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Abstract

Active objects extend the Actor paradigm with structured commu-
nication using method calls and futures. Active objects are, like actors,
known to be data race free. Both are inherently concurrent, as they
share a fundamental decoupling of communication and synchronisa-
tion. Both encapsulate their state, restricting access to one process at
a time. Clearly, this rules out low-level races between two processes
accessing a shared variable. However, is that sufficient to guarantee
deterministic results from the execution of an active object program?

In this paper we are interested in so-called high-level races caused
by the fact that the arrival order of messages between active objects can
be non-deterministic, resulting in non-deterministic overall behaviour.
We study this problem in the setting of a core calculus and identify
restrictions on active object programs which are sufficient to guarantee
deterministic behaviour for active object programs. We formalise these
restrictions as a simple extension to the type system of the calculus and
prove that well-typed programs exhibit deterministic behaviour.

1 Introduction

Concurrent programs are characterised by multiple threads executing over
a program’s state space, possibly in parallel on multicore or distributed
hardware. Concurrency introduces non-determinism in the programs, which
makes it hard to reason about program behaviour and easy to inadvertently
introduce errors. Two major causes for errors in concurrent programs are
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deadlocks and races. One has to choose between making programs more
synchronous, which makes them exhibit less behaviour but also makes them
more deadlock-prone, and making program more asynchronous, which en-
ables more behaviour and makes them less deadlock-prone. However, allow-
ing more behaviour also allows more races to occur between the program
threads.

Active object languages [1], which extend the Actor [2, 3] model of con-
currency with asynchronous method calls and synchronisation using futures,
naturally lend themselves to an asynchronous program style because they
decouple communication from synchronisation. Asynchronous method calls
can be dispatched without any transfer of control between the active objects.
Although asynchrony generally leads to non-determinism, languages based
on the Actor model are known to be free from data races (e.g., [4]). This
is because actors (and active objects) encapsulate internal state and restrict
local state access to one method at a time, which eliminate such low-level
races. However, these systems are prone to high-level communication races
which result in a non-deterministic order of execution for methods on an
actor in the system. These races may be triggered by asynchronous method
calls (e.g., they are the only races in ASP [5]), by the synchronisation on the
associated futures (e.g., [6,7]) to retrieve the return values from these method
calls, and by cooperative scheduling inside the active objects (e.g., [8]). The
occurrence of high-level races gives rise to the following question: under
which conditions are active object programs guaranteed to be deterministic?
That is, the programs always produce the same output given a particular
input.

This paper studies the problem of active objects with guaranteed deter-
ministic behaviour. Deterministic behaviour for a concurrent program boils
down to confluence properties between execution steps. We formalise the ex-
ecution of active objects systems in a core calculus to study their confluence
properties. We combine certain characteristics of the underlying communi-
cation network and the local scheduling policy of each active object with
restrictions on the program’s topology, and show that these together suffice
to prove confluence. We identify characteristics that can ensure determi-
nacy, and show how to restrict existing languages to make them partially
deterministic. We further show that a simple typing discipline suffices to
statically enforce this topology and relate our findings to existing calculi
and languages to shed light on how to approach the problem of designing a
deterministic active object system in different languages.

The main contributions of the paper can be summarised as follows: We
extend previous work on deterministic active object systems, which enforce a
tree-shaped object graph, to handle explicit futures and cooperative schedul-
ing, and show that a simple type system is sufficient to guarantee deter-
ministic behaviour even when futures can be shared among objects in the
tree-shaped topology.
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Paper overview. Section 2 motivates the problem addressed in this paper
through an example. Section 3 introduces the active object calculus in which
we study the problem, including its operational semantics and basic type
system. Section 4 defines and proves confluence properties for our calculus.
Section 5 addresses the problem of statically guaranteeing a tree structure
in the program topology. Section 6 discusses related work, and in particular
to what extent existing active object calculi and languages can guarantee
deterministic behaviour. Section 7 concludes the paper.

2 Motivation and Example

An actor is a single-threaded unit of distribution that communicates with
other actors by asynchronous message sending. The absence of multi-threading
inside an actor and the fact that data is handled by a single actor prevents
data races. However, race conditions can appear when two actors send mes-
sages to the same receiver, or when an actor chooses the next message to
be processed. Thus, actors are a programming abstraction that limits non-
determinism, but does not prevent it. Different adaptations of the actor prin-
ciples entail different sources of non-deterministic behaviour for programs.
To motivate our work on deterministic behaviour for active objects, which
are actors synchronising on futures, we review below two classical paral-
lel programming patterns implemented using active objects and discuss the
races they exhibit.

We consider two implementations of a program which computes the av-
erage over a sequence of values. Figure 1 shows an implementation using a
master-worker pattern based on active objects. Two workers w1 and w2 are
called asynchronously (Lines 7 and 8) to perform some work task, the main
object then synchronises on the returns from the two invocations (Lines 9
and 10 use a get-statement to retrieve the return values) before it computes
the average in Line 11. The implementation is presented in the core calcu-
lus of Section 3 using an additional basic type Array with sum and length
operators.

Figure 2 shows an implementation of the same problem using a map-
reduce pattern. In this implementation, partial results are reduced as they
arrive. The workers send their results to a Reducer active object who com-
putes the partial average of the results as they arrive and forwards the av-
erage to a receiving active object out (we omit its implementation). We see
that the asynchronous method calls to the workers (Lines 27 and 28) are not
associated with futures in this implementation, but include a reference to
the Reducer instance so the partial results can be passed on directly. The
computed result would be deterministic with a commutative and associative
reduction operator—but this is not the case in our example. Observe that
if the first partial average is computed over an empty array, a division-by-
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1 Worker {
2 Array work(int i) { .... } // omitted
3 }
4 { // main
5 Worker w1 = new Worker (); // creation of active objects
6 Worker w2 = new Worker ();
7 Fut <Array > f1 = w1!work (1); // asynchronous invocation
8 Fut <Array > f2 = w2!work (2);
9 Array r1 = get f1; // synchronisation

10 Array r2 = get f2; // synchronisation
11 average = (sum(r1) + sum(r2)) / (length(r1) + length(r2))
12 }

Figure 1: Implementation with a master-worker pattern.

1 Map {
2 int work(int i, Reducer red) {
3 .... // computation omitted
4 Fut <int > c = red!reduce(computedArray);
5 return 0
6 }
7 }
8 Reducer {
9 int expectedResults; // number of expected results

10 OutputObject out; // result is sent to out
11 int partialNb ,partialAvg;
12 int NbWorks; // number of received results
13
14 int reduce (Array oneResult) { // reduce computing partial

average
15 int newPartialNb = partialNb+length(oneResult);
16 partialAvg =

(partialAvg*partialNb+sum(oneResult))/newPartialNb;
17 partialNb = newPartialNb;
18 NbWorks = NbWorks + 1;
19 if (NbWorks == expectedResults) { out!send(partialAvg) } ;
20 return partialAvg
21 }
22 }
23 { // main. We suppose out is an active object expecting the result
24 Reducer red = new Reducer(2,out ,0,0,0); // reducer creation with

initial values for fields
25 Worker m1 = new Map();
26 Worker m2 = new Map();
27 Fut <int > f1 = m1!work(1,red); // asynchronous invocation
28 Fut <int > f2 = m2!work(2,red)
29 }

Figure 2: Implementation with a map-reduce pattern.

zero error will be triggered. This bug might only appear in some executions
because messages are received in a non-deterministic order, which makes
the reducer difficult to debug. In contrast, the master-worker implementa-
tion behaves deterministically; if a division-by-zero bug would occur in that
implementation, it would occur in every execution.
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Map-reduce is a popular pattern that is supported by powerful runtime
frameworks like Hadoop. In the sequel, we identify why patterns such as
map-reduce are potentially non-deterministic and design a type-system that
ensures deterministic behaviour for active objects. This type system can
type the master-worker implementation, but not the map-reduce one.

3 An Active Object Language

In this section we propose a core language for active objects. We adopt a
Java-like syntax that is similar to ABS [8].

Notations. T denotes a list of elements T , unless stated otherwise this list
is ordered. In the syntax x, y, u range over variable names, m method names,
α, β active object identifiers, f future identifiers, and Act class names. The
set of binary operators on values is represented by an abstract operator ⊕, it
replaces all the classical operations on integer and booleans. Mappings are
denoted [x 7→ a] which builds a map from the two lists x and a of identical
length, m[x 7→ a] updates a map, associating the value a to the entry x, and
+ merges two maps (taking values in the rightmost one in case of conflict).
q#q (resp. q#q) is the FIFO enqueue (resp. dequeue) operation.

3.1 Syntax and Semantics

We design a simple active object model with one thread per object and where
all objects are active (uniform active object model). Interested readers are
referred to [1] for a complete description of the different request scheduling
strategies in active object languages.

Figure 3 shows the syntax of our language. A program P is made of
a set of classes, each having a set of fields and a set of methods, plus a
main method. A method M has a name m, a set of parameters, and a
body, made of a set of local variables and a statement. Types and terms
are standard of active object languages, for instance new creates an active
object, get accesses a future, and v!m(v) performs a method invocation on an
active object and thus systematically creates a future. The type constructor
for future is Fut〈T 〉 like ABS or any explicit future construct. Sequence is
denoted as ; and is associative with a neutral element skip. Consequently,
each statement that is not skip can be rewritten as s; s′ with s neither
skip nor a sequence. ⊕ denotes the (standard) operations on integers and
booleans. Finally, including an await enables cooperative scheduling: it
interrupts a thread until a condition is validated. Several design choices had
to be made in our language we discuss them briefly below:
• For simplicity, we suppose that local variables and fields have disjoint

names.
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P ::= Act{T x M} {T x s} program
M ::= T m(T x) {T x s} method
s ::= skip | x = z | if v { s } else { s } | s ; s statements
| return v | await e

z ::= e | v!m(v) | new Act(v) | get v rhs of assignments

e ::= v | v ⊕ v expressions
v ::= x | null | integer-and-boolean-values atoms
B ::= Int | Bool | Act basic type
T ::=B | Fut〈B〉 type

Figure 3: Static syntax of the core language.

cn ::= α(a, p, q) f(w) configuration
p ::= ∅ | q current request service
q ::= {` | s}f request
w ::= x | α | f | null | integer-values runtime values
`, a ::= [x 7→ w] local store and object fields
e ::= w | v ⊕ v expressions can now have runtime values
s ::= skip | x = z | if e { s } else { s } statements
| s ; s | return e | await e

z ::= e | v!m(v) | new Act(v) | get v expressions with side effects

Figure 4: Runtime Syntax of the core language .

• We specify a service of requests in FIFO order with a causal ordering of
request transmission, like in ASP [5], Rebeca [9] or Encore [10]. Also,
FIFO communication is supported by many actor and active object
implementations, and it reduces the possible interleaving of messages.
• Adding subtyping is outside the scope of our study.
• With more complex active object models, it is sometimes necessary

to have a syntactic distinction between synchronous and asynchronous
invocations. For instance, ABS uses ! to identify asynchronous method
invocations that create futures. Our core language adopts ABS syntax
here but does not have synchronous invocation.

The operational semantics of our language is shown in Figure 5; it ex-
presses a small-step reduction semantics as a transition between runtime
configurations. The syntax of configurations and runtime terms is defined in
Figure 4, statements are the same as in the static syntax except that they
can contain runtime values like reference to an object or a future (inside
assignment or get statement). A configuration is an unordered set of active
objects and futures. Each active object is of the form α(a, p, q) where α is
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w is not a variable
[[w]]` = w

x ∈ dom(`)

[[x]]` = `(x)

[[v]]` = k [[v′]]` = k′

[[v ⊕ v′]]` = k ⊕ k′

Context
cn→ cn′

cn cn′′ → cn′ cn′′

Assign
[[e]]a+` = w (a+ `)[x 7→ w] = a′ + `′

α(a, {` | x = e ; s}f , q′)→ α(a′, {`′ | s}f , q′)

New
[[v]]a+` = w β fresh y = fields(Act)

α(a, {` | x = new Act(v) ; s}f , q′)→
α(a, {` | x = β ; s}f , q′) β([y 7→ w],∅,∅)

Invk
[[v]]a+` = β [[v]]a+` = w β 6= α f ′ fresh bind(β,m,w) = {`′ | s}

α(a, {` |x=v!m(v);s}f , q′) β(a′, p, qβ)→ α(a, {` |x=f ′;s}f , q′) β(a′, p, qβ#{`′ | s}f ′)

Invk-Self
[[v]]a+` = α [[v]]a+` = w f ′ fresh bind(α,m,w) = {`′ | s}
α(a, {` | x = v!m(v) ; s}f , q′)→ α(a, {` | x = f ′ ; s}f , q′#{`′ | s}f ′)

Return
[[v]]a+` = w

α(a, {` | return v ; s}f , q)→
α(a,∅, q) f(w)

Get
[[v]]a+` = f ′

α(a, {` | y = get v ; s}f , q′) f ′(w)
→ α(a, {` | y = w ; s}f , q′) f ′(w)

Serve
∀q′ ∈ q1.disabled(q′) enabled(q)

α(a,∅, q1#q#q2)→ α(a, q, q1#q2)

await
disabled(q)

α(a, q, q′)→ α(a,∅, q#q′)

Figure 5: Semantics of the core language (rules If-True and If-False for
reducing if omitted).

the active object identifier, a stores the value of object fields, p is the task
currently be executed, and q a list of pending tasks. The configuration also
contains futures that are resolved by a value w (when a future is not yet
resolved, it is not in the configuration). A task q is made of a set of local
variables ` and a statement s to be executed, additionally each task is sup-
posed to fulfil a future f . The currently performed task p is either empty ∅
or a single task q.

The semantics uses an auxiliary operator – bind – that creates a context
for evaluating a method invocation. If the object α is of type Act, and m is
defined in Act, i.e., Act{..T m(T x) {T y s}..} is one class of the program P ,
then1: bind(α, (f, m, w)) , { [ this 7→ α, x 7→ w ] | s }.

1It is not necessary to initialise the local variables in the local environment because of
the way store update is defined.
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To deal with assignment, we use a dedicated operator for updating the
current fields or local variables:

(a+ `)[x 7→ w] = a′ + `′ ⇐⇒ a′ = a[x 7→ w] and `′ = `, if x ∈ dom(a),
a′ = a and `′ = `[x 7→ w], otherwise

We also define a predicate checking whether a thread is enabled, i.e.,
can progress. A thread is disabled if it starts with an await statement on a
condition that is false.

disabled(q) ⇐⇒ ∃` e s f. (q = {`|await e ; s}f ∧ [[e]]a+` = false)

enabled(q) ⇐⇒ ¬disabled(q)

The semantics of a program features the classical elements of active object
programming [8, 11], the stateful aspects of the language are expressed as
accesses to either local variables (`) or object fields (a). The first three
rules of the semantics define an evaluation operator [[e]]a+` that evaluates an
expression. Note that [[e]]a+` = w implies that w can only be an object or
future name, null, or an integer or boolean value. The semantics in Figure 5
contains the following rules that are standard of active object languages.
Assign deals with assignment to either local variables or object fields.
New creates a new active object at a fresh location β.
Invk (method invocation) creates a task and enqueues it in the target active

object, and a future identifier f ′, a reference to the future can then be
used by the invoker α.

Invk-Self deals with the particular case where the target is the invoking
object.

Return evaluates a return statement and resolves the corresponding fu-
tures, finishing a task so that a new task can be performed.

Serve occurs when there is no current task, it picks the first one that can be
activated from the list of pending tasks and starts its execution. This
ensures a strict single-threaded execution of each request one after the
other.

Get fetches the value associated to a future.
Await suspends a task, waiting for the object to be in a given state before

continuing the task. Note that the awaited condition only depends on
the internal state of the active object. This scheduling feature is called
cooperative scheduling because several threads can be executing at the
same time but only one progresses and the context switch between a
thread and another is triggered by the program itself.

The initial configuration for running a program Act{T x M} {T x s}
consists of a single object performing a single task defined by the main
method, the corresponding future f is useless as no other object will fetch
the result (it can be any future identifier): α(∅, {∅|s}f ,∅). We use →∗ for
the reflexive transitive closure of →.
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(T-Var)

Γ ` x : Γ(x)

(T-Null)

Γ ` null : Act

(T-Assign)

Γ(x) = T ′ Γ ` z : T ′

Γ `T x = z

(T-New)

Γ ` v : T
fields(Act) = T x

Γ ` new Act(v) : Act

(T-Expression)

⊕ : T × T ′ → T ′′

Γ ` v : T Γ ` v′ : T ′

Γ ` v ⊕ v′ : T ′′

(T-Get)

Γ ` v : Fut〈B〉
Γ ` get v : B

(T-Return)

Γ ` e : T

Γ `T return e

(T-Invk)

Γ(Act)(m) = T → T ′

Γ ` v : Act Γ ` v : T

Γ ` v!m(v) : Fut〈T ′〉

(T-Seq)

Γ `T s Γ `T s′

Γ `T s ; s′
(T-Skip)

Γ `T skip

(T-Program)

Γ[x′ 7→ T ′] `T0
s

∀Act{T x,M} ∈ Act{T x,M}.∀M ∈M.Γ[x 7→ T ][this 7→ Act] `M

Γ ` Act{T x,M} {T ′ x′ s}

(T-Method)

Γ[x 7→ T ][x′ 7→ T ′] `T s

Γ ` T ′′ m (T x){T ′ x′ s}

(T-Config)

∀α(a, p, q) ∈ α(a, p, q).Γ ` α(a, p, q)

∀f(w) ∈ f(w).Γ ` w : Γ(f)

Γ ` α(a, p, q) f(w)

(T-Obj)

Γ(α) = Act fields(Act) = T x
Γ′ = Γ[this 7→ Act][x 7→ T ] ∀x ∈ dom(a).Γ′ ` a(x) : Γ′(x)
∀{[y 7→ w]|s}f ∈p ∪ q.∃T ′.

(
Γ′ ` w : T ′ ∧ Γ′[y 7→ T ′] `Γ(f) s

)
Γ ` α(a, p, q)

(T-ObjRef)

Γ ` α : Γ(α)

(T-FutRef)

Γ ` f : Γ(f)

Figure 6: Type system (operator ⊕ has a predefined signature, rule for if
omitted).

3.2 Type System

We define a simple type system for our language (the syntax of types is
defined in Figure 3). The type system is standard for a language with active
objects and futures. The type checking rules are presented in Figure 6.
Classically, Act ranges over class names and types. Γ is used for typing
environments. The typing rules have the form Γ `T s for statements where
T is the return type of the current method, Γ ` e for expressions, Γ `M for
methods, and Γ ` P for programs. The static type checking is defined in the
first twelve rules of the figure. We describe below the most interesting rules.
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T-Get removes one future construct.
T-Invk creates a future type. This rule adds a future construct for the

result of asynchronous method invocation.
T-Program Note that the main body return type can be chosen arbitrar-

ily: there is no constraint on the typing of a return statement in the
main block.

The initial typing environment Γ, which types the program, associates to
each class name a mapping from method names to method signatures. If m
is a method of class Act defined as follow T ′′ m (T x){T ′ x′ s}, we will have
Γ(Act)(m) = T → T ′′.

The type system is extended for typing configurations, this is expressed
in the last four rules of Figure 6. A typing environment gives the type of
each active object and future. Each element of the configuration is checked
individually in a very standard manner. The only complex case happens
when checking processes, i.e., statements of requests in the queue or being
processed, the complexity only comes from the necessity to build the typing
environment for the body of the methods.

Properties of the type system Our type system verifies subject reduc-
tion.

Property 1 (Subject reduction). If Γ ` cn and cn→ cn′ then Γ′ ` cn′ with
Γ ⊆ Γ′.

Proof. The proof is by straightforward induction over the application of tran-
sition rules. For example the correct typing of the future value is ensured by
the fact that the return statement is well-typed in the initial configuration
(i.e., it has the return type of the method). This also ensures that the get
statement is well-typed (accordingly to the future type and the return type
of the method), and thus the Get reduction rule obtains the return type
without the future construct. Then, it is easy and classical to prove that ev-
ery bind succeeds (because the target method exists). The proof is standard
and thus omitted from the paper.

4 Confluence Properties

In the following, we will state under which conditions a program written in
our language can behave deterministically. We first identify the configura-
tions modulo renaming of futures and active object identifiers. For this we
let σ range over renaming of futures and active object identifiers (mapping
names to names), and use cnσ to apply the renaming σ to the configuration
cn.

Definition 1 (Equivalence). The configurations cn1 and cn2 are equivalent,
denoted as cn1 ≡ cn2, if and only if ∃σ.cn1 = cn2σ.

12



Note that it is trivial to prove that two equivalent configuration can do
the same reduction step (according to the SOS rules) and reach equivalent
configurations. Our properties will rely on the topology of active objects.
For this we first define the set of active objects referenced by a term of the
language as follows.

Definition 2 (References). We state that active object β is referenced by
active object α in configuration cn, written β ∈ refscn(α), if inside con-
figuration cn, the content of the active object α holds a reference to active
object β.
More precisely

refs(`) = {β|β ∈ range(`)}

refs({`|s}) = {β|β ∈ range(`)}

refs(α(a, q , q ′)) = refs(a) ∪ refs(q) ∪
⋃
q′∈q′

refs(q ′)

refscn(α) = refs(α(a, q , q ′)) if α(a, q, q′) ∈ cn

For example, consider the configuration

cn1 =α
(
[x 7→ β], {[y 7→ β] | y := new Act(v) ; y!m()},∅

)
γ
(
∅,∅,∅

)
β
(
[z 7→ f ], {[w 7→ 1] | y := w + 1}, {[g 7→ γ] | h = g!m()}

)
f(3)

We have refscn1(α) = {β}, refscn1(β) = {γ} and refscn1(γ) = ∅
We can now define when a configuration has a tree structure. To be

precise, we should call such a configuration a forest as there is no requirement
on the unicity of the tree root.

Definition 3 (Tree structure). We say that a configuration has a tree struc-
ture when no two objects reference the same third one.

Tree(cn) = ∀αβ ∈ cn. refscn(α) ∩ refscn(β) = ∅

The configuration cn1 given as example above verifies Tree(cn1) because
active object α only references active object β, active object β only references
γ, and active object γ references nothing. If the object field x of α was
mapped to γ instead of β, we would have two active objects referencing γ
and the property Tree(cn1) would be false.

Now, we can state one crucial property of our language; it is a partial
confluence property constrained by the structure of the references between
active objects. We first prove a local confluence property. It relies on the fact
that the only conflicting reductions of the calculus is the concurrent sending
of request to a same target active object, from two different active objects.
As a consequence, if each object is referenced by a single object, then there
is no conflicting reduction and we have local confluence.

13



(T-New)

fields(Act) = T x Γ  v : T ∀v ∈ v.Γ  v : ActB =⇒ v = null

Γ  new Act(v) : Act

(T-Invk)

Γ  v : Act Γ(Act)(m) = T → T ′ Γ  v : T
∀v′ ∈ v.Γ(∃ActB.  v′ : ActB) =⇒ v′ = null @ActB. T ′ = ActB

Γ  v!m(v) : Fut〈T ′〉

Figure 7: Type system modified for no reference passing (each operator⊕ has
a predefined signature, rule for if-statement is omitted). T 6=Act means T is
not an object type.

Property 2 (Local Confluence). For any configuration cn such that Tree(cn),
if there exists cn1 and cn2 such that cn→ cn1 and cn→ cn2, then there exists
cn′1 and cn′2 such that cn1 → cn′1 ∧ cn2 → cn′2 ∧ cn′1 ≡ cn′2.

Proof. The proof of local confluence is classically done by case analysis on
each pair of reduction rules that can be applied. We start by eliminating
the Context rule that is used to extract a sub-configuration and apply it
automatically in the proof, which is detailed in Appendix A.1.

Finally, as a consequence of the previous property, we can state the fol-
lowing partial confluence theorem. When at each point of the execution,
the graph of dependencies between active objects forms a tree, the program
behaves deterministically.

Theorem 1 (Global Confluence). Let cn be any configuration such that
∀cn′. cn→∗ cn′ ⇒ Tree(cn′).

If there exists cn1 and cn2 such that cn →∗ cn1 and cn →∗ cn2, then
there exists cn′1 and cn′2 such that cn1 →∗ cn′1 ∧ cn2 →∗ cn′2 ∧ cn′1 ≡ cn′2.

5 Static Tree Structure Guarantee

In this section we define a type system that is sufficient to ensure the tree
structure of active objects and show that every well typed program according
to the type system defined in this section is confluent.

The type system in Figure 6 is modified by revising rules T-New and
T-Invk, which handles object creations and method invocations, as shown
in Figure 7. The modified type system is denoted as . The two revised rules
ensure that references to an object cannot be passed upon object creation
or method invocation, thus only the creator of an object keeps a reference
to it.
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Note that this is useless in a tree-structure setting because an object
cannot call itself and it cannot pass its reference to an external object either.
Note that, however, we could add a synchronous call on this to the calculus
(stacking a method invocation), which would not raise any problem (just
extending syntax). Alternatively an asynchronous self call that adds the
invocation at the head of the queue like await would also be safe and maintain
confluence property (but with a strange semantics). To keep the typing rules
simple, we use ActA, ActB, . . . , to represents the types of different objects.
Alternatively, we could use subtyping relatively to a generic object type.

To show that a well-typed program in our language is confluent, we
first show that the type system  verifies subject reduction and reduction
maintains the tree property.

Property 3 (Subject reduction of ). If Γ  cn and cn→ cn′ then Γ′  cn′,
where Γ ⊆ Γ′.

Proof. The proof is by classical induction over the application of transition
rules, and is detailed in Appendix A.2. The proof also ensures that any
return-type and thus any future is not an object, i.e., its type is not an Act.
More concretely, we never have Γ(f) = Act.

Property 4 (Reduction maintains tree property). Consider the type-system
of our language modified according to Figure 7 and extended to configurations.(

Γ  cn ∧ cn→ cn′ ∧ Tree(cn)
)

=⇒ Tree(cn′)

Proof. This is due to the fact that the type system prevents the communica-
tion of an object reference to a newly created object or as method parameter,
or as method result. In fact we prove by induction a stronger property:

(Γ  cn ∧ cn→ cn′ ∧ Tree(cn) ∧ ∀f(w) ∈ cn. w 6= α)
=⇒ Tree(cn′) ∧ ∀f(w) ∈ cn′. w 6= α

Invk. Let cn = α1(a1, {`1 |x = v!m(v) ; s1}f , q1) α2(a2, p, q2). We are given
that Tree(cn), i.e., refscn(α1)∩refscn(α2) = ∅, and Γ  cn, which implies
Γ1 T1 v!m(v) for some Γ1 and T1. This further gives us by rule T-Invk
that (i) Γ1 T1 v : Act, (ii) Γ1 T1 v : T , (iii) Γ(Act)(m) = T → T ′, (iv)
@ActB. T ′ = ActB, and (v) ∀v′ ∈ v.Γ′(∃ActB.  v′ : ActB) =⇒ v′ = null.

We are further given by rule Invk that cn → cn′ and cn′ = α1(a1, {`1 |
x = fm ; s1}f , q1) α2(a2, p, q2#{`m | sm}fm) where [[v]]a1+`1 = α2 and
α2 6= α1, [[v]]a1+`1 = w, bind(α2,m,w) = {`m | sm}, and fm is fresh. Given
(v) above, we have refs(`m) = ∅; thus ∀γ. refs(γ) ∩ refs(`m) = ∅. This,
together with Tree(cn), implies Tree(cn′) because `m is the only new term
in cn′ that can contain references to active objects. Also ∀f(w) ∈ cn′. w 6= α
because the set of resolved future is the same in cn and cn′.
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Return. Let cn = α(a, {` | return e ; s}f , q). We are given that Tree(cn),
and Γ  cn. We are further given by rule Return that cn → cn′, where
cn′ = α(a,∅, q) f(w) and [[e]]a+` = w. Since Tree(cn), it is easy to see that
Tree(cn′). By Property 3, we have Γ′  cn′ where Γ ⊆ Γ′ implying that
Γ′  w : Γ′(f), where Γ′(f) = T . From the remark on return-types in the
proof of Property 3, it is clear a well-typed future can never be of any type
Act, i.e., 6 ∃Act.T = Act. Since f(w) is the only future that is changed,
∀f(w) ∈ cn′.w 6= α holds.

The remaining cases are straightforward.

Now, we can prove that the type system  is sufficient to ensure the tree
structure required for confluence.

Property 5 (Tree structure). Consider the type-system of our language mod-
ified according to Figure 7. If for a program P , Γ  P then the execution
of P verifies the conditions of the global confluence theorem, and P has a
deterministic behaviour.

Proof. Consider cn0 is the initial configuration for the program P , we can
prove that ∀cn. cn0 →∗ cn =⇒ Tree(cn). This is a direct consequence of
Property 4 and of the fact that cn0 forms a tree. By application of Property 2
we obtain global confluence.

It is easy to see that in the examples of Section 2, the master-worker
example in Figure 1 can be typed with our type system. On the other hand,
the transmission of object references (Lines 27 and 28) in the map-reduce
example in Figure 2 makes it impossible to type with our type system. This
reflects the fact that only the first one is deterministic.

Ensuring the confluence property in a more flexible way would require
a more dynamic view of the object dependencies, for example by a more
powerful static analysis or a linear type system that would allow the creator
to forget a reference and send it to another object. These more dynamic
systems are not studied in this article and left for future work.

6 Related Work

We review the closest related work and discuss how different actor calculi
could be made partially confluent by following the approach advocated in this
paper. Table 1 summarises the features of some of the languages we discuss,
with respect to the key points that make our approach feasible in practice.
FIFO channels are mandatory to ensure determinacy of communication be-
tween two given objects. Futures can be safely added to the language to
handle responses to messages in a deterministic manner provided they can
only be accessed in a blocking manner. In the following, when a language
appears to us as a meaningful target for our approach, we explain briefly
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Language FIFO channels Blocking future
synchronisation Cooperative scheduling

ProActive and ASP YES YES NO
Rebeca YES NO NO
AmbientTalk NO NO NO
ABS NO YES Non-deterministic
Encore YES YES Non-deterministic
Akka YES Discouraged Non-deterministic
Lustre with futures YES YES NO

Table 1: Deterministic characteristics for a few actor and active object lan-
guages.

how our result is applicable. We consider that for the other languages, the
decisions made in the design of the language are somehow contradictory with
the principles of our approach.

ProActive [12] uses active objects to implement remotely accessible, asyn-
chronous objects. The ASP calculus [5] formalises the ProActive Java library.
This paper also identifies partial confluence properties for active objects,
which can be seen as a follow-up to [5], except that our futures are explicit,
where ASP features implicit futures. Compared to the original work, the pre-
sented core language is more streamlined, making this contribution easier to
adapt to many programming languages.

Applying our approach to ProActive. This paper can be seen both
as an extension of [5] and as an adaptation to explicit futures. Additionally
we partially address cooperative scheduling via a restricted await primitive.
We also identify a simple type system that allows us to ensure deterministic
behaviour of programs.

Rebeca [9] and its variants mostly consist of actors communicating by
asynchronous messages over FIFO queues, which makes model-checking for
Rebeca programs less prone to state-explosion than most distributed sys-
tems [13]. Ensuring a tree structure of Rebeca actors would then be sufficient
to guarantee deterministic behaviour; unfortunately the absence of futures
in Rebeca forces callbacks to be used to transmit results of computations,
and it is very challenging to maintain a tree-structure in the presence of
callbacks.

AmbientTalk [14], based on the E Programming Language [15], imple-
ments an actor model with a communicating event-loop. It targets embedded
systems and uses asynchronous reaction to future resolution, which prevents
deadlocks at the price of more non-determinism, creating a race between the
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reaction to the future resolution and the rest of the computation in the same
actor.

Creol [16] and languages inheriting from it, JCoBox [17], ABS [8] and En-
core [10], rely on cooperative scheduling allowing the single execution thread
of the active object to interrupt the service of one request and start (or
recover) another at explicitly defined program points. A main difference
between ABS and Encore is that the former is built upon Erlang [18] that
does not ensure FIFO ordering of messages, while the latter is built upon
Pony [19] that ensures causal ordering of messages. In addition, Encore sup-
ports an advanced capability-based type system [20] which enables race-free
data sharing between active objects. Confluence properties for cooperative
scheduling in ABS have previously been studied, based on controlling the
local scheduler [21, 22].

Applying our approach to languages à la ABS. ABS is a good can-
didate for our approach because of the numerous formal developments it
supports. However, ABS features much less determinism than our core lan-
guage because communications are unordered, and cooperative scheduling
entails unpredictable interleaving between the treatment of different mes-
sages. For example, Encore is similar to ABS but already ensures FIFO
ordering of messages, it would thus be easier to adapt our work to Encore.

Concerning cooperative scheduling in JCoBox, ABS and Encore, we can
state that await on a future creates a non-blocking future access and should
be proscribed if determinism is expected. Other await statements (on the
internal state of an active object) can be kept in the language, but the
cooperative scheduling policy has to be adapted to make it deterministic.

Futures are becoming increasingly mainstream and are now available
through libraries in many languages, including Java, Scala, C++, and Rust.
Akka [23,24] is a scalable library for actors on top of Java and Scala. Com-
munication in Akka is FIFO which allows scheduling to be performed deter-
ministically. Concerning return-values, Akka used to favour asynchronous
reaction to future resolution which is not deterministic by nature. In the
newest release, Akka 2.6.0, callbacks are the preferred strategy for returning
values. By nature, callbacks entail a non-tree structure of object depen-
dencies and create race-conditions between the handling of callbacks and of
standard requests.

Lohstroh et al. [25] recently proposed a deterministic actor language. The
key ingredient for determinism is the logical timing of messages based on a
protocol which combines physical and logical timing to ensure determinacy.
Unfortunately the resulting language is only deterministic when each message
reaching the same actor is tagged with a different time, which may not be
easy to ensure. Additionally, to the best of our knowledge, there is no proof of
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correctness of the used scheduling protocol and its adaptation to the context
of the paper. We believe our approach could provide the right abstractions
to prove correctness of such scheduling approaches for determinacy, adapting
the proof of confluence provided in this paper and relating it to the scheduling
protocol could prove the confluence property of [25].

Ownership type systems [26] can enforce a given object topology. Their
application to active objects [27], especially inside the Encore language [10,
20], ensures the separation between different memory spaces. Ownership
types guarantee that each passive (or data) object is referenced by a single
active object. Ownership types are in general adapted to enforce a tree
topology, and these works could be extended to active objects so that their
dependencies form a tree (and passive objects are still owned by a single
active object). This significant extension of type systems is outside the scope
of this paper but would allow more programs in our calculus to be accepted
by the type checker and proven deterministic. Other modern type system
features, especially linearity and borrowing [28], should also be considered
for the same reasons. In particular we envisage the use of linear types and
borrowing techniques to extend our results to computations where the tree
structure of active objects may change over time.

Outside the actor community, the addition of futures in Lustre has been
proposed in 2012 [29]. In this work, the authors provide an asynchronous
computation primitive based on futures inside a synchronous language. As
futures have good properties with respect to parallelism and determinism,
they obtain a language that is equivalent to the synchronous language but
with more parallelism. Our approach is very close to futures in Lustre for two
reasons: firstly, both set up a programming model that ensure deterministic
behaviour by using futures and asynchronous invocations, secondly, the way
futures are encoded in Lustre corresponds in fact to an actor-like program
where the dependency between actors form a tree and communication is over
FIFO channels.

Applying our approach to Lustre with futures. We prove here that,
in an asynchronous setting, futures in Lustre still have a deterministic be-
haviour (the same behaviour as synchronous programs). Additionally, our
await primitive could be used in Lustre with future to enable cooperative
scheduling.

7 Conclusion

This paper has given guidelines on how to implement deterministic active
objects and ensure that in any given framework a program behaves determin-
istically if this is desired. We formalised a basic active object calculus where
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communication between objects is performed by asynchronous method invo-
cations on FIFO channels, replies by means of futures, and synchronisation
by a blocking wait on future access. We added a deterministic cooperative
scheduling policy, allowing a thread to be suspended and recovered depending
on the internal state of the object. These conditions are the necessary prereq-
uisites for our approach to be applicable; in such system we identify precisely
the possible races. Our first result can be summarised as: in our calculus the
only source of non-determinacy is the concurrent sending of messages from
two active objects to the same third one. Then we showed that with the given
semantics we can design a type system that ensure determinacy of results
by enforcing a tree structure for objects. For example, if the active objects
were using a communication library ensuring FIFO ordering and determinis-
tic scheduling, our type system would ensure that the correctly typed active
objects using this library behave deterministically.

The current results are still restrictive in the programs that can be ex-
pressed and the rigidity of its properties; however, we believe that we have a
minimal and reliable basis for further studies. In the future, we plan to intro-
duce more dynamic trees for example using linearity and borrowing types,
but also primitive to attach and detach tree to the object dependence graph,
in order to constantly ensure a tree structure, but allow the structure of the
tree to evolve at runtime.
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A Proofs of Properties

To show the type system  verifies subject reduction and reduction maintains
tree property, we first show that given a well-typed expression e and a well-
typed object, then the evaluation of e will be well-typed.

Property 6 (Type preservation). Let Γ be a typing context such that Γ 
α(a, {` | s}, q). If Γ  e : T , and [[e]]a+` = w, then Γ  w : T .

Proof. The proof is by straightforward induction over the evaluation of the
expression e and thus omitted from the paper.

A.1 Proof of Property 2: Local Confluence

The proof of local confluence is classically done by case analysis on each
couple of reduction rules that can be applied.

We start by eliminating the Context rule that is used to extract a sub-
configuration and apply it automatically in the rest of the proof: we will use
this rule transparently in the remaining.
Assign vs others. it is easy to note that assignment does not conflict with
other rules. Note in particular that Assign cannot be applied in the same
active object as New or Invk or Invk-Self.
New vs New. If the two New rules are applied from the same active object,
the two applications necessarily have the same effect modulo the name of the
chosen activity, a trivial renaming is sufficient to prove equivalence.

Now suppose the two New rules are applied from two active objects α
and β. We have:
New

[[v]]a+` = w γ fresh y = fields(Act)

α(a, {` | x = new Act(v) ; s}f , q′) β(a′, {`′ | x′ = new ActB(v′) ; s′}f ′ , q′′)→
α(a, {` | x = γ ; s}f , q′) γ([y 7→ w],∅,∅) β(a′, {`′ | x′ = new ActB(v′) ; s′}f ′ , q′′)

and
New

[[v′]]a′+`′ = w′ γ′ fresh y′ = fields(ActB)

α(a, {` | x = new Act(v) ; s}f , q′) β(a′, {`′ | x′ = new ActB(v′) ; s′}f ′ , q′′)→
α(a, {` | x = new Act(v) ; s}f , q′) β(a′, {`′ | x′ = γ′ ; s′}f ′ , q′′) γ′([y′ 7→ w′],∅,∅)

We need to prove that the two configurations obtained above can both be
reduced to the same third one (modulo equivalence). We can apply again
the New rule in both configurations to complete active object creations (for
the moment we call the newly created active object δ and δ′):

New
[[v′]]a′+`′ = w′ δ fresh y′ = fields(ActB)

α(a, {` | x = γ ; s}f , q′) γ([y 7→ w],∅,∅)
β(a′, {`′ | x′ = new ActB(v′) ; s′}f ′ , q′′)→

α(a, {` | x = γ ; s}f , q′) γ([y 7→ w],∅,∅)
β(a′, {`′ | x′ = δ ; s′}f ′ , q′′) δ([y′ 7→ w′],∅,∅)
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and for the second configuration, active object creation from α is missing:

New
[[v]]a+` = w δ′ fresh y = fields(Act)

α(a, {` | x = new Act(v) ; s}f , q′)
β(a′, {`′ | x′ = γ′ ; s′}f ′ , q′′) γ′([y′ 7→ w′],∅,∅)→

α(a, {` | x = δ′ ; s}f , q′) δ′([y 7→ w],∅,∅)
β(a′, {`′ | x′ = γ′ ; s′}f ′ , q′′) γ′([y′ 7→ w′],∅,∅)

Now two cases are possible. If γ 6= γ′ then we can pick δ = γ′ and δ′ = γ and
the two resulting configurations are identical. Else we need to use equivalence
modulo renaming by applying the substitution {δ′ ← γ, γ′ ← δ} to the last
configuration.

The rest of New is straightforward. Note that invoking on the methods
on the newly created active object is not possible.
Invk vs Invk. Suppose the two Invk rules are applied from two different
active object α and β. Since Tree(cn), α and β can only invoke methods
on two different active objects. We first consider the case where α invokes
method m on β, while β invokes method n on γ. Then, we have

Invk
[[vα]]aα+`α = β

[[vα]]aα+`γ = wα γ 6= α f ′β fresh bind(β,m,wα) = {`′β | s′β}
α(aα, {`α |xα=vα!m(vα);sα}fα , qα) γ(aγ , pγ , qγ)

β(aβ , {`β |xβ=vβ !n(vβ);sβ}fβ , qβ)→
α(aα, {`α |xα= f ′β;sα}fα , qα) γ(aγ , pγ , qγ)
β(aβ , {`β |xβ=vβ !n(vβ);sβ}fβ , qβ#{`′β | s′β}f ′

β
)

and
Invk

[[vβ ]]aβ+`β = γ
[[vβ ]]aβ+`β = wβ δ 6= α f ′γ fresh bind(γ, n, wβ) = {`γ | sγ}

α(aα, {`α |xα=vα!m(vα);sα}fα , qα) γ(aγ , pγ , qγ)
β(aβ , {`β |xβ=vβ !n(vβ);sβ}fβ , qβ)→

α(aα, {`α |xα=vα!m(vα);sα}fα , qα) γ(aγ , pγ , qγ#{`γ | sγ}f ′
γ
)

β(aβ , {`β |xβ= f ′γ;sβ}fβ , qβ)

with two new futures f ′β and fγ . Then, we can apply rule Invk to the two
new configurations, which gives

Invk
[[vβ ]]aβ+`β = γ

[[vβ ]]aβ+`β = wβ δ 6= α f ′′γ fresh bind(γ, n, wβ) = {`γ | sγ}
α(aα, {`α |xα= f ′β;sα}fα , qα) γ(aγ , pγ , qγ)

β(aβ , {`β |xβ=vβ !n(vβ);sβ}fβ , qβ#{`′β | s′β}f ′
β
)→

α(aα, {`α |xα= f ′β;sα}fα , qα) γ(aγ , pγ , qγ#{`γ | sγ}f ′′
γ

)

β(aβ , {`β |xβ= f ′′γ ;sβ}fβ , qβ#{`′β | s′β}f ′
β
)
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and
Invk

[[vα]]aα+`α = β
[[vα]]aα+`γ = wα γ 6= α f ′′β fresh bind(β,m,wα) = {`′β | s′β}

α(aα, {`α |xα=vα!m(vα);sα}fα , qα) γ(aγ , pγ , qγ#{`γ | sγ}f ′
γ
)

β(aβ , {`β |xβ= f ′γ;sβ}fβ , qβ)→
α(aα, {`α |xα= f ′′β ;sα}fα , qα) γ(aγ , pγ , qγ#{`γ | sγ}f ′

γ
)

β(aβ , {`β |xβ= f ′γ;sβ}fβ , qβ#{`′β | s′β}f ′′
β

)

where we have another two new futures f ′′β and f ′′γ . Similar to the previous
case, if f ′β 6= f ′γ , we can then pick f ′′β = f ′β and f ′′γ = f ′γ ; otherwise, we can
apply the substitution {f ′′γ ← f ′γ , f

′
β ← f ′′β} to make the two configurations

equivalent.
The other case where α and β invoke method m on object γ and method

n on object δ, respectively, works analogously.
Invk

[[vα]]aα+`α = γ
[[vα]]aα+`γ = wα γ 6= α fγ fresh bind(γ,m,wα) = {`γ | sγ}

α(aα, {`α |xα=vα!m(vα);sα}fα , qα) γ(aγ , pγ , qγ)
β(aβ , {`β |xβ=vβ !n(vβ);sβ}fβ , qβ) δ(aδ, pδ, qδ)→

α(aα, {`α |xα= fγ;sα}fα , qα) γ(aγ , pγ , qγ#{`γ | sγ}fγ )
β(aβ , {`β |xβ=vβ !n(vβ);sβ}fβ , qβ) δ(aδ, pδ, qδ)

and
Invk

[[vβ ]]aβ+`β = δ
[[vβ ]]aβ+`β = wβ δ 6= α fδ fresh bind(δ, n, wβ) = {`δ | sδ}

α(aα, {`α |xα=vα!m(vα);sα}fα , qα) γ(aγ , pγ , qγ)
β(aβ , {`β |xβ=vβ !n(vβ);sβ}fβ , qβ) δ(aδ, pδ, qδ)→
α(aα, {`α |xα=vα!m(vα);sα}fα , qα) γ(aγ , pγ , qγ)
β(aβ , {`β |xβ= fδ;sβ}fβ , qβ) δ(aδ, pδ,#{`δ | sδ}fδ)

with two new futures fγ and fδ. Then, we can apply again rule Invk to the
two configurations, which gives

Invk
[[vβ ]]aβ+`β = δ

[[vβ ]]aβ+`β = wβ δ 6= α f ′δ fresh bind(γ,m,wβ) = {`δ | sδ}
α(aα, {`α |xα= fγ;sα}fα , qα) γ(a, p, q#{`γ | sγ}fγ )
β(aβ , {`β |xβ=vβ !n(vβ);sβ}fβ , qβ) δ(aδ, pδ, qδ)→

α(aα, {`α |xα= fγ;sα}fα , qα) γ(aγ , pγ , qγ#{`γ | sγ}fγ )
β(aβ , {`β |xβ= f ′δ;sβ}fβ , qβ) δ(aδ, pδ,#{`δ | sδ}f ′

δ
)

and
Invk

[[vα]]aα+`α = γ
[[vα]]aα+`γ = wα γ 6= α f ′γ fresh bind(γ,m,wα) = {`γ | sγ}

α(aα, {`α |xα=vα!m(vα);sα}fα , qα) γ(aγ , pγ , qγ)
β(aβ , {`β |xβ= fδ;sβ}fβ , qβ) δ(aδ, pδ,#{`δ | sδ}fδ)→
α(aα, {`α |xα= f ′γ;sα}fα , qα) γ(aγ , pγ , qγ#{`γ | sγ}′fγ )

β(aβ , {`β |xβ=vβ !n(vβ);sβ}fβ , qβ) δ(aδ, pδ, qδ)
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where we have another two new future f ′γ and f ′δ. Similarly, if fγ 6= fδ, we
can then pick f ′δ = fδ and f ′γ = fγ ; otherwise, we can apply the substitution
{f ′γ ← fγ , fδ ← f ′δ} to make the two configurations equivalent.
Invk vs Await. First .note that the active object α cannot be the same in
the two rules because the first statement cannot be at the same time await
and a method invocation. The two rules are thus applied from two different
objects α and β, respectively, with α invoking a method on object β. It is
straightforward to see that the property holds as the invoked method will be
appended to the queue of pending requests in β, while the await-statement
will either prepend the current request to the queue (if the awaiting state-
ment is false) or be consumed and have no effect on the queue. Note that
the case where α invoking on another object, say γ, obviously holds.
Invk vs Serve. The only non-trivial case is when the target of the invoca-
tion is the active object involved in the Serve rule. Assume the two rules
are applied from two different objects α and β, respectively. Note that since
rule Serve can be applied successfully, that implies that there is at least one
enabled request in the queue of β. We assume further α invokes a method
on object β. The property holds as the invoked method will be appended to
the queue of pending requests in β, while rule Serve selects the first enabled
request in the queue.
Get vs Return. By case analysis on the rules, the two rules must be ap-
plied from two different objects α and β, respectively. This case is straight-
forward since: if rule Get on α succeeds, then the future is already resolved
so the return-statement on β must concern a different future.

The remaining cases hold trivially except the cases for Invk-Self that
are degenerated cases similar to Invk.

A.2 Proof of Property 3: Subject reduction of 

The proof is by straightforward induction over the application of transition
rules.
Return. We are given that Γ  α(a, {` | return e ; s}f , q). We are further
given by rule Return that

α(a, {` | return e ; s}f , q)→ α(a,∅, q) f(w)

where [[e]]a+` = w. By inverting rules T-Config, we have Γ  α(a, {` |
return e ; s}f , q). Assume ` = x 7→ wx, inverting rule T-Obj gives

Γ′ T return e ; s

where T = Γ(f), Γ(α) = Act, fields(Act) = Tα xα, and Γ′ = Γ[this 7→
Act][xα 7→ Tα][x 7→ Tx]. Then, by inverting rules T-Seq and T-Return we
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get

Γ′  e : T

Γ′ T return e
(T-Return)

Γ′  s

Γ′ T return e ; s
(T-Seq)

where the value of the future associated to the method is T also well-typed,
i.e., T = Γ(f). Property 6 ensures that Γ  w : T , and therefore Γ  f(w).
Then, by rules T-Obj and T-Config, we get Γ′  α(a,∅, q) f(w), which
concludes the case.

New. We are given that Γ  α(a, {` | x = new Act(v) ; s}f , q). We are
further given by rule New that

α(a, {` | x = new Act(v) ; s}f , q)→ α(a, {` | x = β ; s}f , q) β([y 7→ w],∅,∅)

where [[v]]a+` = w, β is fresh, and x = fields(Act). Assume ` = x 7→ wx,
inverting T-Config and T-Obj gives

Γ′ T x = new Act(v) ; s

where T = Γ(f), Γ(α) = ActA, fields(ActA) = Tα xα, and Γ′ = Γ[this 7→
ActA][xα 7→ Tα][x 7→ Tx]. Then, by inverting rules T-Seq, T-Assign and
T-New, we get

fields(Act) = T ′ y Γ′  v : T ′

∀v ∈ v.Γ′  v : ActB⇒ v = null

Γ′  new Act(v) : Act Γ′(x) = Act

Γ′ T x = new Act(v) Γ′ T s

Γ′ T x = new Act(v) ; s

Let Γ′′ = Γ′[β 7→ Act], it is obvious that Γ′′  x = β, and consequently
Γ′′  α(a, {` | x = β ; s}f , q) by T-Seq and T-Obj. Then, by Property 6,
Γ′  v : T ′ gives Γ′′  w : T ′; thus, we have Γ′′  β([y 7→ w],∅,∅). Finally,
we conclude the case by T-Config that Γ′′  α(a, {` | x = β ; s}f , q) β([y 7→
w],∅,∅).

Invk. We are given that Γ  α1(a1, {`1 |x= v!m(v);s1}f , q1) α2(a2, p, q2).
We are further given by rule Invk that

α1(a1, {`1 |x = v!m(v) ; s1}f , q1) α2(a2, p, q2)
→ α1(a1, {`1 | x = fm ; s1}f , q1) α2(a2, p, q2#{`m | sm}fm)

where [[v]]a+` = α2 and α2 6= α1, [[v]]a+` = w, bind(α2,m,w) = {`m |
sm}, and fm is fresh. Inverting T-Config gives Γ  α1(a1, {`1 | x =
v!m(v) ; s1}f , q1) and Γ  α2(a2, p, q2). Assume `1 = x 7→ wx, inverting
T-Obj for the former gives

Γ′ T1 x = v!m(v) ; s
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where T1 = Γ(f), Γ(α1) = ActA, fields(ActA) =Tα1 xα1 , and Γ1 = Γ[this 7→
ActA][xα1 7→ Tα1 ]. By further inverting rules T-Seq, T-Assign and T-Invk
we get

Γ′  v : Act Γ′  v : T
Γ(Act)(m) = T → T ′

1 @ActB. T ′
1 = ActB

∀v′ ∈ v.Γ′(∃ActB.  v′ : ActB) =⇒ v′ = null

Γ′ T1
v!m(v) : Fut〈T ′

1〉 Γ′(x) = T ′
1

Γ′ T1 x = v!m(v) Γ′ T1 s

Γ′ T1
x = v!m(v) ; s

Let Γ′′ = Γ′[fm 7→ T ′1], it is obvious that Γ′′  x = fm, and consequently
Γ′′  α1(a1, {`1 | x = fm ; s1}f , q1) by T-Seq and T-Obj. Let `m = y 7→
w. Γ′  v : T implies Γ′′  v : T , then Property 6, together with [[v]]a+` = w,
gives Γ′′  w : T , thus Γ′′[y 7→ T ] Γ′′(fm) sm. Since Γ  α2(a2, p, q2) implies
Γ′′  α2(a2, p, q2) This, together with Γ  α2(a2, p, q2), shows by T-Invk
that Γ′′′  α2(a2, p, q2#{`m | sm}fm), where Γ′′′ = Γ′′[y 7→ T ]. It is easy to
see that Γ′′′  α1(a1, {`1 | x = fm ; s1}f , q1), and we conclude the case with
rule T-Config. It is important to note that T ′1 cannot be an object type,
and thus in Γ no future can be mapped to an object type, In all reachable
configurations such that Γ  cn:

∀f ∈ cn. ∀Act.Γ(f) 6= Act .

This will be used to prove that  ensures a tree object structure.
The remaining cases are straightforward.
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