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Abstract
The objective of the article is to analyse the impact of short- and long-term climate variations
on the costs of removing snow and ice from the roads in Bergen—the secondmost populous
city in Norway. The analysis applies simple mathematics, Monte Carlo simulations and
multivariate regression methodology. The municipality of Bergen manages about 630 km of
roads and 100 km of foot and bicycle paths, and the municipal administration spends NOK
37million (or about USD 4.5 million) annually on removing snow and ice during the winter
period. The analysis shows that a 1 °C increase in the mean temperature reduces the winter
maintenance costs by NOK 14 million, and it is likely that there will be no need for winter
snow-clearing operations if the long-term mean atmospheric temperature increases by
approximately 2.5 °C or more relative to the historical mean temperature level. The analysis
shows that the variance and trend of the temperature have a strong effect on the likelihood of
a snow- and ice-free winter and that a long-term reduction in the variance reduces the
likelihood of rare events even though the mean temperature increases. The analysis provides
the municipality of Bergen with information about the relationship between climate and
winter road maintenance costs, and the statistical models can help to quantify the amount of
economic and material resources needed for this purpose. The analysis is a contribution in
the field of economic impact analysis of climate change on the transport sector.

Keywords Winter roadmaintenance costs . Climate change . Statistical analysis . Monte Carlo
simulations . Return period

1 Introduction

Bergen City is located at the west coast of Norway and northern Europe (60° 23′ N, 005° 19′ E.
See Online Resource Fig. 1). Bergen Municipality is responsible for maintaining approximately
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630 km of carriageways and 102 km of foot and cycle paths (BergenMunicipality, 2016). During
the winter season, snow and ice are removed from the roads to keep the infrastructure open for
traffic. The expenses associated to these operations are in the public budget defined as winter
operation costs. Themunicipality spent on averageNOK 37million per year onwinter operations
(2015 value). During the period 2005–2015, BergenMunicipality spent in total NOK 407million
or approximately USD 4.5 million, given an exchange rate of NOK 9 per USD (Norges
Bank 2019) on these operations diring the winter season. Weather conditions play a decisive
role for the extent of snow and ice on the roads and thus for resources needed to keep the roads
open for normal and safe traffic. The Traffic department of the BergenMunicipality organizes the
winter operations and outsources most of the operations to private firms.

Bergen Municipality has a population of about 280,000 of whom 166,000 are travelling
daily to work (2018 values), and goods and services are transported from suppliers to
customers inside and outside the region. It is important that the infrastructure is available for
use 24 h a day. If snow and ice are not removed, transportation and most of the activities in the
region of Bergen will be delayed and, in the worst-case, hindered, especially if transport related
to emergencies is involved. In addition, insufficient road maintenance in the winter season is
likely to increase the frequency of traffic accidents and fatalities (Koetse and Rietveld 2009;
Andersson and Chapman 2011a, 2011b).

The objective of the article is to analyse to what extent variation in climate conditions
affects the maintenance costs of roads during the winter season in Bergen. The aim is to
measure how the variation in temperature and precipitation affect the level of winter road
maintenance costs in the short and long term. Long-term (multidecadal) global warming and
short-term (yearly) natural variation in the climate actualizes this type of analysis. By using
available instrumental data, it is possible to analyse the connection between climate conditions
and winter operation costs. The article analyses the following issues: Is there any covariation
between climate conditions and the costs of clearing the roads of snow and ice? How will the
temperature develop in the short and long term, and will such temperature changes affect the
costs of winter operations? How likely is it that Bergen in the future will experience a snow-
and ice-free winter and thus very low winter maintenance costs?

There is a considerable amount of literature in the field of climate variation and impact on
the social conditions, economy and the environment (IPCC 2014; Stern 2006). As an example,
Hitz and Smith (2004) show how a general increase in the global mean temperature affects
different sectors of the economy. The authors show that a marginal increase in the global mean
temperature relative to the 1990 level may have a beneficial impact on some sectors such as
agriculture and forestry, but that an increase in the mean temperature of 3–4 °C will have
negative consequences on society and the natural environment. An updated analysis of Tol
(2018) draws a similar conclusion. The climate summit in Paris in 2015 concluded that it is
necessary to pursue a policy that overall contributes to holding the increase in the global
temperature well below 2 °C above pre-industrial levels to prevent serious risk exposure and
impacts of climate change (United Nations 2015, p. 3 Paris Agreement).

Literature search on the subject “climate and transport” shows that analyses in this field
focus mainly on how climate change affects airports, power networks, rail networks, roads,
public buildings, water quality and supply and sewage: Larsen et al. (2008) find that climate
change increases wear and tear on roads in Alaska by between 10 and 20% relative to normal,
past conditions. Other analyses focus on how climate change affects road traffic accidents and
the number of fatalities. IPCC’s Fifth Assessment Report (Working Group II) refers to several
scientific publications that analyse how climate change and sea level rise affect transport and
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infrastructure. Sherif and Hassan (2014) estimate a linear model to predict the pavement
surface temperature which is applied as an indicator in the planning of winter operations on
roads on a daily time scale. Hanbali (1994) uses a cost–benefit analysis to show that the socio-
economic benefit of keeping the roads open and ensuring normal winter traffic is significantly
larger than the costs of not removing snow and ice from roads and pavements (see also Arent
et al. 2014).

The remaining part of the article is structured as follows. The second section presents the
methods and variables applied in the analysis. The third section estimates the relationship
between climate and winter operating costs. The fourth section analyses the short- and long-
term development of the temperature in the region of Bergen. This section derives a model
applied in analysing how the likelihood of snow-free winter in Bergen is influenced by climate
change. The fifth part uses Monte Carlo simulations to show how the long-term climate
projections for western Norway affect the future winter operations in Bergen by 2100. The last,
sixth, section summarizes the analysis.

2 Methodology

The following methodologies are applied in the analysis: Descriptive statistics measure the
location and spread of the variables included in the analysis, while estimation of Pearson’s
correlation coefficient gives a rough measure of the instantaneous relationship between the
entities. Linear regression is applied in estimating the causal relationship between costs and
climate variables. The validity of the regression models is evaluated by testing the statistical
properties of the residuals with respect to the degree of autocorrelation, degree of stability of
the variance and whether they are normally distributed. Multicollinearity measures are applied
in evaluating the degree of correlation between independent variables included in the regres-
sion model. Special test procedures are also applied: model specification tests of function form,
stability tests of estimated coefficients and tests of comparing different models. Unit root
testing for stationarity of the time series is applied. Quantile regression is applied in the
evaluation of the long-term development of the spread of the temperature. Estimation of
autoregressive conditional heteroscedasticity models (ARCH) is applied in analysing whether
the volatility of the temperature is conditioned on historical variation. Monte Carlo simulations
are applied to illustrate the likely short- and long-term changes in temperature and the potential
effect on road maintenance costs. Simple mathematics is applied in formalizing how long-term
changes in climate influence on the likelihood of rare events in the region of Bergen.
References for formal description of tests and estimation methods are included in the text
where they are applied.

2.1 Definition of variables

The winter road maintenance costs are measured as an aggregate of, respectively, the direct
costs of removing snow and ice from the roads, salting, car hiring, input of raw materials and
labour costs. The cost data are not sorted by type of infrastructure, i.e. pathway or road, and the
analysis does not take into consideration that climate change is expected to change the indirect
costs associated to changes in travel time, frequency of accidents, road crashes and deaths rate
on the roads. To compare expenses over time, the expenditures are adjusted to 2015 values by
the consumer price index (CPI) obtained from Statistics Norway. The winter operation costs
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are registered in January, February, March and April and in the autumn and winter months
October, November and December. In total, the winter period includes 7 months. Temperature
data included in the analyses are the average of the 7 months where the winter maintenance
takes place each year in the period 2005–2015. Precipitation data are the sum of the 7 months.
In the estimation of the theoretical return period (waiting time) of a rare year without snow and
ice on the roads and no maintenance costs, local temperature series from two periods,
respectively, the period 2005–2015 and the period 1916–2015 are used. The analysis applies
also regional temperature trend projections made by Norwegian scientists in climatology
(Hanssen-Bauer et al. 2015, 2017). The climate variables included in the analysis are official
data, measured at the Florida weather station in Bergen by the Norwegian Meteorological
Institute n.d. (www. eKlima.no or www.met.no). The Traffic division at Bergen Municipality
provides the aggregated yearly cost data related to the referred winter operations for the period
2005–2015.

Figure 1 shows how costs, winter temperature and precipitation have developed for the
seven winter months per year in the period 2005–2015. The annual mean cost of winter
operations is NOK 37 million (2015-value). The minimum and maximum costs are respec-
tively NOK 20 and NOK 92 million. The maximum cost was measured in 2010, and it was the
coldest year this period with an average of 1.7 °C and the year with the lowest level of
precipitation. The lowest level of costs was in 2006. The maximum precipitation level was in
2015, and the maximum temperature was in 2014 (see Table 1 Online Resource). A large part
of the road maintenance decisions is based on weather forecasts. The municipality must
mobilize and spread sand and salt to be ahead of expected snowfall and ice. If the forecast
fails, there occurs a discrepancy between the weather forecast-conditioned actions and what in
the aftermath was necessary to do. On average, Bergen spends about NOK 59 per meter road
in winter operating costs per year. If the length of foot and cycle paths is included, the winter
operating costs amount to NOK 50.5 per meter (2015 value). Bergen set a new, all-time-high
annual precipitation record of 3100 mm in 2015 (www. eKlima.no). Note that the record
includes all 12 months of the year.

3 Regression model

Figure 1 indicates that there is a strong inverse relationship between winter operating costs and
temperature, and it is also visual that temperature and rainfall follow the same pattern.
Evaluation of the variables shows that neither of them has a trend, and they are level stationary
processes in the relatively short window the data cover.

Pearson’s correlation coefficient shows a significant correlation between the variables (two-
sided test and 5% significant level. See Online Resource Fig. 2). The correlation is strongest
between costs and temperature. Although the correlation-measure does not indicate the
direction of causality between the variables, it is still apparent. The direction of cause
and effect is as follows: Temperature and precipitation affect the snow and ice
conditions, and not vice versa and it implies that these variables are exogenous to
winter maintenance costs. There is no time lag between the variables, between stimuli
and response, i.e. the snow that fell last year is not removed from the roads next year.
The statistical models applied in the analysis are therefore static. Two models are
estimated to measure the relationship between temperature, precipitation and winter
operating costs. Model 1 is as follows (Eq. 1):
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Ct ¼ αþ β1x1t þ β2x2t þ εt; ð1Þ

where Ct: winter operating costs at time t = 2005,....,2015, x1t: mean temperature (°C),
x2t: total rainfall (mm) and εt: residual which measures the unexplained variation in
the dependent variable. The residuals are independently, normally distributed and with
constant variance. α, β1 and β2 are the coefficients in the model that are estimated by
ordinary least squares method (OLS). Table 1 shows the result of the estimation.
Evaluation of the estimated model shows that there is no first (Durbin-Watson test
score is 1.49) or higher order autocorrelation between the residuals. The residuals are
normally distributed; Jarque–Bera chi-square test score is 1.34 and p value = 0.51
(Jarque & Bera 1981) and White’s test indicates that the variance is constant
(White 1980). Ramsey RESET test returns specification problems associated with
the model (Ramsey 1969), and Hansen’s test indicates that there are no structural
changes either in the coefficients or the variance of the residuals (Hansen 1992). The
multiple correlation coefficient R2 = 0.73, indicating that the model explains 73% of
the variation in the winter costs. Figure 1 shows that temperature and precipitation is
almost a mirror image of each other. The Clausius–Clapeyron equation (Iribarne and
Godson 2013) formalizes the relationship between air temperature and the atmo-
sphere’s ability to hold water. See e.g. Sørland 2015 who demonstrates empirically
the relationship. Model I can be simplified due to the high correlation between
temperature and precipitation (ρ = 0.67 and p value = 0.023) which generates
multicollinearity (Wichers 1975) and inflates the variance of the coefficient estimates.
Precipitation is excluded from Model 1. AIC, Akaike Information Criterion (Akaike
1973), indicates that the simplified model is the best model. The AIC score of the
simplified model is 4.98, while the AIC of the original model (Model 1) is 5.14.
Table 2 presents the result of the estimation of the simplified model (Model 2).

Model 2 has the same explanatory power as Model 1, i.e. R2 = 0.73. The estimated
coefficient of the temperature variable is slightly larger than the estimated coefficient in
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Fig. 1 The uppermost graph shows the winter operation costs, the middle graph shows the mean temperature,
and the lowermost graph shows the precipitation. The series cover only the 7 months of the year (the “winter
period”) where the winter maintenance takes place. The curves cover the period 2005–2015. Source: Bergen
Municipality and the Norwegian Meteorological Institute
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Model 1, and compared to the first model, the variance of the coefficients is lower. The
estimated model shows that temperature and the constant term are both significantly different
from zero. The coefficient of the temperature variable is β1 = − 14.017 (p value = 0.001), and it
follows that an increase in the mean winter temperature by 1 °C is expected to reduce the
winter operating costs by NOK 14.0 million. The estimated elasticity around the mean values
(see Table 2) shows that a 1% increase in temperature reduces the costs by 1.8%. Figure 2
shows the estimated and observed development of costs of maintenance from 2005 to 2015. In
summary, the estimated model shows that temperature has a clear effect on the costs of road
maintenance. The result of the estimation is applied in the following section where the
likelihood of a snow- and ice-free winter is calculated and in the last section where the future
costs of road maintenance are simulated.

4 What is the probability of a snow- and ice-free winter in Bergen?

Model 2 is applied in calculating the rare, critical temperature level that causes winter costs to
be approximately zero. Model 2 estimates the cost function C = 104.13 − 14.02x, and the
average winter operating costs are approximately zero at some time point in the future when
the temperature approaches 104.13/14.02 ≈ 7.43 ° C or higher. During the period 2005–
2015, the calculated, overall mean temperature is 4.81 °C. According to model 2, if
the mean temperature increases by Δx1 = 7.43 − 4.81 = 2.62 ° C or more, the winter
operating costs are approximately zero. Formally, the increase implies that the statis-
tical distribution shifts by 2.62.

How can a significant change (Δx1) in temperature be modelled? Based on observational
data for the period 2005–2015, the overall mean and standard deviation of the winter
temperature are calculated to 4.81 and 1.22 °C, respectively. How likely is it that the
temperature in a random, single year is close to the 7.43 °C level or higher? Autocorrelation
function (ACF) shows that the observations are independently distributed. The Jarque–Bera
test (p value = 0.06) and Lilliefors test (p value = 0.11) cannot reject that the observations are
normally distributed, and the problem can be analysed by using the normal distribution. On the
other hand, if the time series had extreme temperature levels and fat tails, it has been relevant to
apply the “general extreme value theory” (GEV) in the estimation of return periods of extreme
temperature levels (Reiss and Thomas 2001). It can be shown, by using the standard normal
distribution, that the likelihood that the temperature, of a random winter, will be higher or
equal to 7.43 °C is P(z ≥ 2.148) = 0.016. The critical z value (number of standard deviation) is
calculated as follows: z ¼ 7:43−4:81

1:22 ¼ 2:148. The result shows that the probability of the
marginal, rare event is 0.016. The estimate is applied in calculating the waiting time for an
observation where the temperature is 7.43 °C or higher, and in this case the waiting time is

Table 1 Estimated model 1. Winter operating costs are the dependent variable. Based on data for the period
2005–2015

Variable
name

Estimated
coefficient

Standard error T ratio p value (8 DF) Partial
correlation

Elasticity at
means

Temperature − 12.716 4.569 − 2.783 0.024 − 0.701 −1.663
Precipitation − 0.0055 0.0145 − 0.380 0.714 − 0.133 −0.255
Constant 107.25 17.06 6.287 0.000 0.912 2.918

230 Climatic Change (2020) 161:225–242



about 63 years (1/0.016 = 62.5), given the information embedded in the time series covering
the period 2005–2015. This means that within a period of over 60 years, there is a theoretical
possibility that the winter costs in Bergen can be approximately zero, given a standard
deviation of 1.22. The calculation assumes that future temperature has identical
statistical characteristics measured in the period 2005–2015. It implies that future
temperature varies stochastically and independently around a mean value of 4.81 °C
with a constant standard deviation of 1.22 °C/year. However, the assumption of
identical statistical properties is not valid if the temperature follows a new trajectory
or pattern due to man-made global warming or as a result of long-term, natural
climate variation. Long-term changes will change the statistical distribution and the
probability distribution of the realization of temperature and precipitation. The fol-
lowing two sub-sections analyse the likely future development of the temperature level
in the region of Bergen. A projection of the future development will inform how
strongly the winter operation costs can be affected.

4.1 What is the expected future temperature level?

According to Working Group I (WGI) of IPCC’s assessment report (IPCC 2014), the global
mean temperature is expected to increase in the future, but it is uncertain how much and how
fast it will increase, and the changes will not be equal between regions. See for example
Iversen et al. (2013) who show the geographical distribution of the expected changes in mean
annual surface temperature under different RCP-scenarios. RCP is an abbreviation for
“Representative Concentration Pathways” and it refers to different climate gas concentration
trajectories and the associated net increase in radiative forcing (watts per square meter per unit
of time) by about 2100 relative to pre-industrial time.

Table 2 Estimated model 2. Winter operating cost is the dependent variable. Based on data for the period 2005–
2015

Variable name Estimated
coefficient

Standard error T ratio p value
(9 DF)

Partial
correlation

Elasticity at
means

Temperature − 14.017 2.877 − 4.873 0.001 − 0.852 − 1.8334
Constant 104.130 14.23 7.319 0.000 0.925 2.8334
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Fig. 2 Observed (red line) and estimated winter operating costs, based on model 2, for the period 2005–2015
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An expert group of Norwegian climate scientists has recently concluded that the autumn
and the winter temperature in western Norway, including the region of Bergen, will increase in
the future between 1.3 and 5.2 °C by 2100 relative to the reference period 1971–2000
(Hanssen-Bauer et al. 2015, pp. 145 and 153, Tables A.5.1.1 and A.5.1.2, p. 153 and
Hanssen-Bauer et al. 2017, Table 3.2, p. 17). The size of the temperature increase is critically
depending on the emission scenario. The estimates follow from the minimum scenario in
RCP4.5 and the maximum scenario in RCP8.5, respectively. If the projected time horizon is
shorter, Hanssen-Bauer et al. (2015, Table A.5.2.3, p. 151), conclude that the temperature in
the autumn and winter months (average of the medians) in western Norway may increase
between 1.65 and 2.35 °C by 2060. The lowest estimate is based on the RCP2.6 scenario and
the largest temperature increase is based on the RCP8.5 scenario. Stine and Huybers (2012)
and McKinnon et al. (2013) show that winters will warm more than summers. Stine et al.
(2009) analysed data from the Northern Hemisphere covering the period 1900–2007. They
conclude that the annual cycle has changed, and it implies warmer winters due to, respectively,
seasonal phase shifting to earlier dates, reduction in the seasonal amplification (the difference
between summer and winter temperatures) and increasing average temperature. Park et al.
(2018) analysed the period 1953–2012 and conclude that the length of the summer season has
significantly increased in the Northern Hemisphere and its subregions. Førland et al. (2004)
applied historical and climate model-generated data covering the period 1900–2050 and
conclude that the growing season in Norway has significantly increased, and it will continue
to increase.

These findings indicate that the longer the summer season is, the shorter is the winter
season and the temperature in the winter season is expected to increase. If the mean temper-
ature increases, it will result in milder winters, and thus, in the long-term, it is likely that it will
reduce the need for winter maintenance capacity.

4.2 Development of the local winter temperature level

The following subsection looks closer on how the local temperature in the winter period has
developed from past to the present. The estimated cost-temperature model uses data covering
the period 2005–2015. It was not possible to identify any overall trend in the time series of this
relatively short time period. The time window is too small in order to measure long-term
changes in the data. Local observational data for the period 1916–2015 are applied in
analysing the properties of the winter temperature. Figure 3 shows, respectively, the yearly
historical winter temperature (red line), a smoothed version of the series (blue line) and the
linear, deterministic trend line derived from the regression model presented in Table 3.

Visual inspection of the smoothed series gives the impression that the winter temperature
has developed in the following three stages: (1) temperature increases in the period 1916–
1934, (2) temperature oscillates around a relatively fixed level during the period 1940–1980
and (3) temperature increases in the period 1980–2015, but note that it did not measure any
significant temperature trend in the period 2005–2015. The series, and the smoothed series,
shows that temperature is oscillating, and the periodogram indicates clearly that the length of
the period is between 7 and 8 years with an amplitude of 0.52 °C which shows that warm/cold-
winter recurs every 7–8 years (Fisher’s kappa = 8.12 p value = 0.008). The difference in trend
is partly explained by the fact that temperature varies on multidecadal scale on top of the long-
term trend, and partly that trend estimates based on different time windows, will not be equal.
This point is mentioned in IPCC’s Fifth Assessment Report (IPCC 2014, WGI, p. 2). The
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stepwise-like development of the temperature could correspond to the so-called “hiatus”-
phenomenon detected in the period 1998–2012 (Medhaug et al. 2017). A stepwise
pattern is also measured in sea temperature along the coast of Norway (Lorentzen
2014). Even though it is a stepwise development, an augmented Dickey–Fuller test
(Dickey & Fuller 1979) cannot reject that the temperature series is a trend-stationary
process. A linear regression model is applied in estimating the development of the
local winter temperature. The regression model includes a constant and a deterministic
trend variable. Table 3 shows the result of the estimation.

The estimation shows that the winter temperature on average has increased by about
0.0091 °C/year. Evaluation of the estimated model shows that there is no first (DW= 1.81)
or higher order autocorrelation between the residuals. The residuals are normally distributed
(Jarque–Bera chi-square test score is 4.54 and p value = 0.10) and White’s test indicates that
the variance is constant, which means that there is no heteroscedasticity. Ramsey RESET test
returns no problems associated with the specification of the model even though the smoothed
series is characterized by three stages in the development of the temperature. Nor does the
Hansen’s test indicate any structural changes either in the coefficients or the variance, given
5% level, but the null hypotheses of stable variance and coefficients are close to being rejected.
The result of Hansen’s test could be an indication of a fragile model and that the temperature
follows a non-linear process. The estimated regional temperature trend corresponds to
Luterbacher et al. (2004) who estimated an overall significant linear trend of 0.008 °C/year
in the atmospherically land winter temperature in Europe for the period 1901–2000.
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Fig. 3 Yearly historical winter temperature (red line) in Bergen, smoothed series (blue line), and the linear trend
line (grey line) derived from the regression model presented Table 3

Table 3 Estimation of temperature trend in the winter period 1916–2015

Variable
name

Estimated
coefficient

Standard
error

T ratio p value (98
DF)

Partial
correlation

Elasticity at
means

Time 0.00909 0.003041 2.988 0.004 0.289 0.1092
Constant 3.7450 0.1769 21.17 0.000 0.906 0.8908
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4.3 Climate change and the likelihood of a snow- and ice-free winter

This section derives the model applied in analysing how potential, long-term changes in
climate can affect the probability that the winter temperature approaches and crosses a
“critical” level xc. Assume that xc is the temperature level that does not trigger winter
operations. A level stationary, normally distributed variable at time point t can be fully
described by the expected value μ(t) and the standard deviation σ(t). Standardization of a
normally distributed variable can be expressed as follows (Eq. 2):

z tð Þ ¼ xc−μ tð Þ
σ tð Þ ð2Þ

Suppose that both the variance and the expected value of temperature change over time. It
implies that the first two moments of the statistical distribution of temperature are functions of
time. When the moments change or shift over time, the properties of the distribution of the
temperature also change. Assume that z(t) is continuous and differentiable with respect to time
t and that the critical value xc is a constant and does not change over time. A marginal change
in the moments with respect to time induces the following effects on the distribution of the
standardized z(t) variable (Eq. 3):

∂z tð Þ
∂t

¼ μ tð Þ−xc½ � ∂σ tð Þ
∂t

−
∂μ tð Þ
∂t

σ tð Þ
� �

1

σ tð Þ½ �2 ð3Þ

The expression may be positive, negative or zero depending on the direction and strength of
the changes of the moments [σ(t) and μ(t)] and the level of the critical value xc. In this context,

it is consistent to expect that μ(t) − xc < 0 and ∂μ tð Þ
∂t > 0 due to the observed positive temper-

ature trend. Assume that the standard deviation is increasing or constant, i.e. ∂σ tð Þ
∂t ≥0, and the

variance is always positive σ2 > 0. If these conditions are fulfilled, it follows that μ tð Þ−xc½ �
∂σ tð Þ
∂t − ∂μ tð Þ

∂t σ tð Þ < 0 and ∂z tð Þ
∂t < 0. Further, if ∂z tð Þ

∂t < 0, it follows that the statistical distribution

changes in a direction that increases the likelihood of observing temperature approaching xc

over time. The last condition can be reformulated and expressed as
∂σ tð Þ
∂t

σ tð Þ μ tð Þ−xc½ � < ∂μ tð Þ
∂t . It

says that the likelihood of observing a winter period without snow and ice will increase if the
relative change in the standard deviation (volatility) of the temperature, weighted with the
difference between the critical threshold temperature xc and the mean temperature μ(t), is less

than the change in the mean temperature. Given that temperature is increasing, i.e. ∂μ tð Þ
∂t > 0,

and the mean temperature is lower than the temperature level xc, i.e. μ(t) − xc < 0, the critical
point is the direction and how fast the variance is changing relative to the temperature trend. If
the variance (standard deviation) is decreasing, it contributes to a reduction of the likelihood of
a random snow and ice-free winter, given that μ(t) − xc < 0.

The academic literature in the field of climate is not clear about the future variability in the
temperature. Some climatologists find evidence that the volatility will increase, and others find
evidence that it will decrease. Meehl et al. (2009) and Rahmstorf and Coumou (2011) argue
that the variance in temperature will not change because the frequency of warm extremes will
increase and the frequency of cold extremes will decrease, and the net effect is no changes in
the variance. Hansen et al. (2012) conclude that the seasonal variation in the winter and
summer season in the Northern hemisphere land has increased during the period 1981–2010
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relative to the base period 1951–1980. Huntingford et al. (2013) argue that the volatility in
temperature will change on regional level but not globally. Coumou and Robinson (2013)
conclude that the variation in temperature on global level will not change. A similar
conclusion is drawn by Rhines and Huybers 2013. Rhines et al. (2017) analysed spatial
seasonal data on daily time scale, covering 25°–55° N region of North America, during
the period 1979–2014. They conclude that the volatility of the winter temperature
(December, January and February) is decreasing. Benestad et al. (2016) draw a similar
conclusion based on climate model data that the day-to-day variability in temperature in
the Barents region is likely to decrease with higher temperatures. The diverging conclu-
sions are influenced by application of, respectively, different methods, time scale, data
from different geographical regions and time periods.

Climate scientists focusing on Norway have not published any analyses about the volatility
of the seasonal temperature, except that they have concluded that the frequency of short-term
extreme precipitation is expected to increase on top of an increasing temperature trend.
Evaluation of the regression model applied on the observed winter temperature data
(Table 3) indicates that the residual variance is relatively stable over the period 1916–2015.
However, both Hansen’s test (significance level of 10%) and application of the following tests
indicate potential changes in the variance: The Goldfeld–Quandt F test (Goldfeld and Quandt
1965), applied on the variance of the residuals of the regression model, indicates that the
volatility of the temperature is higher in the period 2005–2015 compared to 1916–2004 (F9,

87 = 2.39 and p value = 0.02), but the null hypothesis of equal variance cannot be rejected if the
strong effect from the low winter temperature in 2010 is absorbed by an indicator variable in
the model (F8, 86 = 1.30 and p value = 0.26). Quantile regression (95th and the 5th percentiles)
supports the result. It indicates that the spread of the winter temperature has increased or
shifted in the period, but if the strong effect from the 2010 observation is absorbed by
including an indicator variable in the model, the quantile regression (Koenker and Bessett
1978) shows that the spread between the 95th and the 5th percentiles has decreased during
1916–2015. Combination of a Lagrange multiplier test and evaluation of the autocorrelation
function of the squared residuals of the temperature model (Table 3) indicate a weak ARCH
effect (autoregressive conditional heteroscedastic). A significant ARCH effect implies that the
variance of the disturbances of the temperature sequence can be modelled as an autoregressive
moving average-process (ARMA). An ARCH model (Engle 1982) of order four was estimat-
ed. The null hypothesis of no systematic variance pattern was close to being rejected, given a
conventional significance level of 5%; F4, 92 = 2.104 and p = 0.087. In summary, the academic
literature on climate is not clear whether the volatility of the temperature on seasonal, yearly or
longer time scale will change and in what direction. The local time series data sampled in
Bergen region indicate that the variance in the winter season 2005–2015 is higher compared to
the period 1916–1999, but the result is critically conditioned on the strong effect from the cold
winter in 2010.

Figure 4 shows the probability P(z) and associated waiting time (return period) of observing
the rare event; “a random year with a winter temperature equal or higher than 7.43 °C which
does not trigger winter operation costs”. The probability of the rare event P(z) represents the

tail area, i.e. the integral ∫þ∞
7:43 2πð Þ−12exp − 1

2 z
2

� �
dz, of the standard normally distributed variable

z tð Þ ¼ xc−μ tð Þ
σ tð Þ . The tail area is approximated by a function derived by Choudhury (2014). Two

alternative temperature trajectories and two levels of volatility of the temperature are com-
bined. The black solid and dashed lines show the probability and the waiting time of the rare
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event given that the mean temperature increases by 0.0091 °C/year, i.e. ∂μ tð Þ
∂t ¼ 0:0091, while

the red solid and dashed lines illustrate the probability and waiting time when the mean
temperature increases by 0.0392 °C/year. The linear trend 0.0392 °C/year corresponds to the
(median) development projected by RCP8.5 scenario based on 10 Euro-CORDEX climate
scenarios (Hanssen-Bauer et al. 2015, Table A.5.2.2 p. 150). The RCP8.5 scenario has a yearly
increase in temperature that is over four times faster than the estimated, local temperature trend
in the winter period in Bergen (see Table 3). Two different levels of standard deviation are
applied to illustrate the strong effect the volatility has on the likelihood of the rare event. The
solid red and black lines apply 1.22 °C as the standard deviation, while the dashed red and
black lines apply 0.88 °C as the standard deviation. The estimate of 0.88 is derived from the
regression model based on local data from 1916 to 2015 (Table 3). Same coloured lines have
identical trend, and a comparison of them shows the impact different volatility levels have on
the likelihood of the defined rare event. Different coloured lines with identical style have the
same volatility, and a comparison of them shows the impact different long-term temperature
trends have on the likelihood and waiting time of the rare event.

The red lines are based on the RCP8.5 scenario—also called the business as usual scenario. The
red solid line shows, e.g. that the waiting time of a snow-free winter is reduced from 60 to 20 years
by about 2035 due to the temperature increase of 0.0392°C per year . If the volatility is reduced by
28%, i.e. from 1.22 to 0.88 °C, the red dashed line shows that thewaiting time of 20 years in 2035 is
realized 10 years later—about 2045. The black solid line shows that the waiting time is reduce from
60 years in 2015 to 20 years about 2085, given the local estimated temperature trend 0.0091 °C/year
and a volatility of 1.22 °C. Figure 4 shows clearly that the likelihood and waiting time of the rare
event are strongly affected by the size of the long-term temperature trend and the volatility. See
Online Resources Fig. 3 which illustrates the rare event analysis in a 3D-figure.

5 Projection of the winter operation costs

Figure 5 shows how long- and short-term climate change affect the winter operation costs in
the period 1993–2106. The graph on the top left shows the observed and projected winter
temperature. The historical observational, local temperature data cover the period 1993–2015,
while the simulated data cover the period 2016–2106. The trajectory of the temperature is
modelled as a sum of two components, respectively, a short- and long-term component, and the
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Fig. 4 Climate change scenarios and change in probability and waiting time (return period) for a year without
winter operations in Bergen. Four scenarios are illustrated. Black lines show scenarios where the temperature
increases by 0.0091 °C/year and red lines show scenarios based on the RCP8.5 scenario where the trend is
0.0392 °C/year. Solid lines have 1.22 °C as the standard deviation per year and dashed lines have 0.88 °C
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process is modelled as a trend-stationary realization of the temperature which means that
temperature level does not drift away from the long-term trend. The short-term, “noise”-
component εt varies stochastically and independently around the long-term trend component
with expectation (mean) equal zero and standard deviation equal 0.88 °C, i.e. εt~N(0, 0.88).
The short-term volatility of 0.88 is the standard deviation of the residual of the temperature-
regression model presented in Table 3 and Fig. 3. The long-term temperature component is the
estimated trend presented in Table 3. The trend coefficient β is modelled as a deterministic
trend 0.0091 ° C/year with a normally and stochastically distributed noise component γt with
expectation equal zero and standard deviation equal 0.003041, i.e. γt~N(0, 0.003041). By
integrating the variation γt in the model, the uncertainty associated to the trend component β is
internalized in the model. The simulated temperature (see graph on the top left) is based on the

following model xt ¼ x0 þ βt þ ∑T
t γt þ εt, where t = 0, 1, 2, …, T, γt~N(0, 0.003041) and

εt~N(0, 0.88). t = 0 represents the starting point in 2015 where xt = x0 = 4.65 ° C and γ0 = 0,
ε0 = 0. The estimated cost-temperature model, Ct = 104.13 − 14.01xt, is applied in
“transforming” temperature to costs where xt is the simulated temperature at time point t.
The graph on the top right shows the variation in the maintenance costs caused by the sum of,
respectively, the short-term variation in temperature and the long-term temperature trend. The
graph on the bottom left shows the long-term trend. The graph in the bottom right of Fig. 5

Fig. 5 Simulated development of winter operating costs as a function of a general, short- and long-term increase
in the local temperature for the period 2015–2106. The graph (a) on the top left shows the variation in winter
temperature caused by the sum of respectively, the short-term variation in temperature and the stochastically,
varying, long-term temperature trend. The uppermost, right graph (b) depicts the development of costs given the
short and long-term variation in winter temperature. Graphs (c) and (d) show the long-term development in
winter temperature and winter maintenance costs where the short-term, stochastic variation in temperature is not
included
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shows how only the long-term temperature trend influences the long-term maintenance costs in
the period 2015–2106.

The simulations presented in Fig. 5 show that the short-term, random variation in the winter
temperature is of great significance and determines a relatively large proportion of the total
year-to-year variation in winter operating costs. Observational data of winter costs in the
period 2005–2015 show that the variation is large and making it difficult to see by visual
inspection how the long-term trend in temperature affects the winter costs. Another interesting
discovery is that the simulations show that there will be considerable variation in costs in the
future, and it will take many years before the need for winter operations falls away even
though the overall long-term temperature trend is positive. According to the simulations, the
frequency of low maintenance costs will increase over time due to the expected long-term
increase in temperature. The increase in the frequency of such events is dependent on how fast
the temperature increases and of changes in the volatility.

6 Conclusion and discussion

The objective of the article is to analyse the impact of climate change on the winter road
maintenance costs and the rare event of snow-free winter in Bergen—the second largest city in
Norway. The analysis applies multivariate regression methodology, Monte Carlo simulations
and mathematics.

The analysis shows that increasing temperatures have a significant negative effect on the
winter road maintenance costs. The statistical model predicts that the costs are reduced by
about NOK 14 million if the mean winter temperature increases by 1 °C. Application of the
model shows that an increase in the mean temperature in Bergen by as much as 2.5 °C, relative
to the temperature level in 2005–2015, will give a mild state of climate with expected winter
operation costs close to zero. Norwegian climate scientists project that the mean temperature in
western Norway will increase in the winter and autumn by between 1.65 and 2.35 °C by 2060
and between 1.3 and 5.3 °C by 2100 relative to the level in 1971–2000. The projections
depend on the emission scenario. The simulations and the rare event analysis show that the
long-term effects will gradually become more visible compared to the present, observed
natural and short-term variation in climate.

The analysis shows that the variance (volatility) of the temperature and temperature trend
have a strong effect on the profile of the winter and for the likelihood of rare events. The article
shows that long-term, structural changes in climate change the probability distribution of
climate states. The analysis uses two levels of volatility to illustrate the impact on the
likelihood and corresponding waiting time (return period) of a random year without winter
road maintenance. The analysis shows (see Fig. 4) that the larger the volatility of the
temperature is, the higher is the likelihood of a year without winter costs, and equivalently,
a reduction in the volatility reduces the likelihood of a future winter without maintenance
costs, given that all other factors are constant. An interesting result of the analysis shows that
even though the temperature has a positive trend, the effect of a reduction in the volatility can
extend the waiting time of a rare year without winter maintenance costs. Statistical analysis of
the local time series data indicates that the variance in the winter season 2005–2015 is higher
compared to the period 1916–2004, but the result is critically conditioned on the strong effect
from the cold winter in 2010. Scientific literature shows that there is a lack of consensus
among the climatologists whether the future volatility will change and in what direction.
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The scenario analysis applied the estimated, historical local temperature trend of 0.0091 °C/
year, and it shows how the long-term development of the local temperature influences the
costs. However, Hanssen-Bauer et al. (2015) climate model-based projection of the tempera-
ture trend at the west coast of Norway is over four times larger in the business as usual
scenario than the estimate of the local temperature trend. If the temperature increases by as
much as 0.0392 °C, it will change the development of the winter operating costs significantly,
and by about 2100, it is highly likely that the temperature would have reached a level that
implies no snow and ice to remove from the roads.

It is rational that the society adapt to climate changes. Increasing temperatures lead
to the long-term to cost reduction, and past economic resources tied up in winter
operations, can gradually be transferred and applied in producing other public goods
and services. However, if the volatility of the weather in the winter period increases,
it can influence on the necessity for investment in extra capacity to handle periods
with large amounts of snow. It is to expect that the more volatile and chaotic the
weather is, the more difficult it is to “find” the optimal road maintenance capacity. A
change in the volatility will change the exposition of risk, and it will influence on the
economic incentive to invest in long-lasting winter maintenance machinery. On the
other hand, the slower the process of climate change is, the easier it is for the
decision-makers to adjust the capacity without losing money. Climate change is also
expected to change the frequency of traffic accidents on the roads and deaths rate.
These issues are topics for further research, and they are also relevant for the
insurance companies.

The local temperature trend is estimated to 0.0091 °C/year. The estimate is
statistically valid, but the estimate is not necessarily based on the most valid model.
Further research should consider alternative models because the temperature process
indicates a stepwise, non-linear pattern. There is no significant temperature trend in
the period 1940–1980 and neither in the period 2005–2015. This pattern could
indicate a non-linear process due to for example multidecadal oscillations.
Estimation of alternative models is also a topic for further research.

The analysis is based on aggregated data, i.e. the cost data are aggregated, the temperature
data are the average of 7 months and precipitation is the sum of 7 months. The effect of
aggregation and averaging represent a potential loss of information about the dynamics
between the variables. These levels of measurement could also have implication for the
calculation of probabilities of rare events and for the simulations. Further research in this field
can use disaggregated data, e.g. on monthly time scale.

The analysis provides for the first time the municipality of Bergen and its inhab-
itants with information about the relationship between climate and winter road main-
tenance costs. In that respect, the analysis fills a knowledge gap and it is a
contribution in the field of climate services. The analysis contributes with information
how winter operations are likely to develop in the long term if the temperature
changes in a direction that climate scientists project according to their scenarios.
The statistical models can help to quantify the amount of economic and material
resources needed for this purpose, and the models contribute to better long-term
planning, even though the year-to-year variation is large. The analysis can motivate
the administration to cooperate with climate scientists and provide researchers with
more differentiated and disaggregated data which are a precondition for developing
more precise models in forecasting regional winter maintenance costs.
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