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Abstract
Nowadays, embedded systems are comprised of heterogeneous multi-core architectures, i.e., CPUs and GPUs. If the

application is mapped to an appropriate processing core, then these architectures provide many performance benefits to

applications. Typically, programmers map sequential applications to CPU and parallel applications to GPU. The task

mapping becomes challenging because of the usage of evolving and complex CPU- and GPU-based architectures. This

paper presents an approach to map the OpenCL application to heterogeneous multi-core architecture by determining the

application suitability and processing capability. The classification is achieved by developing a machine learning-based

device suitability classifier that predicts which processor has the highest computational compatibility to run OpenCL

applications. In this paper, 20 distinct features are proposed that are extracted by using the developed LLVM-based static

analyzer. In order to select the best subset of features, feature selection is performed by using both correlation analysis and

the feature importance method. For the class imbalance problem, we use and compare synthetic minority over-sampling

method with and without feature selection. Instead of hand-tuning the machine learning classifier, we use the tree-based

pipeline optimization method to select the best classifier and its hyper-parameter. We then compare the optimized selected

method with traditional algorithms, i.e., random forest, decision tree, Naı̈ve Bayes and KNN. We apply our novel approach

on extensively used OpenCL benchmarks, i.e., AMD and Polybench. The dataset contains 653 training and 277 testing

applications. We test the classification results using four performance metrics, i.e., F-measure, precision, recall and R2. The

optimized and reduced feature subset model achieved a high F-measure of 0.91 and R2 of 0.76. The proposed framework

automatically distributes the workload based on the application requirement and processor compatibility.
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1 Introduction

Today, most systems are equipped with multi-core pro-

cessors. Due to power consumption and transistor density

constraints, the ever-increasing clock frequency trend is no

longer possible (Stone et al. 2019; Wen et al. 2014).

Therefore, multi-core architectures have been developed as

a solution to problems like power consumption, heat dis-

sipation and transistor density (Wen et al. 2014). In multi-

core architectures, multiple identical CPUs are integrated

on the same integrated circuit. The system has the same

type of processor called a homogeneous system. The

hardware manufacturer increases computing power (in

terms of parallelism) by increasing the number of cores.

Nowadays, developers use parallel programming to speed

up applications (Stone et al. 2019; Krishna et al. 2013;

Wen et al. 2014). An application is partitioned into parallel

portions, each executing on a separate processor core. The

parallel framework has further been strengthened by uti-

lizing a specialized processing unit having many-cores,

such as a graphical processing unit (GPU). The multi-core

CPUs and many-core GPUs trend has initiated a new

paradigm for computation processing called heterogeneous

computing. Heterogeneous system architecture (HSA)

systems utilize multiple processor types (CPUs and GPUs).

HSAs are defined as systems that have multiple cores and

are able to increase performance not only through the act of

adding additional cores but also through working with

special capabilities to handle more complex tasks while

also being able to maintain a high level of energy effi-

ciency. Due to immense data generation and huge pro-

cessing power, the new application generating workloads

with diverse requirements. The central processing unit

(CPU) is unable to handle these diverse requirements.

Heterogeneous computing, however, is designed to help

and enable the efficient use of diverse processors like the

CPU and GPU to handle these new emerging workloads

efficiently. Intelligently utilizing the diverse processors

helps and enables new experiences while maximizing

throughput and reducing turnaround time. Employing

diverse processors provides various opportunities to find at

least the best combinations that will truly excel at com-

pleting a particular workload. Some processors are rather

inefficient at specific jobs while excelling others. Once we

realize that each type of processor has its strength, we can

opportunistically and intelligently choose the appropriate

one for the specific workload. With the help of heteroge-

neous computing, different processors can be designed to

work together, enabling new user experiences.

1.1 OpenCL: heterogeneous programming
framework

Open compute language (OpenCL) (Stone et al. 2019) was

developed to execute parallel tasks on heterogeneous

multi-core architectures. The OpenCL framework is being

supported by major vendors in the hardware industry, i.e.,

NVIDIA, AMD and Intel. Figure 1 describes the OpenCL

application execution model. The serial portion of the

OpenCL program is executed from the host using the CPU,

and data-parallel task (kernel) is executed on the acceler-

ator device, i.e., GPU or CPU. This framework provides

consistent execution over the entire heterogeneous core. In

comparison with the CPU device, some applications per-

form better on the GPU device. The reason is its parallel

nature. However, some applications also perform better on

the CPU because of the sequential nature of the task.

Programmers will usually assign processes to one of the

GPU/CPU, and thus, the other unit will remain idle. As an

example, if tasks are assigned to a GPU device, this leaves

the CPU idle waiting for the scheduled tasks to complete,

as shown in Fig. 1. In this research, we will be using

OpenCL because of its portability and a large number of

supported compute-devices.

1.2 Application scheduling on heterogeneous
machines

The act of scheduling in reference to heterogeneous

machines has previously been studied extensively. We

have also seen many interesting solutions proposed (Kr-

ishna et al. 2013; Ghose et al. 2016; Grewe and O’Boyle

2011; Luk et al. 2009). The scheduler decides a particular

data-parallel application should be assigned to which

accelerator in heterogeneous architecture. The proposed

schedules are only worthwhile when a known amount of

work prior to being executed is available (Grewe and

O’Boyle 2011; Luk et al. 2009; Grewe et al. 2013). As a

general rule, scheduling algorithms, for the most part, carry

little overhead but do not always provide optimal task

partitioning. Some researchers perform task mapping to a

compute-unit at runtime. The main advantage of runtime

task scheduling is that the decision to map the task is more

optimal (considering the runtime attributes of the applica-

tion and machine) (Belviranli et al. 2013; Choi et al. 2013;

Gregg et al. 2010; Ravi and Agrawal 2010; Augonnet et al.

2011). Scheduling decisions can be adjusted during the

execution of a program. Significant cons of run time

scheduling are the increased complexity and higher

scheduling overhead.

The supervised machine learning model has also been

used and proven to be useful in learning optimized
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scheduling (Ahmed et al. 2019b). Code features are used to

characterize an application (Grewe and O’Boyle 2011;

Ghose et al. 2017). The code features include the number

of instructions as well as parallel runtime parameters such

as the number of work items. At compile time, an appli-

cation abstract syntax tree is generated by using a compiler

named as CLang and LLVM (Lattner 2008). The abstract

syntax tree gives information about application behavior as

follows:

1. number and type of operations used in the application

2. count of barrier occurrences

3. number of blocks within the application

4. count for the load operation performed by the

application

5. count of store operations performed by the application

(Wen et al. 2014)

The count of each code feature (number and type of

operation, barrier, blocks, load/store operation) in an

application is used as features values. The features in the

feature vector are classified into two types, i.e., static fea-

tures and dynamic features. Static code features such as the

number of int operations and local memory access per-

centage are extracted at compile time, while dynamic

features extracted include input workload. All feature

values combine to form a feature vector. These values are

then used as input to a predictive model that is based on

machine learning. The predictor is trained on the extracted

feature vectors. The features are selected based on their

contribution to predicting the output. The motivation

behind using a reduced feature set (for predictive models)

is therefore to reduce the amount of redundant data, which

in turn reduces over-fitting issue, as well as improving

accuracy, and finally decreasing training time.

1.3 Motivation

The data-parallel application attains higher performance

for GPU-based execution. At the same time, there are some

scientific applications (i.e., dot product or bread first

search) that are inadequately performed on GPUs. The

same applications often attain varying performance for

different input data sizes (Khalid et al. 2019; Ahmed et al.

2019a). The applications that attain less gain should take a

different strategy based on its input dimensions and type of

operations. As allocating all the applications on GPU will

result in the load imbalance and suboptimal execution time

for a job pool. Therefore, the recognition of application

type and its computing processor are significant (Sakhnini

et al. 2019).

The motivation behind using device suitability is that it

helps to map the job to specific machine (containing more

suitable device with respect to applications code features)

in the cluster and then the more suitable device (may not

the faster one), i.e., a CPU or a GPU is selected for map-

ping. In Fig. 2, three scheduling schemes have been shown

(i.e., machine learning-based device suitability model

(Single node—heterogenous processor, i.e., CPU and

GPU), GPU only (using only GPU) and Oracle (best device

mapping). We run OpenCL job pool of 6 application

Fig. 1 OpenCL task execution
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samples with the already mentioned scheduling schemes.

Two applications in the job pool are suitable for the CPU

(i.e., GEMM and Matrix-Vector Multiplication) and

remaining four are suitable for the GPU (i.e., Matrix

Multiplication, Bitonic Sort, Monte Carlo Asian DP, Black

Scholes). The device suitability scheduling scheme as-

signed the jobs by predicting the suitable hardware

resource. The GPU-only setting assigns it by running all

application on GPU only. Finally, Oracle assigns the best-

known setting for each device. The Oracle-based

scheduling performs 3:5� better than GPU only, whereas

has 2� better performance in comparison to device suit-

ability predictor. However, if the number of heterogeneous

devices exceeds from a single CPU to ith CPU and single

GPU to jth GPU, then the mapping becomes a very difficult

job. In this study, we proposed a multi-node device suit-

ability model that optimally maps job among multiple

devices using machine learning.

The execution time of the job pool can be reduced if the

data-parallel application mapped to appropriate devices.

The application cannot be mapped based on the arrival

time or free resources. This may cause load imbalance and

longer execution time. The application requirement should

be considered to map the application to the appropriate

device, i.e., computation requirement of the program, data

size and number of instructions. The data-parallel appli-

cation can have a lower execution time on a GPU while the

sequential application has a lower execution time on CPU,

which shows that smart mapping of the applications is

required. Therefore, there is a need for a scheduling

mechanism, which automatically maps the application to

the proper device by utilizing the application as well as the

hardware requirement of the submitted application. From

Fig. 2, it can be concluded that optimize scheduling

method can be designed by considering the device suit-

ability. The designed scheduling methods result in lower

execution time of the submitted applications.

Most of the methods required a data-parallel application

code splitting overhead to split tasks among CPU & GPU

device. This data-parallel application code splitting will

result in additional time overhead. The existing solution

proposed a profiling-based scheduling method. They used

code instrumentation and profiled time to the scheduled

application to a processing unit. This profiling required

time overhead.

In particular, the following are the main contributions of

the research:

1. A mechanism to extract the set of features that plays an

important role to predict data-parallel application

device suitability.

2. A unified framework to develop a machine learning-

based classifier to predict the suitable processing unit

in a heterogeneous cluster.

3. Analyze optimization technique to design device

suitability classifier.

4. A demonstration of data imbalance problem and its

solution.

2 Literature review

Task scheduling is a non-trivial problem that requires

optimal mapping of tasks to the processor so that the

overall execution time of applications is reduced.

Scheduling decisions become more complicated when we

have a heterogeneous cluster in which each compute-unit

has a diversified set of characteristics. The heterogeneous

multi-core architecture comprises different processors, i.e.,

central processing units (CPUs) and graphics processing

units (GPUs). The applications required to perform

latency-sensitive tasks require execution on the CPU as it

takes advantage of out-of-order execution, branch-predic-

tion and scalar capabilities (Lee et al. 2010). The GPU has

multi-threading capabilities, so an application that requires

performing parallel tasks will use the GPU (multiple core

architecture) (Hechtman and Sorin 2013). The CPU has a

limited number of powerful and complex cores that are

generalized to execute different types of applications effi-

ciently. In contrast, the GPU contains a large number of

simplified cores that are mainly specialized to execute data-

parallel portions of the program.

Therefore, while scheduling the heterogeneity of com-

puting devices mapping computation to processors effec-

tively should also be considered. We have seen a collection

of researchers propose scheduling algorithms for hetero-

geneous platforms (Luk et al. 2009; Becchi et al. 2010;

Huchant et al. 2016; Pérez et al. 2016; Ravi et al. 2012). In

a network, specific servers collectively composed to per-

form a particular task. The allocation of task on those

Fig. 2 Motivation behind the usage of device suitability classification

model. Device suitability: scheduling by using machine learning

classification, GPU only: scheduling only on GPU device and Oracle

heuristic: scheduling the application to best-known device
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resources should generally be based upon criteria for the

highest priority level provided that each such resource can

act as an individual agent. However, the main challenges

arise in the distribution of task and services (Iftikha and

Jangsher 2019; Aloqaily 2019; Daraghmeh et al. 2019).

Many of the papers use the notion of splitting data-parallel

application between the CPU/GPU, while many others

have improved throughput and resource utilization by

scheduling pools of applications. The machine learning-

based predictive modeling is considered to be a powerful

method for optimizing parallel programs (Grewe and

O’Boyle 2011; Ghose et al. 2017; Kofler et al. 2013; Wen

and O’Boyle 2017; Taylor et al. 2017; Ahmed et al.

2019b). The predictive model is trained to learn from its set

of examples and have adaptive behavior for varying plat-

forms. By using the scheduling technique (Grewe and

O’Boyle 2011; Ghose et al. 2017; Kofler et al. 2013; Wen

and O’Boyle 2017; Taylor et al. 2017), severe load

imbalance is introduced between CPUi and GPUk due to

CPUi only managing execution of kernel on GPUk and

taking no part in actual computation. The idle time that

CPUi spent while waiting for GPUk to complete kernels

execution is not desirable. Ideally, a schedule is required

that can schedule the data-parallel application to both CPU

and GPU in such a way that all processors in the cluster can

complete processing at the same time. In this way, energy

consumption and heat dissipation due to idling processor

are reduced but, more importantly, the execution time of

Job Pool will also be reduced significantly. The optimal

device selection is key for any scheduler schemes in a

heterogeneous environment.

Pérez et al. (2016) gave a Maat library which performs

load balancing of a single kernel. According to Perez et al.,

the programmer does not optimally utilize heterogeneity as

they consider the CPU device for sequential tasks, whereas

GPU is a parallel task. Known as an inflexible approach

eventually leads to wastage of computational power (Pérez

et al. 2016). Through the use of Maat, the user will need to

through the kernel program build up a parallel version,

which selects a load balancing method and runs it on all the

available resources. In Pérez et al. (2016) approach, there

is no need for extra programming effort, as the same raw

kernel code is utilized. Moreover, at runtime, the predictive

model can determine device suitability, as well as appli-

cation time estimation, is made to achieve maximal

throughput.

Luk et al. (2009) have also addressed the problem of

optimizing the utilization of available resources. They have

focused on the need for automated mapping of processing

elements to the available resources (Luk et al. 2009).

According to Luk et al. (2009), programmer utilization of

heterogeneous platform can adapt according to hard-

ware/software configuration. Therefore, a system name

Qilin is proposed that utilizes machine learning to classify

kernel code. The kernel code is partitioned into the CPU

and GPU device. The Qilin shows the execution time of the

applications in the database. The recorded information is

then utilized by the Qilin to project execution time of new

arrived application and to schedule it accordingly. When-

ever the hardware configuration changes, Qilin initiates a

new training session. The Qilin requires offline profiling

and code partition overhead, whereas the proposed method

does not require these overheads.

Huchant et al. (2016) have proposed an automatic run-

time technique that schedules OpenCL kernel code across

Heterogeneous devices. Huchant et al. (2016) have given a

technique that can solve issues causing from the hetero-

geneity, i.e., communications, load balancing and issues

caused by the iterative computation. The technique is

divided into two main approaches, i.e., static and dynamic.

In the static phase, kernel code is transformed into partition

ready kernels, which are then mapped into different devi-

ces. The execution time of the mapped kernel is noted and

then in a dynamic phase, queuing off the partitioned kernel

is adjusted to achieve optimized throughput. This technique

differs from our technique as it mapped an OpenCL kernel

which is single. However, it is noted here that our work

manages to schedule OpenCL applications as a pool.

Albayrak et al. (2012) have addressed the need for

optimal mapping among different heterogeneous devices,

CPU or GPU. According to the authors, in a multi-appli-

cation environment, different kernels exhibit different

characteristics. Some of them run faster on the GPU; others

may refer to execute on CPU due to data transfer cost.

However, there is a need to map the kernel to the proper

device to improve the overall performance of an applica-

tion. Albayrak et al. (2012) have proposed a profiling-

based scheduling method to map OpenCL application

(Albayrak et al. 2012). The data dependencies and execu-

tion time are profiled. Then, by the use of a greedy algo-

rithm, the kernel is scheduled to device, i.e., CPU or GPU.

The proposed algorithm can achieve the optimal result for

scheduling multiple kernels of a single application only.

However, the proposed scheme does not require offline

profiling overhead. The method can schedule single and

multi-kernel application within a batch of the job pool.

In a similar study entitled ‘‘A dynamic self-scheduling

scheme for heterogeneous multiprocessor architectures’’,

Belviranli et al. examined the issues in resource utilization

of the heterogeneous environment. They proposed a

scheduling mechanism named as HDSS (Belviranli et al.

2013). It partitions the workload among processing units,

i.e., CPU and GPU. This results in improvement of kernel

execution time. HDSS has two phases, i.e., profiling phase

and adaptive phase. The computation power of each pro-

cessing unit is evaluated by assigning the same number of

A load balance multi-scheduling model for OpenCL kernel tasks in an integrated cluster
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loop operations in the profiling phase, while remaining

loop operation is assigned based on the processing speed in

the adaptive phase. Both phases help in balancing the load

on heterogeneous computing devices. The proposed

method is not dependent on job splitting and any kind of

raw code transformation.

Heterogeneous computing systems get improved per-

formance by utilizing the powerful CPU as well as the

GPU. The device selection is the most critical factors in

determining the performance of application (Choi et al.

2013). Therefore, Choi et al. have estimated the execution

time, which determines the schedule of the application on a

CPU or a GPU device. The model requires an execution

history of application to train and predict application,

which has finished the job earlier. The total execution time

of the application (on that device) and the execution time

of the currently executing application are used to estimate

finish time of an application.

Grewe and O’Boyle (2011) addressed the prediction of

suitable processing helps to achieve optimized results. The

author proposes the partitioning mechanism for OpenCL

program. They extract the static features during compile

time. Then pre-trained model SVM is utilized to predict

whether to map a kernel to a CPU, GPU or to partition the

kernel among available computing devices. The authors’

GPU-only model achieves 91% accuracy, whereas the

CPU-only model achieved 95% accuracy.

Ghose et al. (2016) give a model that analyzes the

branch divergence and use that analysis as a code feature.

The trained model achieved the accuracy of 89% to predict

the CPU–GPU inclusive application and 81.23% to predict

the application to be partitioned. However, the proposed

scheduler ensures the multi-node scheduling of tasks.

Kofler et al. (2013) proposed an ANN-based predictive

model. The primary task of a predictive model is to

dynamically partition the given task on a CPU and a GPU.

Kofler et al. (2013) used Insieme source to source compiler

to translate a kernel code into multi-device kernel code.

The dynamic partition is based on the artificial neural

network (ANN) predictive model. The feature set includes

static code features and dynamic input sensitive features

(e.g., data-transfer size of the split-able buffer). The par-

titioning task is further to improve from 2 to 7% by using

principal component analysis. The test set achieved 87.5%

results. The authors have partitioned the program and

achieved high accuracy. Our proposed scheduler selects an

optimal device as well as do a scheduled task on a cluster

of devices by using the application device performance of

the selected device. Moreover, the proposed schedule does

not require kernel splitting.

Wen and O’Boyle (2017) address that certain applica-

tion performance is maximized when assigned to the single

computing device and sometimes sharing among

computing device results in improved performance. The

author’s predictive models determine whether an applica-

tion kernel required to combine with other kernels or not.

The model also uses code static and dynamic features. The

decision tree classification model is used to trained and

then classify the kernel to a suitable device, i.e., CPU or

GPU. The second’s classification model determine whether

to run the kernel on a single device or merge it with another

kernel.

Tsog et al. (2019) use a static allocation-based method

to map sequential application on CPU and parallel on GPU.

The authors’ model was able to balance load among CPU

and GPU. However, the static approach required offline

profiling that increases execution time. Moreover, the

profiling becomes more complicated when allocation is

required to be performed under multi-heterogeneous nodes.

In another study (Alizadeh and Momtazpour 2020), Ali-

zadeh et al. proposed a scheduling mechanism to charac-

terize the kernels and then predict the concurrent

execution. The model can achieve a high accuracy of

91.7%. However, the mode able to achieve high accuracy

on a single node where prediction is made between CPU

and GPU. The task becomes problematic on a distributed

system that involves parallel execution of applications

among many CPUs and many GPUs.

Khan et al. (2019) present a heuristic-based scheduling

mechanisms that reduce the execution time of the cluster.

The smart scheduler presented does the code instrumenta-

tion and divides the application load among different

nodes. Their results showed an improved throughput of the

system. However, the code instrumentation required addi-

tional time as it split the kernel code and divides them

among different machines in different time constraints.

2.1 Critical analysis

After the comprehensive analysis of state-of-the-art

approaches, techniques for heterogeneous scheduling on a

heterogeneous machine were found. The majority of

heterogeneous scheduling schemes do not address the

problem of overloading, which results in longer execution

time and low resource utilization (Wen et al. 2014; Taylor

et al. 2017; Ghose et al. 2016; Wen and O’Boyle 2017;

Kofler et al. 2013; Grewe and O’Boyle 2011; Alizadeh and

Momtazpour 2020). There are several techniques that do

not consider device suitability, and this often results in low

resource utilization (Luk et al. 2009; Becchi et al. 2010;

Huchant et al. 2016; Pérez et al. 2016; Ravi et al. 2012). A

few techniques use the machine learning approach to pre-

dict the suitable device and then split the kernel code

among the CPU and GPU (Grewe and O’Boyle 2011;

Kofler et al. 2013; Wen and O’Boyle 2017; Taylor et al.

2017). The kernel splitting overhead required additional
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time overhead. Most of the research uses default classifi-

cation settings. Default settings mostly result in under

performance of the machine learning classification model

(Ahmed et al. 2019a; Ahmed et al. 2020, Amrollahi et al.

2020): the feature extraction, selection, model selection,

hyper-parameter tuning and evaluation need to be opti-

mized. Most research avenues do not consider multi-node

application splitting or merger technique and the load

balancing issue in the cluster of a heterogeneous environ-

ment. If a large number of kernels always favors one

device then the overall throughput tends to decrease. This

result can be observed in Table 1.

3 Methodology

This section describes the implementation of our model.

Figure 3 explains the workflow that consists of three pha-

ses. The first phase is data collection, which uses the static

analyzer to extract the CPU and GPU suitable application

features. In the second phase, features are filter based on

their composition, i.e., hardware, code and runtime (dy-

namic) as mentioned in the block CPU and GPU Execution

and Execution time of Fig. 3. After that, the feature vector

is labeled and stored in the database to be applied in the

next phase as mentioned in the block Dataset of Fig. 3.

Then, features selection methods, i.e., information gain and

correlation analysis, are applied to reduce the feature

vector as mentioned in the block Feature selection of

Fig. 3. The final phase is machine learning classification,

where feature vectors are trained on the machine learning

Table 1 Critical review of state-of-the-art machine learning heterogeneous scheduling approaches

References Dataset Feature

extraction

Feature

selection

Model

selection

Model

hyper-

tuning

Traditional

MLC

Output

classes

Performance

metrics

Processors

Wen et al.

(2014)

NVIDIA,

OpenCL, AMD

and Parboil

4 4 7 7 SVM Binary Acc: 89% Single

Node—

Two

Processors

Taylor et al.

(2017)

Rodinia and

Parboil

4 7 7 7 SVM Binary N/A Single

Node—

Two

Processors

Ghose et al.

(2016)

NVIDIA, AMD,

Rodinia and

Parboil

7 7 7 7 Decision

tree

Binary Acc: 89% Single

Node—

Two

Processors

Wen and

O’Boyle

(2017)

Parboil and

Polybench

4 7 7 7 Decision

tree

Binary N/A Single

Node—

Two

Processors

Kofler et al.

(2013)

Custom—

University of

Stuttgart

4 4 4 7 ANN–

SVM

Binary N/A Single

Node—

Two

Processors

Grewe and

O’Boyle

(2011)

SHOC, Parboil,

NVIDIA and

ATI Stream

4 7 7 7 SVM CPU-

Only|GPU-

Only

Acc:

91%|95%

Single

Node—

Two

Processors

Alizadeh and

Momtazpour

(2020)

NVIDIA and

Custom

4 7 7 7 Random

forest

Binary Acc: 91% Single

Node—

Two

Processors

Proposed NVIDIA, AMD

and Parboil

4 4 4 4 TPOT Multi-class

(6)

Acc: 91 Multi-
Node—
Multi-
Processors

Acc, accuracy; Binary, two classes; SVM, support vector machine
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classifier to produce a detection model. Each experiment is

explained in detail, and evaluation is performed compre-

hensively. The offline and online training code is publicly

available on the link.

3.1 Dataset

Two benchmark suites are used, i.e., AMD and Polybench

(Wen and O’Boyle 2017; Kofler et al. 2013; Grewe and

O’Boyle 2011; Khalid et al. 2018). The benchmarks con-

tain applications related to pattern recognition, image

processing and mathematical computation (Wen and

O’Boyle 2017; Kofler et al. 2013; Grewe and O’Boyle

2011; Khalid et al. 2018). The dataset is of size 155 data-

parallel applications as shown in Tables 4 and 5. The

application is run with different input sizes shown in the

tables. We then execute the applications are then on two

CPUs (Haswell 3.2 GHz and Skylake i7-6700 3.4 GHz)

and two GPUs (Nvidia Geforce 760 and 740). The pro-

cessor name is used label and the processor that have

minimum execution time is used as output label as

mentioned in the block Labeling of Fig. 3. The LLVM-

based static code analyses extract the code features men-

tioned in Table 2. The dataset is divided by using hold-on

policy, i.e., training set contains the 653 (70%) instances

whereas testing set contains 277 (30%) instances.

3.2 Feature extraction

We can see the overview of the feature extractor in as

mentioned in the block Front End Compiler, IR, LLVM

Pass and Feature extractor of Fig. 3. The structure of the

features can quickly identify the program behavior. Firstly

clang (front end compiler) compiles the code as men-

tioned in the block Front End Compiler of Fig. 3. Then, the

proposed static analyzer extracted the feature based on the

intermediate representation of LLVM (Lattner 2008). We

also use extracts some features that are not available in IR.

The method only extracts the static code features and does

not execute the program for profiling. We mention the list

of features set in Table 2.

Fig. 3 The flowchart of the designed methodology
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3.3 Feature selection

The feature set consists of 24 distinct features. Whether the

non-domain expert collects the dataset or the domain

experts provide it, the selection of key attributes is very

important. Figure 4 shows the correlation matrix of the

employed code features (mentioned in Table 2).

The feature importance ranking and correlation analysis

is mentioned in Fig. 4. The feature which has high infor-

mation and negative correlation is used in the training

process as shown in block feature selection of Fig. 3. The

highly correlated data will result in lower accuracy because

of lower predictive power, and hence, it should be evalu-

ated empirically. Figure 4 shows that the features 0, 6, 15,

12, 16, 8, 22 and 20 have a negative correlation (Ahmed

et al. 2019a). The tree-based feature selection also vali-

dated the observation by ranking the same features on top

and mentioned in Fig. 5. We mention classification model

selected features in Table 3 and selection decision is

mentioned in the block Feature selection of Fig. 3.

3.4 Machine learning classifier phase

The machine learning classifier phase is the final phase.

This phase determines the appropriate model for applica-

tion device suitability. The benchmark dataset consists of

three CPUs and three GPUs. So, it contains six output

classes, making it a multiclass problem. Based on the

authors review as described in Table 4, this section

describes the selected classifiers used in the current

experiments.

Table 2 Static analyzer extracted features

Index Features set

1 Input data size

2 Return statement

3 Control statement

4 Allocation instruction

5 Load instructions

6 Store instructions

7 Multiplication (Float Datatype) operation

8 Addition (Integer Datatype) instruction

9 Multiplication (Integer Datatype) instruction

10 Division (Float Datatype) instruction

11 Division (Integer Datatype) instruction

12 Condition Check instruction

13 Addition (Float Datatype) instruction

14 Addition (Integer Datatype) instruction

15 Subtraction (Float Datatype)

16 Subtraction (Integer Data type)

17 Function call instruction

18 Functions

19 Blocks

20 Instructions

21 Float operation

22 Integer operation

23 Loop operation

Fig. 4 Correlation analysis
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Random forest Tin Kam proposed a bagging method

named as random forest. Random forest is an ensembles

classifier which contains the number of decision tree-based

models (Tchernykh et al. 2016; Ahmed et al. 2019b;

Reddy et al. 2020). The random number of feature is

divided among each tree-based classifier. The voting

mechanism is adopted while predicting the unknown class.

Decision tree Decision tree is a tree-based classifier

which contains root, nodes and leaf nodes (Ahmed et al.

2018). The class label is assigned to each leaf node, and

decision-making ability is applied to the internal nodes. On

classification, an initial node with the high value of infor-

mation starts making the decision. The decision tree is

categorized as logic-based learning.

Naı̈ve Bayes Naı̈ve Bayes is a Bayes theorem-based

probabilistic classifier. It is used in different types of real-

world problems (Zafar et al. 2017). It takes the probability

of each feature and calculates likelihood to classify an

instance to a class.

KNN K-Nearest Neighbor (KNN) is known to be the

most straightforward classification techniques. This

method needs very less or no prior knowledge. Typically in

supervised learning, the dataset is divided into training and

testing sample. In the training set, the actual truth or output

class is provided. The true class is used to be trained in the

samples or features. KNN is an instant-based learning, also

known as lazy learning classification (Ishtiaq et al. 2019).

TPOT The TPOT (Tchernykh et al. 2016; Ahmed et al.

2019a) uses genetic programming to construct features,

selecting the machine learning model, and tune the selected

model parameter. We provide the labeled data for each

application to classification class to determine the device

suitability. The hyper-parameter tuned model is shown in

block Tpot—hyper-parameter tuning of Fig. 3. The data

labeling is performed by running all application on CPUi

and all GPUk a device. The device which has lower exe-

cution time is labeled as a selected device for that

application.

3.5 Online prediction

In propose model, the collection of benchmark suits took

less than a day. Both prediction models are trained offline.

The overhead of using device suitability predictor includes

the feature extraction and making the predictions. The

overhead of feature extraction is negligible (approximated

1s in total) as a feature is extracted at compile time. The

prediction model training is performed once and it is a one-

off-cost. In total, the overhead of the prediction model is

negligible, i.e., 3 s. The user submits OpenCL applications

and the input dataset information to run the application.

Fig. 5 Feature selection by using tree-based algorithm

Table 3 Selected feature set

No. Top features name Description

0 Input data size Kernel input dataset dimension

6 Multiplication (Float Datatype) operation Kernel code total number of multiplication operation on float data type

8 Multiplication (Integer Datatype) instruction Kernel code total number of multiplication instruction on integer data type

9 Division (Float Datatype) instruction Kernel code total number of division operation on float data type

11 Condition check instruction Kernel code total number of branches

12 Addition (Float Datatype) instruction Kernel code total number of addition instruction on float data type

14 Subtraction (Float Datatype) Kernel code total number of subtraction operation on float data type

15 Subtraction (Integer Datatype) Kernel code total number of multiplication operation on float data type

16 Function call instruction Kernel code total number of function calls

18 Blocks Kernel code total number of blocks (condition statements)

19 Instructions Kernel code total number of machine instruction

20 Float operation Kernel code total number of float operation

21 Integer operation Kernel code total number of integer operations

22 Loop operation Kernel code total number of loop operations
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After that feature extractors proposed features (details are

described in Table 3) of each submitted job. The extracted

features are provided along with input data size informa-

tion to device suitability trained model. Then, prediction of

nth node ith processor or nth node jth processor (best

processing device for the job) is made as mentioned in

block online prediction of Fig. 3.

4 Experiments and results

4.1 Evaluation measures

To evaluate the classification, standard metrics, i.e., pre-

cision, recall and F-measure are used (Ahmed et al.

2019b). We use R2, another statistical method to evaluate

the goodness of fit of a model. The R2 interpret the amount

of variation in the predicted and actual class. So it is the

percentage of variation that input features can predict in

output class, which effectively means that if output class

changes by a percentage p, then input features can still

predict that change in output class.

5 Results

The result mentioned in Tables 4 and 5 obtained from hold

on policy 70-30 split ratio using five selected classifiers.

Tables 4 and 5 show classifier performance on full feature

set shown in Table 2 and reduced feature set shown in

Table 3, respectively. Moreover, it is seen that the number

of OpenCL kernel supporting the CPU device is signifi-

cantly less when compared to the GPU device and

particularity to have a number of samples of a given class

under-represented compared to other classes gives rise to

the ‘‘class imbalance’’ problem. In order to handle this

problem, we used SMOTE a Python toolbox to tackle the

curse of imbalanced data. The classifier’s performance is

measured with four evaluation metrics, i.e., precision,

recall, F-measure and R2. After getting feature selection

and model selection, the models are trained and tested on

the dataset. The prediction model performance is men-

tioned in Fig. 6. The ROC curve for class 1 is 0.92, class 2

is 0.90, class 3 is 0.99, class 4 is 1 and class 5 is 0.99. The

high precision–recall curve value for all class signifies the

excellent prediction. However, the precision–recall curve

of class 6 is 0.88, which can be observed in Fig. 8. We

show the ROC curve for the training data in Fig. 7. The

mean ROC value for classification is 0.98. Class 2 achieved

the precision–recall curve of 0.96 and 3, 4, 5 achieves 1.

Table 4 Full features set comparison with and without class balancing

(SMOTE)

Classifier F-measure Precision Recall R2

Without smote

Tpot 0.67 0.72 0.72 0.24

Random forest 0.67 0.72 0.72 0.26

Decision tree classifier 0.45 0.51 0.41 0.53

Naive 0.19 0.21 0.23 0.33

KNN 0.39 0.45 0.39 0.47

With smote

Tpot 0.91 0.91 0.92 0.73

Random forest 0.84 0.84 0.84 0.28

Decision tree classifier 0.55 0.62 0.50 0.07

Naive 0.27 0.30 0.37 0.03

KNN 0.46 0.47 0.51 0.13

Table 5 Reduced feature set comparison with and without class

balancing (SMOTE)

Classifier F-measure Precision Recall R2

Without smote

Tpot 0.69 0.72 0.68 0.26

Random forest 0.76 0.78 0.75 0.31

Decision tree classifier 0.45 0.51 0.41 0.53

Naive 0.19 0.21 0.23 0.33

KNN 0.39 0.45 0.39 0.47

With smote

Tpot 0.91 0.91 0.92 0.76

Random forest 0.75 0.75 0.79 0.11

Decision tree classifier 0.50 0.56 0.50 0.08

Naive 0.23 0.26 0.36 0.01

KNN 0.37 0.39 0.37 0.55

Fig. 6 Device classification model using TPOT
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The F-measure score is 0.88, which presents that the model

can produce perfect classification results. The correctly

predicted classes are very high and the FPR is low, which

can be observed in (Fig. 7).

In Table 4, an experiment is conducted on 930 samples

by using full features set shown in Table 2. Table 4

demonstrates that when the full feature is used without

class balancing, then random forest produces the higher R2

as compared to the TPOT. However, the R2 is the very low

end which indicated that class imbalance problem has a

large impact on the performance of the classifiers. In

Table 4, when SMOTE class balancing is performed,

TPOT performance increased to 35% and random forest

also increased to 25%. More importantly, R2 of TPOT is

increased to 180%.

In Table 5, an experiment is conducted on 930 samples

by using reduced features set shown in Table 3. Table 5

demonstrates that when the reduced feature is used without

class balancing, then random forest produces the 19%

higher R2 as compared to the TPOT. However, the R2 is the

very low end which indicated that class imbalance problem

has a large impact on the performance of the classifiers

using reduced feature set. In Table refffws, when SMOTE

class balancing is performed, TPOT performance increased

to 31% and random forest F-measure reduced. More

importantly, R2 of TPOT is increased to 192%. After fea-

ture reduction, TPOT produces a higher recall as well. The

higher recall indicated that tune parameters returned the

most relevant results. The higher precision shown in

Table 5 indicates that the TPOT predicts the relevant class

results in more correctly than the irrelevant.

5.1 Application of device suitability model

In a heterogeneous cluster environment, programmers map

applications to specific devices. This decision is not opti-

mal in a multi-node or cluster of a heterogeneous system.

The number of jobs is submitted to the scheduler. The

scheduler maps the application to the computing devices.

The decision about the work distribution should be bal-

anced to achieve maximal throughput. It is very difficult

for a programmer to decide the mapping of jobs to a variety

of heterogeneous computing devices. Multi-node, device

suitability schedule batch of jobs in a load-balanced man-

ner while effectively utilizing heterogeneity that is inherent

to heterogeneous computing devices.

6 Conclusion and future work

In a heterogeneous cluster environment, programmers map

application to specific devices. This decision is not optimal

in a multi-node or cluster of a heterogeneous system. The

number of jobs is submitted to the scheduler. The scheduler

maps the application to the computing devices. The deci-

sion about the work distribution should be balanced to

achieve maximal throughput. In this study, present the

framework to classify OpenCL applications based on their

device suitability. The tree-based pipeline optimization

strategy is used to select the optimal model for its hyper-

parameter. The feature selection is performed by using

correlation analysis and feature importance algorithm. The

trained model predicts the processors that can optimally

handle the OpenCL program in a cluster. The prediction is

based on newly developed LLVM-based static analyses.

The features represent runtime application behavior. To

incorporate dynamic behavior, we also added run time

features. The model is to build and trained offline. The

model trained and tested on OpenCL benchmarks. Exper-

imental results show that the trained model outperforms

Fig. 8 Device classification model precision–recall curve

Fig. 7 Device classification model ROC
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different classifiers and achieves an F-measure of 0.91. In

future extensions of this work, the proposed study can be

extended to energy-efficient heterogeneous device classi-

fication. In that case, the data labeling will be decided

based on the minimum energy consumption. Moreover, the

proposed model can be utilized in sensor networks. Evo-

lutionary computation can also be considered to improve

our scheduling model as the extension for our further study.
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