
is observed in this case. A hypothesis is that reversible KAM still can be used,
but that one needs to slightly modify the reversibility map which happen to be
conserved by leap-frog (but not the other integrators). A rigorous understanding of
the unexplained behaviour is likely to shed light on the structure of nonholonomic
systems. (We remark again that leap-frog yields drift in integrals for other non-
reversible integrable systems, for example the perturbed knife edge as seen in
Fig. 4.)

(3) Energy–momentum methods that preserve fibrations As seen in Fig. 8, the
energy preserving method (DD), despite being reversible, performs poorly on
the reversible CVT problem (it exhibits drift in the “hidden” first integral). The
reason for the poor performance has to do with this integrator not perserving the
fibration structure. The last open problemconsists in finding an energy–momentum
nonholonomic integrator that also preserves the fibration structure. To base the
integrator on the average vector field approach, instead of discrete derivatives,
might lead to a solution.
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Appendix A Integration schemes for nonholonomic systems

In this section we give a brief description of the numerical integrators specifically
developed for nonholonomic systems of the form (1). With integrator we mean a map

h : (qk, q̇k) �→ (qk+1, q̇k+1),

depending on the time-step parameter h > 0, such that the sequence

q1, q2, . . .

with q0 = q(0), approximates the exact solution sequence

q(h), q(2h), . . .

for the nonholonomic system under consideration.
An integrator for some nonholonomic system is called reversible if

−1
h (q, q̇) = h(q,−q̇).

Let us give a word of caution here; the notion of reversibility of an integrator depends
on the particular non-holonomic system being approximated. Indeed, a method may
be reversible for one non-holonomic system, but fail to be so for another system.

A.1 Discrete Lagrange–d’Alembert (DLA) integrators

The discrete Lagrange–d’Alembert (DLA) principle for deriving nonholonomic inte-
grators was introduced by Cortés Monforte and Martínez [7]. The notion is based on a
nonholonomic version of discrete Lagrangian mechanics, developed by Veselov [21].
By specifying a discrete Lagrangian function and a discrete constraint manifold, the
DLAprinciple yields an integration algorithm, typically by an implicit equation (see [7,
§ 3] for details).

Cortés Monforte and Martínez [7] suggested the DLAα integrator:

q1−α = q0 + (1 − α)hq̇0

q̇1 = q̇0 − αh∇V (q0) − (1 − α)h∇V (q1) + h A(q1−α)T λ

q1 = q1−α + αhq̇1
0 = A(q1)q̇1.

(27)
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Thismethod is first-order accurate forα �= 1/2 and second-order accurate forα = 1/2.
Explicitly, DLA

1
2 is given by

q1/2 = q0 + h

2
q̇0

q̇1 = q̇0 − h

2
∇V (q0) − h

2
∇V (q1) + h A(q1/2)

T λ

q1 = q1/2 + h

2
q̇1

0 = A(q1)q̇1.

(28)

Another DLA method, suggested by McLachlan and Perlmutter [17], is obtained
by taking half a step with DLA0 followed by half a step with DLA1. This DLA0,1

integrator is given by

q1/2 = q0 + h

2
q̇0

q̇1 = q̇0 − h∇V (q1/2) + h A(q1/2)
T λ

q1 = q1/2 + h

2
q̇1

0 = A(q1)q̇1.

(29)

This method is second-order accurate and, contrary to DLA
1
2 , only linearly implicit.

A.2 Nonholonomic leap-frogmethod

The nonholonomic leap-frog method is given by

q1 = q0 + hq̇1

q̇1 = q̇0 + h(∇V (q0) + A(q0)
T λ)

0 = A(q0)(q̇0 + q̇1)

This integrator was suggested already in [17, §5.1], but discarded as it is not based
on the DLA principle. A very important property of this method is that it is only
linearly-implicit.

As observed in [8], this method fits within the so-called geometric nonholonomic
integrator (GNI) family [8–10,15], when it is rewritten in the following way:

q̇1/2 = q̇0 − h

2

(
∇V (q0) + A(q1/2)

T λ0

)

q1 = q0 + hq̇1/2

q̇1 = q̇1/2 − h

2

(
∇V (q1) + A(q1)

T λ1

)

0 = A(q1)q̇1.

(30)
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A.3 Discrete derivative nonholonomic integrators

These integrators are energy preserving, and are based on the use of discrete gradi-
ents [3].

Let us define the auxiliary variable

q := q0 + q1
2

.

We assume that a function∇V (q0, q1) is a discrete gradient of the potential, that is, it
fulfills the requirement ∇V (q0, q1)(q1 − q0) = V (q1) − V (q0). The method is then
described by:

q1 = q0 + h
q̇0 + q̇1

2
q̇1 = q̇0 + h(−∇V (q0, q1) + A(q)T λ)

0 = A(q)
q̇0 + q̇1

2

It is straightforward to check that the energy is exactly preserved by this method.
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