
MODEL-BASED SOFTWARE TESTING FOR
DISTRIBUTED SYSTEMS AND PROTOCOLS

Doctoral Dissertation by

Rui Wang

Thesis submitted for
the degree of Philosophiae Doctor (PhD)

in
Computer Science:

Software Engineering, Sensor Networks and Engineering Computing

Department of Computer Science,
Electrical Engineering and Mathematical Sciences

Faculty of Engineering and Science

Western Norway University of Applied Sciences

May 4, 2020

©Rui Wang, 2020

Series of dissertation submitted to
the Faculty of Engineering and Science,
Western Norway University of Applied Sciences.

ISBN: 978-82-93677-20-8

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

Author: Rui Wang
Title: Model-based Software Testing for

Distributed Systems and Protocols

Printed production: The Communication Division /
Western Norway University of Applied Sciences

Bergen, Norway, 2020

TO MY PARENTS,
for endlessly loving, cultivating, supporting, and encouraging me.

PREFACE

The author of this thesis has been employed as a Ph.D. research fellow in the software
engineering research group at the Department of Computer Science, Electrical Engi-
neering and Mathematical Science at Western Norway University of Applied Sciences.
The author has been enrolled into the PhD programme in Computer Science: Software
Engineering, Sensor Networks and Engineering Computing, with a specialization on
software engineering.

The research presented in this thesis has been accomplished in cooperation with
the Department of Electrical Engineering and Computer Science at the University of
Stavanger, Norway, and in cooperation with the School of Electrical Engineering and
Computer Science at the KTH Royal Institute of Technology, Stockholm, Sweden.

This thesis is organized in two parts. Part I is an overview article providing an
introduction to the research field of model-based software testing for distributed
systems and protocols, a discussion of the research methodology used, a summary
of the results obtained, and a discussion of the research contributions of this thesis
in the context of state-of-the-art related work. Part II consists of four published and
peer-reviewed research articles (A-D), and one paper (E) submitted to an international
conference:

Paper A R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Model-Based Testing of the
Gorums Framework for Fault-Tolerant Distributed Systems. In Transactions on
Petri Nets and Other Models of Concurrency XIII, volume 11090 of Lecture Notes
in Computer Science, pages 158–180, Springer International Publishing, 2018.

Paper B R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Automated test case
generation for the Paxos single-decree protocol using a Coloured Petri Net model.
In Journal of Logical and Algebraic Methods in Programming, volume 104, pages
254–273, Elsevier Ltd, 2019.

Paper C R. Wang, L. M. Kristensen, and V. Stolz. MBT/CPN: A Tool for Model-Based
Software Testing of Distributed Systems Protocols Using Coloured Petri Nets. In
Verification and Evaluation of Computer and Communication Systems, volume
11181 of Lecture Notes in Computer Science, pages 97–113, Springer International
Publishing, 2018.

Paper D R. Wang, C. Artho, L. M. Kristensen, and V. Stolz. Visualization and Abstractions
for Execution Paths in Model-Based Software Testing. In Integrated Formal
Methods, volume 11918 of Lecture Notes in Computer Science, pages 474–492,
Springer International Publishing, 2019.

Paper E R. Wang, C. Artho, L. M. Kristensen, and V. Stolz. Multi-objective Search for
Model-based Testing. Submitted to The 20th IEEE International Conference on
Software Quality, Reliability, and Security, Vilnius, Lithuania, IEEE, 2020.

ACKNOWLEDGMENTS

My 4 years of doctoral life in Bergen have been influenced by lots of people in various
ways. Here, Iwould like to givemyheartfelt thanks to all. First, I want to givemy biggest
thanks to my supervisors Lars Michael Kristensen, Volker Stolz, and Hein Meling
for their priceless guidance, countless help, infinite patience, and great kindness. I
particularly appreciate their diverse guidance for my research work during my doctoral
study.

I would like to give a special thank to Lars for helping me to learn and understand
modeling with Coloured Petri Nets, for giving reviews and providing suggestions to all
my work at every phase of my doctoral study, and pushing and encouraging me when
I needed to do better for my research. One benefit for me throughout my Ph.D. study
was that my workplace was very close to Lars’s office, so it was easy for me to stop
by his office to ask questions and have discussions. I was always welcomed by Lars
every time. Especially during my work for the thesis, Lars gave invaluable support for
the reviews and advice to this thesis numberless times, and we had research meetings
almost every week throughout my dissertation. Without the help and support from
Lars, I think this thesis would not have been completed on time. Also, I still remember
that 4 years ago when I arrived at Bergen airport at 11 PM for this doctoral work, Lars
picked me up and helped me to have a good start in Bergen. I really appreciate his
kindness for this and since then.

I want to thank Volker for introducing and broadening the research area and work
for me. He introduced the knowledge of the runtime verification to me and provided
opportunities for me to work with Lego robot, to cooperate with other researchers, and
to visit universities and conferences outside Norway. He also very welcomed me to his
office and helped me to solve detailed and technical problems during my Ph.D. study.
I also want to thank him for helping me to build the connection with KTH so that I
could have my research stay there. During the work for this dissertation, Volker also
gave plenty of inputs and a huge effort to the format and layout of the thesis and spent
time reviewing and having meetings with me. I am also most grateful for his support
and help to temporarily hire me for his COEMS project so that I had time to finish our
last paper and my thesis. In addition, I was also invited many times to his home for the
delicious homemade food. I can never thank him enough for his friendly welcome.

I also want to give my thank to my supervisor Hein in UiS. We have two journal
publications collected in this thesis, and Hein contributed in various ways both for the
implementation and paper writing. Hein gave me countless and valuable suggestions
and pointed out the mistakes for the young researcher like me during our cooperation.
He also helpedme to further learn the knowledge of distributed systems and consensus
protocols, and improved my coding skill in Golang programming language and other
related techniques such as Google gRPC and protocol buffers. Because of Hein’s help,
I got the opportunity to attend a summer school for distributed systems. I was also
very welcomed by him when I was visiting UiS for the distributed systems course that
he provided. I appreciate his kindness for driving me to the airport after I finished the
course.

Not only had I the best supervisors during my doctoral study, but I appreciate
the people who helped and supported my research. I would like to give my special
thank to Cyrille Artho at KTH. I consider him as my "unofficial co-supervisor" since
my midterm evaluation. We have two publications together also collected in this thesis.
I want to thank him for hosting me at KTH when I was there as a visiting doctoral
researcher. I had a really nice stay for those 5 months at KTH. We had lunch together
for almost every working day, also with his colleagues at KTH (thanks to them too!).
During my research stay at KTH, Cyrille gave many ideas and suggestions about my
research directions and helped me to solve technical problems. We basally had a
research meeting every day when I was at KTH. Even after my stay at KTH, we still
had very good cooperation for the research and therefore we had two publications,
and Cyrille also contributed to these publications in many and diverse ways. Cyrille
was also the external examiner for my midterm evaluation. Therefore, I also want to
thank him for his time to come to HVL Bergen to attend my evaluation.

In addition to my supervisors, I would like to thank Western Norway University of
Applied Sciences (Bergen University College when I was hired) for funding my Ph.D.
research fellow position. I am really thankful to the staff at the department of Computer
Science, Electrical Engineering andMathematical Sciences for their friendly support. In
particular, I want to first mention Kristin Fanebust Hetland, Håvard Helstrup, and Pål
Ellingsen. They always kindly provided me with help and made sure that I was doing
well if I met any problems at work. I was also very welcomed by them when I needed
to stop by their offices. I am truly thankful for the time and effort they used to support
my work in the department. Here, I especially want to thank Håvard together with
Lars who both helped and contributed to the Norwegian abstract of the thesis. I would
also like to mention Adrian Rutle who was always nice and friendly to me. Thanks
to Adrian, for organizing skiing events and providing opportunities for me to try
skiing and that was lots of fun. Adrian was also the internal examiner for my midterm
evaluation. I thank him for giving lots of valuable feedback for my research. Also, he
invited me, Dr. Fernando, and Dr. Ajith to his home for the traditional Norwegian
Christmas dinner. That was my first time to try pinnekjøtt. I want to give my another
thank to Violet Ka I Pun and Volker together for hosting me for parties and dinners at
their lovely home. Thanks also to Yngve Lamo and Talal Rahman, we always had some
nice and interesting discussions at work. I would also like to mention Sven-Olai and
Harald whom I worked with in the courses I was involved in teaching. It was a very
nice experience for me to work with them. Especially, I would like to thank Sven-Olai
for helping me to practice Norwegian and to book the bus to Førde for me to give a
lecture there.

I am deeply grateful to have Dr. Ajith and Dr. Fernando as my two closet colleagues,
also flatmates, and best bros. Ajith is a problem solver and can always provide help
and information to me about different things in Norway. Fernando is also a good bro
who helped me a lot with many things. I still remember that he showed me around
Bergen to introduce different things and places after I just started my job. That day was
raining of course. We have also traveled to many places together within and outside
Norway. They are my best travel buddies. We are like the Three Musketeers. Thank
you for being in my life.

I would also like to mention my Norwegian colleague and friend Simon who was

always willing to have a chat about different things. He also invited me many times to
his home with great food provided, especially Nachos. I also give my special thank to
Simon’s wife Jillian who is also very nice every time we meet. Also, to Lucas, thanks for
always being willing to discuss work and life and to give useful opinions. It is worth
mentioning that it was very nice of you guys to invite me to different activities. We
had fun many movie nights in the cinema, quizzes in the bar, and even curling. I think
these were all quite helpful for us to relax from our work stress and pressure.

I also want to give my thanks to all other former and new Ph.D. researchers in our
Ph.D. office at HVL, for both the great working and social environment. To Espen and
Andreas, thanks for helping me a lot about different information in Norwegian at the
beginning of my work at HiB (HVL). To Rabbi, thanks for always being willing to give
help and suggestions about research work. To Maxim, it was always fun to chat with
you about Norwegian culture, language, and all other interesting things. To Angela
and Alex, I appreciate the time we spent together as colleagues and friends. That was
so much fun for mini-golf, curling, and movies we went to before. To Patrick, it was
always great to have some beers with you and Fernando. To Jarle, although it was a
very short time, it was nice to sit next to you and discuss work sometimes. To Justus,
thank you for inviting me to your home for dinner; that was a fun night with great
discussions. Also, to Suresh, Anton, Mahmood, Håkon, Faustin, Remco, and all other
Ph.D. researchers, thanks to you, there were countless funny and interesting topics we
have discussed during lunch and coffee breaks or at HVL events and parties.

In addition, I would like to thank my friends in Norway and Sweden for their
kindness, support, and help in my personal life. First, in Bergen, I am so thankful to
have Iril and Ludmila as friends who provided knowledge of Norwegian culture and
traditions and gave useful information about life in Norway to me. I enjoyed the time
with you. No matter in the sunshine with the ice cream or a coffee house, every time
we can have nice and deep discussions. Thank you also to Iril for inviting me to watch
movies in the cinema with her friend Astrid who is also super nice. We all enjoyed the
movies and had nice discussions. I want to give my thank to Linnea who invited me
to the Christmas party. That was a great night. We made pepperkaker and glögg. I
also received a present from her. Also, I want to mention Alejandro (amigo). It was
nice to hang out and chill in the sunshine in Nordnes with amigos Alejandro and Ajith.
In Sweden, I would like to thank my bro William in Stockholm. When I was doing
my research stay at KTH, it was really helpful to have a local Swedish bro like him to
introduce all the things in Stockholm, invite me to his home for dinner and barbecue,
go through different Viking bars in Gamla Stan.

The year 2019 was a very dark and tough time for me. In January 2019, my mother
was diagnosed with breast cancer stage 4 and it has spread to lungs, liver, and bone.
Mymother also lost the ability to walk because of cancer in bone. Therefore, as the only
child in my family, I had to travel back home to China in order to handle this urgent
treatment to my mother’s sickness. Here, I am truly grateful to those special people
who provided kind support, warm help, and great comfort to me for this situation I
was in since then. I would like to express my gratitude again to my supervisors Lars
and Volker who supported my decision to travel back to China for my mother. At that
time I was involved in a course taught by Volker and Sven-Olai, so I want to thank
them and Pål together for quickly finding my replacement for the course. Thanks to

Håvard for comforting me after I got the bad news about my mother from China. I am
most thankful to Kristin who helped me for taking leaves and always cared about me
and my mother’s situation. I cannot thank all of you enough for all that you have done
for me. The treatment for my mother is not easy all the time. I also needed to help her
to do the chemotherapy and targeted therapy in the hospital and to deal with different
side effects at home when I was in China. The good news is that the treatment worked
and hence giving me some relief, and correctly, My mother’s sickness is still under
control by the treatment. I hope everything is going to be better for her. I also want to
thank Fernando, Ajith, Iril, Ludmila, Astrid, Angela, and Alex who kindly asked and
cared about me and my mother’s situation. Thank you again for your understanding
and caring heart.

At last, I would like to express my heartfelt and eternal gratitude to my parents.
I consider you as the most important role model in my life. I will never forget
your countless sacrifices to bring me up and your constant care and selfless love to
me. I truly appreciate your patiently cultivating and countless times of support and
encouragement. You were always there to congratulate me and share my joy when
I had good moments and successes; you were also there to listen to my troubles, to
comfort me, and to put me back on my feet with valuable advice whenever I had a bad
day and desperately need a hand. I will never forget this. Never. I especially want to
give deep gratitude to my mother. Thank you for always teaching me to be a person
who must have courage and bravery, even during your sickness, and thank you for
always being supportive and encouraging me to finish my doctoral study. The love you
have shown me is so great. To both of my parents again, I am extremely grateful that
you have always stood behind me, guided me in the right direction, and encouraged
me to pursue my dreams. Thank you for being the best thing that has ever happened
to me. Thanks a billion for everything you have done for me. I wish you could always
be happy and healthy.

ABSTRACT

Society is increasingly dependent on fault-tolerant cloud-based services which rely on
the correctness and reliability of advanced distributed software systems and consensus
protocols. The implementations of these systems require complex processing logic
which in turn makes them challenging to implement correctly and also challenging to
test in a systematic way. Model-based software testing (MBT) is a powerful approach
for testing software systems. MBT enables automated test case generation from
models, which can be used to investigate fault-tolerance and expose errors in the
implementations of software systems.

The research idea underlying this thesis is to investigate the application of MBT for
distributed software systems and protocols, with the aim of ensuring the correctness,
reliability, and consistency of their implementations. This thesis contains scientific
contributions in three main research areas of MBT for distributed systems.

The first contribution is to investigate MBT for quorum-based fault-tolerant dis-
tributed systems. This has resulted in a general MBT approach and supporting
QuoMBT framework based on generating test cases from models created via Coloured
Petri Nets (CPNs). QuoMBT enables testing of the Gorums middleware framework
and quorum-based fault-tolerant distributed systems implemented via Gorums. Our
experimental evaluation shows that the QuoMBT framework can obtain high code
coverage and successfully detect programming errors in the Gorums middleware and
distributed systems implemented based on the Gorums framework.

The second contribution has been to develop software tools and techniques to
support MBT for distributed systems. We have developed the MBT/CPN software
engineering tool for test case generation from models constructed using CPNs. The
tool can perform both simulation and state space-based test case generation, and is
important for practical application of MBT. The MBT/CPN tool has been successfully
applied to test a distributed storage system and a Paxos consensus protocol both
implemented via the Gorums framework. The general applicability of the tool has
been demonstrated by validating the correctness of a two-phase commit transaction
protocol.

The third contribution involves two research directions. One is an approach
to measure and visualize the execution path coverage criterion of test cases. The
experimental results show that our abstraction-based visualization provides useful
visual feedback of tests, their coverage and diversity. The other is a search-based
test case generation technique based on multi-objective reinforcement learning and
optimization. It relies on a bandit-based heuristic search strategy implemented to guide
test case generation and a multi-objective optimization technique. We have performed
an experimental evaluation on a collection of examples, including the ZooKeeper
distributed coordination service. The results show that test cases generated using
our search-based approach provide predictable and improved state- and transition
coverage, find failures earlier, and provide increased path coverage.

SAMMENDRAG

Samfunnet baserer seg i voksende grad på bruk av feiltolerante skytjenester som
er avhengig av korrekte og pålitelige avanserte distribuerte programvaresystem og
konsensusprotokoller. Implementering av disse systemene krever kompleks prosesser-
ingslogikk som gjør dem utfordrende å implementere korrekt samt utfordrende å
teste på en systematisk måte. Modell-basert programvaretesting (MBT) er en kraft-
full tilnærming for testing av programvaresystemer. MBT gjør det mulig automatisk
å generere testtilfeller fra modeller som kan brukes til å undersøke feiltoleranse og
eksponere feil i implementasjon av programvaresystemer.

Forskningsidéen som ligger til grunn for denne avhandlingen er å undersøke bruken
av MBT på distribuerte systemer og protokoller med det formål å sikre korrekthet,
pålitelighet og konsistens av implementasjon. Avhandlingen inneholder vitenskapelige
bidrag i tre hoved-forskningsområder innen MBT for distribuerte systemer.

Det første vitenskapelige bidraget er undersøkelse av MBT for quorum-baserte
feiltolerante distribuerte systemer. Dette har resultert i en generell MBT tilnærming
og et tilhørende QuoMBT rammeverk basert på generering av testtilfeller fra mod-
eller konstruert ved bruk av Colored Petri Nets (CPNs). QuoMBT muliggjør testing
av Gorums-mellomvare og quorum-baserte feiltolerante distribuerte systemer im-
plementert ved bruk av Gorums. Vår eksperimentelle evaluering viser at QuoMBT
rammeverket kan oppnå høy kodedekning og oppdage programmeringsfeil i Gorums-
mellomvare og distribuerte systemer implementert ved bruk av Gorums-rammeverket.

Det andre vitenskapelige bidraget har vært å utvikle programvareverktøy og
teknikker som støtter MBT for distribuerte systemer. Vi har utviklet MBT/CPN
programvareutviklingsverktøyet for generering av testtilfeller fra modeller konstruert
ved bruk av CPNs. Verktøyet kan generere testtilfeller basert på både simuleringer og
tilstandsrom, og er viktig for den praktiske anvendelsen av MBT. MBT/CPN-verktøyet
har vært brukt for å teste et distribuert lagringssystem og en Paxos konsensusprotokoll
begge implementert via Gorums-rammeverket. Verktøyets generelle anvendbarhet er
påvist ved å validere korrektheten av en to-fase commit transaksjonsprotokoll.

Det tredje vitenskapelige bidraget involverer to forskningsretninger. Den ene er
en tilnærming for å måle og visualisere dekningskriterium av utførelsessekvenser i
programvare for testtilfeller. De eksperimentelle resultatene viser at vår abstraksjons-
baserte visualisering gir nyttig visuell informasjon omprogramvaretester, deres dekning
og mangfold. Den andre er en søke-basert teknikk basert på fler-objektiv forsterkn-
ingslæring og optimalisering for å generere testtilfeller. Teknikken bygger på en
banditt-basert søkeheuristikk implementert for å styre generering av testtilfeller og
en fler-objektiv optimaliseringsteknikk. Vi har utført en eksperimentell evaluering av
en samling eksempler, inkludert den distribuerte koordinasjonstjenesten ZooKeeper.
Resultatene viser at testtilfeller generert ved bruk av vår søke-baserte tilnærming gir
forutsigbar og forbedret tilstand- og transisjonsdekning, finner feil tidligere og gir økt
dekning for utførelsessekvenser i programvare.

Contents

Preface i

Acknowledgments iii

Abstract vii

Sammendrag ix

I OVERVIEW 1

1 Introduction 3

1.1 Fault-tolerant Distributed Computing 4
1.1.1 State-machine Replication . 4
1.1.2 Quorum Systems . 4
1.1.3 The Gorums Framework . 5

1.2 Software Testing . 6
1.2.1 Testing Levels . 6
1.2.2 Testing Terminology and Artifacts 7
1.2.3 Testing Approaches . 8
1.2.4 Testing Coverage . 8

1.3 Model-based Software Testing . 9
1.3.1 The Process of Model-based Testing 9
1.3.2 A Taxonomy of Model-based Testing 10

1.4 The Modbat Model-based API Tester . 13
1.5 Coloured Petri Nets . 14
1.6 Research Questions . 17
1.7 Research Method . 19
1.8 Outline . 19
1.9 Supplementary Material . 20

2 Distributed Systems and Protocols 23

2.1 Distributed Applications . 23
2.2 Synchronous and Asynchronous Systems 24
2.3 Distributed Programming Abstractions 25

2.3.1 Process Abstractions . 25
2.3.2 Communication Link Abstractions 25
2.3.3 Failure Detection . 26

2.3.4 Leader Election . 26
2.4 Distributed Storage Systems with Shared Memory 27
2.5 Distributed Consensus Algorithms and Protocols 28

2.5.1 Consensus Algorithms . 28
2.5.2 Basic Consensus Protocols . 29
2.5.3 Advanced Consensus Protocols 30

2.6 Safety and Liveness Properties . 31

3 Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols 33

3.1 Gorums and Distributed Storage Service 33
3.2 Gorums and Single-decree Paxos . 34
3.3 Model-based Testing Framework and Approach 36
3.4 CPN Testing Models . 38

3.4.1 CPN Testing Model for a Distributed Storage Service 39
3.4.2 CPN Testing Model for Single-decree Paxos 43

3.5 Results and Contributions . 49
3.6 Related Work . 51

4 A Software Tool for Test Case Generation with Coloured Petri Nets 53

4.1 Software Architecture of the MBT/CPN Software Tool 53
4.2 Automated Model-based Testing . 56

4.2.1 Test Case Generation . 56
4.2.2 Test Case Execution with a Generated Test Adapter 58

4.3 Results and Contributions . 63
4.4 Related Work . 64

5 Path Coverage Visualization and Multi-objective Search with Modbat 67

5.1 Extended Finite State Machines (EFSMs) 68
5.2 Representation of Execution Paths . 69
5.3 Path Coverage Visualization . 70

5.3.1 Basic Visualization Elements . 70
5.3.2 State-based and Path-based Graphs 72

5.4 Multi-objective Search . 75
5.4.1 Bandit Heuristic Search for Test Case Generation 76
5.4.2 Bandit Search-Based Test Suite Optimization 78

5.5 Results and Contributions . 82
5.6 Related Work . 88

6 Conclusions and Future Work 93

6.1 Research Questions Revisited . 93
6.2 Summary of Contributions . 96

6.2.1 Contributions to the theoretical foundations and approaches . . 96
6.2.2 Contributions to the MBT software tools and techniques 97
6.2.3 Contributions to the SUT case studies and experiments 98

6.3 Future Work . 100
6.3.1 Theoretical foundations and approaches 100
6.3.2 MBT software tools and techniques 101

6.3.3 Case studies and experiments . 102

Bibliography 113

II ARTICLES 115

Paper A: Model-based Testing of the Gorums Framework for Fault-tolerant

Distributed Systems 117

Paper B: Automated Test Case Generation for the Paxos Single-decree Proto-

col using a Coloured Petri Net Model 143

PaperC: MBT/CPN:ATool forModel-BasedSoftwareTestingofDistributed

Systems Protocols using Coloured Petri Nets 165

PaperD: Visualization andAbstractions for Execution Paths inModel-based

Software Testing 185

Paper E: Multi-objective Search for Model-based Testing 207

Part I

OVERVIEW

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially
because it produces objects of beauty.

—Donald E. Knuth [73]

CHAPTER 1
INTRODUCTION

Information technology is dramatically altering the way we organize society and
conduct business. Today, critical aspects of the most exciting innovations, such as smart
energy systems in homes, intelligent transportation systems, health-care systems, and
robotic product development systems in industry, increasingly rely on the correctness,
availability and performance of cloud-based software services implemented based on
advanced distributed systems. These cloud services have a strong influence on not only
almost all aspects of our life and on society, but also on the developments in the Internet
of Things (IoT) domain. The complex logic required in the software of distributed
systems and cloud services frequently leads to implementation errors [1]. Such errors
can cause the cloud services to become unavailable and even return erroneous results
to users.

A key foundation to realize robust distributed systems for cloud services is to
apply sophisticated distributed algorithms and consensus protocols. These algorithms
and protocols make it possible to handle server failures, to replace failed servers, and
to extend the capacity of the system dynamically, without interrupting the services
provided to the users. However, distributed algorithms and protocols are notoriously
difficult to understand and to implement correctly, and they rely on complex logic and
practices that render the development of distributed systems and cloud services error-
prone [64, 97, 102, 104]. This means that current software engineering techniques are
often inadequate for reliable development of such complex systems and services, and
there is an urgent need for better software engineering and development approaches
to ensure the correctness of the implementation of these systems and services.

In this thesis, our research idea is to combine model-driven software engineering
(MDSE) [21], formal verification, and software testing techniques with a main focus
on the application of model-based software testing (MBT) [125] for the development of
distributed systems and protocols used to implement cloud-based services. We aim to
contribute to enabling reliable implementations of distributed systems and protocols
based on behavioral models, and to detect and eliminate errors from distributed
systems and protocols in order to achieve correctness.

In this chapter, we first discuss the method and techniques we focus on in this thesis
to implement fault-tolerant and consistent distributed computing services. Then, we
introduce the background of software testing with a specific focus on model-based
software testing. We also briefly introduce the modeling formalisms and associated
tools that we have used in this thesis. At the end of this chapter, we present and discuss

Introduction

the research questions underlying this thesis, and introduce the research method that
has been applied to address the research questions.

1.1 Fault-tolerant Distributed Computing

In distributed computing, a fundamental problem is to achieve overall system reliability
in presence of the failure of some of its processes. Fault-tolerance enables a distributed
system to continue operating in the presence of a number of faulty processes. This
often requires processes to agree on some common data value that is needed during
computation in order to ensure the consistency of the system. In this section, we discuss
the approaches and techniques to enable fault-tolerance and ensure consistency of
distributed computing services.

1.1.1 State-machine Replication
In distributed computing, for the sake of ensuring fault-tolerance of services, state-
machine replication is usually considered as a general approach to implement highly
available distributed software services via executing several replicated version of a
centralized service (also known as replicas) [117]. These replicas are executed on
different processors (machines) that are assumed to fail independently, and the client
interactions with the replicas are handled by protocols. In this way, the availability
of the service is ensured despite the failure of a subset of the processors. Specifically,
the approach involves deploying a number of replicated state machines on multiple
independent servers; the replicas start in the same initial state and execute the requests
from clients in the same order. Each replica on each server therefore performs the
same operations and produces the same output result to clients. The key to using the
state-machine replication approach is to ensure that all replicas receive and process the
same sequence of requests from clients in order to achieve consistency.

1.1.2 Quorum Systems
In distributed computing, given a set of nodes, typically servers, a quorum system is
a collection of subsets of nodes, called quorums, every two of which intersect [126].
That is, quorums come in groups, forming quorum systems. Each quorum can
operate on behalf of the system, thus increasing its availability and performance.
The intersection property of quorum systems guarantees that operations done on
distinct quorums preserve consistency [94]. Quorum systems have been used as a
foundation to implement various distributed systems and services, such as replicated
databases [49, 61] and distributed read/write storages [14, 32, 94].

Distributed services can rely on a quorum system to achieve consistency and
fault-tolerance through replication. That is, one purpose of quorum systems is to
guarantee consistency in distributed computing with the aid of their key property, i. e.,
non-empty pair-wise intersections of quorums. Another important aspect of quorum
systems is to achieve the goal of fault-tolerance in distributed systems. In a system
with N faulty processes, a quorum is any majority of processes (any set of more than
N/2 processes), and if there are f < N/2 processes failed by crashing, then at least

4 Chapter 1

1.1 Fault-tolerant Distributed Computing

one quorum of uncrashed processes always ensures fault-tolerance in such a system.
Fig. 1.1 illustrates a simple example of a read/write quorum system with majority
quorums. There is a set of replica nodes {a, b, c, d, e}. When a client wants to access
them by performing write/read operations, it only needs to contact a majority quorum
which is one of the subsets of nodes, i. e., {a, b, c} or {c, d, e}, intersecting with node
c. In this way, the system can still provide service despite the failure of an individual
replica node. In a system having arbitrary-fault processes, e. g., in order to tolerate f
faults, a Byzantine quorum [94] is a set of more than (N+ f)/2 processes, and there are
two Byzantine quorums always overlapping in at least one correct process.

a

b

c d

ewrite()

read()

Fig. 1.1: Read/write majority quorums

1.1.3 The Gorums Framework
Commonly, replicated services can be implemented with distributed algorithms which
rely on a quorum system [126, 127] to achieve fault tolerance. As explained above, given
a quorum system, a process only needs to contact a quorum, e. g., a majority of the
processes, to access the replicated state. In thisway, a system can provide service despite
the failure of some processes. However, communicating with and handling replies
from sets of processes often complicate the protocol implementations. Gorums [87] is
a recently proposed framework for implementing quorum-based distributed systems.
It has been developed to alleviate the development effort for building advanced
distributed protocols, such as Paxos [97] and distributed storage [14]. One of our
research goals in this thesis is to provide a model-based testing approach for generating
test cases to validate the correctness of the Gorums framework implementation and
distributed systems and protocols implemented with Gorums.

1.1.3.1 Gorums Abstractions

The Gorums framework reduces the complexity of implementing quorum-based
distributed systems by providing two core abstractions: a quorum call abstraction and
a quorum function abstraction. The quorum call abstraction is used to invoke a set of
remote procedure calls (RPCs) on a group of processes and to collect their responses.
The remote procedure calls are based on the gRPC library developed by Google [50].
The quorum function abstraction can process responses to determine if a quorum has
been obtained. These abstractions help to simplify the main control flow of protocol
implementations.

Fig. 1.2 illustrates the interplay between the main abstractions provided by Gorums.
Gorums allows clients to invoke a quorum call, i. e., a set of gRPCs, on a group of
servers, and to collect their replies. The replies are processed by a quorum function

Chapter 1 5

Introduction

to determine if a quorum has been obtained. The quorum function is invoked every
time when a new reply is received by the client, to evaluate whether the set of replies
received so far constitutes a quorum or not.

gRPC servers

Gorums client

Gorums

Quorum Call

Quorum
Function

Invoke
RPCs

S1 S3S2

RequestReplies

Fig. 1.2: Gorums architecture.

Given the Gorums framework, developers can specify several RPC service methods
using protobuf [51], and from the specification, Gorums’ code generator will produce
code to facilitate quorum calls and collection of replies. Each quorum call method
must provide a user-defined quorum function that Gorums will invoke to determine if
a quorum has been obtained for that specific quorum call. Also, the quorum function
will provide a single reply value, based on coalescing the reply values received from the
different server replicas. This coalesced reply value is then returned to the client as the
result of the quorum call. In this way, the invoking client does not see the individual
replies.

1.2 Software Testing

The expectations of users and industry onhigh-quality software and software-controlled
systems are growing rapidly. This is especially true as the development of software
systems is becoming more complex. Testing is the primary approach that the industry
uses to assess and evaluate the quality of software systems and to uncover problems
during development. The aim of this section is to provide background on basic
testing concepts which can be used to design test cases for software systems, including
distributed systems.

1.2.1 Testing Levels
One of the key concepts of testing is the classification of levels based on testing
activities in the software development life-cycle. These testing levels include system
testing, integration testing, and unit testing [70]. The testing levels correspond directly
to the design levels of software development. The model illustrating the relation
between testing levels and design levels is known as the V-Model [70] and is shown

6 Chapter 1

1.2 Software Testing

in Fig. 1.3. System testing assesses software concerning the requirements specification
phase of software development. It is designed to determine whether the implemented
software systems meet the requirement specification, and this level aims at checking
if the system works as a whole and identifying design and specification problems.
Integration testing evaluates software associated with the preliminary design phase. It
is used to expose defects in the interfaces between integrated components (subsystems)
of the system. Unit testing usually verifies the functionality of a specific program unit
or section of code in the implementation.

Requirements
specification

System
testing

Preliminary
design

Integration
testing

Detailed
design

Unit
testing

Coding

Fig. 1.3: Testing levels and design levels - the "V-Model" [70].

1.2.2 Testing Terminology and Artifacts

The terms and artifacts presented in this section are important in software testing, and
these artifacts will also be used later in this thesis. Most of them are summarized below
based on the IEEE Standard Glossary of Software Engineering Terminology [3].

For software testing, one of the important distinctions that needs to be understood
is the definitions of a software error, fault, and failure. An error is an incorrect
result produced by a human action, which can be considered as a mistake made by
people while coding. A fault is an incorrect step, process, or data definition in a
computer program. It is the representation of an error. A failure occurs when the code
corresponding to a fault executes and indicates the inability of a system or component
to perform its task according to specified performance requirements.

Another important distinction which needs to be made is between validation and
verification. Validation is the process to evaluate software, a system, or components at
the end of the development phase to ensure that it satisfies specified user requirements.
In contrast, verification is the process to determine if software, a system, or component
of a given development phase fulfills the requirements established during the previous
phase.

Chapter 1 7

Introduction

When performing testing, tests usually include more than just input values to a
software system under test. They consist of multiple testing artifacts. Specifically, a test
suite is usually used to provide a finite set of test cases. Each test case consists of a finite
set of test inputs and expected test output. The latter is known as test oracles. These test
cases can be written manually or generated automatically. Then, given a test suite, a
test script can be used to give a sequence of instructions for the execution of a test suite
and to perform testing. Sometimes, a test adapter is used as the environment around a
software system under test to provide test inputs via test drivers, observe test outputs,
and compare the output to the test oracles.

1.2.3 Testing Approaches

Software testing can be classified based on testing approaches, and includes black-
box, white-box, and gray-box testing. For the black-box testing approach [8, 70, 88, 139], a
software system is considered as a black box without peering into its internal structure.
The internal structure (or source code) of a software system is hidden, and the visible
parts of this approach are the possible input and output values of test cases for the
system. Also, the black-box testing approach is often called functional testing, since it
only allows to test input-output functionality. The disadvantage of this approach is the
lack of internal information for testing.

In contrast, the white-box testing approach [8, 70, 88, 139] tests the internal structure
or source code of a software system since the internal information which can be used
to create tests is visible to testers. For the sake of detecting problems of a software
system, this approach uses test cases to execute and analyze specific parts of the source
code or internal structure. Testing techniques for this approach includes fault injection
and mutation testing. This approach is also called structure testing since it can access
the structure of a software system. The disadvantage of this approach is the effort used
to inspect the internal aspects of a program.

The gray-box testing approach [88, 139] is a hybrid form combining white-box and
black-box testing. This approach aims to find defects by considering both the internal
information and the input-output functionality.

1.2.4 Testing Coverage

Several basic testing coverage criteria have been proposed in the literature, includ-
ing statement coverage, branch coverage, path coverage, and modified condition/decision
coverage (MC/DC) [31, 48, 86, 141].

Statement coverage is the simplest coverage criterion, and measures the percentage
of executed statements [90, 141]. A generated test suite that executes every statement
in the program provides full statement coverage of the program. The percentage of the
statements exercised by a test suite is a measurement of adequacy. Statement coverage
is easy to measure, but is not sensitive to control structure that many programming
errors are typically related to [90].

A generated test suite that exercises every control transfer branch in the program
provides branch coverage [141]. The percentage of exercised branches during testing is
also a measurement of the test adequacy of a test suite according to the branch coverage

8 Chapter 1

1.3 Model-based Software Testing

criterion. However, branch coverage still has limitations as it only considers one branch
at a time during testing [90].

Path coverage is a stronger measurement than statement coverage and branch
coverage. It is concerned with a sequence of branch decisions (or statements) instead
of only one branch (or statement) at a time. Path coverage considers combinations of
branch decisions (or statements) with other branch decisions (or statements), which
may not have been tested according to plain branch or statement coverage [90]. It is
challenging to reach 100% path coverage, since the number of execution paths usually
increases exponentially with each additional branch, or increases the number of cycles
that cause infinitely many paths [86].

For modified condition/decision coverage (MC/DC) [31, 60, 109], each condition
(Boolean expression) within a decision of a program must have taken all possible
outcomes at least once when the program is exercised by a generated test suite. MC/DC
addresses testing of boolean expressions and can be used to guide the selection of
test suites. It has the requirement that each condition within a decision must be
demonstrated to independently affect the outcome of the decision [31]. MC/DC cannot
ensure the coverage of all conditions because some conditions in a decision may be
masked by other conditions.

1.3 Model-based Software Testing

In this thesis, themain research focus is onModel-based Software Testing using techniques
from the software testing domain for the development of distributed systems and
protocols. Below, we present the basic concepts of model-based software testing.

1.3.1 The Process of Model-based Testing
Model-based testing (MBT) is a powerful approach for testing software systems. It
typically relies on processes and techniques for constructing an abstract testmodel of the
system under test (SUT) and its environment. MBT makes it possible to automatically
generate concrete test cases from the abstract model, and manually or automatically
execute concrete test cases on the SUT. The goal of MBT is failure detection and
validation of the SUT by capturing observable differences between the behavior of the
software implementation and the intended behavior of the SUT.

The process of MBT and its main elements are shown in Fig. 1.4. MBT involves the
following major activities [124] (the steps refer to the numbers in Fig. 1.4):

Step 1: A model of the SUT is built based on requirements or specifications. This
model is often known as a test model. The test model needs to be simpler andmore
abstract than the SUT so that it can be easily validated, modified, and maintained.

Step 2: Test selection criteria are chosen and testing strategies and techniques may be
applied to guide the automatic test case generation. These criteria may include
coverage criteria, data coverage heuristics, or stochastic characterizations.

Step 3: Test selection criteria are transformed into test case specifications that formalize
the notion of the criteria to beused. These specifications are high-level descriptions

Chapter 1 9

Introduction

(3)

(4)

(5)

(4)

(2)

(1)

(4)

Test Case
Generator

Test Cases

Test Script

Test Adapter

System Under Test

Test Selection
Criteria

Test Case
Specification

Requirements

Test Model

Fig. 1.4: The process of model-based testing [124].

of desired test cases such that an automatic test case generator can be used to
derive a test suite.

Step 4: A test suite is generated consisting of a set of test cases that satisfy the test case
specifications. In some cases, the test case generator needs to generate a small
number of test cases that cover a large number of the test case specifications.

Step 5: Generated test cases are executed by test case execution,which canbeperformed
with either a manual or an automated approach. During test case execution, a
so-called adapter is used to inject test inputs into the SUT, collect test outputs of
the SUT, and finally compare test outputs against the expected outputs (called test
oracles). The adapter can be implemented either as a separate software component
or integrated within a test script. A test script is some executable code usually
used to perform test case execution.

1.3.2 A Taxonomy of Model-based Testing
Utting et al. [125] have proposed a taxonomy of MBT categorized into three main
categories and along six dimensions. Fig. 1.5 illustrates these main categories including
the categories of model specification, test generation, and test execution.

Model Specification. The model specification category has a strong connection with
step 1 of MBT, and it has three dimensions, consisting ofmodel scope,model characteristics,
and model paradigm.

A model is an abstract representation of the SUT. The model scope is classified into
a binary decision depending on whether the model specifies only the inputs to the

10 Chapter 1

1.3 Model-based Software Testing

SUT or specifies both inputs and outputs of the SUT. The input models of MBT have
the disadvantage that the generated tests will not be used as oracles, and hence they
cannot check the correctness of the output values from the SUT. On the contrary, the
input-output models of the SUT are able to send inputs into the SUT and capture some
of the intended behavior of the SUT.

The model characteristics involve timing issues, nondeterminism, and the contin-
uous or discrete nature of the model. Timing issues are often related to real-time
systems. This means that if the SUT is a real-time system, then real-time constraints
need to be considered and tested. Real-time systems are known to be difficult to test,
and in this case, the timed models (models with timing annotations) are usually used
to represent and test such systems. Given the inputs of the SUT, the outputs of the SUT
can be deterministic. Therefore, a model of the SUT can also be deterministic. How-
ever, the SUT sometimes has concurrency issues due to internal parallelism, and hence
there might be some alternative generated outputs. In terms of dynamics, systems can
have discrete behaviors, continuous behaviors or a mixture of both behaviors. The
latter is known as a hybrid system. Therefore, the models representing such systems
can also be discrete, continuous or hybrid.

The model paradigm dimension concerns the notations that are used to describe
the model of the SUT. Different notations for modeling used in MBT can be classified
including state-based notations, transition-based notations, history-based notations,
functional notations, operational notations, stochastic notations, anddata-flownotations
[84, 125].

Test Generation

Test Execution

Model Specification

Scope

Characteristics

Paradigm

Test Selection Criteria

Technology

On/O✏ine

Input-Only/Input-Output

Untimed/Timed

Det./Non-Determinsitic

Discrete/Continuous/Hybrid

State-Based
Transition-Based
History-Based
Functional
Operational
Stochastic
Data-Flow

Stuctural Model Coverage
Data Coverage
Requirement Coverage
Test Case Specifications
Random&Stochastic
Fault-Based
Random Generation
Search-Based Algorithms
Model-Checking
Synbolic Execution
Theorem Proving
Constraint Solving

Online

O✏ine

Symbolic

Fig. 1.5: A taxonomy of model-based testing approaches [125].

Chapter 1 11

Introduction

Test Generation. The test generation category is primarily concernedwith test selection
criteria and test generation technology. The test selection criteria determine how tests
are selected and generated in steps 2 and 3 of the MBT process. In general, it is not
possible to define a best criterion, so various test selection criteria can be considered
for MBT. These criteria are listed and introduced briefly below, but discussed in detail
by Utting et al. [125]. They include structural model coverage, data coverage, requirements
coverage, test case specifications, random and stochastic coverage, and fault-based coverage.

Structural model coverage criteria specify the selection of tests based on the use of
the structure of the model. This may involve structural elements such as nodes and arcs
from transition-based models, or conditional statements within models. For transition-
based models, graph coverage criteria can be used to control the test generation. For
conditional statements within models, code-based structural coverage criteria can be
useful for complex boolean decisions. Data coverage criteria focus on selecting a small
number of test values from a huge data space. For these criteria, to compare with
random testing, boundary analysis and domain analysis are considered as techniques
involving fault detection heuristics for test generation.

Requirements-based coverage criteria are based on the informal requirements of the
SUT. Thismeans that the elements of themodel, such as transitions of a statemachine are
related to the informal requirements of the system. Therefore, coverage can be applied
to these requirements, and test case generation can ensure that these requirements
are covered. Explicit test case specifications can also obviously be used to control test
generation. The test engineers are involved in writing test case specifications in some
formal notation which is then used to select tests to be generated. For instance, some
execution paths through the model may be the only focus for testing, or frequently used
scenarios and their particular paths are in focus and ensured to be tested. Commonly
used notations include UML [70], FSMs [70], temporal logic formula [16], and Markov
chains [16] for expressing test objectives. Random and stochastic criteria are mostly
applicable to environment models, because it is the environment that determines the
usage patterns of the SUT. Fault-based criteria are commonly used to find faults in the
SUT. An example of these criteria is mutation coverage which involves mutating the
model of the SUT.

Given the testmodel and some test case specifications, test cases can be automatically
generated using techniques such as random generation, search-based algorithms, (bounded)
model checking, symbolic execution, theorem proving, and constraint solving. Random
generation usually performs a random walk on the test model to generate test cases.
The search-based techniques rely on heuristic search or evolutionary algorithms for
test case generation. (Bounded) model checking uses model checkers to generate test
cases (traces) based on properties of a system for verification. Symbolic execution uses
symbolic traces as sets of input values, generated by executing a model of the SUT.
Theorem proving is used to check the feasibility of formulas appearing as the guards
of transitions in state-based models. Finally, constraint solving uses constraint solvers
to select data values from complex domains for test case generation. In general, several
of these techniques are often used in combination to complete the difficult task of
automated test generation from a test model.

12 Chapter 1

1.4 The Modbat Model-based API Tester

Test Execution. In online testing, the test generation algorithms not only provide
inputs to the SUT, but can respond to the output of the SUT. This kind of testing
is commonly performed when the SUT is non-deterministic, and is also known as
on-the-fly testing. In offline testing, tests are generated before test execution. Unlike
online testing, it is more difficult for offline test generation to generate test cases from
the non-deterministic test models. However, the advantage of offline test generation is
that once tests have been generated, they can be reused many times on the SUT in the
future. Test execution can also be performed on different machines or in a variety of
environments. The generated test cases may be executed manually or automatically.
Automatic execution may require more work, for example, to develop an adapter
program (or the program to generate this adapter) to read test values and execute tests
against the SUT automatically.

1.4 The Modbat Model-based API Tester

In this thesis, the model-based testing tool Modbat [10] has been applied and extended
as part of our research into MBT. Recently, Modbat has been used successfully for
testing the ZooKeeper [64] distributed coordination service by exploring the interleav-
ings and non-deterministic outcomes caused by scheduling decisions and network
communication [11].

According to Utting et al. [125], many commercial and academic MBT tools fit into
the taxonomy in Fig. 1.5. For the model scope of the taxonomy in Fig. 1.5, a Modbat
model can specify both inputs and outputs of the SUT. For model characteristics,
transitions of Modbat support non-deterministic outcomes. In addition, Modbat aims
at performing online testing of state-based systems [10].

Modbat uses extended finite state machines (EFSMs) [28] to express test models in a
domain-specific language based on Scala [108], and can explore the transition system
and execute the functions specified on the transitions. Test case generation in Modbat
uses a random based search, and state- and transition coverage as metrics. In this thesis,
the test case generation approach of Modbat has been extended with a search-based
approach, and path coverage has been implemented as one of the test criteria for
Modbat.

Fig. 1.6 (left) illustrates the ChooseTest model of Modbat as a simple example. It
consists of three states: "ok", "end", and "err". Transitions are declared with a concise
syntax: "origin" → "dest" := {action}. A valid execution path in a Modbat model
starts from the initial state (automatically derived from the first declared state) and
consists of a sequence of transitions.

Modbat has built-in require and assert methods with associated actions. The require
methods in transitions check if preconditions are fulfilled. Preconditions must be
fulfilled in order for a transition to be enabled. The assertmethods in transitions are
used as assertions to check if specific conditions are fulfilled. The ChooseTest model in
Fig. 1.6 uses require in the action part as a precondition to check if a call to the random
function choose returns 0 (10% chance). Only in that case is the transition from "ok" to
"err" enabled. Function assert is then used to check if a call to choose returns non-zero.
If 0 is returned (10% chance), the assertion fails. Thus, transition "ok"→ "err" is rarely
enabled; and if enabled, it fails only infrequently.

Chapter 1 13

Introduction

class ChooseTest extends Model {

"ok" -> "ok" := skip

"ok" -> "end" := skip

"ok" -> "err" := {

require(choose(0, 10) == 0)

assert(choose(0, 10) != 0)

}

}

ok

end

errc0 c1

transition

step

internal choice

Fig. 1.6: Model ChooseTest (left) with steps and internal choices (right).

Modbat supports two kinds of choices: (1) the choice of the next transition is available
before the current transition is executed; (2) within an action, choices can be made
based on the parameters used as input to the SUT or used for computations inside the
actions. The latter are called transition internal choices, which can be choices over, e. g., a
finite set of numbers. These choices are obtained in Modbat by calling the function
choose. In our example, the action in transition "ok" to "err" has two transition internal
choices shown as c0 and c1 in Fig. 1.6 (right). Note that we only show the successful
transition for the transition internal choices. In order to distinguish these two kinds of
choices, Modbat divides an action into smaller steps (shown in Fig. 1.6 (right)).

1.5 Coloured Petri Nets

In this thesis, Coloured Petri Nets (CPNs) [67] and CPN Tools [37] are used to support the
MBT approach for distributed systems and protocols. CPNs is a graphical language
for modeling and validation of systems where concurrency, communication, and
synchronization constitute the key aspects. CPNs combines Petri Nets [110] and the
functional programming language CPNML which is based on Standard ML [120]. Petri
Nets provides the foundation of the graphical notation and the primitives for modeling
concurrency and communication while Standard ML is used for modeling data. A
CPN model of a system represents both the states of the system and the transitions
causing state changes of the system.

Construction and analysis of CPN models are supported by CPN Tools which has
been widely used for modeling and verifying models of complex distributed systems.
CPNs has been applied to many domains including communication protocols [19], data
networks [20], distributed algorithms [111], and embedded systems [5]. Recently, work
on automated code generation with CPNs and CPN Tools has also been done [75].

Given CPNs and CPN Tools, it is possible to investigate different scenarios and
explore behaviors of the modeled system using simulation-based analysis and verify
behavioral properties using state spacemethods andmodel checking. Simulation-based
analysis with CPNs and CPN Tools aims at debugging and investigating the system
design. The simulation of a CPNmodel can be performed in an interactive or automatic
way with CPN Tools. An interactive simulation provides a way to execute a CPNmodel
based on steps (similar to single-step debugging); an automatic simulation allows to
execute a CPNmodel in the sameway as a program execution. State space methods can
be used to verify system properties with the help of state-space exploration. The basic
idea of state-space exploration is to compute all reachable states and states changes

14 Chapter 1

1.5 Coloured Petri Nets

(caused by occurring transitions) of the CPN model and represent them as a directed
graph. In such a directed graph, the nodes represent states and the arcs represent
occurring transitions. State-space exploration can be performed fully automatically,
and it can help to investigate different verification questions related to the behaviors of
the system. However, if the CPN model is too complex, it may suffer from the state
space explosion problem.

A CPNmodel is organized as a set of modules. A CPNmodel contains places (drawn
as ellipses or circles), transitions (drawn as rectangular boxes), a number of directed
arcs connecting places and transitions, and finally textual inscriptions next to the places,
transitions, and arcs. A module of a CPNmodel can have substitution transitions (drawn
as rectangular boxes with double lines). The basic idea of hierarchical CPNmodels is to
associate a module with each substitution transition. When amodule is associated with
a substitution transition it is said to be a submodule [68]. The name of the submodule is
shown in a name-tag next to its associated substitution transitions.

Below, we use a CPN model of a Two-phase Commit (2PC) protocol [52, 53] to briefly
explain how a CPNmodel is represented with CPN Tools. The 2PC protocol operates in
two communication phases. The first phase involves a process, known as a coordinator,
which propose a value to every worker (processes in the system) and gathers responses.
Any process can act as the coordinator. The response of a worker is a YES vote if it
accepts the proposed value, otherwise, the response is aNO vote. For the second phase,
the coordinator sends the decision of the vote to the workers by using a COMMIT if
they all voted YES, otherwise a ABORT is sent to all workers to abort the protocol. In a
later chapter, the CPN model of the 2PC protocol is also used as an example for our
MBT research on test case generation.

The CPN model for the 2PC protocol is comprised of four hierarchically organized
modules. Fig. 1.7 shows the CPN module for the coordinator process of 2PC and
Fig. 1.8 shows the CPN module for the worker processes. The top-level CPN module
and the submodule of the CollectVotes substitution transition in Fig. 1.7 have been
omitted here. In the coordinator module, each port place (ellipses drawn with a double
border) is linked to the accordingly named place in the workers module by so-called
port-socket assignments. The colour sets and the variables used are shown in Fig. 1.9.

The coordinator starts by sending a message to each worker (by enabling and
occurrence of transition SendCanCommit), asking whether the transaction can be
committed or not. Each worker can vote either Yes or No (by enabling and occurrence
of transition ReceiveCanCommit). The coordinator then collects each vote via the
CollectVotes submodule of theCollectVotes substitution transition. Then, the coordinator
sends back either an abort or commit decision, based on the collected votes, and it will
decide on commit if and only if all workers voted yes. The workers who voted yes then
receive the decision (by enabling and occurrence of transition ReceiveDecision) and
send back an acknowledgment to the coordinator. The coordinator then receives all
acknowledgments (by enabling and occurrence of transition ReceiveAcknowledgement).
After the execution of the model, a token with colour abort or commit will be placed on
the place Completed depending on whether the transaction was to be committed or not.

Chapter 1 15

Introduction

Waiting
Votes

Waiting
Acknowledgements

DecisionxWorkers

Start

1

CanCommit Out

Worker

Out

Decision Out

WorkerxDecision

Out

Votes In

WorkerxVote

In

Acknowledge In

Worker

In

Completed

Decision

SendCanCommit

Receive
Acknowledgements

CollectVotes

CollectVotesCollectVotes

(decision,workers)

Worker.all ()

ms_to_list workers

decision

1 1`()

Fig. 1.7: Coordinator module of the 2PC CPN model.

Idle

Worker

Worker.all ()

Waiting
Decision

Worker

CanCommitIn

Worker

In

VotesOut

WorkerxVote

Out

DecisionIn

WorkerxDecision

In

AcknowledgeOut

Worker

Out

Receive
CanCommit

Receive
Decision

w

if vote = Yes
then 1`w
else empty

w

w

if vote = No
then 1`w
else empty

w

(w,vote)

(w,decision)

w

2
1`wrk(1)++
1`wrk(2)

Fig. 1.8: Workers module of the 2PC CPN model.

16 Chapter 1

1.6 Research Questions

val W = 2;

colset Worker = index wrk with 1..W; var w : Worker;

colset Workers = list Worker; var workers : Workers;

colset Vote = with Yes | No; var vote : Vote;

colset Decision = with abort | commit; var decision : Decision;

colset WorkerxVote = product Worker * Vote;

colset WorkerxDecision = product Worker * Decision;

Fig. 1.9: Colour set and variable declarations.

1.6 Research Questions

In this thesis, we focus on applying model-based software testing approaches and
techniques for the development and testing of distributed systems and protocols.
Specifically, our research focus is on the following research questions:

RQ1: How can model-based testing be applied to detect errors and to ensure the correctness of
quorum-based fault-tolerant distributed systems and protocols?

RQ2: How can Coloured Petri Nets and CPN Tools be used to support model-based testing for
distributed systems and protocols?

RQ3: How can test criteria and test case generation technology of model-based testing measure
test adequacy and effectively generate test cases?

RQ1 is concerned with the investigation of MBT approaches and related software
testing techniques for quorum-based fault-tolerant distributed systems. Distributed
systems are notoriously difficult to implement correctly since it is challenging to cope
with both concurrency and failures, e. g., due to crashes and network partitions. Thus,
when designing and implementing distributed systems, it is important to ensure
correctness and fault-tolerance. Distributed systems employ distributed protocols
with complex logic to tolerate individual component failures without causing service
disruption for users. However, these protocols, such as the Paxos consensus protocol [81,
82, 97], are also known for being difficult to understand and implement correctly.

The Gorums framework has abstractions to reduce the complexity of the imple-
mentation of quorum-based distributed systems and protocols. Especially, these
abstractions help to simplify the main control flow of the protocol implementation.
Therefore, the Gorums framework can be used as the foundation for implementing,
quorum-based fault-tolerant distributed systems and protocols, which then can be
used as the system under test. Also, the widespread adoption of the Gorums frame-
work will depend on the correctness of its implementation. This has motivated us to
test the Gorums middleware and provide an MBT approach that can be used to also
test applications in general that rely on the Gorums framework.

We choose CPNs as a theoretical foundation for this research question because
it has a strong track record for modeling distributed systems, and is able to create

Chapter 1 17

Introduction

parametric models, and perform model validation. CPNs also have mature tools to
support both simulation and state space exploration, which is important for practical
experiments and evaluation. Therefore, the goal of our research into RQ1 is to provide
a model-based testing approach for generating test cases from CPN models to validate
the correctness of the Gorums framework implementation itself and distributed systems
and protocols implemented with Gorums.

RQ2 aims at providing the supporting tools and techniques for MBT in the context
of CPNs and CPN Tools. It is important to develop such software tools and techniques
so that we can detect errors and ensure correct behavior and stable operation of
distributed systems and protocols. CPNs and CPN Tools have been widely used for
modeling, validation, and verification of software systems, and recently, work has
been done with code generation from CPN models. However, applications of MBT via
CPNs and CPN Tools have only been explored to a limited extent. Therefore, the aim
underlying this research question is to implement software tools based on CPNs and
CPN Tools to support MBT. In particular, this involves test case generation in order to
test distributed systems and protocols implemented via the Gorums framework.

RQ3 focuses on the investigation of test criteria and test case generation technology
of MBT, aiming at measuring test adequacy and generating test cases effectively, i. e.,
generate sufficiently good test cases in order to obtain the desired test results.

MBT is conducted via the automatic generation and execution of test cases. However,
it is a challenge to generate sufficiently many and diverse test cases for a good coverage
of the SUT, especially for complex distributed systems and protocols. Therefore, before
the test case generation and execution of the MBT process, it is important to chose
test adequacy criteria to measure and evaluate the extent to which sufficient test cases
have been generated and executed against the SUT. Although MBT can automatically
generate test cases from abstract (formal) models of the SUT, it is infeasible to explore
and generate all the possible test cases for complex software systems. This means that
a challenging decision needs to be made on how many test cases to generate. Another
important challenge is to address the test adequacy criteria by generating a small test
suite having few redundant test cases.

Uncontrolled random approaches cannot address these challenges of MBT. Our
aim with this research question is therefore to provide an approach to measure test
adequacy and propose an effective test case generation approach to generate sufficiently
many and good test cases against the SUT in order to obtain better test results. For this
research question, we use the Modbat tester as our foundation instead of CPNs. The
reason is that Modbat has a suitable software architecture and benchmark suites to
further develop test criteria and test case generation techniques.

The Modbat tester has a standard random search approach to generate test cases.
However, the random approach might result in test suites having redundant test cases
which only cover few execution paths of the Modbat models and the SUT. Therefore,
we also aim at improving the test case generation in the Modbat tester, so that it can
perform test case generation more effectively.

18 Chapter 1

1.7 Research Method

1.7 Research Method

Fig. 1.10 shows the research method and associated activities underlying our research
into MBT for distributed systems and protocols. The research method focuses on three
main areas including theoretical foundations and approaches, MBT software tools and
techniques, and SUT case studies and experiments.

The process of the research method and associated activities is first to develop and
propose our approaches for MBT, which can be used as the theoretical foundations.
Then, based on theoretical foundations, we 1) implement MBT software tools and
techniques; and 2) develop case studies including the implementation of the systems
under test. After that, we apply the implemented software tools and techniques to
perform MBT on the systems under test from the case studies. The results obtained
from the experiments of the case studies then serve to evaluate the approaches we have
proposed for MBT.

Theoretical
Foundations
Approaches

MBT
Software Tools

Techniques

SUT
Case Studies
Experiments

Implementation

Ap
pl
ic
at
io
nEvaluation

Developm
ent

Fig. 1.10: Research method and activities.

1.8 Outline

This thesis is organized into two main parts. Part I gives an introduction to, and
an overview of, the research field of this thesis, presents our research methodology,
discusses the results obtained and our research contributions, and puts our work
into a state-of-the-art context through the discussion of related work. Part II consists
of a collection of four published and peer-reviewed articles [128, 132–134], and one
submitted international conference paper [129].

The rest of Part I consists of chapters that introduce the main research topics and
related work for each of the articles included in Part II, and is organized as follows:

Chapter 2:

Distributed Systems and Protocols.

This chapter discusses distributed systems and protocols. The chapter introduces
the theoretical foundation for developing distributed systems and protocols as our

Chapter 1 19

Introduction

systems under test, so that MBT can be performed against them. Specifically, some
basic concepts and abstractions for implementing distributed systems are presented.
Distributed storage systems and distributed consensus algorithms and protocols are in
focus of the discussion as they constitute the main foundation for the systems under
test implemented in the case studies developed for this thesis.

Chapter 3:

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols.

This chapter discusses the research topic related to articles [132, 133] included in Part II.
It focuses on the research into using Coloured Petri Nets (CPNs) formodel-based testing
of quorum-based distributed systems and protocols. A model-based testing approach
with a supporting testing framework has been proposed, with a special focus on fault-
tolerance of quorum-based distributed systems and protocols. Two case studies have
been developed based on the proposed approach and testing framework, consisting of
a distributed storage system and a singe-decree Paxos distributed consensus protocol.

Chapter 4:

A Software Tool for Test Cases Generation with Coloured Petri Nets.

This chapter discusses the MBT/CPN tool developed for the research on test case
generation for model-based testing. The details of the tool are presented in the article
[134] in Part II. The application of the tool has been demonstrated via model-based
testing of an implementation of the 2PC protocol. In addition, the tool has been used
to test the implementations of a distributed storage system and the Paxos distributed
consensus protocol in [132, 133].

Chapter 5:

Path Coverage Visualization and Multi-objective Search with Modbat.

This chapter first introduces our approach to measure and visualize execution path
coverage of test cases. The technique has been presented in the article [128] in Part II.
This chapter also discusses our search-based algorithm proposed in the article [129],
which we have developed to guide test case generation. The approach applies multi-
objective optimization and a genetic algorithm to obtain optimal test cases. Both
approaches have been developed by extending the Modbat tester and experimentally
evaluated on a collection of examples, including the ZooKeeper distributed service [64].

Chapter 6:

Conclusions and Future Work.

This chapter re-visits our research questions and provides a summary of the main
contribution of this thesis. We also outline several future research directions of
model-based software testing for distributed systems and protocols, based on the work
undertaken for this thesis.

1.9 Supplementary Material

In addition to the articles [128, 129, 132–134] included in Part II of this thesis, two
workshop articles have been published presenting initial research results:

20 Chapter 1

1.9 Supplementary Material

[130] R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Application of Model-based
Testing on aQuorum-basedDistributed Storage. In CEURWorkshop Proceedings,
Petri Nets and Software Engineering (PNSE’17), volume 1846, pages 177–196,
2017.

[131] R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Model-based Testing of the
Gorums Framework for Fault-tolerant Distributed Systems. In Proceedings of
the 29th Nordic Workshop on Programming Theory (NWPT), Turku Center for
Computer Science, Finland, 2017.

Two additional articles have been published on topics that are related to the research
questions addressed in this thesis:

[93] F. Macias, T. Scheffel, M. Schmitz, and R. Wang, M. Leucker, A. Rutle, V. Stolz.
Integration of Runtime Verification into Metamodeling. In Proceedings of the
28th Nordic Workshop on Programming Theory (NWPT). Aalborg University,
Denmark. 2016.

[92] F.Macias, T. Scheffel,M. Schmitz, andR.Wang. Integration ofRuntimeVerification
into Metamodeling for Simulation and Code Generation (position paper). In
Runtime Verification, volume 10012 of Lecture Notes in Computer Science, pages
454–461. Springer International Publishing, 2016.

The papers [92, 93, 130, 131] are not formally part of this thesis and will hence not
be discussed further.

All the models, distributed protocols and tools implemented for the publications
included in this thesis can be found on Github [4].

Chapter 1 21

CHAPTER 2
DISTRIBUTED SYSTEMS AND PROTOCOLS

In this chapter, we provide background information on application areas of distributed
systems and basic concepts and abstractions that are being used for the development
of distributed systems and protocols. This is followed by a more detailed discussion of
distributed consensus algorithms and protocols as they are the focus of our research
into MBT. We have chosen some typical distributed systems and protocols from this
chapter as representatives to implement and use as the systems under test in our
evaluation case studies to be presented in later chapters.

2.1 Distributed Applications

For distributed systems, the underlying physical system is mainly represented by pro-
cesses and links. A process may represent a computer, a processor within a computer, or
a specific thread of execution within a processor. Links represent the physical or logical
network that enables communication among processes. Processes then cooperate and
exchange messages using the network provided by communication links.

Many applications such as the Web or E-mail services rely on the simplest form of
distributed computing: the client-server paradigm. The server, a centralized process,
provides a service to many remote clients. The communication between the clients and
the server usually follows a request-response pattern of interaction. However, there
are often not only two but several processes that need to cooperate and synchronize to
achieve a common goal. Examples of such applications, discussed briefly here, include
information dissemination engines, process control systems, cooperative systems,
distributed databases, and distributed storage systems [25].

For information dissemination in distributed applications, processes may play one of
two roles: information producers (publishers) or information consumers (subscribers).
Publishers produce information in the form of notifications and subscribers register
their interest in receiving notifications. Applications for process control systems involve
controlling the execution of a physical activity through several software processes.
Examples of applications with process control systems are controlling the dynamic
location of a train or an aircraft, controlling the temperature of a house, or controlling
the automation of a robotic production plant. In these cases, several of the processes
are connected to sensors. Then, the processes might need to exchange sensor values
and output some common values, e. g., print a single location of the train on the driver
control screen. Different local sensors controlled by associated processes may observe

Distributed Systems and Protocols

slightly different input values due to inaccuracy or failure. However, the cooperation of
these processes should be achieved even if some sensors has crashed or not observed
anything. This requirement can be captured if all processes agree on the same set of
input values for the control algorithm, i. e., all processes reach the consensus.

For applications involving cooperative work, an example is a shared network that
may have different nodes for users to cooperate on a common document such as in
Google Docs, or setting up a distributed dialogue for an online chat or conference.
Such cooperation usually relies on a distributed shared memory, typically accessed
through read and write operations by the users to store and exchange information.

For a distributed transaction of distributed databases, database servers need to
coordinate their activities and decide whether to commit or abort transactions. For
example, theymight decide to abort the transaction if one server detected a concurrency
control inconsistency or the crash of some other server. This means that distributed
databases need to ensure that all transaction managers have a consistent view of the
running transactions and make consistent decisions on how these transactions should
be serialized.

A distributed storage system has storage nodes for the distribution of data. Each
storage node provides a small portion of the overall storage space. Since a single data
item may be stored over several nodes, it is common to contact multiple nodes to
access the stored data. Such a storage system relies on distributed data to increase the
fault-tolerance of the overall system and for reducing the load on each storage node.

2.2 Synchronous and Asynchronous Systems

For asynchronous distributed systems, we do not assume that processes have access to
any sort of a shared physical clock. The passage of time can be measured with a logical
clock according to the transmission and delivery of messages. The time measured
this way is known as logical time. However, in an asynchronous system, there is no
fixed upper bound on the time required for a message to be sent from one processor
to another [42]. The consensus problem in distributed computing is hard to solve
in an asynchronous system, since no completely asynchronous consensus protocol
can tolerate even a single process death. Such a process death can then cause any
distributed protocol to fail in reaching an agreement [46].

In contrast to asynchronous systems, in a synchronous system, a known fixed upper
bound on the time is required for a message to be sent from one process to another and
there is a known upper bound on the relative speeds of different processes [42]. Also
in synchronous distributed systems, several useful services can be provided, such as
the timed failure detection, measure of transit delays and synchronized clocks [25].

The concept of partially synchronous [42] in a distributed system has also been
proposed. It lies between synchronous and asynchronous systems, which means that
the system may not always behave synchronously, but there are periods where the
system operates synchronously long enough to do useful jobs such as executing an
algorithm or terminating it.

24 Chapter 2

2.3 Distributed Programming Abstractions

2.3 Distributed Programming Abstractions

Distributed programming abstractions are the basic elements used to define a distributed-
system model, and a distributed-system model usually combines (1) a process abstrac-
tion; (2) a communication link abstraction; (3) a failure detection abstraction; and (4) a
leader election abstraction [25]. In the following, we discuss the important abstractions
that constitute a distributed-system model.

2.3.1 Process Abstractions
Distributed programming abstractions typically consist of a collection of software
components, at least one for each process, that are intended to satisfy some common
properties. A process executing a distributed algorithm fails if it does not behave
according to the algorithm. If a failure occurs, then all components of this process
fail at the same time. Process abstractions can be classified based on the nature of the
faults causing processes to fail. Such failures could involve, e. g., a crash or arbitrary
and even adversarial behavior. Here, three kinds of process abstractions will be briefly
discussed, including the crash-stop, crash-recovery, and Byzantine process abstractions.

The crash-stop process [46, 56, 65, 116] abstraction means that the process executes
correctly until some time t (crash at time t), and it never recovers after that time. This is
called a crash fault. This abstraction indicates that the distributed system or algorithm
cannot rely on such processes to recover after the crash.

Sometimes, it is too strong to assume for certain distributed environments that
some particular processes crash and never recover. Therefore, instead of the crash-stop
process abstraction, the crash-recovery process [6, 56, 65, 103] abstraction is considered.
For this abstraction, a process is faulty if it either crashes and never recovers or if it
keeps crashing and recovering infinitely. Otherwise, the process is considered to be
correct. In this case, a process that crashes and then recovers (a finite number of times)
is correct. However, after the recovery, the process might send new messages that
conflict with messages sent by the process before the crash. Therefore, each process
needs to have stable storage (a log) to cope with problems due to the crash and recovery.
This can be done by storing messages already received in the stable storage, and this
stable storage can be accessed by store and retrieve operations.

A process may fail in an arbitrary manner and such failures are known as Byzantine
failures [40, 71, 72, 83]. Arbitrary faults are the most complex ones to tolerate, but it
is the only acceptable option when unknown or unpredictable faults may occur. An
arbitrary fault could be either intentional, malicious, or an error in the implementation,
the programming language, or the compiler. For a process that has such arbitrary-fault
behavior, the Byzantine process abstraction can be used to model it.

2.3.2 Communication Link Abstractions
The network components of the distributed system are represented by communication
link abstractions. These abstractions may be implemented by different topologies
which provide full connectivity among the processes, with each pair of processes
connected by a bidirectional communication link. Two abstractions are point-to-
point communication abstractions supporting interaction between pairs of processes,

Chapter 2 25

Distributed Systems and Protocols

and broadcast communication abstractions providing connections from one to many
processes [25]. For the communication link abstractions, messages exchanged between
processes are unique and have sufficient information for the recipients to identify
their senders [25]. If the messages are exchanged in a request-reply manner, then the
processes also need to identify which reply message is a response to which request
message with the help of timestamps or sequence numbers of messages.

Moreover, given that physical communication links may be partitioned, and that
they may also lose, duplicate and modify messages, it is unrealistic to assume that
communication links are perfect. Therefore, in a distributed system, when transmitting
a message through the network, it is possible for the messages to be lost, duplicated, or
even modified and distorted. For the unreliability of such a network, communication
link abstractions can use e. g., retransmission of messages until they reach their
recipients and message integrity checks to recover from the vulnerability of the links.

In traditional distributed applications such as the classic client-server scheme,
communication is often established between two processes. For example, a server
process provides a reply to clients for a request they have sent to the server. Point-to-point
communication abstractions are useful to support such an interaction scheme between
a server and clients [25]. It is also helpful for such applications that the point-to-point
communication is reliable. Typical protocols for point-to-point communication are
reliable transport protocols, such as TCP. With reliable point-to-point communication,
applications are free from handling issues such as message loss, duplication, or
acknowledgments between the involved processes.

As distributed applications become more complex and more processes are involved
in the interactions in a coordinated manner, the broadcast communication abstractions
are convenient to use to disseminate information among a set of processes. It allows
a process to send a message to a group of processes and ensures that the processes
have an agreement on the messages they receive [25]. Furthermore, reliable broadcast
communication abstractions ensure that the messages received by each receiver follow
the same order and achieve a form of consistency.

2.3.3 Failure Detection

For failure detection, the distributed failure detector abstraction [6, 27, 40, 58, 71, 72]
provides information about which processes have crashed and which are correct. For
the crash-stop process abstraction in synchronous systems, for instance, a failure
detector for crash faults provides an accurate failure signal in case a remote process
stops behaving properly, and crashes can be accurately detected by a failure detector
using timeouts. It means, for instance, that a sender process can detect a crash of the
receiver process when there is no response from the receiver process to the sender
process within the timeout period.

2.3.4 Leader Election

The leader election abstraction [57, 85, 95, 99] is used to identify a process that has not
failed. This process may then act as the leader of the other processes. Generally, the
leader election abstraction has the task to choose one process as a leader of the group

26 Chapter 2

2.4 Distributed Storage Systems with Shared Memory

of processes in the system, and a new leader should be elected if the current leader
crashes. Leader election is, for example, useful for a set of replica processes within
consensus algorithms to coordinate their activities to provide high availability of the
service which tolerates the failure of some processes. It works by electing one correct
process as a leader of the replica processes, and the other processes can then be updated
by the leader. If the leader crashes, one of the other replica processes is elected as the
new leader.

2.4 Distributed Storage Systems with Shared Memory

Given a set of processes that communicate by sending messages to each other over
a network, a distributed storage system can be implemented based on the notion of
a register abstraction [80] that results in emulation of shared memory. In other words,
the algorithms used to implement register abstractions are inspired directly from the
implementation of a distributed storage system. The processes in the system use the
registers to communicate with each other and store information.

Here, we consider the behavior of registers accessed concurrently by multiple
processes. These registers store values and are accessible by processes through two
operations, read and write. A read operation is invoked by a process to access the
register abstraction that has a value stored, and then this read operation returns the
value stored to this process. A write operation is invoked by a process to update
the stored value in the register abstraction, and it returns an acknowledgment to the
process indicating that the value is updated in the register abstraction. Each correct
process invokes read/write operations on a register in a sequential manner. A register
is usually initialized to a special value by some write operation. Each value written
to a particular register is assumed to be unique, implemented by adding a unique
timestamp given by the process to the value written.

Register abstractions can be distinguished based on the set of processes that may
perform read/write operations on a register:

single-writer, single-reader register [80]: a register with only one writer and one
reader, also known as a (1, 1) register for short, where a writer and a reader are
both specific processes, respectively.

single-writer, multi-reader register [80]: a register with only one writer butN readers,
also called a (1,N) register, which means that any process can read from the
register.

multi-writer, multi-reader register [118]: a register to which every process may have
access by read/write operations, also called a (N,N) register.

The processes that access a register might fail, e. g., by crashing, and such a crash
is unpredictable. This means that a process invoking a read/write operation on a
register may not have time to finish the operation due to failures. This situation makes
distributed computing challenging due to the non-determinism in distributed storage
systems. For an example, if a writer is executing to access the register, and before it
completes, a reader is also accessing this register, then this reader might return the

Chapter 2 27

Distributed Systems and Protocols

value in the register either before or after the value has been written by the writer. This
is a particular problem resulting from the concurrent execution of the read and write
operations.

2.5 Distributed Consensus Algorithms and Protocols

Consensus is used by processors to agree on a common value out of values that these
processes propose initially. In distributed computing, one of the most fundamental
issues is to ensure that multiple processes reach consensus on a common value. In
this section, several categories of distributed consensus algorithms are presented
and summarized. Here, consensus algorithms are first classified according to failure
assumptions. After that, several important protocols are discussed. Based on their
complexity, we classify them into two groups: basic and advanced consensus protocols.

2.5.1 Consensus Algorithms

A consensus algorithm usually involves two kinds of events, propose and decide. Each
process proposes its initial value for consensus and broadcasts this value as a request
to the other processes. All processes then have to decide on the same value among
all the proposed values with a decide event. Consensus algorithms can be classified
based on the failure assumptions which affect the design of these algorithms. The
failure assumptions discussed here include fail-stop, fail-noisy, fail-recovery, fail-silent,
and Byzantine consensus algorithms [25].

Fail-stop consensus algorithms are designed based on the crash-stop process ab-
straction in the fail-stop model assuming that processes can fail by crashing without
recovery. The failure detector abstraction is used so that the crashes can be reliably
detected by all the other processes. Also, the broadcast communication abstraction is
used for processes to exchange their proposed values and eventually reach an agree-
ment. The broadcast links are assumed to be perfect. The representatives of fail-stop
algorithms include Flooding Consensus, Hierarchical Consensus, Flooding Uniform
Consensus, and Hierarchical Uniform Consensus [25].

Fail-noisy consensus algorithms assume that processes may fail by crashing as in the
fail-noisy model, and that the crashes can be detected by the failure detector abstraction.
However, the failure detector used for these consensus algorithms is only eventually
perfect and might make mistakes. These algorithms also rely on a majority of correct
processes. One representative of these consensus algorithms in the fail-noisy model
is known as the Leader-Driven Consensus algorithm [25]. It is based on the leader
detector abstraction implemented with the eventually perfect failure detector. This
algorithm also provides uniform consensus and runs through a sequence of epochs
identified using increasing timestamps. For each epoch, a leader process has the task
to propose the value for consensus among the processes. The leader process succeeds
in reaching consensus if it is correct for its current epoch and no further epoch has
started. Otherwise, if a next epoch started, then the algorithmwould abort the currently
running epoch consensus, obtains its state, and invoke the next epoch consensus with
that state.

28 Chapter 2

2.5 Distributed Consensus Algorithms and Protocols

For addressing consensus with crash-recovery process abstractions of the fail-
recovery model, processes may often crash and then recover arbitrarily. That is, in fail-
recovery consensus algorithms, processes can crash and later recover and still participate.
Therefore, they can be considered to be correct if they eventually stop crashing. The
algorithms to handle consensus in this fail-recovery model can be implemented by the
logged uniform consensus abstraction [25] together with the Leader-Driven Consensus
algorithm. One representative of these algorithms is known as Logged Leader-Driven
Consensus [25]. It adapts the Leader-Driven Consensus for the fail-recovery model by
logging the current epoch timestamps and leader process pair with the decision value
into stable storage such that they can be restored from stable storage after recovery
from crashes.

In the fail-silent consensus algorithms of the fail-silent model, process crashes can
never be reliably detected. Therefore, randomization is considered for consensus with-
out resorting to the failure detector, and the algorithms apply the randomized consensus
abstraction. Representatives of these types of consensus algorithms include Random-
ized Binary Consensus [25] which only decides on one bit, and the Randomized Consensus
with Large Domain [25] which decide on arbitrary large values. Both algorithms need a
majority of correct processes to make progress and a common coin abstraction [25] for
terminating and reaching agreement in a domain of either one bit or arbitrary values.

Consensus with Byzantine process abstractions must allow all processes to reach a
common decision despite the presence of faulty processes. However, there are two
variants of validity for the Byzantine consensus algorithms: weak and strong. The weak
variant requires that all processes are correct and propose the same value, and the
algorithm only decides the proposed value. For this case, an arbitrary value may be
decided by the algorithm if some processes are faulty. On the other hand, the strong
variant of the validity of Byzantine consensus tolerates arbitrary-fault processes. If
not all of the processes propose the same value, a default value is decided. Byzantine
consensus in the fail-noisy-arbitrary model can be implemented with an adapted
Leader-Driven Consensus algorithm that works with Byzantine processes. This is
known as the Byzantine Leader-Driven Consensus algorithm [25]. Alternatively, Byzantine
consensus can also be implemented by considering randomization in the fail-arbitrary
model. Such Byzantine consensus algorithms are known as the Byzantine randomized
consensus. One representative is the extension of Randomized Binary Consensus [25].

2.5.2 Basic Consensus Protocols

In Section 1.5, we have discussed the 2PC protocol, which is a basic consensus protocol.
The participants of the protocol achieve consensus if they all agree and accept the
proposed value sent by the coordinator and send YES votes back to the coordinator.

One of the basic problems with the 2PC protocol is that once the decision COMMIT
made by the coordinator has reached the participants, the participants follow the
decision without checking if other participants got the decision or not. Therefore,
the system has no way to confirm if any participant crashed and did not get the
decision COMMIT message, and the protocol cannot abort. To avoid this problem,
one additional communication phase is given for 2PC, providing a Three-phase Commit
(3PC) protocol [52, 119]. This extra phase is obtained by dividing the second phase

Chapter 2 29

Distributed Systems and Protocols

of 2PC into two subphases. For the first subphase, the coordinator sends a prepare-to-
commit message to all participants after it receives votes in the first phase. Participants
who received this message get into the state where they are ready to commit but
without doing any unrecoverable operations so that the protocol can be recovered if
any participants crashed. Each participant then sends an acknowledgment message back
to the coordinator indicating that it has received the prepare-to-commitmessage. After
that, the last communication phase of 3PC is the same as the second phase of 2PC.
Although 3PC improves and fixes the main issue that 2PC has, it still has a problem if
the network gets partitioned. The reason is that after the network gets remerged from
both partitions, inconsistency may occur due to the different conclusions of the two
partitions.

2.5.3 Advanced Consensus Protocols

The Phase King protocol [17] solves consensus in a synchronous setting with a message
passing model. Given n processes with n > 4f, the protocol solves consensus with
up to f failures. This protocol runs in f+ 1 phases, each consisting of two rounds. In
the first round of each phase, each process broadcasts its preferred value to all other
processes for consensus and waits for the values broadcast by others to determine
which value is the majority value and its count. In the second round of the phase,
a process becomes king to other processes if the identity of this process matches the
current phase number. Then, this king broadcasts the majority value obtained in the
first round. Each process then updates its preferred value to the majority value it
observed from the first round if the count of that majority value is greater than n/2+ f.
Otherwise, the process uses the king’s majority value received from the second round
as its preferred value.

The Paxos Consensus protocol [81] is a family of fault-tolerant consensus protocols
used to construct distributed services by allowing a group of server replicas to reach an
agreement on one common value among potentiallymany input values. Awhole family
of Paxos-based protocols has been developedwhich focus on different attributes such as
latency and throughput. Paxos is often designed with three agent roles: proposers that
propose values (one of the proposers is elected as a leader), acceptors that accept a value
among those proposed, and learners that learn the chosen value. Each Paxos replica
may take on multiple agent roles, e. g., a typical configuration is that all replicas play
all agent roles. Paxos can make progress with up to f crash failures, given n = 2f+ 1

replicas. Paxos has formed the foundation for many production systems, such as
Google’s Chubby [24] and Spanner [36], and Amazon Web Services [102]. Paxos,
however, is also known for being difficult to understand and implement correctly [97].

Raft [104] is a consensus protocol for managing a replicated log. It is developed as
an alternative to Paxos since the complexity of Paxos makes it not easy to understand
and hard to implement correctly. For the sake of understandability, Raft uses a
different structure from Paxos but produces an equivalent result. It separates the
consensus problem into several key subproblem elements, including leader election,
log replication, safety, and membership changes. For the leader election of Raft, a
leader server is elected first from the cluster. This leader has full responsibility for
managing log replication on follower servers of the cluster and leads the cluster until

30 Chapter 2

2.6 Safety and Liveness Properties

it fails or disconnects in which case a new leader is elected. After electing the leader,
this new leader accepts client requests and appends each request into its log. Each
request is then forwarded to follower servers of the cluster such that they also update
their logs in the same way as the leader does. The leader server uses retransmission to
ensure that all of its followers eventually store forwarded requests. Once the leader
obtains confirmation from the majority of its followers stating that their logs have been
replicated, the leader commits and executes requests in its log. After the followers
learn that each request is committed from the leader, they also apply it, which ensures
consistency of the logs among all the servers of the cluster.

Proof of Work (POW) [66] is one of the popular consensus algorithms used for
blockchains [22] to achieve an agreement on adding new data into distributed servers
of the decentralized blockchain network. A blockchain consists of several blocks of data
distributed over the decentralized network. Each server in the network has the same
copy of the blockchain and all the servers follow the same consensus rules to validate
and generate a new block. Therefore, each change in a single blockchain is verified
and adopted by other blockchains in the network. The POW achieve consensus for
the blockchain by making all the servers in the network solve complex cryptographic
puzzles when adding a new block. The server that accomplished this first adds the
new block to its blockchain. Then, other servers update their blockchain according to
this change.

2.6 Safety and Liveness Properties

When we devise software systems, especially distributed systems and protocols, the
executions of the system need to satisfy certain behavioral properties. These properties
fall into two main classes: safety and liveness properties [7, 79]. Distributed services
in most cases must satisfy both liveness and safety properties. A safety property is a
property that can be violated at some time t, and never be satisfied again after that
time. According to safety properties, the distributed system and protocol should not
do anything wrong. A liveness property is a property such that, for any time t, the
property can be satisfied at some time t ′ > t. Safety properties ensure that nothing bad
happens while liveness properties ensure that eventually, something good happens.

Chapter 2 31

CHAPTER 3
MODEL-BASED TESTING FOR FAULT-TOLERANT
DISTRIBUTED SYSTEMS AND PROTOCOLS

Data replication and distributed consensus are central mechanisms for the engineering
of fault-tolerant distributed systems protocols, and is widely used in the realization of
cloud computing services. Implementing test suites for distributed software systems
protocols is a complex and time-consuming task due to the number of test cases that
need to be considered in order to obtain high coverage.

This chapter summarizes the articles [132, 133] included in Part II of this thesis.
Article [132] explores the use of Coloured Petri Nets (CPNs) for model-based testing of
a quorum-based fault-tolerant distributed storage service. We propose the QuoMBT
model-based testing framework to test a distributed storage service implemented in the
Go programming language based on the Gorums framework [87]. Article [133] applies
our proposed model-based testing approach and CPNs to performmodel-based testing
a more complex case, an implementation of the Paxos distributed consensus protocol.
To evaluate ourmodel-based testing approach, we have implemented the Paxos protocol
in the Go programming language using the quorum abstractions provided by the
Gorums framework. We show how the formal CPN models we constructed can be
used to automatically generate a test suite for both the distributed storage service and
the Paxos distributed consensus protocol. The testing results show that with the aid
of our QuoMBT framework and model-based testing approach, we can obtain high
statement coverage for both the distributed storage service and the Paxos protocol.

We first introduce the two systems implemented with the Gorums framework: the
distributed storage service and the Paxos distributed consensus protocol. We use the
implementations of these two systems together with the Gorums library as the SUTs.
After that, we discuss our proposed model-based testing approach and the QuoMBT
testing framework. We then present the CPN models constructed for the distributed
storage service and the Paxos consensus protocol, and outline how to perform test
case generation from the constructed CPN models. At the end of this chapter, we
summarize our conclusion and discuss related work.

3.1 Gorums and Distributed Storage Service

We have implemented a distributed storage service, with a single-writer, multi-reader
register. This storage service has replicated servers for fault-tolerance. To test this stor-
age implementation, we have designed the CPN model to be discussed in Section 3.4.1

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

to generate test cases. Both the implementation of the distributed storage and the
designed CPN model have been presented in the article [132].

Given the gRPC library, Gorums requires that the server implements the methods
specified in the service interface. Therefore, we have implemented two server-side
methods: Read() and Write() quorum calls for the distributed storage service, and they
can then be invoked as quorum calls from clients, to read/write the state of the storage.
In our implementation, only a single write quorum call is allowed to be invoked, but
any number of read quorum calls can be invoked by the clients to read the state of the
storage. Also, a read may be interleaved with one or more writes generated by the
client.

Each replicated server of the storage service maintains a timestamp that is incre-
mented for each new Write() quorum call. The Read() quorum call will always return
the value in the storage associated with the highest timestamp as the reply to clients
to ensure that the correct value in the storage is picked. Therefore, to implement the
reader with Gorums, a user-defined ReadQF quorum function for the Read() quorum
call needs to be implemented as shown in Algorithm 1. This ReadQF quorum function
collects a set of replies from servers into a single reply that can then be returned from
the quorum call; this single reply is determined by the highest timestamp of replies.
ReadQSize (the quorum size, defined with an object qs of type QuorumSpec) is used to
determine if sufficient replies have been received to return the server reply with the
highest timestamp.

Algorithm 1 Read quorum function
1: func (qs QuorumSpec) ReadQF(replies []ReadReply)
2: if len(replies) < qs.ReadQSize then . read quorum size
3: return nil, false . no quorum yet, await more replies

4: highest := ⊥ . reply with highest timestamp seen
5: for r := range replies do
6: if r.Timestamp > highest.Timestamp then

7: highest := r
8: return highest, true . found quorum

3.2 Gorums and Single-decree Paxos

In article [133], we have implemented a single-decree Paxos protocol with a client
application using Gorums as our SUT. The system consists of replicas that run the
Paxos protocol, handling client requests as input and aiming at reaching consensus on
a single output response. Its implementation corresponds to the CPN model for Paxos
to be introduced in Section 3.4.2.

In our implementation, each of the Paxos replicas must implement the interface
shown in Listing 3.1. This SinglePaxosServer interface is generated by the Gorums
code generator, based on a set of RPC servicemethods defined using protobuf [51]. The
methods Prepare(), Accept() and Commit() in this interface represent Paxos quorum
calls that can be invoked by the replicas in order to access and update each other’s Paxos
state. Also, the ClientHandle()method is a quorum call for clients to communicate
their proposed value to the Paxos replicas and receive the decided value. The Ping()

34 Chapter 3

3.2 Gorums and Single-decree Paxos

method is a regular RPC call used by the failure detector to determine if a Paxos replica
has failed.

type SinglePaxosServer interface {

Prepare(context.Context, *PrepareMsg) (*PromiseMsg, error)

Accept(context.Context, *AcceptMsg) (*LearnMsg, error)

Commit(context.Context, *LearnMsg) (*Empty, error)

ClientHandle(context.Context, *Value) (*Response, error)

Ping(context.Context, *Heartbeat) (*Heartbeat, error)

}

Listing 3.1: The SinglePaxosServer interface that Paxos replicas must implement.

Listing 3.2 shows the main control flow of the single-decree Paxos protocol, where
we have omitted error handling and context initialization to shorten the presentation.
The first phase of the Proposer is to invoke the Prepare() quorum call (on Line 3) to
send a 〈Prepare〉message to the Acceptors which then return 〈Promise〉messages to
the Proposer. Once a quorum of promises has been obtained, the Prepare() quorum
call returns with a single combined 〈Promise〉 message. Then, the Proposer checks
the 〈Promise〉message to find if any of the Acceptors have voted in a previous round
(vrnd). The second phase of the Proposer starts by invoking the Accept() quorum

1 func (p *Proposer) runPaxosPhases() error {

2 preMsg := &PrepareMsg{Rnd: crnd}

3 prmMsg, err := p.config.Prepare(ctx, preMsg)

4 if prmMsg.GetVrnd() != Ignore {

5 p.cval = prmMsg.GetVval()

6 }

7 accMsg := &AcceptMsg{Rnd: crnd, Val: p.cval}

8 lrnMsg, err := p.config.Accept(ctx, accMsg)

9 ackMsg, err := p.config.Commit(ctx, lrnMsg)

10 return nil

11 }

Listing 3.2: Proposer’s code for Paxos phases (without error handling).

call (on Line 8), asking the Acceptors to choose the value included in the 〈Accept〉
message. The Acceptors respond back with a 〈Learn〉message. For the last phase (on
Line 9), the Proposer invokes the Commit() quorum call to propagate the decision to
the Learners, which concludes the protocol.

Gorums adds a quorum function signature to an interface called QuorumSpec for
each quorum call, as shown in Listing 3.3. This interface must be implemented by the
protocol developer. One of the benefits of using Gorums’s quorum functions is that
they are amenable to unit testing (see Section 3.3). The replies from quorum calls are
handled by their corresponding quorum functions. As an example, Listing 3.4 shows
the implementation of the PrepareQF quorum function, which is called by the Gorums
runtime with the set of replies that have been received so far. Also, the PrepareQF

quorum function is called once for each reply, and in the first part (Lines 6-8), it checks if
sufficient replies have been returned from the quorum call. If not, then it returns false

Chapter 3 35

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

type QuorumSpec interface {

PrepareQF(replies []*PromiseMsg) (*PromiseMsg, bool)

AcceptQF(replies []*LearnMsg) (*LearnMsg, bool)

CommitQF(replies []*Empty) (*Empty, bool)

ClientHandleQF(replies []*Response) (*Response, bool)

}

Listing 3.3: The QuorumSpec interface must be implemented to process replies.

1 type PaxosQSpec struct {

2 quorum int

3 }

4
5 func (q PaxosQSpec) PrepareQF(replies []*PromiseMsg) (*PromiseMsg,bool) {

6 if len(replies) < q.quorum {

7 return nil, false

8 }

9 reply := &PromiseMsg{Rnd: replies[0].GetRnd()}

10 for _, r := range replies {

11 if r.GetVrnd() >= reply.GetVrnd() {

12 reply.Vrnd = r.GetVrnd()

13 reply.Vval = r.GetVval()

14 }

15 }

16 return reply, true

17 }

Listing 3.4: The PrepareQF processes 〈Promise〉 replies from replicas.

to signal to Gorums that we must wait for more replies. Otherwise, if sufficient replies
have been received, a combined 〈Promise〉message is constructed by examining all the
replies, and picking the value, vval, from the 〈Promise〉message with the highest voted
round (vrnd). If such a value is found in the replies, this means that the Proposer

is constrained and must continue to use this value in the remainder of the protocol.
Otherwise, the Proposer is unconstrained, and can pick its own client value. Similar
constructs are used for all the methods in the QuorumSpec interface, and these methods
are implemented on the PaxosQSpec type, which holds information about the quorum
size (Line 2).

3.3 Model-based Testing Framework and Approach

We have developed a model-based testing framework called QuoMBT to perform
model-based testing of quorum-based distributed systems for protocols implemented
using the Gorums framework. Fig. 3.1 gives an overview of the QuoMBT testing
framework comprised of CPN Tools and a test adapter. CPN Tools is used for creating
a testing model by modeling the SUT, and then generating test cases and oracles via
the MBT/CPN library [96] (to be presented in Chapter 4). The generated test cases
and oracles are written into XML files. The test adapter consists of a reader and a

36 Chapter 3

3.3 Model-based Testing Framework and Approach

tester which can be developed either via manual implementation or by automated
code generation. The reader of the test adapter then reads the generated test cases and
feeds them into the SUT. Each test case is executed by the tester (included in the test
adapter) with the provided test values as inputs. This tester also compares the test
oracle’s output against the output of each test case in order to determine whether the
executed test fails or succeeds.

CPN Tools

CPN

Testing

Model

MBT/CPN

Library
Test Cases

and Oracles
Test adapter

TesterReader

Fig. 3.1: QuoMBT testing framework.

The QuoMBT test framework has been applied to test our Gorums-based imple-
mentations of a distributed storage service and a Paxos consensus protocol. Fig. 3.2
illustrates the model-based testing approach with the QuoMBT testing framework
when performing model-based testing of quorum-based systems implemented using
the Gorums framework.

Our test approach involves four main steps: (a) apply CPN Tools to construct a
test model of the SUT; (b) perform test case generation from a CPN testing model to
obtain test cases with oracles represented in an XML format; (c) develop a test adapter
to execute the generated test cases on the SUT, and compare the test results against
generated oracles; (d) develop a test script to start the test adapter and collect testing
results. A central part of our test approach for the test case execution is the development
of a test adapter which can execute the unit and system test cases generated from CPN
Tools using our MBT/CPN library.

For testing the distributed storage service with a single-writer, multi-reader register
in the article [132], the test adapter has been implemented in the Go programming
language to read XML files containing test cases generated from the CPN model.
The execution of tests has been performed by the Go-based tester in the test adapter
for executing read and write quorum functions (for unit tests) and quorum calls
(for system level tests), with a set of running servers that start first and a client that
then invokes quorum calls. The testing results have been captured by the tester and
compared against the test oracle. The non-trivial part of the system level tests is the
concurrent and sequential executions of read and write quorum calls, which is subject
to non-determinism due to concurrent execution of read and write quorum calls. This
non-determinism further leads to complexity in obtaining test oracles for system level
tests. To cope with this challenge, a run-time monitor was implemented in the test
adapter and used to monitor the global correctness of the distributed storage and to
obtain valid test oracles.

To perform model-based testing of the implementation of the Paxos consensus
protocol [133], the test adapter was also implemented in Go. Here, we distinguish
between unit and system tests for the SUT. The unit tests are used to test the central
protocol logic used to implement the Paxos consensus protocol. The system tests are

Chapter 3 37

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

CPN Tools

CPN

Testing

Model

MBT/CPN

Library

System Under Test

Distributed System

Client Application

Gorums

Test Cases

and Oracles

Test Script

Test

Adapter

Reader

Tester

Fig. 3.2: Model-based testing approach with the QuoMBT testing framework.

used to test the complete Paxos implementation and Gorums library with clients. The
test adapter can use a reader to read test cases with oracles in the XML format generated
from the CPN test model, and use a tester to execute the SUT. Finally, it compares
testing results against oracles. As an example, the test adapter can execute two clients
concurrently to send their requests to the Paxos replicas. After the Paxos replicas reach
consensus, a response value is sent back to the clients. The tester checks whether the
response for each client belongs to the expected responses (oracles) and whether the
responses are the same for all clients, i. e., consensus is reached.

For both the distributed storage service and the Paxos consensus protocol, our
testing approach has been evaluated by measuring statement coverage for both unit
and system tests in common successful execution scenarios and scenarios involving
server/replica failures. Such measurement is achieved by using a tool provided via the
Go testing infrastructure. We have injected programming errors in order to demonstrate
if our MBT approach can detect injected errors and investigate to which extent our
model-based test cases can detect programming errors. We have also created scenarios
which have one or more server failures in order to test fault tolerance of the distributed
storage service and the Paxos protocol.

3.4 CPN Testing Models

In this section, the design of CPN models for testing fault-tolerant distributed systems
and protocols will be discussed. We first describe the CPN model developed for
the distributed storage service [132], and then discuss the CPN model for a Paxos
consensus protocol [133]. The Gorums framework has been used to implement both
systems, with the aid of two core abstractions: the quorum call and quorum function.
Therefore, quorum calls and quorum functions have been considered as main features
to be modeled when constructing the CPN models of these two systems and to be
tested when performing model-based testing.

38 Chapter 3

3.4 CPN Testing Models

With the CPNmodels, we have generated test cases to perform model-based testing
of implementations of these two systems. For the test case generation, we rely on
the MBT/CPN library [96], which we have developed to be used with CPN Tools.
The details of the MBT/CPN library will be discussed in Chapter 4. The MBT/CPN
library is based on extracting test cases from execution sequences of the CPN model
by partially observing occurring events. MBT/CPN supports both state space and
simulation-based test case generation. State space-based test case generation works for
finite-state models and is based on computing all reachable state and state changes of
the CPN model. Simulation-based test case generation is based on running a set of
model executions and extracting test cases from the corresponding set of execution
traces.

3.4.1 CPN Testing Model for a Distributed Storage Service
In article [132], a CPN model has been developed to generate test cases for the Gorums
framework and a distributed storage service implementation. The entire system
consisting of a set of clients and servers is modeled using CPN Tools. Below we outline
the key features of the CPN model. We also use the CPN model to explain the basic
operation of the distributed storage service.

Fig. 3.3 shows the top-most module of the CPN model for the distributed storage
service, consisting of clients and servers modeled by the substitution transitions Clients
and Servers (drawn as rectangles with a double border), respectively. The message
channels for communication between the clients and the servers are modeled by
the places ClientToServer and ServerToClient. The number of clients and servers are
parameters that can be configured without making changes to the net-structure.

Client
ToServer

Channels

SChannels()

Server
ToClient

ServerxChannel

CChannels()

Clients

ClientClient

Servers

ServerServer

Fig. 3.3: Top-level module of the CPN model for the distributed storage service.

Fig. 3.4 shows the client submodule of the Clients substitution transition in Fig. 3.3.
The behavior of applications running on the clients consists of read and write quorum
calls provided by the distributed storage. The read quorum call is used by clients to
read data from the storage; the write quorum call is used by clients to write data into
the storage. The details of quorum calls are modeled by the substitution transitions
Read and Write. Additionally, the substitution transition QuorumCalls has submodules
that serve as test driver modules used to generate test cases for the implementation of
the distributed storage and the Gorums framework. The invocation of quorum calls is
done by placing tokens on the Read and Write places. The port places ServerToClient
and ClientToServer are linked to the identically named socket places in Fig. 3.3.

Chapter 3 39

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

Client
ToServer

Out
ServerxChannel

Server
ToClient

In
ServerxChannel

Write

WriteCall

Read

ReadCall

Read

ReadRead

Write

WriteWrite

Quorum Calls

Quorum CallsQuorum Calls

In

Out

Fig. 3.4: The Clients module for the distributed storage service.

Fig. 3.5 shows the submodule of the Read substitution transition which provides
an abstract implementation of the read quorum call. The main purpose of the Read
module is to generate test cases for the read quorum function. The execution of a read
quorum call starts by sending a read request to each of the servers, which is modeled
by the transition SendReadReq and the expression on the arc to place ClientToServer.
The place ReadReplies is used to collect the replies received from the servers. After
sending a read request to each of the servers, the read call enters a WaitingReply state
and waits for replies coming back from the servers. When a read reply comes back
represented as a token on place ServerToClient, then transition ApplyReadQF will be
enabled, and the read quorum function is then invoked, as represented by the arc
expressions to WaitingReply and Read. With sufficient replies received, a read result is
returned to the Read.

Waiting
Reply ReadxQFReadResult

ReadReplies

ReadxReadReplies

[]

Server
ToClient

In
ServerxChannel

Client
ToServer

Out
Channels

Out

Read In/Out

ReadCall

In/Out

Send
ReadReq

Apply
ReadQF

[readreplies' = readreplies^^[readreply],
 (v',t') = withHighestTimestamp(readreplies')]

(r,readreplies)

(r,readreplies')

(r,((v,t),b))

(r,((~1,0),false))

(s,READREPLY (r,readreply)::ch)

SendAllServers (READREQ r) chs

READINVOKED(r)

if (not b) andalso hasQuorum(readreplies')
then 1`READRESULT(r,v')
else empty

(r,[])

if hasQuorum(readreplies')
then (r,((v',t'),true))
else (r,((~1,0),false))

chs

(s,ch) In

Fig. 3.5: The Read module for the distributed storage service.

40 Chapter 3

3.4 CPN Testing Models

Fig. 3.6 shows the server submodule of the Servers substitution transition in Fig. 3.3.
The replicated state of each server is modeled by the place State. The two substitution
transitions are used for modeling the handling of write requests and read requests
on the server side. As an example, the processing of a write request from a client is
modeled by the submodule of the HandleWriteRequest substitution transition shown in
Fig. 3.7. The place ClientToServer (upper right) receives the incoming write request
presented as a value in the list-token, with a value v’ to be written into the distributed
storage and a timestamp t’. The new value is stored on the server only if the timestamp
t’ of the incoming write request is larger than the timestamp t for the currently
stored value v. If so, then the new value v’ is stored on the server, and a write
acknowledgment is sent back in a write reply to the client. Otherwise, the stored value
remains unchanged and a negative write acknowledgment is sent to the client in the
write reply. The handling of read requests is modeled in a similar manner, except that
no comparison is needed, and the server simply returns the currently stored value
together with its timestamp.

Client
ToServer

In
Channels

In

Server
ToClient

Out

ServerxChannel

State

ServerxStorage

InitStorage()

Handle
WriteRequest

Handle WriteRequestHandle WriteRequest

Handle
ReadRequest

Handle ReadRequestHandle ReadRequest
Out

Fig. 3.6: The Server module for the distributed storage service.

State In/Out

ServerxStorage

In/Out

Client
ToServer

In

Channels

Server
ToClient

Out

ServerxChannel

Out

Server
Status

Status

ServerxStatus

InitStatus()

Status
Handle

WriteRequest

[hasWriteReq (s,chs),
(v',t') = getWriteReq (s,chs)]

(s,(v,t))

chs

if (t'>t)
then (s,(v',t'))
else (s,(v,t))

if (t'>t)
then (s,(WRITEREPLY WRITEACK)::ch)
else (s,(WRITEREPLY WRITENACK)::ch)

(s,ch)

rmWriteReq (s,chs)

(s,running)

In

Fig. 3.7: The HandleWriteRequest module for the distributed storage service.

The generation of test cases for the distributed storage system and Gorums is based
on the analysis of executions of the CPN model. Test cases can be generated for both
the read and write quorum functions as unit tests and the quorum calls as system level
tests consisting of concurrent and interleaved invocations of read and write quorum

Chapter 3 41

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

calls. System level tests can test both the implementation of the quorum calls and
the Gorums framework implementation itself. In addition to the test cases, we also
generate a test oracle for each test case to determine whether the test passes or not. The
state space for the CPN testing model of the distributed storage service is relatively
small, and we can obtain all test cases based on state space-based test case generation.
These test cases are generated and represented using XML.

Listing 3.5 shows an example of how test cases are represented using XML in order
to perform unit test of the ReadQF quorum function of the distributed storage service.
The test case for the ReadQF quorum function has two replies, one with value 0 and
timestamp 0; the other with value 42 and timestamp 1. With the configuration of three
servers, this constitutes a quorum, and the value returned from the quorum function is
therefore expected to be 42 with the timestamp of 1.
<Test TestName="ReadQFTest">

<TestCase CaseID="1">

<TestValues>

<Content>

<Value>0</Value>

<Timestamp>0</Timestamp>

</Content>

<Content>

<Value>42</Value>

<Timestamp>1</Timestamp>

</Content>

</TestValues>

<ExpectResults>

<Value>42</Value>

<Timestamp>1</Timestamp>

</ExpectResults>

<ExpectQuorum>true</ExpectQuorum>

</TestCase>

</Test>

Listing 3.5: Example test case generated for read quorum function.

For system level tests involving read and write quorum calls, the generation of
test cases and expected results is based on a submodule of the CPN model. In this
case, it is performed by the module QuorumCalls which acts as a test driver to specify
different scenarios of read and write quorum calls of the quorum system. By varying
this module, it is possible to generate test cases with expected results for different
scenarios of read and write quorum calls.

Fig. 3.8 shows an example of a test driver in which the client executes one read and
one write quorum call as modeled by the transition InvokeRDWR. After completion of
these two calls, server failures may occur and a new read and a write call is invoked as
modeled by the transition InvokeRDWRFailures.

Based on this, test cases can be generated in XML format specifying both the
concurrent and sequential execution of read and write calls. Listing 3.6 shows an
example where first a read and a write are initiated. After completion of these two
calls, a new read call is initiated. We handle concurrent executions by nesting the read
and write Routine tag as illustrated in Listing 3.6, while non-nested Routine tags are
considered sequential.

42 Chapter 3

3.4 CPN Testing Models

Read

In/Out ReadCallIn/Out

Start

InIn

Write

In/Out

WriteCall

In/Out

Server
Status

Status

ServerxStatus

InitStatus()

Status EndInvokeRDWR
InvokeRDWR

Failures
Completed

READINVOKED(1)

WRITEINVOKED(2,42)

READRESULT(1,v)

WRITERESULT(2,b)

sRunning()

sFailed ()

WRITERESULT(4,b)

READRESULT(3,v)READINVOKED(3)

WRITEINVOKED(4,7)

Fig. 3.8: The QuorumCalls module for the distributed storage service.

<Test TestName="SystemTest">

<TestCase CaseID="WRprRDsqRD">

<Routine RoutineID="A" OperationName="Write">

<OperationValues>

<Value>7</Value>

</OperationValues>

<Routine RoutineID="B" OperationName="Read">

<OperationValues>

<Value>7</Value>

<Value></Value>

</OperationValues>

</Routine>

</Routine>

<Routine RoutineID="A" OperationName="Read">

<OperationValues>

<Value>7</Value>

</OperationValues>

</Routine>

</TestCase>

</Test>

Listing 3.6: Example test case generated for the concurrent and sequential execution of
read and write calls.

3.4.2 CPN Testing Model for Single-decree Paxos
The single-decree Paxos consensus protocol can be used by a distributed application in
which the Paxos replicas need to agree on a single common value among potentially
many input values. We assume that one or more clients send the input values to the
Paxos replicas, and then receive the decided output value returned from Paxos replicas.
The complete CPN model of the single-decree Paxos protocol is discussed in article
[133] included in Part II. The CPN model is comprised of 23 hierarchically organized
modules. We introduce the key elements of the CPN model below.

Paxos is usually explained with three separate agent roles: proposers, acceptors and
learners [82, 97]. Proposers can propose values for consensus; acceptors accept a value
among those proposed to reach consensus; learners learn the chosen value. A Paxos
replica may play multiple agent roles. As a typical configuration, all replicas play all
agent roles. The constructed CPN model reflects this typical configuration. Moreover,

Chapter 3 43

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

Paxos is safe for any number of crash failures, and given n = 2f+ 1 acceptors, it can
make progress with up to f crash failures.

Fig. 3.9 shows the top-level module of the CPN model consisting of the two
substitution transitions Clients and Replicas connected by the two places Request and
Response. The behavior of the clients is modeled by the substitution transition Clients
with its associated submodule Clients. Clients send request value for consensus to
the Paxos replicas, by putting a token on the socket places Request, and wait for the
decided response value to be returned as a token on socket places Response. The
behavior of the distributed replicas is modeled by the substitution transition Replicas
and its associated submodule Replicas, with the aim of executing the Paxos protocol to
reach consensus on a value proposed by the clients.

Request

ReplicaIDxValue

Response

ReplicaIDxValue

Clients

ClientsClients

Replicas

ReplicasReplicas

Fig. 3.9: Top-level CPN module for the single-decreee Paxos model.

Based on the definitions of Paxos agent roles, Fig. 3.10 shows the Replicas module
(the submodule of the substitution transition Replicas in Fig. 3.9), which consists of
three substitution transitions for three Paxos agents connected by socket places to
model the communication between the different agents. Each substitution transition
then models the detailed behavior of a Paxos agent. The Replicas module is constructed
such that any number of replicas can be configured without changing the net-structure.
This make it easy to generate test cases for different size of Paxos configurations.

The Paxos protocol operates in rounds, and usually each round of the protocol is
associated with a single proposer, which is the leader for that round and executes three
communication phases between replicas:

1. A proposer sends a 〈Prepare〉message to the acceptors and collects at least f+ 1
〈Promise〉messages;

2. The proposer then sends 〈Accept〉 messages for some value v to the acceptors,

44 Chapter 3

3.4 CPN Testing Models

PtoA
Prepare

ReplicaIDxMessage

AtoP
Accept

ReplicaIDxMessage

PtoA
Accept

ReplicaIDxMessage

Response

Out
ReplicaIDxValue

Out

Request

In
ReplicaIDxValue

PtoL
Commit

ReplicaIDxMessage

LtpP
Commit

ReplicaIDxMessage

AtoP
Prepare

ReplicaIDxMessage

Acceptor

Acceptor

Learner

LearnerLearner

Proposer

ProposerProposer

Acceptor

In

Fig. 3.10: The single-decree Replicas module.

that respond by sending 〈Learn〉messages back to the proposer acknowledging
the value v;

3. The proposer sends the decided value in 〈Commit〉messages to learners.

The protocol solves consensus in some round, but due to asynchrony and failures,
it may need to run several rounds to reach consensus. That is, if the current proposer
(leader) goes mute, another proposer can be elected as a new leader to start a new
(higher) round.

Fig. 3.11 shows the submodule of theProposer substitution transition, which contains
three substitution transitions: LeaderDetector, FailureDetector, and ProposerCore. The
Proposer of each replica receives the client request sent from the submodule of the
Clients substitution transition for consensus; this request is presented as a token on the
port place Request. The LeaderDetector substitution transition and its submodulemodel
the behavior of electing a leader among the Proposers. The FailureDetector substitution
transition has a submodule that can detect the failure of any of the Proposers. If a failure
is detected by the failure detector, the submodule of the LeaderDetector substitution
transition will be informed via the submodule of the FailureDetector substitution
transition.

The submodule of the ProposerCore substitution transition models the behavior of
the initialization of Proposers and the behavior of three Paxos communication phases.
Fig. 3.12 illustrates a successful round of three communication phases for single-decree
Paxos protocol. The first number in each message is the current round number rnd = 1,
and v in each message is the value that the proposer wants the acceptors to choose. The
gray boxes labeled v represent the execution of a state machine command derived from
the decided value v. While not shown in the figure, each replica has instances of each
of the Paxos agents. For each Paxos communication phase, the communication between
the different Paxos agents is modeled based on the quorum abstractions provided by

Chapter 3 45

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

New
Leader

ReplicaIDxLeaderID

Trigger
 Leader

 Detector

LeaderID

n`0

Timeout
FD

0

AtoP
Accept

In

ReplicaIDxMessage

Request

In
ReplicaIDxValue

In

PtoA
Accept

Out

ReplicaIDxMessage

Out

PtoA
Prepare

Out

ReplicaIDxMessage

Out

PtoL
Commit

Out
ReplicaIDxMessage

Out

LtoP
Commit

In

ReplicaIDxMessage

In

Leader
ID

LeaderID

0

AtoP
Prepare

In

ReplicaIDxMessage

In

Proposer
Core

ProposerCoreProposerCore

Leader
Detector

LeaderDetectorLeaderDetector

Failure
Detector

FailureDetectorFailureDetector

In

Fig. 3.11: The Proposer module.

the Gorums framework [87]. Specifically, the communication takes the form of quorum
calls, one for each of the Paxos communication phases: Prepare, Accept, and Commit.

S3

S2

S1
Leader

〈Prepare, 1〉

〈Promise, 1〉

〈Accept, 1, v〉

〈Learn, 1, v〉

v

〈Commit, 1, v〉

v

v

Fig. 3.12: The single-decree Paxos consensus protocol with three phases.

The first communication phase involves two types of messages known as the
〈Prepare〉 and 〈Promise〉messages as shown in Fig. 3.12. The leader candidate creates
a 〈Prepare〉message with its current round number and invokes a Prepare quorum call
to send the 〈Prepare〉message to Acceptors, aiming at proposing itself to be a leader.
The Prepare quorum call is modeled by the submodule of the Prepare substitution
transition. After the Acceptors receive the 〈Prepare〉message, and if they accepted it,
then each Acceptor returns back a 〈Promise〉 message to the leader candidate by the
Prepare quorum call. This behavior of the Acceptors is modeled by the submodule of
the Acceptor substitution transition in Fig. 3.10. When the leader candidate receives
enough 〈Promise〉messages to obtain a quorum, then the first phase is finished. The
leader candidate now can become a leader to propose the client request to Acceptors
for consensus.

In the second phase, two types of messages are involved, known as 〈Accept〉 and
〈Learn〉 messages. The leader creates an 〈Accept〉 message with its current round
number, crnd, and the value v obtained from the client request, then invokes the Accept

46 Chapter 3

3.4 CPN Testing Models

quorum call, modeled by the submodule of the Accept substitution transition. This
quorum call sends the 〈Accept〉message to the Acceptors to let them vote for consensus
value v. After the consensus value v is chosen, then the Acceptor will return a 〈Learn〉
message to the leader. Once the leader receives a quorum of 〈Accept〉messages from
Acceptors, the second phase is done. For the third phase, the leader invokes the Commit
quorum call on the Learners to send 〈Commit〉 messages. This enables the Learners
to learn the chosen consensus value and they can send it to the clients. The behavior
of the Learners is modeled by the submodule of the Learner substitution transition in
Fig. 3.10.

The submodule of the ProposerCore substitution transition has substitution transi-
tons Prepare, Accept, and Commit to model the Prepare, Accept and Commit quorums
calls. Fig. 3.13 gives the Prepare quorum call module of the Prepare substitution tran-
sition. This module models the behavior of the quorum call and quorum function
abstractions provided by Gorums for sending the 〈Prepare〉messages from a Proposer
(leader) to Acceptors when the transition SendPrepareMessages occurs. Then, after
such 〈Prepare〉messages have been handled by Acceptors, the 〈Promise〉messages from
Acceptors can be processed when the transition ApplyPrepareQF occurs, which mod-
els the behavior of the Prepare quorum function. The logic of quorum functions was
already discussed in Listing 3.4 in Section 3.2.

PtoA
Prepare

Out
ReplicaIDxMessage

Out

Prepare

In/Out
Message

In/Out

AtoP
Prepare

In
ReplicaIDxMessage

In

Wait
 Replies

CxQFPrepareResult

Prepare
 Replies CxRndxPrepareReplies

[]

CallId

CallId

1

Send
 Prepare
Messages

Apply
 PrepareQF

[preparereplies' = (cid, crnd, (vrnd,vvalue))::preparereplies,
 crnd > 0]

List.map (fn s => (s, Prepare(cid, crnd))) allIDs

Prepare(0, crnd)

(cid,(Promise(cid,~1,(~1,"")),false))

(cid,(Promise(prm),b))
if PrepareQFCond(cid,crnd',preparereplies')
then (cid,(PrepareQFProm(cid,crnd',preparereplies'),true))
else (cid,(Promise(cid, ~1,(~1,"")),false))

(id,Promise(cid, crnd, (vrnd,vvalue)))

(cid,crnd,[])

(cid,crnd',preparereplies)

(cid,crnd',preparereplies')

if (not b) andalso PrepareQFCond(cid,crnd',preparereplies')
then 1`PrepareQFProm(cid,crnd',preparereplies')
else empty

cid

cid + 1

Fig. 3.13: The Prepare quorum call module.

To generate test cases with oracles for the Paxos consensus protocol, we rely on the
simulation-based approach, due to the complexity of the Paxos CPN model. Both unit
test and system tests are generated for the Paxos protocol. The unit test are concerned
with testing of the quorum functions, which forms the core of the Gorums-based
implementation for Paxos protocol. The system level tests are concerned with the
proposed values, chosen value for consensus, selected leaders, and failure of replicas.

For unit tests, Listing 3.7 shows an excerpt from the XML representation of a test

Chapter 3 47

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

<Test Name="TestPrepareQF">
<TestCase ID="1">

<TestValues>
<PromiseMsg>

<Rnd>0</Rnd>
<Vrnd>0</Vrnd>
<Vval></Vval>

</PromiseMsg>
<PromiseMsg>

<Rnd>0</Rnd>
<Vrnd>0</Vrnd>
<Vval></Vval>

</PromiseMsg>
</TestValues>
<TestOracles>

<Quorum>true</Quorum>
<PromiseMsg>

<Rnd>0</Rnd>
<Vrnd>0</Vrnd>
<Vval></Vval>

</PromiseMsg>
</TestOracles>

</TestCase>
</Test>

Listing 3.7: Example test case generated for the PrepareQF() of the Paxos protocol.

case for PrepareQF(), which corresponds to a test case where Paxos is configured
with three replicas and the quorum size is two. The test input for the PrepareQF()

method in the test case is two 〈Promise〉messages with values for the fields Rnd, Vrnd
and Vval. The expected output of the PrepareQF() is a 〈Promise〉 message together
with the Quorum boolean true, indicating that a quorum was obtained for these input
messages.

<Test Name="systemtest">
<TestCase ID="1">

<TestValues>
<ClientPropose>M1</ClientPropose>
<ClientPropose>M2</ClientPropose>
<P1Failure>1</P1Failure>

</TestValues>
<TestOracles>

<Leader>0</Leader>
<Leader>1</Leader>
<Response>M1</Response>
<Response>M2</Response>

</TestOracles>
</TestCase>

</Test>

Listing 3.8: Example test case generated for the Paxos system with three replicas.

For system tests, Listing 3.8 shows an example of a test case for the Paxos protocol
with three replicas configured, and a failure in the first Paxos phase. The test input

48 Chapter 3

3.5 Results and Contributions

for this example consists of two clients sending requests concurrently to the Paxos
replicas. The test oracles include the valid responses from Paxos replicas, and the
expected leaders. Leader 0 is the first leader, and after it fails, leader 1 becomes the new
leader. It can be used to check whether the correct leaders are chosen, and whether the
response returned to each client belongs to the set of legal responses. Furthermore,
it also checks whether the responses obtained by all clients are equal, so that we can
determine if consensus is reached or not.

3.5 Results and Contributions

The main contribution of our work in articles [132, 133] is a model-based testing
approach based on formal modeling which can be used for testing advanced quorum-
based distributed systems and protocols. Our approach includes modeling patterns,
test case generation algorithms, and a test case execution infrastructure. As case studies
for evaluation of our approach, we have considered a distributed storage system and
a Paxos implementation. We have shown that our QuoMBT testing framework can
perform both unit tests for the quorum logic functions and system level tests for quorum
calls, with both successful scenarios and scenarios involving failures and programming
errors. In addition to obtaining high code coverage, our generated unit and system
tests can detect programming errors in the implementation.

Table 3.1 summarizes our experimental results for the distributed storage system
for one of the complex test drivers, designed in [132], involving a concurrent execution
of read and write quorum calls followed by another read quorum call ((WR||RD);RD).
The results shows that

1. for the successful scenario, we obtain 100 % of code coverage for the quorum
functions (unit test), 84.4% of statement coverage on the quorum calls (system
test), and 40.8% of statement coverage on the Gorums framework as a whole;

2. for the scenario involving failures (e. g., crash of servers) and injected program-
ming errors, we also obtain 100 % of code coverage for the quorum functions
with unit tests, and the statement coverage on quorum calls and Gorums as a
whole increase to 96.7% and 52.3%, respectively.

Table 3.1: Experimental results for distributed storage system

Test Driver Scenarios

Test Case Execution
System Unit

Gorums
Library

QCs QFs
RD WR RD WR

(WR||RD);RD Success 40.8 84.4 84.4 100 100
Failures/
Errors 52.3 96.7 96.7 100 100

As part of analyzing the results of the code coverage, we also discovered a code path
not covered in Gorums. So we added an additional test that can cover this particular
path, which involves passing nil as an argument to either read or write quorum calls.

Chapter 3 49

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

The test case revealed an error in this code path causing the test client to crash. The
error has been reported to the Gorums developers, and a fix has been implemented.

Table 3.2 summarizes the experimental results obtained for the Paxos implemen-
tation [133]. The results show the statement coverage for the different subsystems of
our Paxos implementation. Note that Unit tests are only applicable for the quorum
functions, not for subsystems. Specifically, we obtain 90% and 85.7% of code cover-
age for the Prepare and Accept quorum functions of unit tests, respectively. For the
system tests, the statement coverage for three different quorum calls reaches 83.9%,
respectively; for Prepare and Accept quorum functions, the statement coverage are up
to 100%; for the Paxos core implementation, the Proposer module’s statement coverage
reaches 97.4 %; the Acceptor module’s statement coverage is up to 100 %; the state-
ment coverages of the Failure Detector and Leader Detector modules reach 75.0% and
91.4%, respectively; the Paxos replica module reaches 91.4% of the statement cover-
age; for the Gorums library as a whole, the highest statement coverage reaches 51.8%.
These results indicate that our MBT approach and the QuoMBT testing framework are
promising in terms of obtaining a high statement coverage of the system under test via
generated test cases.

Table 3.2: Experimental results for Paxos consensus protocol.

Subsystem Component System tests Unit tests
Gorums library 51.8 % -
Paxos core Proposer 97.4 % -

Acceptor 100.0 % -
Failure Detector 75.0 % -
Leader Detector 91.4 % -
Replica 91.4 % -

Quorum calls Prepare 83.9 % -
Accept 83.9 % -
Commit 83.9 % -

Quorum functions Prepare 100.0 % 90.0 %
Accept 100.0 % 85.7 %

An important attribute of our approach is that the CPN testing models are con-
structed such that they can serve as a basis for model-based testing of other quorum-
based distributed systems and protocols implemented with the abstractions of the
Gorums framework. In other words, given a distributed system implemented by the
Gorums framework, it is only the implementation of the quorum functions that needs
to be changed when modeling the behaviors of quorum calls and quorum functions.
The state space and simulation-based test case generation approaches are independent
of the particular quorum system under test. This benefit can be seen from the Read
module in Fig. 3.5 of the CPNmodel for the distributed storage service and the Prepare
quorum call module in Fig. 3.13 for the Paxos consensus protocol. Both modules use
a similar modeling pattern for the quorum call and quorum function of the Gorums
framework.

50 Chapter 3

3.6 Related Work

3.6 Related Work

Model-based testing is a large research area with approaches and tools that have been
developed based on a variety of modeling formalism. These modeling formalism
include flowcharts, decision tables, finite-state machines, Petri Nets, state-charts, object-
oriented models, and BPMN [69]. In Saifan and Dingel’s survey [114], a detailed
description is given on how model-based testing is effective in testing different aspects
of distributed systems. The survey classifies model-based testing based on different
criteria and compares several model-based testing tools for distributed systems based
on this classification. The comparison does not identify work that can be applied to
systems that rely on a quorum system to achieve fault-tolerance.

Model-based testing has been successfully used (as measured through productivity
gain) in Microsoft’s Protocol Documentation Quality Assurance Process. Grieskamp
et al. [54] used Spec Explorer on protocols, where a so-called model program describes
the test case, including how to check an observation against a possibly non-deterministic
outcome. The main difference to our work is that their model programs are rule-based,
and as such only results in a visual representation as a graph through state space
exploration. Our CPN models give developers a better overview as they directly link
client- and server interactions, and hence make the behavior of the protocol explicit.

Chubby [26] was one of the first implementations of Paxos that were deployed in a
production environment, and thus were extensively tested. The authors highlight that
it was unrealistic to prove correct a real system of that size at the time (2007). Thus, they
adapted meticulous software engineering practices achieving robustness, and tested
their system thoroughly. One of their testing strategies was to test their implementation
when suffering a random sequence of network outages, message delays, timeouts,
process crashes and recoveries, and schedule interleaving. Given our CPN models and
generated tests, we aim to test many of the same attributes but in a more systematic
manner.

The ZooKeeper distributed coordination service [64] has been successfully tested
by Modbat [11] in a similar setting as ours. To test ZooKeeper, Modbat explores
different possible interleaving and non-deterministic outcomes due to scheduling
decisions or network communication in the real system which are judged by an oracle
essentially implementing a model checking component. Unlike our CPN models, the
specifications are not for consumption by other tools such as model checkers, nor is
there an interactive component that allows exploring a particular execution of the
model. As in our approach, it might require manual effort to connect the engine to
the SUT. Our CPN models can be used to test quorums of the distributed systems
and protocols, and Modbat has not been used to test the majority quorums of the
ZooKeeper service intended to guarantee a consistent view of the system.

Formal verification of distributed protocols copes with protocols on a more abstract
level. It aims at finding flaws and inconsistencies primarily in the specification. Such
approaches are not necessarily targeting a correct implementation, and only rarely can
executable code directly or automatically be derived from the specification. Formal
verification for such complex system protocols often suffers from undecidability issues.
These issues require careful management of any automation [59], or substantial effort
to encode the system in a decidable fragment [106]. We consider our model-based

Chapter 3 51

Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols

testing approach for a concrete implementation as orthogonal to approaches that aim
to validate and verify the correctness of a protocol in general. Frequently, the final,
often manual step of actually programming a proven-as-correct algorithm introduces
mistakes, and generated code may also suffer from problems or assumptions about the
underlying infrastructure as found, e. g., in Fonseca’s analysis of IronFleet [47].

A CPN-based simulation method [62] has been proposed and applied to a quorum-
based distributed storage system called Cassandra [9]. The focus of this research work
was to find appropriate parameter settings to achieve the best performance, since
Cassandra is highly configurable. The authors developed a CPN-based simulator
specifically for Cassandra, which allow tuning various system parameters such as
cluster size, timeouts and read/write ratios, for their CPN models. In our work, we
focus on using the CPN testing models for generating test cases to perform both unit
and system tests for the implementations of distributed systems and protocols.

Ponce de León et al. [107] have discussed a testing approach for true concurrency
using I/O Petri nets. The authors define a concurrent conformance relation for input-
output labelled transitions systems, IOLTS. A test case selection algorithm has been
proposed with criteria such as covering all paths of length n, or traversing each basic
behavior a certain number of times. Test case selection is also a challenge in our setting
with CPN models, so it remains an open question how their unfolding would work
in our CPN setting. Watanabe and Kudoh [135] propose two different CPN-based
test suite generation methods for concurrent systems. Their methods do not directly
address a particular way to derive a CPN testing model for a distributed system, nor
do they analyze achieved code coverage.

Zheng et al. [140] describe two algorithms for generating test cases and test sequences
from a CPN model of the SUT. This CPN model is first used as input to their APCO
algorithm to generate an initial set of test cases. These test cases can then be converted
to test sequences using their algorithm. Then, the set of original test cases and test
sequences can be exported as XML formatted files. The authors have applied their
technique to a radio module in a centralized railway control system. In contrast to
our approach, Zheng et al. do not consider testing any failure scenarios of systems
and protocols. Also, they do not consider concurrent execution of processes, and their
approach has not been used to validate distributed software systems.

52 Chapter 3

CHAPTER 4
A SOFTWARE TOOL FOR TEST CASE
GENERATION WITH COLOURED PETRI NETS

Society is heavily dependent on software and software systems, and design- and
implementation errors in systems may render them unavailable and return erroneous
results to the users. It is therefore important to develop automated techniques and
supporting software tools that can be used to support the engineering of correct and
stable software systems. This chapter summarizes the MBT/CPN software engineering
tool as presented in the article [134] and discusses the automated MBT approach using
the developed test execution engine.

The MBT/CPN tool augments CPN Tools with facilities for model-based test case
generation, and is based on the user identifying observable events formalized in
a so-called test case specification. As we will illustrate on the two-phase commit
transaction (2PC) protocol, this entails implementing a detection, observation, and
formatting function which is applied during the test case generation. An important
feature of the MBT/CPN tool is the uniform support for test case generation based on
state spaces and simulation. We show by practical experiments on the 2PC protocol,
the distributed storage protocol, and the Paxos consensus protocol that we can obtain a
high SUT code coverage, and that our approach can be used to detect implementation
errors [132–134].

In this chapter, we first present an overview and the architecture of the MBT/CPN
tool, implemented through CPN Tools, to support test case generation from CPN
models. We use the 2PC protocol as a running example to present the features of
the MBT/CPN tool, and discuss our two approaches implemented in the MBT/CPN
tool for test case generation. We then introduce our automated MBT approach with
the aid of the MBT/CPN tool for test case generation, and the test execution engine
to automatically generate test adapters for test case execution. Finally, we sum up
contributions and discuss related work.

4.1 Software Architecture of the MBT/CPN Software Tool

Fig. 4.1 gives an overview of the modules that constitute the MBT/CPN tool and how
it is applied in the context of model-based test case generation. The MBT/CPN tool
is implemented in the Standard ML programming language on top of the simulator
of CPN Tools. The main output of the MBT/CPN tool are XML files containing Test

Cases. Based on the generated test cases, a Test Adapter can employ a Reader to read

A Software Tool for Test Case Generation with Coloured Petri Nets

CNF
SSTCG SimTCG

State Space Monitoring

MBT/CPN base

CPN Tools simulator

Test Case Generation

Export

Test Cases

Test Adapter

Reader

Tester

System

Under

Test

Fig. 4.1: Overview of MBT/CPN modules.

test cases and a Tester to execute them against the System Under Test (SUT). This
Tester provides input events to the SUT and compares the observed outputs from the
SUT with the expected outputs. One benefit of using XML as output format from
the MBT/CPN tool is that any programming language that support XML can use the
generated test cases. This gives the flexibility to test systems and software implemented
in different programming languages.

To use the MBT/CPN tool, the user must identify the observable events that can be
derived from the binding elements in the CPN model. A binding element represents a
mode of a transition that may be enabled and may occur. A test case is comprised of
observable events consisting of input events and expected output events. Input events
represent stimuli to the SUT, while expected output events represent test oracles and
are used to determine the test outcome during test case execution.

The observable events in test cases are represented by the generic colour set (data
type) TCEvent defined as:

colset TCEvent = union InEvent:TCInEvent + OutEvent:TCOutEvent;

This generic colour set is defined by the MBT/CPN base module in Fig. 4.1. The
user of the tool must give the definition of the colour sets TCInEvent and TCOutEvent

which depend on the observable events of the SUT.
The MBT/CPN tool supports two approaches of test case generation from CPN

models. The SSTCG module on top of the state space tool of CPN Tools in Fig. 4.1
implements the state-space based test case generation approach. This approach is
based on the computation of the state space and extraction of test cases by considering
paths in the state space of the CPN model. The SIMTCG module on top of the
simulation monitoring facilities of CPN Tools implements the simulation-based test
case generation approach which is based on performing a simulation of the CPNmodel
and extracting the test case corresponding to the execution path of the simulation.

The CNF (configuration) module is shared between the state space- and simulation-
based test case generation. It provides configuration of the output directories and
naming of test cases, and configuration of a test case generation specification. In order to

54 Chapter 4

4.1 Software Architecture of the MBT/CPN Software Tool

specify the observable input and output events during test case generation, the user
needs to provide the test case specification by implementing a Standard ML structure
conforming to the TCSPEC signature (interface) shown in Listing 4.1.

signature TCSPEC = sig

val detection : Bind.Elem -> bool;

val observation : Bind.Elem -> TCEvent list;

val format : TCEvent -> string

end;

Listing 4.1: Standard ML interface for test case specification.

This TCSPEC signature consists of three functions: a detection function, an observation
function, and a formatting function. The Bind.Elem data type representing binding
elements already exists in CPN Tools. The detection function constitutes a predicate
that must evaluate to true for binding elements representing observable events. The
observation function maps an observable binding element into an observable input
or output event belonging to the TCEvent colour set. This function returns a list of
observable events. The formatting function maps observable events into a string
representation used to export the test cases into files. The detection and observation
functions are specified independently of whether simulation-based or state space-
based test case generation is employed. This makes it easy to switch between the two
approaches. After providing these two functions, the tool first invokes the detection
function on each arc of the state space (occurring binding element in a simulation) to
determine if the corresponding event is observable, and if so, then the observation
function is invoked to map the corresponding binding element into a representation of
an observable event. We will give examples of these two functions for the two-phase
commit protocol example in Section 4.2.1.

Given the test case specification provided by the user, the MBT/CPN tool can
generate test cases and the user can control it by using the Test Case Generation

module which implements the TCGEN signature (interface), partly shown in Listing 4.2.
The ss function is used for state-space based test case generation. The sim function is
used for simulation-based test case generation, and takes an integer as a parameter
specifying the number of simulation runs to be executed for generating test cases. Both
functions return a list of test cases. Each test case consists of a list of test case events
TCEvent. The export function exports the test cases, based on the settings the user
provided via the CNF configuration module. Finally, the Exportmodule implements
the export of the test cases into XML files.

signature TCGEN = sig

val ss : unit -> (TCEvent list) list;

val sim : int -> (TCEvent list) list;

val export : (TCEvent list) list -> unit

end;

Listing 4.2: Standard ML interface for test case generation.

Chapter 4 55

A Software Tool for Test Case Generation with Coloured Petri Nets

4.2 Automated Model-based Testing

Based on the testing approach we have proposed in Fig. 3.2 in Section 3.3, we show
below how automated model-based testing is performed with the aid of the MBT/CPN
tool and an automatically generated test adapter. We explain our technique by using
the CPN model of the two-phase commit (2PC) protocol, introduced in Section 1.5.

We first use the MBT/CPN tool to generate test cases from the 2PC CPN model.
Then, we illustrate our technique to generate a test adapter, which can be used to execute
test cases against an implementation of the coordinator process of the 2PC protocol
implemented in the Go programming language. To do this, the workers module shown
in Fig. 4.2 is used to obtain input events (stimuli) for the coordinator implementation,
and the coordinator CPN module shown in Fig. 4.3 is used to obtain the expected
outputs (test oracles) which in turn determine whether a test is successful or not. In
that respect, the CPN module of the coordinator serves as an abstract specification
of the coordinator process against which the behavior of the implementation can be
compared.

Idle

Worker

Worker.all ()

Waiting
Decision

Worker

CanCommitIn

Worker

In

VotesOut

WorkerxVote

Out

DecisionIn

WorkerxDecision

In

AcknowledgeOut

Worker

Out

Receive
CanCommit

Receive
Decision

w

if vote = Yes
then 1`w
else empty

w

w

if vote = No
then 1`w
else empty

w

(w,vote)

(w,decision)

w

2
1`wrk(1)++
1`wrk(2)

Fig. 4.2: Workers module of a 2PC CPN model.

4.2.1 Test Case Generation
As we have discussed in Section 4.1, the user of the MBT/CPN tool needs to extend
the TCEvent base colour set by defining the colour sets TCInEvent and TCoutEvent

according to the input and output events of the system to be observed. Therefore, for
the 2PC protocol, the first step is to implement the input events to the coordinator
implementation to be the votes of the individual workers. Output events are defined as
the decisions sent to the individual workers by the coordinator and the overall decision
to decide whether the transaction is to be committed or aborted.

56 Chapter 4

4.2 Automated Model-based Testing

Waiting
Votes

Waiting
Acknowledgements

DecisionxWorkers

Start

1

CanCommit Out

Worker

Out

Decision Out

WorkerxDecision

Out

Votes In

WorkerxVote

In

Acknowledge In

Worker

In

Completed

Decision

SendCanCommit

Receive
Acknowledgements

CollectVotes

CollectVotesCollectVotes

(decision,workers)

Worker.all ()

ms_to_list workers

decision

1 1`()

Fig. 4.3: Coordinator module of a 2PC CPN model.

val W = 2;

colset Worker = index wrk with 1..W; var w : Worker;

colset Workers = list Worker; var workers : Workers;

colset Vote = with Yes | No; var vote : Vote;

colset Decision = with abort | commit; var decision : Decision;

colset WorkerxVote = product Worker * Vote;

colset WorkerxDecision = product Worker * Decision;

Listing 4.3: Colour set and variable declarations for the 2PC protocol model.

Given the colour set definitions in the CPN model (Listing 4.3), the implementation
of the TCInEvent and TCOutEvent colour sets is shown in Listing 4.4. The colour
set WDecision indicates the decision sent to individual workers, while SDecision

represents the overall system decision.
The second step is to define the test case generation specification TCSPEC by imple-

menting the three functions specified in the signature (interface) in Listing 4.1. The

Chapter 4 57

A Software Tool for Test Case Generation with Coloured Petri Nets

colset TCInEvent = WorkerxVote;

colset TCOutEvent = union WDecision : WorkerxDecision +

SDecision : Decision;

colset TCEvent = union InEvent : TCInEvent +

OutEvent : TCOutEvent;

Listing 4.4: Definitions of the colour sets for observable events.

votes sent by individual serves as input events and can be obtained by considering
occurrences of the ReceiveCanCommit transition in Fig. 4.2. The decisions of the coordi-
nator in terms of output events can be obtained by considering the ReceiveDecision and
ReceiveAcknowledgement transitions. The detection function is shown in Listing 4.5.
For the 2PC protocol, the observation function accesses the values bound to the vari-
ables (w,vote, and decision) of the transitions and uses the constructors of the TCEvent
and TCOutEvent data types to construct the observable events. The observation func-
tion can be implemented as shown in Listing 4.6. Finally, in order to export the test
cases into an XML format, the user needs to provide a formatting function as part of
the test case generation specification. The complete formatting function for the 2PC
protocol is similar in complexity to the detection and the observation functions and
has been omitted here.

fun detection (Bind.Workers’Receive_CanCommit _) = true

| detection (Bind.Workers’Receive_Decision _) = true

| detection (Bind.Coordinator’Receive_Acknowledgements _) = true

| detection _ = false;

Listing 4.5: The implementation of the detection function for the 2PC protocol.

exception obsExn;

fun observation (Bind.Workers’Receive_CanCommit (_,{w,vote})) =

[InEvent (w,vote)]

| observation (Bind.Coordinator’Receive_Acknowledgements

(_,{_,decision})) = [OutEvent (SDecision decision)]

| observation (Bind.Workers’Receive_Decision (_,{w,decision})) =

[OutEvent (WDecision (w,decision))]

| observation _ = raise obsExn;

Listing 4.6: The implementation of the observation function for the 2PC protocol.

4.2.2 Test Case Execution with a Generated Test Adapter
To perform model-based testing using the test cases generated by MBT/CPN, the
developer (tester) must either implement a test adapter or automatically generate it.
Either way, the test adapter depends on the concrete SUT with which this test adapter
needs to interact. However, a test adapter consists of the same overall components

58 Chapter 4

4.2 Automated Model-based Testing

independently of the SUT. We have developed a Test Execution Engine (shown in
Fig. 4.4) which has an adapter generator to generate a test adapter and use it to perform
test case execution against the SUT. To illustrate how MBT/CPN test cases can be used,
and how the automation of our testing approach is performed for model-based testing,
we outline how the Reader and Tester of a Test Adapter are generated for testing
the Go implementation of the coordinator process. After these artifacts have been
generated, we only need to provide the methods used to interact with the coordinator
process in the generated Tester of the Test Adapter.

When exporting test cases from the MBT/CPN tool into an XML file (step (1)
in Fig. 4.4), two elements of information are generated and inserted into the XML
format. One element is test cases constructed according to the test case generation
approach used and some basic system parameters of the SUT; the other element is the
settings used to generate a Test Adapter. These settings include the names and types
of variables for the input and expected output (oracle) of the SUT, and the names of
method calls used by the Tester to interact with the SUT. The information included in
these settings is used by the Adapter Generator of the Test Execution Enginewhich
has predefined Go templates to generate a Test Adapter consisting of a Reader and a
Tester in the Go programming language (step (2) and (3) in Fig. 4.4). After the Test

Adapter has been generated, the Reader can read the information included in the test
cases of the XML file (step (4) in Fig. 4.4). Then, the Tester can execute them against the
System Under Test (SUT) and compare the output of the SUT with expected output
(oracle) (steps (5), (6) and (7) in Fig. 4.4).

MBT/CPN
Tool

XML
file

Test Execution Engine

Adapter
Generator

Test Adapter

Reader Tester
System
Under
Test

(1)
(2)

(3) (3)
(4) (5) (6)

(7)

Fig. 4.4: Overall process of using the test execution engine.

The Adapter Generator is implemented in Go and its implementation relies on the
text/template and encoding/xml packages, both belonging to the Go standard library.
Given the text/template package, we have implemented predefined Go templates in
the Adapter Generator which can be used to generate source code for the entire
Reader, and components commonly used in the Tester independently of the SUT. The
encoding/xml package makes it easy to define mappings between XML elements and
Go structures. Go structures is the data structure in Go which can be used to store the
setting information of a test adapter in the XML file generated together with test cases.
The Go templates access this setting information stored in Go structures to generate a
Test adapter.

Listing 4.7 shows an example of the setting information contained in the XML
format used to generate a Test Adapter for testing the Go implementation of the
coordinator process. The information within the <TypeAssignments> tag gives the

Chapter 4 59

A Software Tool for Test Case Generation with Coloured Petri Nets

names and types of variables used in the predefined Go reader template to generate a
Reader so that the generated Reader has these variables for reading test cases in the
XML file. The names and types of variables are defined based on the definitions of
variables in the Go implementation of the coordinator process, shown in Listing 4.8.
The information within the <MethodCalls> tag specifies names of method calls used
in the predefined Go tester template to generate the Tester. The generated Tester then
has an interface (defined in the template) consisting of these method calls. The user
only needs to implement methods specified in the interface to interact with the SUT.

<MethodCalls>
<CallName>SendVote</CallName>

</MethodCalls>
<TypeAssignments>

<SystemParameterTypes>
<Field Name="NumberOfWorker" Type="int"></Field>

</SystemParameterTypes>
<InputType Name="VoteInput" Type="VoteInput">

<Field Name="WorkerID" Type="WorkerID"></Field>
<Field Name="VoteValue" Type="VoteEnum"></Field>

</InputType>
<OracleType Name="DecisionOracle" Type="DecisionSlice">

<Field Name="WorkerID" Type="WorkerID"></Field>
<Field Name="DecisionValue" Type="DecisionEnum"></Field>

</OracleType>
<OracleType Name="FinalDecision" Type="DecisionEnum"></OracleType>

</TypeAssignments>

Listing 4.7: Example XML format for the settings used to generate a test adapter.

type WorkerID int type Vote struct {

type VoteEnum int WorkerID WorkerID

type DecisionEnum int VoteValue VoteEnum

const (}

Yes VoteEnum = iota type Decision struct {

No WorkerID WorkerID

) DecisionValue DecisionEnum

const (}

Commit DecisionEnum = iota type DecisionSlice []Decision

Abort

)

Listing 4.8: Variable declarations in Go for the coordinator process.

For testing the coordinator process, the generated Tester has the interface shown in
Listing 4.9, and the definition of this interface in the predefined Go tester template is
shown in Listing 4.10. The MethodCallNames variable is a string array that stores the
names ofmethod calls obtained from the<MethodCalls> tags in XML format (as shown
in Listing 4.7). The range action initializes a variable (callname) which is set to the
successive elements of the iteration of the array MethodCallNames. Therefore, any name
specified by the <MethodCalls> tags in XML format can be generated as a method call

60 Chapter 4

4.2 Automated Model-based Testing

type systemTest interface {

Start() // method to start system

SendVote(v *TestValue) // method to interact with system

OutputChecker(cs *SystemTestCases) // method to check output

}

Listing 4.9: Interface in the Tester module generated in Go programming language.

type systemTest interface {

Start()

{{- range $callname := .MethodCallNames }}

{{$callname}}(v *TestValue)

{{- end }}

OutputChecker(cs *SystemTestCases)

}

Listing 4.10: The definition of the interface in the Go tester template.

in the interface in the Tester. For testing the coordinator process, only one method call
SendVote is obtained from the settings specified in XML format in Listing 4.7 in order to
interactwith the coordinator. The Start() and OutputChecker(cs *SystemTestCases)

methods in Listing 4.9 are defaultmethods specified in the predefinedGo tester template
in Listing 4.10. The user of a generated Test Adaptermust implement these method
calls specified in the interface of the Tester.

After both the Reader and the Tester have been generated, the Reader can read test
cases specified in the XML file, as shown in Listing 4.11. In addition to the input values
and oracles specified in test cases, the Reader also reads the names of method calls
which will be executed by the generated Tester to interact with the SUT. The Tester

will know if these method calls are executed concurrently or sequentially, as indicated
by the <Concurrent> tag. That is, the names of method calls specified within the
<Concurrent> tag indicate that these methods need to be executed concurrently by
the Tester. Otherwise, these method calls will be executed sequentially.

An example is considered in Listing 4.11. Themethod call SendVote is specified three
times by the<Call Name="SendVote"> tag within the<Concurrent> tag. This means
that the generated Testerwill execute the SendVotemethod three times concurrently,
initialized by threeworkers (defined by<NumberOfWorker> tag), respectively. Based on
the implementedGo template, the generatedTesterhas an executor called funcExecutor
(shown in Listing 4.12) to execute the method calls specified by the Call Name tag
in the XML format. Line 8 and Line 12 in Listing 4.12 indicate that the Tester can
call any method with the name stored in the variable funcName (such as SendVote).
This funcExecutor function can be invoked either concurrently or sequentially in
the generated Tester. To interact with the coordinator process, the funcExecutor

function is invoked by three go routines (threads in Go) concurrently to send three Vote
messages, respectively, to the coordinator process. After the coordinator has handled
the Votemessages, the OutputChecker(cs *SystemTestCases) in Listing 4.9 compares
the testing results it received from the coordinator with the oracles (Decisions and
FinalDecision). To do this, the generated Tester uses the testing package from the

Chapter 4 61

A Software Tool for Test Case Generation with Coloured Petri Nets

Go standard library. Go’s testing infrastructure comprises the go test command
which allows us to simply run and execute our generated tests and obtain pass/fail
information for each test case execution. The Go testing infrastructure also includes a
tool which can be used to evaluate our approach by measuring the statement coverage.
<SystemParameters>

<NumberOfWorker>3</NumberOfWorker>

</SystemParameters>

<TestCase ID="1">

<InputValues>

<Concurrent>

<Call Name="SendVote">

<InputValue>

<VoteInput>

<WorkerID>1</WorkerID>

<VoteValue>0</VoteValue>

</VoteInput>

</InputValue>

</Call>

<Call Name="SendVote">

<InputValue>

<VoteInput>

<WorkerID>2</WorkerID>

<VoteValue>0</VoteValue>

</VoteInput>

</InputValue>

</Call>

<Call Name="SendVote">

<InputValue>

<VoteInput>

<WorkerID>3</WorkerID>

<VoteValue>0</VoteValue>

</VoteInput>

</InputValue>

</Call>

</Concurrent>

</InputValues>

<Oracles>

<DecisionOracle>

<WorkerID>1</WorkerID>

<DecisionValue>0</DecisionValue>

</DecisionOracle>

<DecisionOracle>

<WorkerID>2</WorkerID>

<DecisionValue>0</DecisionValue>

</DecisionOracle>

<DecisionOracle>

<WorkerID>3</WorkerID>

<DecisionValue>0</DecisionValue>

</DecisionOracle>

<FinalDecision>0</FinalDecision>

</Oracles>

</TestCase>

Listing 4.11: Example XML format for a test case.

62 Chapter 4

4.3 Results and Contributions

1 // funcExecutor executes different method calls given in XML tags.

2 func funcExecutor(t *testing.T, tester interface{}, funcName string, params ...

interface{}) {

3 t.Helper()

4 inputArgs := make([]reflect.Value, len(params))

5 for i, param := range params {

6 inputArgs[i] = reflect.ValueOf(param)

7 }

8 fn := reflect.ValueOf(tester).MethodByName(funcName)

9 if !fn.IsValid() {

10 t.Errorf("method ’%s’ not found", funcName)

11 }

12 fn.Call(inputArgs)

13 }

Listing 4.12: The funcExecutor in Tester generated in Go programming language.

4.3 Results and Contributions

The main contribution of article [134] is to present our approach to model-based testing
using CPNs and the supporting MBT/CPN tool. MBT/CPN is implemented on top of
CPN Tools to support test case generation from CPN models. MBT/CPN has been
developed as part of our research into MBT for quorum-based distributed systems
and protocols [132, 133]. The main idea underlying our approach is for the modeler to
capture the observable input and output events (transitions) in a test case specification.
A main feature of the MBT/CPN tool is the uniform support for state space and
simulation-based test case generation.

A second contribution of our work on MBT/CPN is the experimental evaluation
of the tool on a two-phase commit transaction protocol implemented using the Go
programming language, with the coordinator as the SUT. The lines of code for the
coordinator is around 120 lines. We have used statement coverage (supported by the
Go tool chain) as the quantitative evaluation criteria of the test cases generated by our
approach.

Table 4.1 illustrates experimental results for the two-phase commit protocol with
different number of workersW, after applying our approach. TheGen column specifies
the approach used for test case generation, either state space (SS) or simulation (SIM).
The Size/Steps column gives the size of the state space (with the number of nodes /
arcs) or the number of steps in a simulation run. The Test Cases column records the
number of test case generated, and the Time column gives the total time (in second)
used for test case generation. Finally, theCoverage column gives the statement coverage
obtained for the coordinator implementation.

For the test case generation with the simulation based approach, we stopped
increasing the number of steps in the simulation after it reached the same number of
test cases as the state-space-based generation approach that displays the maximum
number of test cases which can be obtained. Specifically, in Table 4.1, asW increases,
more simulations are needed to reach the maximum number of test cases. Also, for
state space based test case generation, we did not pursue the experiments beyond four

Chapter 4 63

A Software Tool for Test Case Generation with Coloured Petri Nets

Table 4.1: Experimental results for the two-phase commit protocol.

W Gen Size / Steps Test Cases Time Coverage
2 SS 59 / 86 4 <1 94.7 %
2 SIM 5 3 <1 84.2 %
2 SIM 10 4 <1 94.7 %
3 SS 357 / 614 8 <1 94.7 %
3 SIM 10 4 <1 94.7 %
3 SIM 20 8 <1 94.7 %
4 SS 2,811 / 5,957 16 5 94.7 %
4 SIM 50 13 <1 94.7 %
4 SIM 100 16 <1 94.7 %
5 SIM 100 31 <1 94.7 %
5 SIM 200 32 <1 94.7 %
10 SIM 5000 1,015 13 94.7 %
10 SIM 10000 1,024 25 94.7 %
15 SIM 10000 8,627 91 84.2 %
15 SIM 20000 14,946 265 94.7 %

workers since it became quite time-consuming to generate test cases from larger state
spaces. However, the simulation based approach can easily handle configurations
with 5, 10, and 15 workers, as shown in Table 4.1. This demonstrates the scalability of
simulation based test case generation.

The results show that we obtain 94.7 % statement coverage with the test cases
generated by both the state space and the simulation based approaches. Due to
the implementation of the coordinator containing error handling code, which is not
covered by the generated test cases (as any failures are not part of the model), the results
of statement coverage cannot reach 100 % The results also show that the statement
coverage for both SIM-5 and SIM-10000 is 84.2%, since the simulation based approach
did not succeed to cover all the possible executions of the CPN model in the absence of
guided search.

We have also applied MBT/CPN to a distributed storage protocol [132] and the
Paxos distributed consensus protocol [133] as discussed in Chapter 3. The distributed
storage protocol and the Paxos protocol were both implemented in the Go program-
ming language using a quorum-based distributed systems middleware [87]. These
experiments also showed a high statement coverage and demonstrated in addition that
our approach is able to detect programming errors via the generation and execution of
unit and system tests.

4.4 Related Work

There exist a wide variety of model-based testing tools for test case generation. The
Conformiq Qtroniq [63] tool derives functional test cases from a system model, and
generates test cases with expected outputs either online or offline using a symbolic
execution algorithm. The generated test cases are mapped into the TTCN-3 format. The
Automatic Efficient Test Generation (AETG) [34] tool is aimed at efficient generation

64 Chapter 4

4.4 Related Work

of test cases by decreasing the amount of test data required for the input test space.
However, the test oracles have to be furnished manually. Tretmans et al. [122] have
presented the TorX tool. This tool can generate test cases based on a random walk
through to the state space. The test cases can be generated either offline or on-the-fly
during the test execution. In TorX, an adapter component is used to translate the inputs
to a form readable by the SUT and to check the actual outputs from the SUT against
expected outputs.

A model-based testing tool known as the Integration and System Test Automation
(ITSA) tool [137] follows a CPN-based approach to generate test cases for a variety of
languages including Java, C/C++, C# and HTML. Compared to the ITSA tool, our
model-based testing approach is not tied to a particular programming language, since
the test cases are generated in an XML format, which can be read by any programming
language. The ITSA tool uses the state space of the testing model to generate and select
test cases. For our model-based testing approach with CPN models, we can perform
both simulation-based and state-space-based test case generation. To obtain concrete
test cases with input data, the ITSA tool relies on a separate model-to-implementation
mapping. In contrast, we obtain the input data for the SUT and the method calls
directly from the data modeling contained in the CPN models. As a case study, the
ISTA tool has been applied to an online shopping system. However, their approach
does not appear to be suitable for testing complex distributed systems and protocols,
since they do not consider and address concurrency and failures, which is at the core
of our work.

Test code generation with timed event-driven CPNs has been used by Faria et al. [44].
Instead of using CPNs as a direct interface to the user, the authors generate test cases
from UML sequence diagrams. Their tool suite has a different focus in that they
instrument a running system toobserve themessages specified in the sequencediagrams.
The toolset has not been used for unit and system testing of distributed systems, but can
only perform JUnit tests on Java-based applications. Liu et al. [89] has also proposed a
CPN-based test generation approach. This approach requires a conformance testing-
oriented CPN (CT-CPN) model and a PN-ioco relation to be defined. A PN-ioco
relation specifies how an implementation conforms to its specifications. This approach
uses a simulation-based test case generation algorithm for the CT-CPN model. In
our approach, test cases can be generated directly using simulation-based or state
space-based test case generation for an existing implementation of the SUT.

A model-based test generation technique based on CPNs is used by Wu, Schnieder,
and Krause [136] to verify a module of a satellite-based train control system. The
authors use CPN Tools to generate the reachability graph of the test model and then use
state space analysis with CPN Tools to extract the expected output of each test case from
the path of the graph. However, their approach does not support simulation-based test
case generation, which is important for scalability. Farooq, Lam and Li has proposed a
test sequence generation technique [45]. For this technique, a CPN model is derived
from a UML Activity Diagram, and the derived model is then used to generate test
sequences. The authors demonstrate their approach on a fictional enterprise commerce
system, describing the process of purchasing products online. In our model-based
testing approach, we design a testing framework consisting of the constructed CPN
test models, test case generation algorithms and test adapters, in order to enable the

Chapter 4 65

A Software Tool for Test Case Generation with Coloured Petri Nets

execution of the generated tests. We have furthermore performed evaluation of our
approach on real distributed systems and protocol implementation in the form of a
distributed storage service [132] and a Paxos distributed consensus protocol [133].

66 Chapter 4

CHAPTER 5
PATH COVERAGE VISUALIZATION AND
MULTI-OBJECTIVE SEARCH WITH MODBAT

Software testing is a widely used, scalable and efficient technique to discover software
defects [100]. However, generating sufficiently many and diverse test cases to obtain
good coverage of the software system under test is challenging. Especially for complex
software systems, it is infeasible to explore and generate all the possible test data for
the software system under test. It is therefore important to use test adequacy criteria to
measure and evaluate the extent to which sufficient test cases have been generated and
executed against the SUT. Also, effective test case generation approaches are required
to generate sufficiently many and diverse test cases to obtain desired results relative to
the test adequacy criteria.

This chapter summarizes the articles [128, 129] included in Part II. Article [128]
focuses on execution path coverage which can be considered as a test adequacy criterion
that assesses the degree to which the testing model has been explored. We present
a technique to measure and visualize execution path coverage of test cases in the
context of model-based software systems testing. Two types of visualizations for path
coverage, so-called state-based graphs (SGs) and path-based graphs (PGs), are proposed
based on visualization abstractions. The visualization feedback provided by these
two types of simplified graphs is useful to understand to what degree the model and
the SUT are executed by the generated test cases, to understand execution traces, and
to locate weaknesses in the coverage of the model. To evaluate our approach, we
have performed experiments on a collection of examples, including the ZooKeeper
distributed coordination service.

Article [129] presents a search-based approach relying on multi-objective reinforce-
ment learning and optimization for test case generation. We propose and implement
a bandit heuristic search strategy [129] in the Modbat tester to tackle the exploration
versus exploitation dilemma faced by test case generation. We use four test adequacy
criteria as objectives and apply multi-objective optimization to tune our search strategy
to get optimal test suites while considering the trade-offs of the chosen test adequacy
criteria. The multi-objective optimization has been performed with the aid of the
jMetal multi-objective optimization framework [41, 101] and the NSGA-II genetic algo-
rithm [39]. We have experimentally evaluated our approach on a collection of examples
including the ZooKeeper distributed coordination service and the PostgreSQL database
system, to compare our bandit heuristic search strategy with the random approach for
test case generation.

Path Coverage Visualization and Multi-objective Search with Modbat

Wehave implementedour executionpath coverage visualization andbandit heuristic
search strategy as new features of the Modbat 3.4 release[2]. Both of them consider that
test adequacy criteria are important for MBT to give developers and testers confidence
about how well the models and the SUT are explored by the generated test cases.

In this chapter, we first discuss our approach to capture execution paths and the
abstractions proposed for path coverage visualization of Modbat models. We then
present our bandit heuristic search strategy and multi-objective optimization using
jMetal and the NSGA-II algorithm. At the end of this chapter, we summarize our
conclusions and discuss related work.

5.1 Extended Finite State Machines (EFSMs)

Path coverage is a test adequacy criterion that helps testers to determine if the software
has been adequately exercised by a test suite. Path coverage concerns a sequence of
branch decisions instead of only one branch at a time as in branch coverage. It is known
to be hard to reach 100% path coverage since the number of execution paths usually
increases exponentially with each additional branch or cycle [86].

For visualizing path coverage, we need to capture the execution paths. In this
section, we first give the definition of extended finite state machines (EFSMs). EFSMs is
the underlying theoretical foundation used in Modbat to express models, and hence it
is also the foundation for our definition of execution paths and test cases.

Definition 1 (Extended Finite State Machine). An extended finite state machine is a
tupleM = (S, s0, V,A, T) such that:

• S is a finite set of states, including an initial state s0.

• V = V1 × . . .× Vn is an n-dimensional vector space representing the set of values for
variables.

• A is a finite set of actions A : V → (V, R), where res ∈ R denotes the result of an action,
which is either successful, failed, backtracked, or exceptional. A successful action
allows a test case to continue; a failed action constitutes a test failure and terminates the
current test; a backtracked action corresponds to the case where the enabling function of a
transition is false [29]; exceptional results are defined as such by user-defined predicates
that are evaluated at run-time, and cover the non-deterministic behavior of the SUT. We
denote by Exc ⊂ R the set of all possible exceptional outcomes.

• T is a transition relation T : S × A × S × E; for a transition t ∈ T we denote the
left-side (origin) state by sorigin(t) and the right-side (destination) state by sdest(t),
and use the shorthand sorigin → sdest if the action is uniquely defined. A transition
includes a possible empty mapping E : Exc → S, which maps exceptional results to a
new destination state.

Definition 1 is different from the definition of a standard EFSM [30] since we merge
the enabling and update functions into a single action α ∈ A, and handle inputs
and outputs inside the action. Actions concern preconditions, inputs, executing test
actions on the SUT, and its outputs. An action may also include assertions; a failed

68 Chapter 5

5.2 Representation of Execution Paths

assertion causes the current test case to fail. In addition to that, transitions also support
non-deterministic outcomes in our definition.

Based on Definition 1, a finite execution path can be defined as a sequence of
transitions starting from the initial state and leading to a terminal state. A terminal state
is a state after a test failed, a state where no transitions are enabled, or a state where
exploration of the state space has been truncated. Each finite execution path represents
a test case that can be generated from a model. That is, a test case is an execution path
consisting of a sequence of transitions. The execution path of the model is formally
defined as

Definition 2 (Execution Path). LetM = (S, s0, V,A, T) be an EFSM. A finite execution
path p ofM is a sequence of transitions, which constitute a path p = t0t1 . . . tn, tn ∈ T , such
that sorigin(t0) = s0, the origin and destination states are linked: ∀i, 0 < i 6 n, sorigin(ti) =
sdest(ti−1), and sdest(tn) ∈ Sterminal; Sterminal is the set of terminal states.

5.2 Representation of Execution Paths

To visualize path coverage, we need to record each executed path of a test suite. When
Modbat generates test cases based on its models, we record the paths executed by the
test cases in a trie. A trie is a prefix tree data structure where all the descendants of a
node in the trie have a common prefix. We store information related to an executed
transition into each trie node n. This information includes the following: executed
transition t; transition information ti; transition repetition counter trc to count the
number of times that transition t has been executed repeatedly without any other
transitions executing in between during a test-case execution (no repetition when
trc = 1); transition path counter tpc to count the number of paths that have this
transition t executed trc times in a test suite; the set of children Ch of node n; and a
Boolean variable lf to decide if the current node is a leaf of the tree.

The transition information ti consists of the sorigin(t) and sdest(t) states of the
transition, a transition identifier tid, a counter cnt to count the number of times
this transition is executed in a path, an action result res, which could be successful,
backtracked or failed, and a sequence of transition-internal choices C for modeling
non-determinism.

Fig. 5.1 shows an example of a trie data structure representing the following three
execution paths executed by a test suite:

• p0 = [a→ b, b→ b, b→ c, c→ d],

• p1 = [a→ b, b→ b, b→ b, b→ c, c→ d],

• p2 = [a→ b, b→ b, b→ e],

where a, b, c, d, and e are states. The node labeled root represents the root of the trie
in Fig. 5.1. It should be noted that this data structure is not a direct representation of
the execution paths and it is not the trie data structure that we eventually visualize in
our approach. Each non-root node in the trie has been labeled with the transition it
represents. For instance, node 1 represents the transition a→ b and node 2 represents
the transition b → b. It can be seen that all the three execution paths stored in the

Chapter 5 69

Path Coverage Visualization and Multi-objective Search with Modbat

root 1
trc=1:tpc=3

a→b

2
trc=1:tpc=2;trc=2:tpc=1

b→b

3
trc=1:tpc=2

b→c

5
trc=1:tpc=1

b→e

4
trc=1:tpc=2

c→d

Fig. 5.1: Example trie data structure representing three executed paths.

trie have a→ b followed by b→ b as a (common) prefix. The label attached to each
non-root node represents the transition counters associated with the node (the value of
the trc is shown before the colon; the value of the tpc is shown after the colon). For
example, the transition b → b associated with node 2 has been taken three times in
total. Two paths, (p0 and p2) execute this transition once (label trc=1:tpc=2), while one
path p1 executes it twice (label trc=2:tpc=1). In each node of the trie, we use a mapping
〈tid, res〉 7→ n to connect a parent node and a child node.

5.3 Path Coverage Visualization

We have implemented a path coverage visualizer as a tool for Modbat so that Modbat
can use our approach to first capture executed paths and then visualize them. The
path coverage visualizer is presented in the article [128] and can produce two types
of directed and abstracted graphs: state-based graphs (SGs) and path-based graphs
(PGs) based on information stored in the trie data structure representing the executed
paths. The SGs convey the structure and behavior of the model well, since they give an
overview of the models based on the EFSM with detailed information about how and
which states and transitions have been executed; while the PGs show distinct executed
paths well, without providing detailed information of states, but they can directly show
how many linearly independent paths are executed.

Below, we first introduce the basic visualization elements underlying the construc-
tion of the SGs and PGs. Then, we discuss the abstractions we use to reduce the
complexity of the graphs in order to visualize execution paths.

5.3.1 Basic Visualization Elements

The basic visualization elements used to construct the SGs and PGs include node and
edge styles of graphs (shape, color and thickness) to indicate different features of the
path coverage visualization. Fig. 5.2 and Fig. 5.3 illustrate these basic visualization
elements of the SGs and PGs, respectively.

For node styles, we use three types of node shapes in the graphs for path coverage
visualization; elliptical nodes, point nodes, and diamond nodes. We use elliptical nodes
to represent states in the SG as shown in Fig. 5.2, while we use point nodes as the
connections between transitions (or steps of transitions as introduced Section 1.4) in
the PG shown in Fig. 5.3. Diamond nodes are used to visualize internal choices in both

70 Chapter 5

5.3 Path Coverage Visualization

origin

dest

 1:1

origin

dest

 1:1
(f) origin 1:1

(a) Successful action (b) Failed action (c) Self-transition

origin 1:1 6 1

dest

 1:1

5 1

origin

 1:1

8 1
 1:1
(f)

 1:1 1:1 1:1 origin

exception

(e)

(d) Backtracked transition (e) Action with choices (f) Exception result

Fig. 5.2: Basic visualization elements of the state-based graphs (SGs).

 1:1 1:1
(f)

(a) Successful action (b) Failed action

 1:1 1:1

(c) Self-transition (d) Backtracked transition

6 1

 1:1

5 1

 1:1

8 1
 1:1
(f)

 1:1 1:1 1:1

(e) Action with choices

Fig. 5.3: Basic visualization elements of the path-based graphs (PGs).

the SGs and PGs, as shown in Fig. 5.2e and Fig. 5.3e. A value is attached inside each
diamond node to show the value associated with the choice. An optional counter value
label with the format n : m next to each diamond node shows the number of times this
choice was taken.

In addition to node styles, we also apply different directed edge styles in both the
SGs and PGs to represent different outcomes of executed transition actions (introduced
in Section 1.4) as stored in the trie structure. We use different kinds of edge shapes
and color styles to distinguish the action results of transitions. Specifically, black solid
edges are used to represent successful transitions (Fig. 5.2a) and Fig. 5.3a). Blue dotted
edges are used to indicate transitions that are backtracked (Fig. 5.2d and Fig. 5.3d). Red
solid edges with a (f) label are used to visualize failed transitions (shown in Fig. 5.2b
and Fig. 5.3b). Black solid loops represent self-transitions (sorigin(t) = sdest(t))
Fig. 5.2c and Fig. 5.3c). Black dotted edges labeled (e) are used to represent exceptional
results for the SGs (shown in Fig. 5.2f), while for the PGs, such type of edge is ignored
by merging the point nodes of sorigin(t) and the exceptional destination state of a
transition t into one point node. When a transition t has multiple steps (Fig. 5.2e and
Fig. 5.3e), we only apply the edge styles to the last step connecting to sdest(t), while
other step edges use a black solid style.

Chapter 5 71

Path Coverage Visualization and Multi-objective Search with Modbat

Each edge use thickness as an attribute to indicate how frequently a transition is
executed for the entire test suite. That is, the thicker an edge is, the more frequently
is the transition executed. We define the thickness of an edge as ln(

∑
count∗100
nTests

+ 1),
where nTests is the total number of executed test cases; the value of count is the tpc
value of a transition in each path if there are no internal choices for this transition.
However, if a transition has internal choices, then we use the value of the counter
for each internal choice as the value of count. Since we merge edges in the graphs
representing the same transition or corresponding to the same choice from different
paths, we then compute

∑
count in two ways: 1) accumulate all values of counts

obtained for the same transition that dose not have any choice; or 2) accumulate all
values of counters obtained for the same internal choices if a transition has internal
choices.

A label can optionally be attached to an edge to give additional information, such
as transition identifier tid, and values of the counters trc and tpc (with the format
trc : tpc). In both Fig. 5.2 and Fig. 5.3, the values of counters are all 1 : 1which indicates
that each transition in a test case is executed only once without any repetitions, and
there is only one path that has this transition executed.

5.3.2 State-based and Path-based Graphs

Our state-based (SG) and path-based (PG) graphs rely on abstractions that we proposed
in the article [128] to form the foundation of our approach to visualize path coverage.
These abstractions reduce the complexity of the representation of the execution paths.
We use the definition of linearly independent path [70] as a foundation to reduce the
complexity of graphs. A linearly independent path is any path through a program that
contains at least one new edge which is not included in any other linearly independent
paths. Any path having a new node compared to all other linearly independent
paths, is also linearly independent. The reason for this is because having a new node
automatically implies having a new edge. This means that a path that is a subpath
of another path is not considered to be a linearly independent path. A subpath q of
an execution path p is a subsequence of p (possibly p itself), and an execution path p
traverses a subpath q if q is a subsequence of p. When visualizing execution paths, we
merge subpaths from different linearly independent paths in both the SGs and PGs
with the aid of the trie data structure.

5.3.2.1 State-based Graphs

An SG is an abstracted graph which 1) reduces the amount of redundant edges
representing the same transition/step between two states; 2) reduces the redundant
choice nodes having the same choice value. In general, these redundant edges and
nodes contribute tomaking the graph large, complex, and difficult to analyze, especially
when the systems to be analyzed are also large and complex.

In order to address the complexity of graphs, we propose abstractions which reduce
redundancy and obtain abstracted graphs. Here, we use the ChooseTest Modbat model
with 1000 executed test cases as an example to show how the SG is obtained using our
four abstraction steps:

72 Chapter 5

5.3 Path Coverage Visualization

1. Merge edges of subpaths: when storing transitions in the trie, we also use the trie
data structure to merge subpaths of linearly independent paths. As discussed
in Fig. 5.1, transition a → b and b → b are (common) prefixes for all the three
execution paths p0, p1 and p2. All three execution paths traverse the subpaths
a → b and b → b. Therefore, to obtain the SG, we merge edges representing
transition a→ b and b→ b from the three execution paths into one edge by the
trie data structure. Then, an edge label of the form “trc : tpc” may be used to
show how a transition represented by this edge is executed. After merging edges
of subpaths, we only have linearly independent paths in the graph as shown in
Fig. 5.4. There are seven linearly independent paths in this case: p0 = [ok→ end],
p1 = [ok→ ok, ok→ end], p2 = [ok→ ok, ok→ err(backtracked), ok→ end],
p3 = [ok → ok, ok → err], p4 = [ok → err(backtracked), ok → end], p5 =

[ok→ err(failed)] and p6 = [ok→ err].

ok

end

8

2

5

4

7

1

9

3

6

0

8

2

5

4

7

1

9

3

6

0

0

2

4

7

1

9

3

err

0

(f)

8

2

5

4

7

1

9

3

6

Fig. 5.4: The graph for 1000 test cases of ChooseTest after merging subpaths.

2. Merge edges of linearly independent paths: it can be noticed that a graph such
as Fig. 5.4 may still have redundant edges between two states that represent the
same transition with the same action result from different linearly independent
paths, also after merging edges of subpaths.
For instance, the four edges from the “ok” to the “end” states, originates from the
four linearly independent paths: p0, p1, p2 and p4. Therefore, we merge such
edges into one single edge and aggregate the path coverage counts. It is optional
to use an edge label to show the aggregated counts on the form “trc : tpc”, using
“;” as the separator, e. g., “1 : 304; 1 : 158; 1 : 177; 1 : 290” for the edge between the
“ok” and “end” states after merging p0, p1, p2 and p4.

3. Merge internal choice nodes: we merge redundant choice nodes of a transition in
two ways. First, when we store transitions in the trie in Step 1, we merge choice
nodes from different choice lists recorded as information for each transition, if
these choice nodes have the same choice value, and they are a (common) prefix of
choice lists. For example, for choice lists [0, 1, 2] and [0, 1, 3] (0, 1, 2, 3 are choice
values), both of them have choice nodes with values 0 and 1 which together
become a (common) prefix [0, 1] for these two lists. Then, the choice nodes with

Chapter 5 73

Path Coverage Visualization and Multi-objective Search with Modbat

values 0 and 1 are merged to become one choice node, respectively, when we
store transitions in the trie.
Second, if there are still redundant choice nodes of a transition with the same
value appearing more than once and from different linearly independent paths,
such as the choices in Fig. 5.4, then we merge them into one choice node during
Step 2. For both approaches, we get the total number of times a choice value
appears in the SG, and this number can be shown by an optional label of the final
choice node after merging.

4. Merge loop edges: we merge loop edges representing self-transition loops and
backtracked transitions; they are merged if they represent the same transition
with the same action result.

Fig. 5.5 illustrates the final SG with all abstractions for the ChooseTest model.

ok

end

8

2

5

4

7

1

9

3

6

0

0

8

2

5

4

7

1

9

3

6

err

0

(f)

Fig. 5.5: SG for 1000 test cases of ChooseTest with all abstractions applied.

5.3.2.2 Path-based Graphs

The PG is a directed graph constructed with nodes and directed edges. The nodes
include point nodes and diamond nodes. Each node has an identifier. Point nodes
represent connections between transitions, and each diamond node represents a choice
and its associated value. The edges represent transitions and steps, and are connected
by point nodes or diamond nodes according to their identifiers, which results in
constructing paths one by one. All constructed paths start with the same initial point
node and end in different final point nodes. The number of constructed paths in the
PG indicates the number of linearly independent paths. Note that, in contract to SG,
each node in a PG does not correspond to a state in the EFSM, but corresponds to a
step in a linear independent path through the EFSM.

A PG is an abstracted graph obtained by applying the abstractions proposed in the
article [128]. As was the case for SG, abstractions are used to address the complexity of
the PGs. Three abstractions proposed in the article [128] are applied for PGs:

1. Merge edges of subpaths using the same approach as for Step 1 of the SG.

74 Chapter 5

5.4 Multi-objective Search

2. Merge internal choice nodes with the first approach of Step 3 used to merge
choice nodes for the SG.

3. Merge loop edges representing self-transition loops and backtracked transitions
as for the SG.

We do not merge edges of linearly independent paths for PGs as we do for the SGs,
since the goal for the PGs is to show linearly independent path coverage after using the
abstractions.

Fig. 5.6 shows the resulting PG for the ChooseTest model after application of
abstractions. Seven black final point nodes can be clearly seen from seven paths,
and they indicate that seven linearly independent paths have been executed. The
information about the number of linearly independent paths is one characteristic of
the PG, and this information cannot easily be derived from the SG shown in Fig. 5.5.
We provide further examples of visualization in Section 5.5.

8

2

5

4

7

1

9

3

6

0

8

2

5

4

7

1

9

3

6

0

0

2

4

7

1

9

3

0

(f)

8

2

5

4

7

1

9

3

6

Fig. 5.6: Path-based graph for 1000 test cases of the ChooseTest model.

5.4 Multi-objective Search

MBT relies on the automatic generation and execution of test cases. Before generating
test cases and executing them, it is necessary to choose test adequacy criteria aimed
at assessing the quality of the generated test cases. These criteria may consider the
discovery of defects and code coverage in general. To evaluate if the generated test cases
are sufficient, we use test adequacy criteria including state and transition coverage,
linearly independent path coverage, and the number of test cases needed to find the
first failure.

Usually, it is a challenge for MBT to obtain good results on test adequacy criteria
with a small test suite having few redundant test cases generated. Also, random test
case generation approaches are often uncontrolled andmight result in test suites having
redundant test cases which cover only few execution paths of the model and the SUT.

For test case generation with Modbat, test cases are derived from Modbat models,
and each test case represents one execution path which in turn consists of a sequence
of transitions. The generation of a test case therefore relies on the decisions made in
each step to select the transitions that are to be part of the constructed execution paths.
The decision made to select a transition for test case generation faces the exploration

Chapter 5 75

Path Coverage Visualization and Multi-objective Search with Modbat

versus exploitation dilemma in terms of finding a balance between: a) the exploration
of different transitions which have not been selected; or have been selected fewer
times, but might result in better addressing the test adequacy criteria; and b) the
continuous exploitation of the selected transitions which have empirically resulted in
better outcomes (e. g., a high coverage).

In order to address this dilemma, we focus on the test case generation with a search-
based approach based onmulti-objective reinforcement learning and optimization. The
goal is to find and generate a subset of test cases that optimizes the results on chosen
test adequacy criteria while considering their trade-offs. Specifically, we consider
that 1) the process of test case generation faces the exploration versus exploitation
dilemma when exploring possible test cases; 2) obtaining good and balanced results
for the chosen test adequacy criteria with fewer generated test cases is a multi-objective
optimization problem.

5.4.1 Bandit Heuristic Search for Test Case Generation
Reinforcement learning [121] is the subfield of machine learning devoted to studying
problems and designing algorithms that analyze the exploration versus exploitation
dilemma. A well-established class of sequential decision problems in this context is
the multi-armed bandit problem which has been extensively studied by Berry and
Fristedt [18].

The basic idea of Bandit problems involves the multi-armed bandit slot gambling
machine in a casino, and a gambler (agent) needs to choose among K arms (actions) in
I rounds on this gambling machine. This gambler wants to maximize the cumulative
money (reward) as much as possible by consistently choosing the optimal arm over
rounds [23]. During each round i = 1, . . . , I, the gambler selects an arm j ∈ {1, . . . , K}

and receives the reward money r(j,i). The gambler has a goal: on one hand, finding out
(exploit) which arm could be currently optimal and have the highest expected reward
money; on the other hand, exploring the reward money of other arms that currently
are not optimal, but may turn out to be optimal in the long run [15, 23, 76].

In the article [129], we have used the UCB1 bandit algorithm from the UCB family
of algorithms [15] as a basis for implementing our multi-objective search strategy for
test case generation. Based on the UCB1 algorithm proposed in [15], for generating test
cases, we consider each transition tj ∈ T to select for constructing an execution path (a
test case) as a bandit arm to play. We denote the reward function as r : T → R. After
executing a transition tj ∈ T , its corresponding immediate reward rtj ∈ R is received
accumulatively, and computed as rtj = r̄tj + r̂tj , where r̄tj is a transition outcome
average reward iteratively accumulated and r̂tj is a transition action expected reward
iteratively accumulated. All rewards are in the interval [0, 1].

For a transition outcome average reward r̄tj to be iteratively computed, we consider
four types of transition outcome rewards as a set of rewards Rto including the rto_self,
rto_success, rto_back, and rto_fail.

• rto_self: a self-transition reward for a successful transition that has sorigin = sdest

• rto_success: a reward given to a successful transition that has sorigin 6= sdest.

• rto_back: the reward for a backtracked transition

76 Chapter 5

5.4 Multi-objective Search

• rto_fail: the reward for a failed transition.

we compute the accumulated transition outcome average reward r̄tj for a transition
tj using Equation 5.1:

r̄tj =
1

ntj

ntj∑
i=1

rto(tj,i)
(5.1)

where rto(tj,i)
∈ Rto is a transition outcome reward received at the i’th iteration for

a transition tj ∈ T , and ntj is the number of times the transition tj was selected.
The excepted transition action reward r̂tj is computed as the sum of the given

rewards for pass/fail, weighted by how many times the two verdicts actually occurred.
To compute r̂tj iteratively, we consider four different rewards for two types of transition
actions (precondition and assertion) as a set of rewards Rta including the rprecond_pass,
rprecond_fail, rassert_pass, and rassert_fail.

• rprecond_pass: the passed precondition reward

• rprecond_fail: failed precondition reward

• rassert_pass: passed assertion reward

• rassert_fail: failed assertion reward

Then, the excepted transition action reward r̂tj for a transition tj can be computed
using Equations 5.2, 5.3 and 5.4:

r̂tj = r̂tj_precond + r̂tj_assert (5.2)

r̂tj_precond =
Cprecond_pass

Cprecond_total
× rprecond_pass +

Cprecond_fail

Cprecond_total
× rprecond_fail (5.3)

r̂tj_assert =
Cassert_pass

Cassert_total
× rassert_pass +

Cassert_fail

Cassert_total
× rassert_fail (5.4)

where, in Equation 5.2, r̂tj_precond represents the expected precondition (action)
reward for the transition tj; r̂tj_assert represents the expected assertion (action) reward
for the transition tj. Likewise, the counts for passed and failed preconditions and
assertions, as well as their total number, are updated during each iteration as per
Equations 5.3 and 5.4.

Then, our bandit heuristic search (BHS) strategy, proposed in [129], for test case
generation becomes the following:

a) each transition t ∈ T is selected once at the initialization of the strategy.

b) afterwards, the strategy iteratively select a transition tj ∈ T that maximizes

r̄tj + r̂tj +

√
2 lnnsorigin(tj)

ntj

(5.5)

Chapter 5 77

Path Coverage Visualization and Multi-objective Search with Modbat

where r̄tj is the transition outcome average reward (in [0, 1]) for transition tj, r̂tj is
the transition action expected reward for transition tj, ntj is the number of times
transition tj was selected, and nsorigin(tj) is the number of times that the origin
state sorigin of the transition tj is visited and used to select transitions.

The overall steps for test case generationwith our bandit heuristic search strategy are
summarized in pseudocode in Algorithm 2 [129]. We have implemented this heuristic
search strategy in Modbat. Modbat initializes a list of transitions transitions and an
initial state s0. The user need to initialize the number of test casesn, all counter variables
(with 0 values), and reward variables. The function executeTransitions on Line 4
generates and executes a test case consisting of a sequence of selected transitions from
an initial state s0 to a terminal state sterminal. On Line 6 in function executeTransitions,
the function banditHeuristicSearch is called to select a transition trans using our
bandit heuristic search strategy. Then, this selected transition trans is executed by
the function executeTransition shown on Line 7, with a transition result of type
result as the function return value. Meanwhile, function executeTransition calls the
function updateExpectedReward on Line 16 to update the transition action expected
reward r̂tj for the selected transition trans based on Equations 5.2, 5.3 and 5.4. After
receiving the return value result on Line 7, the function updateAverageReward on
Line 30 updates the transition outcome average reward r̄tj for trans with Equation 5.1,
based on the result type of trans.

5.4.2 Bandit Search-Based Test Suite Optimization
The goal of the bandit heuristic search strategy is to guide the test case generation and
obtain good results on the test adequacy criteria with smaller test suites containing
less redundant test cases. The strategy relies on the configuration of eight different
rewards to initialize the test case generation (as shown by the Require in Algorithm 2).
Therefore, we need to find optimal solutions to configure these rewards and obtain
optimized test adequacy criteria with considering their trade-offs.

5.4.2.1 Test Adequacy Criteria as Multi Objectives

For MBT, test adequacy criteria are often chosen to guide the automatic test case
generation so that a good test suite is produced [125]. Modbat supports test adequacy
criteria including state- and transition coverage [10] and linearly independent path
coverage [128]. The state- and transition coverage indicates the number of states
and transitions, respectively, that have been explored by a test suite. The linearly
independent path coverage indicates the execution paths covered by a test suite. In
addition to coverage, Modbat can also provide the measurement of failures found after
a test suite is executed [10]. Thus, for our test case generation approach, we choose
four different test adequate criteria:

• state coverage (Covs)

• transition coverage (Covt)

• linearly independent path (LIP) coverage (Covlip)

78 Chapter 5

5.4 Multi-objective Search

Algorithm 2 Bandit Heuristic Search for Test Case Generation
Require: Initialize s, transitions,n, rto_self, rto_success, rto_back, rto_fail, rprecond_pass, rprecond_fail,

rassert_pass, rassert_fail, Cprecond_pass, Cprecond_fail, Cassert_pass, Cassert_fail.

1: func executeTests
2: for i = 1 to n do . n:number of test cases
3: executeTransitions

4: func executeTransitions
5: while s is not a sterminal do . s:current state, starting from s0

6: trans← banditHeuristicSearch(transitions)
7: result← executeTransition(trans)
8: updateAverageReward(result, trans)

9: func banditHeuristicSearch(transitions)
10: if transitions has any never selected transitions then
11: return t1st_unselected in transitions
12: else

13: return tj′ in transitions having argmax{r̄tj + r̂tj +
√

2 lnnsorigin(tj)

ntj

}

14: func executeTransition(trans)
15: updateExpectedReward(trans)

16: func updateExpectedReward(trans)
17: if precondition of trans then
18: if pass then
19: update Cprecond_pass += 1
20: else

21: update Cprecond_fail += 1

22: update Cprecond_total = Cprecond_pass + Cprecond_fail

23: if assertion of trans then
24: if pass then
25: update Cassert_pass += 1
26: else

27: update Cassert_fail += 1

28: update Cassert_total = Cassert_pass + Cassert_fail
29: update r̂trans = r̂ttrans_precond

+ r̂ttrans_assert
for transwith Equations 5.3,5.4

30: func updateAverageReward(result, trans)
31: switch result do
32: case success
33: rto(trans,i)

= rto_success

34: case self
35: rto(trans,i)

= rto_self

36: case backtracked
37: rto(trans,i)

= rto_back

38: case failed
39: rto(trans,i)

= rto_fail

40: update r̄trans = 1
ntrans

∑ntrans

i=1 rto(trans,i)
for trans

Chapter 5 79

Path Coverage Visualization and Multi-objective Search with Modbat

• the number of test cases used to find the first failure (NTestfail1)

We use these test adequacy criteria as objectives for multi-objective optimization.

5.4.2.2 Multi-Objective Optimization

We consider our bandit heuristic search problem as a multi-objective optimization
problem. We tune the bandit heuristic search strategy shown in Algorithm 2 to find the
optimal solutions for the reward parameter settings used in the test case generation.
With the optimal solutions found to configure our bandit heuristic search strategy, we
use them for the test case generation of Modbat models in general.

For this multi-objective optimization problem, we formally assume that a solution
can be described in terms of an 8-dimensional reward decision vector~r in the reward
decision space R8. This solution can be used to initialize the generation of a test suite
ts ∈ TS (initialization of Algorithm 2), where TS is a set of test suites. Then, the
vector-valued objective function ~f : R8 → O evaluates the quality of a specific solution
by assigning it an objective vector ~o = ~f(~r) in the objective space O. We define the
reward decision vector as

~r =(rto_self, rto_success, rto_back, rto_fail,

rprecond_pass, rprecond_fail, rassert_pass, rassert_fail)
(5.6)

and, according to our test adequacy criteria, we define the objective vector with four
objectives as

~o = (f1(~r), f2(~r), f3(~r), f4(~r)) = (Covs, Covt, Covlip, NTestfail1). (5.7)

We assume that all objectives are equally important and our goal is to optimize
them. Therefore, to solve this multi-objective optimization problem, we need to find
those reward decision vectors as solutions that optimize the vector-valued objective
function ~f : R8 → O. These solutions balance the trade-offs between the different
objectives, and we measure the optimality of the solutions through the concepts of
Pareto optimality and Pareto dominance [35] [43] [33].

Based on the concept of Pareto dominance, given two solutions~r ∈ R8 and~r ′ ∈ R8

as reward decision vectors which can be used to initialize two test suites ts and ts′,
~r is said to dominate, or Pareto-dominate, ~r ′ (written as ~r � ~r ′) if and only if their
objective vectors ~o = ~f(~r) and ~o ′ = ~f(~r ′) satisfy: ∀i ∈ {1, 2, . . . , k}, ~f(~r) > ~f(~r ′)∧ ∃i ∈
{1, 2, . . . , k} : ~f(~r) > ~f(~r ′). We have k = 4 since we have four test adequacy criteria
used as objectives. All reward decision vectors that are not dominated by any other
reward decision vectors are said to form the Pareto optimal set R8∗ ⊆ R8, while the
corresponding objective vectors are said to form the Pareto frontier O∗ = ~f(R8∗) ⊆ O.
Therefore, the Pareto optimal set R8∗ contains only non-dominating reward decision
vectors as optimal solutions to our multi-objective bandit search optimization problem.
Each one of these vectors can then be used to initialize the generation of a test suite.
Thus, we find an optimal subset of test suites TS∗ ⊆ TSwhich balance the trade-offs
of our four different test adequacy criteria: no other subset of TS can improve one
objective without making the other objectives worse.

80 Chapter 5

5.4 Multi-objective Search

In the article [129], we applied the jMetal Java-based framework [41, 101] for multi-
objective optimization using metaheuristics to obtain the Pareto optimal set R8∗ for our
multi-objective bandit search problem. jMetal is specifically aimed at multi–objective
optimization, and implements and supports a number of modern multi–objective
optimization algorithms, such as the NSGA-II [39] algorithm, to obtain the Pareto
optimal set.

Fig. 5.7 gives an overview of the implementation to solve our multi–objective
optimization problem for Modbat models with the aid of jMetal v5 [101] and NSGA-II.
The working principle of jMetal is based on algorithms, such as NSGA-II. Users need to
first define their multi–objective optimization problem with an objective function, and
then solve them with the chosen algorithm. We have implemented our multi–objective
bandit search optimization problem in jMetal with our vector-valued objective function
~f : R8 → O, and used the NSGA-II genetic algorithm provided by jMetal to solve this
problem.

The process goes through generations of the NSGA-II algorithm with the number
of evaluation rounds and population provided. For each generation, we run different
Modbat models in parallel using 8 different values of the reward parameters (generated
by the NSGA-II from jMetal) as input to our bandit heuristic search strategy. After the
Modbat models have been executed, the results of the four test adequacy criteria for all
models are used as the objective values and sent to jMetal so that they can then be used
by the NSGA-II algorithm to generate reward values for the next generation. When
all the generations of the NSGA-II algorithm are finished, jMetal provides two files
containing the Pareto optimal set and the Pareto frontier found by the NSGA-II.

Modbat
Bandit Heuristic Search

Models SUT

JMetal

NSGA-II

Bandit Search Problem

Pareto Optimal Set
Pareto Frontier

re
w
ar
ds

objectives

Fig. 5.7: Multi–objective bandit-search optimization.

Chapter 5 81

Path Coverage Visualization and Multi-objective Search with Modbat

5.5 Results and Contributions

Themain contribution in article [128] is to propose an approach to capture and visualize
test case execution paths of models. The information obtained by visualization, such
as the number of linearly independent paths, can be used as test adequacy criteria
to indicate the degree to which test paths have been executed. Our approach relies
on first recording execution paths with a trie data structure, then visualizing them
using state-based graphs (SGs) and path-based graphs (PGs) obtained by applying
abstractions. To obtain the SGs and PGs, we have proposed abstractions as our initial
technique to reduce the size and complexity of graphs.

We have evaluated our path coverage visualization approach on a collection of
Modbat models. The results of the evaluation is shown in Table 5.1. The list of models
includes the Java server socket implementation, the coordinator of a two-phase commit
protocol, the Java array list and linked list implementation, and ZooKeeper. Among
them, the array and linked list models, as well as the ZooKeeper model, consist of
several parallel EFSMs, which are executed in an interleaving way. For each Modbat
model, we have considered configurations with 10, 100, 200, 500 and 1000 randomly
generated test cases.

Table 5.1 first lists the statistics directly reported by Modbat: the number of states
(S) and transitions (T) covered for each model (together with their percentage), and
the number of test cases (TC) and failed test cases (FC). The second part of the table
provides the metrics of the SGs and PGs we generate. We list: the total number of
Nodes (including both state nodes and choice nodes); the total numbers of Edges (E),
the number of failed edges (FE), and loops (L). For the PGs, our path coverage visualizer
also computes the numbers of linearly independent paths (LIP), the longest paths (LP),
the shortest paths (SP), the average lengths of paths (AVE), and the corresponding
standard deviation (SD).

When comparing the results of the SG and PG obtained from all the models shown
in Table 5.1, we notice that the SG has a smaller number of nodes and edges than the
PG for any increase in the number of test cases by going from 10 to 1000. This means
that the SG is more abstract than the PG, and gives us an overview of how the models
are executed. For the PG, we can directly see the information about the number of
linearly independent paths (LIP column in Table 5.1), which tells us how execution
paths are constructed and executed from the sequences of transitions executed.

The results in Table 5.1 also indicate the degree to which the models are executed
by the generated test cases. Taking the coordinator model as an example, the numbes
of nodes and edges in both the PG and SG do not increase after 100 test cases have
been executed. Results like this give testers confidence about how well the models
are explored by the tests. Also, for complex models such as the ZooKeeper model,
the number of failed edges keeps increasing with more tests. This indicates that there
might be parts that are hard to reach for complex models, so testers might need to
increase the number or quality of the tests.

By comparing the results between SGs and PGs in Table 5.1, we notice, generally,
that the SGs convey the behavior of the model well, while the PGs only show executed
paths, without providing detail. A good path-coverage-based testing strategy requires
that as many as possible the linearly independent paths are executed by the test cases.

82 Chapter 5

5.5 Results and Contributions

Table 5.1: Experimental results for visualization of Modbat models.

Model S T TC FC
Path-based (PG) State-based (SG)

Nodes Edges Paths Nodes Edges
E FE L LIP LP SP AVE SD E FE L

JavaNio
ServerSocket

7/ 7
(100%)

17/17
(100%)

10 2 57 79 1 17 8 14 3 9.25 4.18 9 23 1 6
100 3 177 243 1 48 30 15 2 7.87 3.84 9 23 1 6
200 8 363 528 4 111 53 29 2 9.68 6.24 10 25 1 7
500 14 779 1147 8 247 105 29 2 10.51 5.29 11 27 1 8

1000 28 1269 1904 15 439 168 29 2 10.80 4.79 11 27 1 8

Coordinator
Test

7/ 7
(100%)

6/ 6
(100%)

10 0 17 20 0 0 1 6 6 6.00 0.00 17 20 0 0
100 0 21 27 0 0 1 6 6 6.00 0.00 21 27 0 0
200 0 21 27 0 0 1 6 6 6.00 0.00 21 27 0 0
500 0 21 27 0 0 1 6 6 6.00 0.00 21 27 0 0

1000 0 21 27 0 0 1 6 6 6.00 0.00 21 27 0 0
ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 5/11 (45%) 10 0 174 542 0 276 6 99 12 58.17 38.75 34 85 0 38

ListIterator 2/ 2 (100%) 12/29 (41%)
ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 100 0 1171 3222 0 1571 75 181 2 23.93 29.74 102 216 0 94

ListIterator 2/ 2 (100%) 13/29 (44%)
ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 10/11 (90%) 200 1 3369 10474 1 4848 138 181 2 45.35 47.46 204 423 1 184

ListIterator 2/ 2 (100%) 17/29 (58%)
ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 10/11 (90%) 500 1 10438 29730 1 14024 319 181 2 48.96 43.55 467 955 1 417

ListIterator 2/ 2 (100%) 25/29 (86%)
ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 10/11 (90%) 1000 14 29056 86871 1 40609 649 406 2 70.87 64.17 896 1812 1 815

ListIterator 2/ 2 (100%) 27/29 (93%)
LinkedList 1/ 1 (100%) 18/19 (94%)
Iterator 2/ 2 (100%) 8/11 (72%) 10 0 216 718 0 348 9 191 10 56.11 72.01 34 85 0 36

ListIterator 1/ 2 (50%) 5/29 (17%)
LinkedList 1/ 1 (100%) 19/19 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 100 0 1190 3348 0 1679 83 191 2 23.51 38.05 148 312 0 131

ListIterator 1/ 2 (50%) 7/29 (24%)
LinkedList 1/ 1 (100%) 19/19 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 200 0 6266 17140 0 7549 178 191 2 54.45 49.14 405 824 0 295

ListIterator 2/ 2 (100%) 19/29 (65%)
LinkedList 1/ 1 (100%) 19/19 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 500 0 15091 43303 0 19797 406 257 2 60.17 61.56 699 1413 0 522

ListIterator 2/ 2 (100%) 22/29 (75%)
LinkedList 1/ 1 (100%) 19/19 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 1000 0 39391 113155 0 52461 825 257 2 74.66 67.19 1404 2819 0 1083

ListIterator 2/ 2 (100%) 24/29 (82%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 10 0 488 536 0 6 10 27 17 24.60 2.65 158 203 0 6ZKClient 9/13 (69%) 28/54 (51%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 100 7 4628 5160 7 76 98 31 4 22.57 5.99 862 1110 5 75ZKClient 11/13 (84%) 38/54 (70%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 200 9 9869 9869 9 138 197 31 4 22.88 5.67 1532 1964 5 135ZKClient 11/13 (84%) 39/54 (72%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 500 26 27208 31918 25 325 480 31 4 22.79 5.31 3057 3910 10 320ZKClient 11/13 (84%) 40/54 (74%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 1000 47 63524 76090 44 648 937 31 4 23.01 5.07 5719 7201 16 643ZKClient 11/13 (84%) 43/54 (79%)

We can directly see how many linearly independent paths are executed using the PGs.
Even though the PGs might contain more nodes and edges as such, they are more
scalable by avoiding crossing edges.

The overall result from our experimental evaluation on several model-based test
suites shows that our abstraction technique reduces the complexity of graphs, and our
visualization of execution paths helps to show the frequency of transitions taken by
the executed paths and to distinguish successful from failed test cases.

The main contribution of article [129] is a heuristic search based test case generation
approach for model-based testing, aiming at performing well on test adequacy criteria
taking into account their trade-offs. We have proposed a bandit heuristic search strategy
to handle the exploration versus exploitation dilemma for test case generation, and
applied a multi-objective optimization technique to tune our strategy and optimize the
chosen test adequacy criteria with the aid of the jMetal multi-objective optimization

Chapter 5 83

Path Coverage Visualization and Multi-objective Search with Modbat

framework and the NSGA-II Pareto-efficient algorithm. We have also evaluated our
approach on a collection ofModbatmodels by comparing the results of the bandit-based
heuristic search with a random test case generation approach. The models that we
considered include four simplemodels used as a training set and two large and complex
models used as an test set. The training set consists of the ChooseTestmodel [128], the
Java Server Socket model [12], the Java Array List model [13], and the Java Linked List
model [13]. The test set includes the ZooKeeper [11] and PostgreSQL [123] models.

Specifically, we have first applied our search strategy to the training set and used
jMetal to optimize our search strategy. Then, the weights of the eight rewards in the
resulting Pareto optimal set can be used as the optimal parameters for our strategy to
the test set. All collected result data of the four test adequacy criteria are within 0 to
100; and are defined as follows:

• State coverage: Covs ∈ {0, . . . , 100}

• Transition coverage: Covt ∈ {0, . . . , 100}

• Score of Covlip: Covlip ∗ 2, Covlip ∈ {1, . . . , 50}

• Score of NTestfail1: 102−NTestfail1 ∗ 2,NTestfail1 ∈ {1, . . . , 51}

We have calculated the two scores based on the fact that with 50 test cases, it is
possible to have at most 50 linearly independent paths, and that the best possible
outcome is that the first test finds a failure; but if no test finds a failure, we count the
score as if the 51st test (which is never tried) would have found it.

In the article [129], since each parameter setting for 8 rewards was tested with
40 seeds and 50 test cases per seed on four models, we ran 8000 tests per parameter
setting to determine fitness. We set up the jMetal framework with a population size
of 50 and 100 generations for NSGA-II, so we ran a total number of 40million tests in
the training phase, which took four days using a 48 CPUs cluster. For the ZooKeeper
model, we just applied 50 optimal solution candidates in the Pareto optimal set directly
and collected the results for the test adequacy criteria; while for the PostgreSQL,
we performed mutation testing using 86 mutants to inject 86 different errors to the
PostgreSQL implementation. Then, we applied 50 optimal solution candidates to 86
mutated PostgreSQL, respectively.

We have visualized our result data using box plots. The result data are collected
directly when jMetal finish all generations of the NSGA-II algorithm. Each box in the
plot shows the range between the first and third quartiles (Q1 and Q3) as a rectangle.
The solid red line in the box represents the median value. The distance between Q1
and Q3 is the inter-quartile range (IQR); 25% of the data lies below Q1 and 75% of the
data lies below Q3. The blue dashed lines represent the smallest (largest) observed
point from the dataset that falls within a distance of 1.5 times of the IQR below Q1 and
above Q3, respectively. Circles represent outliers outside 1.5 times the IQR.

Fig. 5.8 and Fig. 5.9 visualize the box plots for two models from the training
set: the Java Server Socket and Array List models and Rand represents the random
approach; Heur represent the bandit heuristic approach. It can be observed that for
the box plots of the Java Server Socket model, our bandit heuristic approach gives
better results on the transition coverage Covt and the score of NTestfail1 than the

84 Chapter 5

5.5 Results and Contributions

random approach. However, concerning state coverage Covs and the score of Covlip,
the random approach is slightly better. From the box plots of the Array List model
in Fig. 5.8 and Fig. 5.9, we observe that our bandit heuristic approach achieves better
performance on all objectives than the random approach. The box plots for both the
Linked List and ChooseTest models show that the heuristic approach has better results
on all objectives, which is similar to the results of Array List model. Hence, we do not
specifically discuss their box plots here.

JavaSocket
CovS

Rand Heur

JavaSocket
CovT

Rand Heur

ArrayList
CovS

Rand Heur

ArrayList
CovT

Rand Heur

P
er

ce
nt

ag
e

0
10
20
30
40
50
60
70
80
90

100

Fig. 5.8: Comparison of state and transition coverages for Java server socket and array
list models

JavaSocket
NTestFail1
Rand Heur

JavaSocket
CovLIP

Rand Heur

ArrayList
NTestFail1
Rand Heur

ArrayList
CovLIP

Rand Heur

S
co

re

0
10
20
30
40
50
60
70
80
90

100

Fig. 5.9: Comparison of scores for number of test cases used to find the first failure and
LIP coverage for Java server socket and array list models

After we obtained the Pareto optimal set from the training phase using the training
set, we applied the resulting values of eight different rewards in the Pareto optimal set
on the PostgreSQL and ZooKeeper models, respectively, from the test set. Fig. 5.10 and
Fig. 5.11 show the box plots for the PostgreSQL and ZooKeeper models. We can see
that, for the PostgreSQL model, the heuristic approach is slightly better than random

Chapter 5 85

Path Coverage Visualization and Multi-objective Search with Modbat

approach, since the box plot of the transition coverage Covt of the heuristic approach
does not have the extra outlier (around 85) shown in the plot of the random approach
in Fig. 5.10. For the resulting box plots of the ZooKeeper model in Fig. 5.10 and Fig. 5.11,
the box plots of the random approach indicate better results on the four objectives than
the heuristic approach. However, the box plots also show that the distribution of the
result data for heuristic approach is more concentrated than the random approach.
This can be observed from, for example, the box plot of the NTestfail1 score for the
random approach. It has some extremely bad results (0) and extremely good results
(100), compared to the box plot of the heuristic approach. The box plots of the heuristic
approach from other models also reflect this characteristic, i. e., they have a more
concentrated distribution of their resulting data than random approach.

PostgreSQL
CovS

Rand Heur

PostgreSQL
CovT

Rand Heur

ZooKeeper
CovS

Rand Heur

ZooKeeper
CovT

Rand Heur

P
er

ce
nt

ag
e

0
10
20
30
40
50
60
70
80
90

100

Fig. 5.10: Comparison of state and transition coverages for PostgreSQL and ZooKeeper
models

PostgreSQL
NTestFail1
Rand Heur

PostgreSQL
CovLIP

Rand Heur

ZooKeeper
NTestFail1
Rand Heur

ZooKeeper
CovLIP

Rand Heur

S
co

re

0
10
20
30
40
50
60
70
80
90

100

Fig. 5.11: Comparison of scores for number of test cases used to find the first failure
and LIP coverage for PostgreSQL and ZooKeeper models

Our box plots have compared the performance between our bandit heuristic

86 Chapter 5

5.5 Results and Contributions

approach and a random approaches for each objective, separately. However, our
goal of applying multi-objective optimization to tune our bandit heuristic search
strategy is to find optimal solutions balancing the trade-offs of our four different test
adequacy criteria. This means that, to find out if the bandit heuristic approach has a
potential to perform better, we also need to consider the trade-offs of the four objectives
comprehensively. Therefore, in the article [129], we have computed the result of the
global average for each model, shown in Table 5.2.

Table 5.2: Global averages obtained by heuristic and random approaches for each
model.

Model

Heuristic Random

Max GA Aver GA GA

ChooseTest 76.81 61.11 50.80
JavaServerSocket 82.26 75.38 64.35
ArrayList 82.62 68.95 59.15
LinkedList 71.19 69.77 58.06
PostgreSQL 72.74 48.45 48.45
ZooKeeper 72.91 69.55 84.79

For all the models in the table, the column GA gives the global average for each
model after applying the random approach. To obtain a global average result for
each model, we first compute the average of collected result values for each objective
obtained for the model using the 40 fixed seeds. Since we have four objectives (test
adequacy criteria), we can obtain four average values. We then compute an average
of these four average values as the global average GA to indicate an overall result
of the random approach. The column Aver GA shows an average result of global
averages computed for each model, after applying our heuristic approach. To obtain
the result of Aver GA for each model, we first compute all the global averages (GAs)
for all 50 candidates from the Pareto optimal set, then we compute an average over the
50 resulting global averages to get the result of Aver GA. Max GA is the maximum
global average of the 50 resulting global averages computed and ranked for each model
based on its result data. For the PostgreSQL model, we additionally average the global
average over 86mutants for both heuristic and random approaches.

From Table 5.2, we can observe that all models from the training set have better
results by the bandit heuristic approach when comprehensively considering the trade-
offs of the four objectives using global averages. This success on the training set indicates
that our bandit heuristic search approach has the potential of being significantly better
than a random search.

For the test set (PostgreSQL and ZooKeeper), the difference is less clear. The
heuristic approach for PostgreSQL has better transition coverage, but the difference is
not significant, and the average scores even match up to two digits after the decimal
point. For ZooKeeper, we can see that the random approach performs better than the
heuristic approach in Table 5.2. Thus, the results of the bandit heuristic search for the
test set is not as good as the results from the training set. The reason for this is that our
training set is too small (only four simple models), resulting in overfitting. Even so,
the results of the PostgreSQL model from the test set show a potential for the bandit

Chapter 5 87

Path Coverage Visualization and Multi-objective Search with Modbat

heuristic search approach to perform much better than the random approach. This
indicates that our bandit-based heuristic search approach has potential to obtain better
and more predictable and consistent results on the chosen adequacy criteria compared
to random test case generation, while considering the trade-offs of the test adequacy
criteria.

An important contribution of the article [129] is an implementation of a search-
based test case generation relying on our bandit-based heuristic search strategy as an
extension for Modbat. This implementation has been included as a new feature in the
Modbat 3.4 release. We have defined test adequacy criteria as multi-objectives so that
Modbat implements our strategy for test case generation in addition to its standard
random search. The reward parameter settings, obtained in the Pareto optimal set
after applying NSGA-II provided by jMetal, can then be used to initialize the test case
generation with our bandit-based heuristic search strategy to generate test cases for
advanced Modbat models in general and targeting the chosen test adequacy criteria.

5.6 Related Work

In software testing, coverage analysis is an important concern. It can be used as a test
adequacy criterion to decide whether additional test cases are needed, and related to
which aspects of the SUT.

For the research related to the article [128], existing tools for source code coverage
generally only report a verdict on which lines of code has been executed and how often.
In the tool Tecrevis [74], redundancy in unit tests is visualized by providing a graphical
mapping between each test case and the artifacts in the SUT (here: methods) that
indicates which tests exercise the same component. In path coverage, the underlying
graph is usually derived from the source code, the control flow graph, or from the call
graph of the SUT, when considering function calls. In our approach, we are not directly
concerned with visualizing paths of the SUT, but rather, paths on the testing model
used for test case generation. Correspondingly, our graphs are usually more concise
than the control flow graph, as not all branches of the SUT may need to be modeled at
the level of ESFMs.

Coverage information is more understandable with the aid of visualization. Visual-
ization of large state spaces is addressed by Ladenberger and Leuschel in the ProB
tool [77]. In their approach, a coloring scheme used for states and transitions indicates
whether the state space has been exhausted. However, they do not directly visualize
coverage of the underlying model as in our approach. Moreover, they do not cover
multiple transitions between the same pair of states as in our application scenario;
however, this could be accounted for by adjusting the thickness of edges by the num-
ber of collapsed edges. Similarly, automated visualization is applied by Groote and
van Ham [55] to the Very Large Transition System (VLTS) Benchmark set [38]. A re-
lation between the graphical representation of the underlying model (in the form of
UML sequence diagrams) and a set of paths from test cases is presented by Rountev et
al. [113]. Their goal is to derive test cases, and as such they are not concerned with a
representation of the paths.

The basic visualization elements of both SGs and PGs we have defined are based on
the concept of simple path proposed by Ammann and Offutt [8]. That is, an execution

88 Chapter 5

5.6 Related Work

path is a simple path if there are no cycles in this path, with the exception that the
first and last states may be identical (the entire path itself is a cycle) [8]. According to
this definition, any execution path can be composed of simple paths. Therefore, we
apply the concept of the simple path by considering only transitions from sorigin(t) to
sdest(t) (or sorigin(t) if t is a self-transition or backtracked transition).

Several approaches related to our article [129] have been developed and documented
in the literature, aiming at obtaining optimal test cases from test generation with
multi-objective optimization and Pareto-efficient approaches. A technique for test data
generation usingmulti-objective optimizationwas proposed byOster and Saglietti [105].
It applied evolutionary algorithms to handle two objectives. One is the maximization of
data flow coverage. The other is the minimization of the number of test cases required.
The technique was used to test object-oriented programs implemented in Java with
respect to control-flow and data-flow based criteria. Two different variants of genetic
algorithms were used: the Multi-Objective Aggregation (MOA) and Non-dominated
Sorting Genetic Algorithm (NSGA) in order to compare with a random approach and
a simulated annealing algorithm. The experimental results showed that simulated
annealing outperformed other algorithms. The authors also pointed out that NSGA
offered a higher flexibility since it does not return a single optimal result as simulated
annealing does, but a complete solution set instead.

Harman et al. [78] presented a multi-objective approach for search-based test data
generation. The approach applied multi-objective optimization to optimize branch
coverage and generate branch adequate test sets for branch adequate testing. The
authors considered two objectives, including branch coverage and dynamic memory
consumption, aiming at obtaining a good branch coverage while consuming as much
dynamic memory as possible. The effectiveness of three search approaches were
compared to generate branch adequate test data while maximizing dynamic memory
addition. The approaches included a random search, a weighted genetic algorithm
search, and a Pareto optimal search (NSGA-II). The experiment was carried out on
testing C code from both real-world and synthetic examples.

For our approach, we defined four test adequacy criteria as objectives, including
different coverage criteria and the failure detection, and considered their trade-offs.
Instead of branch coverage, we considered linearly independent path coverage (LIP)
as one of our test adequacy criteria, since path coverage is a stronger test adequacy
criterion than branch coverage and it concerns a sequence of branch decisions instead
of only one branch at a time. Also, our approach is based on models of the SUT. We
optimized path coverage and other criteria at the model level rather than coverage
of the SUT code. We considered that the process of test case generation faces the
exploration versus exploitation dilemma, so we proposed the bandit heuristic search
strategy to handle this dilemma and guide the test case generation. We also used a
multi-objective optimization technique with the genetic algorithm NSGA-II to tune our
strategy and optimize the four test adequacy criteria we defined. For the experimental
evaluation, we also compared our approach with a random approach.

Our bandit-based heuristic approach also relates to some extent to work on search-
based testing. Lei et al. [91] used random testing augmented with heuristics to find
fault-revealing test cases more efficiently. In random testing, there exists the problem of
choosing suitable input with the right values and types. These problems are taken care

Chapter 5 89

Path Coverage Visualization and Multi-objective Search with Modbat

of in model-based testing since the user provides a model that generates these inputs.
Similarities exist in three of the six heuristics used in Guided Random Testing [91]: 1)
Impurity: We use a different weight for self-loop transitions, which contains at least
some impure methods as not to be completely redundant; 2) Bloodhound: We also
choose transitions based on coverage, but at the model level instead of the SUT code; 3)
Orienteering: At this point, we do not consider the time it takes to execute a transition,
since in our examples the execution times of transition actions did not differ in major
ways.

In addition to using Pareto-efficient approaches for search-based test generation,
different fitness functions for white-box testing have been discussed by Salahirad
et al. [115]. Their findings confirm that high (source code) coverage is a prerequisite for
successful fault detection, and that branch coverage stands out as the most effective
single criterion. They used treatment learning to discover which metrics best predicts
fault detection. We have not investigated how different subsets of our criteria (especially
when used within a limited resource budget) compare to each other, as we only have
four, and hence much less than they had to consider. Rojas et al. [112] found that
multi-objective optimization algorithms based on Pareto dominance are less suitable
than a linear combination of the different non-conflicting objectives. It is not obvious
how we would prioritize weights among the four different objectives, a question which
also [112] left for their future work.

Related work also exists in multi-objective optimization for test selection. A
multi-objective formulation of the regression test case selection problem is presented
by Yoo and Harman [138]. They show how multiple objectives can be optimized
using a Pareto efficient approach. They considered two criteria scenarios including
a two-objective formulation combining code coverage and execution time, and a
three-objective formulation combining code coverage, execution time, and the past
fault detection history. The goal was to find a subset of a test suite which is a Pareto
optimal set with respect to the chosen test criteria. Three algorithms were discussed
to solve these two scenarios, including a reformulation of the single-objective greedy
algorithm, NSGA-II, and vNSGA-II search-based approaches. The case studies were
carried out on five programs in the Siemens suite and source code from the European
Space Agency. For each program of the case studies, four test suites were randomly
selected from existing available test suites, and then used as input to the multi-objective
Pareto optimization process. The results showed that the search-based approaches can
out-perform the greedy approach.

Multi-objective test case selection techniques were studied by Mondal et al. [98] to
analyze both coverage-based and diversity-based test case selection. A novel approach
was presented for bi-objective optimization scenarios to maximize code coverage/test
case diversity and to minimize test execution time. The authors also proposed a
three-objective optimization approach that maximizes both code coverage and test
suite diversity at the same time, while minimizing the test execution time. The results
of two- and three-objective optimization were compared in terms of fault detection rate,
on 16 versions of five real-world programs, such as JBoss and Apache Ant. The authors
used the Additional-Greedy and NSGA-II algorithms for bi-objective optimization, but
only applied NSGA-II for three-objective optimization. The results of their experiment
showed an improvement of the fault detection rate by the three-objective optimization

90 Chapter 5

5.6 Related Work

approach. For our approach, we do not have existing available test suites, so we focus
on using the bandit-based heuristic search to generate optimal test cases directly, with
the aid of the Pareto-efficient approach to optimize the four test adequacy criteria. Also,
we did not consider test execution time as an objective, but we used the number of test
cases to find the first failure in conjunction with three different coverages as objectives.

Chapter 5 91

CHAPTER 6
CONCLUSIONS AND FUTURE WORK

In this chapter, we first summarize the thesis by re-visiting the research questions and
discussing the main contributions, and then outline directions for future work.

6.1 Research Questions Revisited

The main research focus of this thesis was on model-based testing (MBT) for the
development and testing of distributed systems and protocols. In this section, we
re-visit our research questions and summarize our answers to these questions in the
context of the major activities of MBT as shown in Fig. 6.1.

RQ1: How can model-based testing be applied to detect errors and to ensure the correctness of
quorum-based fault-tolerant distributed systems and protocols?

RQ2: How can Coloured Petri Nets and CPN Tools be used to support model-based testing for
distributed systems and protocols?

RQ3: How can test criteria and test case generation technology of model-based testing measure
test adequacy and effectively generate test cases?

RQ1motivated the investigation of MBT approaches and related testing artifacts
used during the MBT process, as shown in Fig. 6.1, for quorum-based distributed
systems and protocols in general. We have addressed this research question via the
Gorums framework and CPNs, and this research question resulted in two journal arti-
cles [132, 133]. The goal of this research question was to provide an MBT approach
to validate the correctness of quorum-based fault-tolerant distributed systems imple-
mented with the Gorums framework, and to validate the correctness of the Gorums
library.

We have developed an MBT approach captured by our QuoMBT framework based
on CPNs and test case generation from CPNmodels to test quorum-based fault-tolerant
distributed systems and protocols implemented with the Gorums framework. CPNs
was chosen as the foundation for our MBT approach and the QuoMBT framework,
since CPNs enables compact modeling of data and data manipulation which is required
for message modeling, quorum functions modeling, and concrete test case generation.
Also, CPN Tools can be used to perform model validation prior to test case generation.

Conclusions and Future Work

(3)

(4)

(5)

(4)

(2)

(1)

(4)

Test Case
Generator

Test Cases

Test Script

Test Adapter

System Under Test

Test Selection
Criteria

Test Case
Specification

Requirements

Test Model

Fig. 6.1: The process of model-based testing [124].

The mature support of the CPN Tools for both simulation and state exploration has
been important in our approach in order to facilitate practical experiments. This has
been important to enable our MBT approach and conduct practical experiments and
evaluation of MBT applied to quorum-based distributed systems and protocols.

We have constructed CPN models in order to evaluate our MBT approach and the
QuoMBT framework, and to test the implementations of the single-writer and multi-
reader distributed storage system and the single decree Paxos protocol implemented
with the Gorums framework. The Gorums framework can help to simplify the main
quorum logic and control flow of implementations. However, it was equally important
to test the Gorums middleware implementation with our MBT approach in order to
ensure its correctness. Our MBT approach and the QuoMBT framework cover most of
the activities from (1) to (5) of the MBT process in Fig. 6.1, involving modeling patterns,
test case generation algorithms, and a test case execution infrastructure. The testing
artifacts of our MBT approach cover test cases, test inputs, test outputs, test oracles,
test scripts, test adapters, and test drivers.

RQ2 led to the goal of developing software tools and techniques based on CPNs
and CPN Tools in order to support our MBT approach for testing distributed systems
and protocols. Software tools and techniques can help to detect errors and ensure
stable operation of the software systems. For this research question, we have mainly
focused on the development of software engineering testing tools to support MBT
involving the test case specification and test case generation activities in Fig. 6.1.

We have implemented the MBT/CPN tool as an extension for the CPN Tools and
presented the tool in article [134]. Although CPNs and CPN Tools have been widely
used for modeling, validation, and verification of concurrent software systems, their
application for MBT had only been explored to a limited extent prior to this thesis. The

94 Chapter 6

6.1 Research Questions Revisited

MBT/CPN tool supports both simulation- and state space-based test case generation
from CPN models. The main idea underlying the MBT/CPN tool is for the modeler to
capture the observable input and output events (transitions) in a test case specification.
We have applied the MBT/CPN tool supporting our MBT approach and the QuoMBT
framework to validate the implementation of the Gorums middleware framework and
to test the single-writer and multi-reader distributed storage system and the single
decree Paxos protocol implemented via Gorums. The MBT/CPN tool has also been
used to test the implementations of a two-phase commit transaction (2PC) protocol
implemented without using Gorums to show its broader application for MBT.

RQ3 focused on the test selection criteria and test case generation activities in Fig. 6.1,
aiming at finding better approaches for measuring test adequacy and effectively
generating test cases in order to obtain good test cases and desired results in MBT. We
have addressed this research question via the Modbat tester. The reason to choose the
Modbat tester as our foundation of this research question instead of CPNs was that
Modbat has a software architecture and existing benchmark suites that enabled us to
further develop test criteria and test case generation techniques. The articles [128, 129]
have addressed this research question.

For MBT, it is a challenge to generate sufficiently many and diverse test cases for
a good coverage of the model and the SUT. Especially for complex software systems,
the decision of how many tests to generate is challenging. For this reason, we have
proposed an approach to capture and visualize execution path coverage of test cases
on the model level as a test adequacy criterion in article [128]. Our approach relies on
the use of a trie data structure to capture execution paths of test cases and proposed
visualization abstractions as the foundation for path coverage visualization. The
visualization of execution path coverage can provide a better overview of how the
different parts of the model have been explored, if the tests have redundancies, and if
any parts of the system are hard to reach via the test case generation.

MBT can automatically generate test cases from abstract (formal) models of the
SUT. However, the random search approach for test case generation might result in test
suites having redundant test cases which only cover few distinct execution paths of
the models and the SUT. This means that with a random approach, it is a challenge
to decide how many and diverse test cases to generate so that we can obtain desired
results on test adequacy criteria such as path coverage. Prior to this thesis, the Modbat
tester only had its standard random search approach to generate test cases. To tackle
these challenges, we have considered that the test case generation faces the exploration
versus exploitation dilemma, and that obtaining desired and balanced results on test
adequacy criteria is a multi-objective optimization problem. We have proposed a
search based test case generation approach in article [129] for the Modbat tester. The
approach relies on a bandit heuristic search strategy that we have implemented as an
extension to theModbat tester and amulti-objective optimization technique. It is aimed
at finding and generating a subset of test cases that optimizes the results of the chosen
test adequacy criteria. The bandit heuristic search strategy can address the exploration
versus exploitation dilemma and guide the test case generation. We have defined four
test adequacy criteria as multi-objectives and applied a multi-objective optimization
technique based on the jMetal framework and the NSGA-II genetic algorithm to tune
our strategy to get optimal test suites and to balance the chosen criteria.

Chapter 6 95

Conclusions and Future Work

6.2 Summary of Contributions

Our researchmethodonMBT fordistributed systems andprotocols lead to contributions
in three main areas, shown as ellipses in Fig. 6.2. In this section, we summarize our
contributions for each main area, by first presenting our contributions to the Theoretical
Foundations and Approaches, followed by the contributions to the MBT Software Tools
and Techniques, and then the contributions to the SUT Case Studies and Experiments. As
can be seen from Fig. 6.2, these three areas are closely connected to each other by our
research method and activities.

Theoretical
Foundations
Approaches

MBT
Software Tools

Techniques

SUT
Case Studies
Experiments

Implementation

Ap
pl
ic
at
io
nEvaluation

Developm
ent

Fig. 6.2: Research method and activities.

6.2.1 Contributions to the theoretical foundations and approaches
The first contribution in this area is the MBT approach captured by the QuoMBT
framework developed based on formal modeling and test case generation using CPNs
to test quorum-based fault-tolerant distributed systems and protocols implemented
via the Gorums framework.

An important attribute of our approach is that the CPN models have been con-
structed such that they can serve as a basis for MBT of other quorum-based distributed
systems and protocols implemented with the abstractions of the Gorums framework.
In other words, given a distributed system implemented by the Gorums framework, it
is only the implementation of the quorum functions that needs to be changed when
modeling the behaviors of quorum calls and quorum functions. The use of this mod-
eling patterns ensure the generality of our MBT approach with CPNs. Our MBT
approach and the QuoMBT framework can perform both unit tests and system level
tests under both common successful execution scenarios and failure scenarios involv-
ing server crashes and injected programming errors to obtain high code coverage. This
has been successfully proved by our case studies which include a single-writer and
multi-reader distributed storage system and a single-decree Paxos consensus protocol
both implemented with the Gorums middleware.

The second contribution in this area is the approach for the Modbat tester to use
a trie data structure to capture execution paths of test cases of models and visualize

96 Chapter 6

6.2 Summary of Contributions

them using graph abstractions. The approach focuses on execution path coverage as a
test adequacy criterion to be visualized.

Our approach provides two types of visualizations for execution path coverage,
the state-based graphs (SGs) and path-based graphs (PGs). The abstractions we have
developed to simplify these graphs enable us to deal with the complexity of moderately
large systems. Our visualization approach also relies on the attributes of graphs
including the edge thickness to visualize the frequency of transitions on executed paths
and edge colors of the graphs to show what kinds of tests succeed or fail. This means
that our visualization of execution path coverage helps in obtaining an overview as to
whether different parts of the model have been explored equally well and the frequency
of transitions taken by the executed paths.

The third contribution is the search-based test case generation approach that we
proposed based on the bandit heuristic search strategy we implemented in Modbat
and optimized using a multi-objective optimization technique. The approach aims to
generate a subset of test cases which optimize and balance the trade-offs of four chosen
test adequacy criteria, including the path coverage as proposed in article [128].

Our bandit heuristic search strategy guides test case generation by addressing
the exploration versus exploitation dilemma, and our approach optimizes the bandit
heuristic search strategy through the jMetal multi-objective optimization framework
and the NSGA-II Pareto-efficient algorithm. In this way, we obtain optimal test suites
based on the Pareto optimal set provided by NSGA-II. Our search-based test case
generation approach has been demonstrated by the case study on a collection ofModbat
models, including a training set and a test set involving, e. g., the ZooKeeper distributed
coordination service and the PostgreSQL database system.

6.2.2 Contributions to the MBT software tools and techniques

The tools that we have developedmainly focus on test case generation and test adequacy
criteria. We have presented the MBT/CPN tool developed for CPN Tools to perform
automated test case generation fromCPNmodels. Amain facility of theMBT/CPN tool
is the uniform support for both state space and simulation-based test case generation.
Our MBT/CPN tool has been effectively used to support our MBT approach and the
QuoMBT framework. We successfully applied the MBT/CPN tool to test a distributed
storage system and a Paxos consensus protocol both implemented via the Gorums
framework. The general use of the tool has been demonstrated by validating the
correctness of a two-phase commit transaction protocol. The demonstrations have
shown that the MBT/CPN tool can successfully support our MBT approach and test
cases generated by the MBT/CPN tool yield high statement coverage and detect errors
in the implementations.

The second tool is the path coverage visualizer for Modbat. It has been developed
based on the Modbat tester and enables the visualization of path coverage with
our proposed abstractions for execution paths of test cases. The visualizer uses the
abstractions to visualize execution paths based on test cases in two types of simplified
visualizations: state-based graphs (SGs) and path-based graphs (PGs). With the aid
of our abstractions, it is possible to visualize execution path coverage of moderately
large and complex system models. The tool has been used to visualize execution path

Chapter 6 97

Conclusions and Future Work

coverage of test cases of a collection of examples, such as the ZooKeeper distributed
coordination service.

The third tool developed as part of this thesis is for test case generation with the
Modbat tester. We implemented the bandit heuristic search strategy as a search-based
test case generation tool extension for the Modbat tester. Users of the tool can provide
an initial configuration of reward values to set up the bandit heuristic search strategy in
order to guide the test case generation while considering the trade-offs of exploration
versus exploitation of states/transitions. We have defined test adequacy criteria as
multi-objectives so that Modbat implements our strategy for test case generation in
addition to its standard random search. We have also demonstrated how we can apply
multi-objective optimization to tune our strategy to generate better test cases in general
and target the chosen test adequacy criteria. Both tools for Modbat have been included
as new features of the Modbat 3.4 release.

6.2.3 Contributions to the SUT case studies and experiments

In this thesis, we have performed two main case studies to evaluate our MBT ap-
proach and the QuoMBT framework. They involved a single-writer and multi-reader
distributed storage system and a single decree Paxos protocol as the SUT, both im-
plemented with the Gorums framework. We have performed MBT to test these two
systems using our proposed MBT approach and the QuoMBT framework by construct-
ing CPNmodels with CPN Tools and generating test cases with our MBT/CPN tool for
the SUT. The experimental evaluation of the two case studies has indicated that we can
obtain high code coverage of the SUT. Results for the distributed storage system show
that we have obtained 100% code coverage for the quorum functions (unit tests), 96.7%
statement coverage on the quorum calls, and 52.3% coverage on the Gorums frame-
work (system tests). Results for the Paxos consensus protocol show that the statement
coverage of unit tests are up to 90%. For the system tests of the Paxos implementation,
the statement coverage for the quorum calls reaches 83.9%; the results of statement
coverage for other Paxos core components are similarly high; for the Gorums library
as a whole, the highest statement coverage reaches 51.8%. These results indicate that
our MBT approach and the QuoMBT framework can successfully obtain good code
coverage of the implementations.

In addition, for both case studies, our MBT approach have detected errors in
the implementations. For the distributed storage implementation, we have detected
injected errors and an error in a particular code path involving passing a nilmessage to
either the read quorum call or write quorum call, which is not handled by a feature
used to address this nil message in Gorums. We have reported this specific error to
the developers of the Gorums framework. For the Paxos implementation, we found
programming errors that included the leader detector electing a wrong leader; only
the leader’s failure detector being executed; the elected new leader obtaining a wrong
round number; clients being unable to receive responses from the Paxos replicas; the
Paxos system only being able to handle one request from one client; after the current
leader fails, the failed leader executing the Paxos phases again. These testing results
have all shown that our MBT approach is able to detect non-trivial programming errors
in the implementations of complex distributed protocols.

98 Chapter 6

6.2 Summary of Contributions

Another case study was developed to test a coordinator implementation of a
two-phase commit transaction (2PC) protocol using the MBT/CPN tool to generate
test cases. This demonstrated the uniform support for both simulation and state
space-based approaches and it demonstrated the general use of the MBT/CPN tool.
The experimental results showed that we obtained a high statement coverage (94.7%)
with test cases generated by both state space and simulation-based approaches. The
results also showed that the statement coverage for the simulation based approach is
not as good as for the state space based approach in some scenarios. The reason is that
the simulation based approach generally cannot cover all the possible executions of the
CPN model in the absence of a guided search for test case generation. However, in
some scenarios, the state space based approach without guided search may suffer from
the state space explosion problem.

Two case studies related to the Modbat have been carried out for evaluation
purposes. We have performed experiments using our approach for execution path
coverage visualization to capture execution paths and visualize their path coverage in
SGs an PGs on a collection of Modbat models, including the ZooKeeper distributed
coordination service. We have compared the experimental results of the SGs and PGs
obtained from all the models. The results showed that the SGs are good at giving
an overview of the models based on extended finite state machines with detailed
information about executed states and transitions; the PGs show distinct executed
paths well, with a particular focus on giving information on linearly independent
path coverage which can be considered as a test adequacy criterion. A good path
coverage-based testing strategy requires that test cases can execute as many linearly
independent paths as possible. Therefore, the visualization of linearly independent
paths can be used as a test adequacy criterion to indicate the degree to which test paths
have been executed. Also, the results of SGs and PGs have indicated the degree to
which the models are executed and covered by the generated test cases. This is done by
our graphs using edge thickness to visualize the frequency of transitions on executed
paths and what kinds of paths have higher coverage than others, and using different
edge colors to show what kinds of tests succeed or fail. All these visual feedbacks show
that our approach gives testers confidence about how well the models are explored by
the generated tests.

The second case study involving the Modbat tester was to apply our search-based
test case generation approach for a collection of Modbat models from both a training
set and a test set, including models such as the ZooKeeper distributed coordination
service and the PostgreSQL database system. Our search-based test case generation
approach is based on 1) our bandit heuristic search strategy implemented for Modbat
to guide test case generation; and 2) applying the jMetal multi-objective optimization
framework with the NSGA-II Pareto-efficient algorithm to obtain optimal test suits.
The experimental evaluation compared our bandit heuristic search strategy with the
random approach for test case generation of models from both a training set and a test
set. The result showed that test cases generated using the search-based approach of our
bandit heuristic search strategy obtain more predictable and better state- and transition
coverage, find failures earlier, and provide improved path coverage, while balancing the
trade-offs of these test adequacy criteria. Additionally, the reward parameter settings
in the Pareto optimal set obtained from the NSGA-II algorithm can be used to initialize

Chapter 6 99

Conclusions and Future Work

the search-based test case generation with our bandit-based heuristic search strategy to
generate test cases for advanced Modbat models in general and targeting the chosen
test adequacy criteria.

6.3 Future Work

The work presented in this thesis provides several directions for future work into
model-based software testing for distributed systems and protocols. In this section,
we discuss future work based on our research method and activities, by outlining
research directions for future work in the ares of theoretical foundations and approaches,
MBT software tools and techniques, and SUT case studies and experiments.

6.3.1 Theoretical foundations and approaches
First, we have studied MBT with CPNs for quorum-based fault-tolerant distributed
systems and protocols implemented with Gorums framework. With our proposed
MBT approach, we have obtained good coverage results on the quorum functions
of unit tests and quorum calls of system tests for both a distributed storage system
and a Paxos distributed protocol, which has considered both successful and failure
scenarios. In order to increase coverage and consider more of the Gorums library’s
code paths, we need to test the distributed system and protocols implemented with
Gorums under additional failure scenarios and adverse conditions, such as network
errors and partitions. This will require finding an approach to specify and configure
such failure scenarios in the CPN testing models. This will also require an extension
of the test adapters such that they can control these failure scenarios and execute the
distributed systems and protocols under test with additional parameter settings in the
test cases.

Another future direction is to extend our MBT approach to be applicable also to
non-quorum-based distributed systems. Here, it becomes important to investigate
in more detail the test coverage obtained using simulation versus the test coverage
obtained with state space exploration of CPNs, and how we can augment these two
approaches with a guided search approach for test case generation. We anticipate that
this will motivate work into approaches for on-the-fly test case generation and test case
selection during state space exploration with CPNs, such as our bandit heuristic search
strategy in the Modbat tester. This will lead to the question of how we can connect
on-the-fly test case generation to the system under test with the test adapter.

For our approach to path coverage visualization, future work involves applying
additional abstractions to further reduce the complexity of larger graphs, further
developing our visualization approach to support more visualization features in
the SGs and PGs, and extend it to other coverage criteria such as branch-coverage
of boolean subexpressions within preconditions and assertions. The more detailed
modified condition/decision coverage (MC/DC) could be used to refine the intermediate
execution steps even further. In essence, many of the coverage techniques available
at the SUT-level could be lifted to the model level to achieve visualization. Our
approach for path coverage visualization can also be extended to support measuring
path coverage not only at the model-level, but also at the SUT-level.

100 Chapter 6

6.3 Future Work

Future research directions also involve improving our test case generation approach
with the bandit heuristic search and multi-objective optimization. Although the results
of our heuristic search from the training set are promising, the results from the test
set should be improved, especially for large Modbat models such as the ZooKeeper
model. To address this problem, we need to develop more diverse Modbat models for
the training set, then perform multi-objective optimization on them, and get well-fitted
reward parameter settings in the Pareto optimal set. This will enable us to leverage
the full potential of our approach. Also, we expect that it is possible to obtain better
results in the Pareto optimal set by increasing the size of the population and the
number of generations for the NSGA-II algorithm. Alternative algorithms provided
by the jMetal framework can be evaluated to solve our multi-objective optimization
problem. In addition, other test adequacy criteria may be considered as objectives
for the optimization, such as the execution time of test cases. In addition to a bandit
heuristic search strategy, further heuristic search strategies for test case generation could
be explored. For another research direction, it is worth investigating self-optimizing
approaches at run-time to further exploit the potential of our bandit heuristic search
strategy for test case generation.

6.3.2 MBT software tools and techniques

Several directions are also interesting to pursue further related to the development of
the MBT/CPN tool. Currently, the users of the tool need to manually implement the
methods provided by the interface in the tester of the test adapter generated by test
execution engine in order to use these methods to interact with the SUT. Therefore,
one area of future work is to provide a higher degree of automation and support
online testing for the MBT/CPN tool so that it can directly connect to a generated test
adapter. This would make it possible to perform fully automated MBT to the SUT.
Another direction for the MBT/CPN tool is to implement heuristic search strategy for
the simulation-based and state space-based test case generation with CPNs, such as
the bandit heuristic search implemented for Modbat, to guide test case generation and
obtain optimal test cases.

For our path coverage visualizer tool for Modbat, we may investigate additional
abstractions to support larger and more complex Modbat models, further reduce
redundancy in the graphs, and support visualization not only for the Modbat models
but also for the SUT. It is also interesting to investigate how to integrate our path
coverage visualizer tool into other test platforms such as CPN Tools. The path coverage
visualizer tool can also be extended to a test adequacy criteria tool to visualize different
kinds of coverage such as statement coverage, branch coverage, or MC/DC.

For search based test case generation, it relevant implementing other smart strategies
as tool extensions forModbat or CPNTools. This requires, for example, the investigation
of other machine learning algorithms for state space search and planning, so that we
can obtain less redundant test cases and desired testing results that balance the test
adequacy criteria.

Chapter 6 101

Conclusions and Future Work

6.3.3 Case studies and experiments
To further evaluate the applicability of our MBT approach to fault-tolerant distributed
systems and protocols, especially under additional failure scenarios, we need to
apply our approach on additional quorum-based distributed systems and protocols.
Therefore, in addition to the current case studies, it is highly relevant to evaluate our
testing approach to additional complex distributed systems and protocols under failure
scenarios such as network partition and recovery.

One way to achieve this is to extend the current distributed storage to support multi-
writer storages with multiple clients and extend single-decree Paxos to multi-decree
Paxos, and then investigate how these systems and protocols can address network
partition and recovery and verify their correctness by applying MBT. This will also
challenge the limits of state space-based generation of test cases.

For path coverage visualization and search-based test case generation with the
Modbat tester, it will be important to develop more diverse Modbat models to further
advance the applicability of our visualization approach and test case generation
approach.

102 Chapter 6

BIBLIOGRAPHY

[1] Jepsen:Distributed Systems Safety Analysis. https://jepsen.io. 1

[2] The Modbat 3.4. https://github.com/cyrille-artho/modbat/tree/3.4. 5

[3] Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990,
pages 1–84, Dec 1990. 1.2.2

[4] PhD Thesis Work Github Repository.
https://github.com/wruiwr/PhDThesisWork, April 2020. 1.9

[5] M. A. Adamski, A. Karatkevich, and M. Wegrzyn. Design of embedded control
systems, volume 267. Springer, 2005. 1.5

[6] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the
crash-recovery model. Distributed computing, 13(2):99–125, 2000. 2.3.1, 2.3.3

[7] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed
computing, 2(3):117–126, 1987. 2.6

[8] P. Ammann and J. Offutt. Introduction to software testing. Cambridge University
Press, 2016. 1.2.3, 5.6

[9] Apache Software Foundation. Apache Cassandra. http://cassandra.apache.
org. 3.6

[10] C. Artho, A. Biere, M. Hagiya, E. Platon, M. Seidl, Y. Tanabe, and M. Yamamoto.
Modbat: A model-based API tester for event-driven systems. In Haifa Verification
Conference, volume 8244 of Lecture Notes in Computer Science, pages 112–128.
Springer, 2013. 1.4, 5.4.2.1

[11] C. Artho, Q. Gros, G. Rousset, K. Banzai, L.Ma, T. Kitamura,M.Hagiya, Y. Tanabe,
andM. Yamamoto. Model-Based API Testing of Apache ZooKeeper. In 2017 IEEE
Intl. Conf. on Software Testing, Verification and Validation (ICST), pages 288–298,
March 2017. 1.4, 3.6, 5.5

[12] C. Artho and G. Rousset. Model-based testing of the Java network API. arXiv
preprint arXiv:1703.07034, 2017. 5.5

[13] C. Artho, M. Seidl, Q. Gros, E. Choi, T. Kitamura, A. Mori, R. Ramler, and
Y. Yamagata. Model-based testing of stateful APIs with Modbat. In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
858–863, Nov 2015. 5.5

[14] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing Memory Robustly in Message-
passing Systems. J. ACM, 42(1):124–142, Jan. 1995. 1.1.2, 1.1.3

https://jepsen.io
https://github.com/cyrille-artho/modbat/tree/3.4
https://github.com/wruiwr/PhDThesisWork
http://cassandra.apache.org
http://cassandra.apache.org

BIBLIOGRAPHY

[15] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002. 5.4.1

[16] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008. 1.3.2

[17] P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed consensus. In
30th Annual Symposium on Foundations of Computer Science, pages 410–415. IEEE,
1989. 2.5.3

[18] D. A. Berry and B. Fristedt. Bandit problems: sequential allocation of experiments
(monographs on statistics and applied probability). London: Chapman and Hall,
5:71–87, 1985. 5.4.1

[19] J. Billington, G. E. Gallasch, and B. Han. A coloured petri net approach to protocol
verification. In Advanced Course on Petri Nets, pages 210–290. Springer, 2003. 1.5

[20] M. Billington, J. Diaz, and G. Rozenberg. Application of petri nets to communi-
cation networks, advances in petri nets, volume 1605 of lncs, 1999. 1.5

[21] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering in
practice. Synthesis Lectures on Software Engineering, 1(1):1–182, 2012. 1

[22] J. Brito and A. Castillo. Bitcoin: A primer for policymakers. Mercatus Center at
George Mason University, 2013. 2.5.3

[23] C. B. Browne, E. Powley, D.Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in games,
4(1):1–43, 2012. 5.4.1

[24] M. Burrows. The Chubby Lock Service for Loosely-coupled Distributed Systems.
In Proc. of the 7th Symp. on Operating Systems Design and Implementation, OSDI ’06,
pages 335–350. USENIX Association, 2006. 2.5.3

[25] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable and secure
distributed programming. Springer Science & Business Media, 2011. 2.1, 2.2, 2.3,
2.3.2, 2.5.1

[26] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An engineering
perspective. In Proc. of the Twenty-sixth Annual ACM Symp. on Principles of
Distributed Computing, PODC ’07, pages 398–407. ACM, 2007. 3.6

[27] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43:225–267, March 1996. 2.3.3

[28] K. Cheng and A. Krishnakumar. Automatic functional test generation using the
extended finite state machine model. In Proc. 30th Intl. Design Automation Conf.,
DAC, pages 86–91, Dallas, USA, 1993. ACM. 1.4

[29] K. Cheng and A. Krishnakumar. Automatic functional test generation using the
extended finite state machine model. In Proc. 30th Intl. Design Automation Conf.,
DAC, pages 86–91, Dallas, USA, 1993. ACM. 1

104 Bibliography

BIBLIOGRAPHY

[30] K.-T. Cheng and A. S. Krishnakumar. Automatic functional test generation using
the extended finite state machine model. In 30th ACM/IEEE Design Automation
Conference, pages 86–91. IEEE, 1993. 5.1

[31] J. J. Chilenski and S. P. Miller. Applicability of modified condition/decision
coverage to software testing. Software Engineering Journal, 9(5):193–200, 1994.
1.2.4

[32] G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic. Reliable distributed storage.
IEEE Computer, 2008. 1.1.2

[33] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen, et al. Evolutionary algorithms
for solving multi-objective problems, volume 5. Springer, 2007. 5.4.2.2

[34] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG System:
An Approach to Testing based on Combinatorial Design. IEEE Transactions on
Software Engineering, 23(7):437–444, 1997. 4.4

[35] Y. Collette and P. Siarry. Multiobjective optimization: principles and case studies.
Springer Science & Business Media, 2013. 5.4.2.2

[36] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner: Google’s globally distributed
database. ACM Transactions on Computer Systems (TOCS), 31(3):8, 2013. 2.5.3

[37] CPN Tools. CPN Tools homepage. http://www.cpntools.org. 1.5

[38] CWI and INRIA. The VLTS benchmark suite. https://cadp.inria.fr/

resources/vlts/, 2019. Last accessed: 2019-05-20. 5.6

[39] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In Interna-
tional conference on parallel problem solving from nature, pages 849–858. Springer,
2000. 5, 5.4.2.2

[40] A. Doudou, B. Garbinato, and R. Guerraoui. Encapsulating failure detection:
From crash to byzantine failures. In International Conference on Reliable Software
Technologies, pages 24–50. Springer, 2002. 2.3.1, 2.3.3

[41] J. J. Durillo and A. J. Nebro. jMetal: A Java framework for multi-objective
optimization. Advances in Engineering Software, 42(10):760 – 771, 2011. 5, 5.4.2.2

[42] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988. 2.2

[43] M. Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business
Media, 2005. 5.4.2.2

[44] J. P. Faria and A. C. R. Paiva. A Toolset for Conformance Testing Against UML
Sequence Diagrams Based on Event-driven Colored Petri Nets. Intl. J. on Software
Tools for Technology Transfer, 18(3):285–304, 2016. 4.4

Bibliography 105

http://www.cpntools.org
https://cadp.inria.fr/resources/vlts/
https://cadp.inria.fr/resources/vlts/

BIBLIOGRAPHY

[45] U. Farooq, C. P. Lam, and H. Li. Towards Automated Test Sequence Generation.
In Australian Conf. on Software Engineering (ASWEC 2008), pages 441–450, 2008.
4.4

[46] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed
Consensus with One Faulty Process. J. ACM, 32(2):374–382, April 1985. 2.2, 2.3.1

[47] P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy. An Empirical Study on
the Correctness of Formally Verified Distributed Systems. In Proc. of the Twelfth
European Conf. on Computer Systems, pages 328–343. ACM, 2017. 3.6

[48] P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering, 14(10):1483–1498, 1988. 1.2.4

[49] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the Seventh
ACM Symposium on Operating Systems Principles, SOSP ’79, pages 150–162, New
York, NY, USA, 1979. ACM. 1.1.2

[50] Google Inc. gRPC Remote Procedure Calls. http://www.grpc.io. 1.1.3.1

[51] Google Inc. Protocol Buffers.
http://developers.google.com/protocol-buffers. 1.1.3.1, 3.2

[52] J. Gray and L. Lamport. Consensus on transaction commit. ACM Transactions on
Database Systems (TODS), 31(1):133–160, 2006. 1.5, 2.5.2

[53] J. N. Gray. Notes on data base operating systems. In Operating Systems, pages
393–481. Springer, 1978. 1.5

[54] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman. Model-Based Quality
Assurance of Protocol Documentation: Tools and Methodology. Software Testing,
Verification and Reliability, 21(1):55–71, 2011. 3.6

[55] J. F. Groote and F. van Ham. Interactive visualization of large state spaces. Intl.
Journal on Software Tools for Technology Transfer, 8(1):77–91, Feb 2006. 5.6

[56] R. Guerraoui, M. Hurfinn, A. Mostéfaoui, R. Oliveira, M. Raynal, and A. Schiper.
Consensus in asynchronous distributed systems: A concise guided tour. In
Advances in Distributed Systems, pages 33–47. Springer, 2000. 2.3.1

[57] R. Guerraoui and M. Raynal. The information structure of indulgent consensus.
IEEE Transactions on Computers, 53(4):453–466, 2004. 2.3.4

[58] A. Haeberlen, P. Kouznetsov, and P. Druschel. The case for byzantine fault
detection. In HotDep, 2006. 2.3.3

[59] C. Hawblitzel, J. Howell, M. Kapritsos, J. Lorch, B. Parno, M. L. Roberts, S. Setty,
and B. Zill. IronFleet: Proving Practical Distributed Systems Correct. In
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP). ACM,
October 2015. 3.6

106 Bibliography

http://www.grpc.io
http://developers.google.com/protocol-buffers

BIBLIOGRAPHY

[60] K. J. Hayhurst. A practical tutorial on modified condition/decision coverage. DIANE
Publishing, 2001. 1.2.4

[61] M. Herlihy. A quorum-consensus replication method for abstract data types.
ACM Trans. Comput. Syst., 4:32–53, 02 1986. 1.1.2

[62] X. Huang, J. Wang, J. Qiao, L. Zheng, J. Zhang, and R. K. Wong. Performance
and replica consistency simulation for quorum-based nosql system cassandra.
In W. van der Aalst and E. Best, editors, Application and Theory of Petri Nets and
Concurrency (PETRI NETS 2017), volume 10258 of LNCS, pages 78–98. Springer,
2017. 3.6

[63] A. Huima. Implementing Conformiq Qtronic. TestCom/FATES, 4581:1–12, 2007.
4.4

[64] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free coordination
for internet-scale systems. In P. Barham and T. Roscoe, editors, 2010 USENIX
Annual Technical Conference. USENIX Association, 2010. 1, 1.4, 1.8, 3.6

[65] M. Hurfin, A. Mostefaoui, and M. Raynal. Consensus in asynchronous systems
where processes can crash and recover. In Proceedings Seventeenth IEEE Symposium
on Reliable Distributed Systems (Cat. No. 98CB36281), pages 280–286. IEEE, 1998.
2.3.1

[66] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In
Secure Information Networks, pages 258–272. Springer, 1999. 2.5.3

[67] K. Jensen and L. Kristensen. Coloured Petri Nets: A Graphical Language for
Modelling and Validation of Concurrent Systems. Comm. ACM, 58(6):61–70, 2015.
1.5

[68] K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer, 9(3-4):213–254, 2007. 1.5

[69] P. Jorgensen. The Craft of Model-based Testing. CRC Press, 2017. 3.6

[70] P. C. Jorgensen. Software testing: a craftsman’s approach. Auerbach Publications,
2013. 1.2.1, 1.3, 1.2.3, 1.3.2, 5.3.2

[71] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Solving consensus in a
byzantine environment using an unreliable fault detector. InOPODIS, volume 97,
pages 61–75. Citeseer, 1997. 2.3.1, 2.3.3

[72] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Byzantine fault detectors
for solving consensus. The Computer Journal, 46(1):16–35, 2003. 2.3.1, 2.3.3

[73] D. E. Knuth. Computer Programming as an Art. Communications of the ACM,
17(12):667–673, 1974. I

Bibliography 107

BIBLIOGRAPHY

[74] N. Koochakzadeh and V. Garousi. Tecrevis: a tool for test coverage and test
redundancy visualization. In Intl. Academic and Industrial Conf. on Practice and
Research Techniques (TAIC PART), volume 6303 of Lecture Notes in Computer Science,
pages 129–136. Springer, 2010. 5.6

[75] L. M. Kristensen and V. Veiset. Transforming CPN Models into Code for TinyOS:
A Case Study of the RPL Protocol. In Proc. of ICATPN’16, volume 9698 of LNCS,
pages 135–154, 2016. 1.5

[76] V. Kuleshov and D. Precup. Algorithms for multi-armed bandit problems. arXiv
preprint arXiv:1402.6028, 2014. 5.4.1

[77] L. Ladenberger and M. Leuschel. Mastering the visualization of larger state
spaces with projection diagrams. In Formal Methods and Software Engineering -
17th Intl. Conf. on Formal Engineering Methods, ICFEM 2015, pages 153–169, 2015.
5.6

[78] K. Lakhotia, M. Harman, and P. McMinn. A multi-objective approach to search-
based test data generation. In Proc. of the 9th annual conference on Genetic and
evolutionary computation, pages 1098–1105. ACM, 2007. 5.6

[79] L. Lamport. Proving the correctness of multiprocess programs. IEEE transactions
on software engineering, (2):125–143, 1977. 2.6

[80] L. Lamport. On interprocess communication. Distributed computing, 1(2):86–101,
1986. 2.4

[81] L. Lamport. The Part-time Parliament. ACM Trans. Comput. Syst., 16(2):133–169,
May 1998. 1.6, 2.5.3

[82] L. Lamport. Paxos Made Simple. ACM SIGACT News, 32(4):18–25, December
2001. 1.6, 3.4.2

[83] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.
2.3.1

[84] A. v. Lamsweerde. Formal specification: a roadmap. In Proceedings of the
Conference on the Future of Software Engineering, pages 147–159. ACM, 2000. 1.3.2

[85] M. Larrea, A. Fernández, and S. Arévalo. Eventually consistent failure detectors.
In Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based
Processing, pages 91–98. IEEE, 2002. 2.3.4

[86] J. Lawrence, S. Clarke, M. Burnett, and G. Rothermel. How well do professional
developers test with code coverage visualizations? An empirical study. In IEEE
Symp. on Visual Languages and Human-Centric Computing, pages 53–60. IEEE, 2005.
1.2.4, 5.1

108 Bibliography

BIBLIOGRAPHY

[87] T. E. Lea, L. Jehl, and H. Meling. Towards New Abstractions for Implementing
Quorum-based Systems. In Proc. of 37th IEEE Intl. Conf. on Distributed Computing
Systems (ICDCS), pages 2380–2385, 2017. 1.1.3, 3, 3.4.2, 4.3

[88] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z. Guoliang.
Generating test cases from uml activity diagram based on gray-box method. In
11th Asia-Pacific software engineering conference, pages 284–291. IEEE, 2004. 1.2.3

[89] J. Liu, X. Ye, and J. Li. Colored Petri Nets Model Based Conformance Test
Generation. In IEEE Symp. on Computers and Communications (ISCC), pages
967–970. IEEE, 2011. 4.4

[90] S. Lu, P. Zhou, W. Liu, Y. Zhou, and J. Torrellas. Pathexpander: Architectural
support for increasing the path coverage of dynamic bug detection. In Proc. of
the 39th Annual IEEE/ACM Intl. Symp. on Microarchitecture, pages 38–52. IEEE
Computer Society, 2006. 1.2.4

[91] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler. GRT: program-
analysis-guided random testing. In Proc. 30th Intl. Conf. on Automated Software
Engineering (ASE 2015), pages 212–223, Lincoln, USA, 2015. IEEE. 5.6

[92] F.Macias, T. Scheffel, M. Schmitz, andR.Wang. Integration of runtime verification
into metamodeling for simulation and code generation (position paper). In
Runtime Verification, volume 10012 of Lecture Notes in Computer Science, pages
454–461. Springer International Publishing, 2016. 1.9

[93] F. Macıas, T. Scheffel, M. Schmitz, R. Wang, M. Leucker, A. Rutle, and V. Stolz.
Integration of Runtime Verification into Metamodeling. In Proceedings of the 28th
Nordic Workshop on Programming Theory (NWPT), Aalborg University, Denmark,
2016. 1.9

[94] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, Oct 1998. 1.1.2

[95] C. Martín and M. Larrea. Eventual leader election in the crash-recovery failure
model. In 2008 14th IEEE Pacific Rim International Symposium on Dependable
Computing, pages 208–215. IEEE, 2008. 2.3.4

[96] MBT/CPN repository. https://github.com/selabhvl/mbtcpn, Aug 2018. 3.3,
3.4

[97] H. Meling and L. Jehl. Tutorial Summary: Paxos Explained from Scratch. In 17th
International Conference on Principles of Distributed Systems (OPODIS), pages 1–10,
2013. 1, 1.1.3, 1.6, 2.5.3, 3.4.2

[98] D.Mondal, H. Hemmati, and S. Durocher. Exploring test suite diversification and
code coverage in multi-objective test case selection. In 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST), pages 1–10. IEEE,
2015. 5.6

Bibliography 109

https://github.com/selabhvl/mbtcpn

BIBLIOGRAPHY

[99] A. Mostefaoui and M. Raynal. Leader-based consensus. Parallel Processing Letters,
11(01):95–107, 2001. 2.3.4

[100] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler. The art of software testing,
volume 2. Wiley Online Library, 2004. 5

[101] A. J. Nebro, J. J. Durillo, and M. Vergne. Redesigning the JMetal multi-objective
optimization framework. In Proceedings of the Companion Publication of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO Companion
’15, pages 1093–1100, New York, NY, USA, 2015. Association for Computing
Machinery. 5, 5.4.2.2

[102] C. et al.. Newcombe. How amazon web services uses formal methods. Commun.
ACM, 58(4):66–73, Mar. 2015. 1, 2.5.3

[103] R. Oliveira, R. Guerraoui, and A. Schiper. Consensus in the crash-recover model.
EPFL, Dept. d’Informatique, Tech. rep, pages 97–239, 1997. 2.3.1

[104] D.Ongaro and J. Ousterhout. In search of an understandable consensus algorithm.
In 2014 {USENIX}Annual Technical Conference ({USENIX}{ATC} 14), pages 305–319,
2014. 1, 2.5.3

[105] N. Oster and F. Saglietti. Automatic test data generation by multi-objective
optimisation. In International Conference on Computer Safety, Reliability, and Security,
pages 426–438. Springer, 2006. 5.6

[106] O. Padon, G. Losa, M. Sagiv, and S. Shoham. Paxos Made EPR: Decidable
Reasoning about Distributed Protocols. Proceedings of the ACM on Programming
Languages, 1:108:1–108:31, October 2017. 3.6

[107] H. Ponce de León, S. Haar, and D. Longuet. Model-based Testing for Concurrent
Systems: Unfolding-based Test Selection. International Journal on Software Tools
for Technology Transfer, 18(3):305–318, 2016. 3.6

[108] ProgrammingMethods Laboratory of École Polytechnique Fédérale de Lausanne.
The Scala Programming Language. https://www.scala-lang.org. 1.4

[109] A. Rajan, M. W. Whalen, and M. P. Heimdahl. The effect of program and model
structure on mc/dc test adequacy coverage. In Proceedings of the 30th international
conference on Software engineering, pages 161–170. ACM, 2008. 1.2.4

[110] W. Reisig. Petri nets: an introduction, volume 4. Springer Science & Business
Media, 2012. 1.5

[111] W. Reisig. Elements of distributed algorithms: modeling and analysis with Petri nets.
Springer Science & Business Media, 2013. 1.5

[112] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri. Combining multiple
coverage criteria in search-based unit test generation. InM. Barros and Y. Labiche,
editors, Search-Based Software Engineering, pages 93–108. Springer, 2015. 5.6

110 Bibliography

https://www.scala-lang.org

BIBLIOGRAPHY

[113] A. Rountev, S. Kagan, and J. Sawin. Coverage criteria for testing of object interac-
tions in sequence diagrams. In Fundamental Approaches to Software Engineering,
8th Intl. Conf., FASE 2005, pages 289–304, 2005. 5.6

[114] A. Saifan and J. Dingel. Model-based Testing of Distributed Systems. Technical
Report 548, School of Computing, Queen’s University, Canada, 2008. 3.6

[115] A. Salahirad, H. Almulla, and G. Gay. Choosing the fitness function for the
job: Automated generation of test suites that detect real faults. Softw. Test., Verif.
Reliab., 29(4-5), 2019. 5.6

[116] R. D. Schlichting and F. B. Schneider. Fail-stop processors: an approach to
designing fault-tolerant computing systems. ACM Transactions on Computer
Systems (TOCS), 1(3):222–238, 1983. 2.3.1

[117] F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Comput. Surv., 22:299–319, December 1990. 1.1.1

[118] C. Shao, J. L. Welch, E. Pierce, and H. Lee. Multiwriter consistency conditions
for shared memory registers. SIAM Journal on Computing, 40(1):28–62, 2011. 2.4

[119] D. Skeen. Nonblocking commit protocols. InProceedings of the 1981 ACMSIGMOD
international conference on Management of data, pages 133–142. ACM, 1981. 2.5.2

[120] Standard ML of New JerseyCPN Tools. http://www.smlnj.org. 1.5

[121] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Cambridge,
MA: MIT Press, 2011. 5.4.1

[122] G. Tretmans and H. Brinksma. TorX: Automated Model-Based Testing. In
A. Hartman and K. Dussa-Ziegler, editors, 1st Europ. Conf. on Model-Driven
Software Engineering, pages 31–43, 12 2003. 4.4

[123] D. Tziatzios. Model-based testing for SQL databases. Master’s thesis, KTH,
School of Electrical Engineering and Computer Science (EECS), 2019. 5.5

[124] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach. Elsevier,
2010. 1.3.1, 1.4, 6.1

[125] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-based Testing
Approaches. Software Testing, Verification and Reliability, 22:297–312, 2012. 1, 1.3.2,
1.3.2, 1.5, 1.3.2, 1.4, 5.4.2.1

[126] M. Vukolić. Quorum Systems: With Applications to Storage and Consensus.
Synthesis Lectures on Distributed Computing Theory, 3(1):1–146, 2012. 1.1.2, 1.1.3

[127] M. Vukolić et al. The origin of quorum systems. Bulletin of EATCS, 2(101), 2013.
1.1.3

Bibliography 111

http://www.smlnj.org

BIBLIOGRAPHY

[128] R. Wang, C. Artho, L. M. Kristensen, and V. Stolz. Visualization and Abstractions
for Execution Paths in Model-Based Software Testing. In Integrated Formal
Methods, volume 11918 of Lecture Notes in Computer Science, pages 474–492.
Springer International Publishing, 2019. 1.8, 1.9, 5, 5.3, 5.3.2, 5.3.2.2, 5.4.2.1, 5.5,
5.5, 5.6, 6.1, 6.2.1

[129] R. Wang, C. Artho, L. M. Kristensen, and V. Stolz. Multi-objective Search for
Model-based Testing. In The 20th IEEE International Conference on Software Quality,
Reliability, and Security, Vilnius, Lithuania, 2020. IEEE. 1.8, 1.9, 5, 5.4.1, 5.4.1, 5.4.1,
5.4.2.2, 5.5, 5.5, 5.5, 5.6, 6.1

[130] R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Application of model-based
testing on a quorum-based distributed storage. In CEUR Workshop Proceedings,
Petri Nets and Software Engineering (PNSE’17), volume 1846, pages 177–196, 2017.
1.9

[131] R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Model-based Testing of the
Gorums Framework for Fault-tolerant Distributed Systems. In Proceedings of the
29th Nordic Workshop on Programming Theory (NWPT), Turku Centre for Computer
Science, Finland, 2017. 1.9

[132] R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Model-Based Testing of the
Gorums Framework for Fault-Tolerant Distributed Systems. In Transactions on
Petri Nets and Other Models of Concurrency XIII, volume 11090 of Lecture Notes in
Computer Science, pages 158–180. Springer International Publishing, 2018. 1.8, 1.9,
3, 3.1, 3.3, 3.4, 3.4.1, 3.5, 4, 4.3, 4.3, 4.4, 6.1

[133] R. Wang, L. M. Kristensen, H. Meling, and V. Stolz. Automated test case
generation for the Paxos single-decree protocol using a Coloured Petri Net model.
In Journal of Logical and Algebraic Methods in Programming, volume 104, pages
254–273. Elsevier Ltd, 2019. 1.8, 1.9, 3, 3.2, 3.3, 3.4, 3.4.2, 3.5, 3.5, 4, 4.3, 4.3, 4.4, 6.1

[134] R. Wang, L. M. Kristensen, and V. Stolz. MBT/CPN: A Tool for Model-Based
Software Testing of Distributed Systems Protocols Using Coloured Petri Nets.
In Verification and Evaluation of Computer and Communication Systems, volume
11181 of Lecture Notes in Computer Science, pages 97–113. Springer International
Publishing, 2018. 1.8, 1.9, 4, 4.3, 6.1

[135] H. Watanabe and T. Kudoh. Test Suite Generation Methods for Concurrent
Systems Based on Coloured Petri Nets. In Software Engineering Conference, pages
242–251. IEEE, 1995. 3.6

[136] D. Wu, E. Schnieder, and J. Krause. Model-based Test Generation Techniques
Verifying the On-board Module of a Satellite-based Train Control System Model.
In 2013 IEEE Intl. Conf. on Intelligent Rail Transportation Proceedings, pages 274–279,
Aug 2013. 4.4

[137] D. Xu. A Tool for Automated Test Code Generation from High-level Petri Nets.
In Proc. of ICATPN’2011, volume 6709 of LNCS, pages 308–317. Springer, 2011. 4.4

112 Bibliography

BIBLIOGRAPHY

[138] S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In
Proceedings of the 2007 international symposium on Software testing and analysis,
pages 140–150, 2007. 5.6

[139] J. Zander, I. Schieferdecker, and P. J. Mosterman. Model-based testing for embedded
systems. CRC press, 2011. 1.2.3

[140] W. Zheng, C. Liang, R. Wang, and W. Kong. Automated Test Approach Based on
All Paths Covered Optimal Algorithm and Sequence Priority Selected Algorithm.
IEEE Transactions on Intelligent Transportation Systems, 15(6):2551–2560, 2014. 3.6

[141] H. Zhu, P. A. Hall, and J. H. May. Software unit test coverage and adequacy. Acm
computing surveys (csur), 29(4):366–427, 1997. 1.2.4

Bibliography 113

Part II

ARTICLES

PAPER A
MODEL-BASED TESTING OF THE GORUMS
FRAMEWORK FOR FAULT-TOLERANT
DISTRIBUTED SYSTEMS

R. Wang, L. M. Kristensen, H. Meling, and V. Stolz.

In Transactions on Petri Nets and Other Models of Concurrency XIII, volume 11090 of Lecture
Notes in Computer Science, pages 158–180, Springer International Publishing, 2018.

Model-Based Testing of the Gorums
Framework for Fault-Tolerant Distributed

Systems

Rui Wang1(B), Lars Michael Kristensen1, Hein Meling2, and Volker Stolz1

1 Department of Computing, Mathematics, and Physics,
Western Norway University of Applied Sciences, Bergen, Norway

{rwa,lmkr,vsto}@hvl.no
2 Department of Electrical Engineering and Computer Science,

University of Stavanger, Stavanger, Norway
hein.meling@uis.no

Abstract. Data replication is a central mechanism for the engineering
of fault-tolerant distributed systems, and is used in the realization of
most cloud computing services. This paper explores the use of Coloured
Petri Nets (CPNs) for model-based testing of quorum-based distributed
systems. We have developed an approach to model-based testing of fault-
tolerant services implemented using the Go language and the Gorums
framework. We show how a CPN model can be used to obtain both unit
test cases for the quorum logic functions, and system level test cases
consisting of quorum calls. The CPN model is also used to obtain the
test oracles against which the result of running a test case can be com-
pared. We demonstrate the application of our approach by considering
an implementation of a distributed storage service on which we obtain
100% code coverage for the quorum functions, 96.7% statement coverage
on the quorum calls, and 52.3% coverage on the Gorums framework. We
demonstrate similar encouraging results also on a more complex Gorums-
based implementation of the Paxos consensus protocol.

1 Introduction

Distributed systems serve millions of users in many important applications and
domains. However, such complex systems are known to be difficult to imple-
ment correctly because they must cope with challenges such as concurrency and
failures [12]. Thus, when designing and implementing distributed systems, it is
important to ensure correctness and fault-tolerance. Distributed systems can
rely on a quorum system to achieve fault-tolerance, yet it remains challenging
to implement fault-tolerance correctly. Therefore, the use of testing techniques
is essential to detect bugs and to improve the correctness of such systems.

One promising testing approach is model-based testing (MBT) [23]. MBT is a
paradigm based on using models of a system under test (SUT) and its environ-
ment to generate test cases for the system. The goal of MBT is validation and

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
M. Koutny et al. (Eds.): ToPNoC XIII, LNCS 11090, pp. 158–180, 2018.
https://doi.org/10.1007/978-3-662-58381-4_8

Paper A 119

Model-Based Testing of the Gorums Framework 159

error-detection by finding observable differences between the behavior of the
implementation and the intended behavior of the SUT. A test case consists of
test input and expected output and can be executed on the SUT. Typically, MBT
involves: (a) build models of the SUT from informal requirements; (b) define test
selection criteria for guiding the generation of test cases and the corresponding test
oracle representing the ground-truth; (c) generate and run test cases; (d) compare
the output from test case execution with the expected result from the test oracle.
The component that performs (c) and (d) is known as a test adaptor and uses a
test oracle to determine whether a test has passed or failed.

In this paper, we investigate the use of Coloured Petri Nets (CPNs) [11]
for model-based testing applied to quorum-based distributed systems [24]. Quo-
rum systems are fundamental to building fault-tolerant distributed systems, and
recently the Gorums framework [17] has been developed to ease the implementa-
tion of quorum-based distributed systems. The Gorums framework constitutes a
distributed middleware that hides the complexity in implementing the commu-
nication, synchronization, message processing, and error handling between the
protocol entities. The widespread use of the Gorums framework will depend on
the correctness of its implementation in Go. This motivates our goal of system-
atically testing the Gorums middleware implementation and provides an MBT
approach that can be used to also systematically test applications that rely on
the Gorums framework implementation.

The contribution of this paper is to propose an MBT approach using CPNs
for quorum-based distributed applications implemented by the Gorums frame-
work. To illustrate the application of our approach, we show in detail how it
can be used on a Gorums-based implementation of a single-writer, multi-reader
distributed storage. The distributed storage system is implemented with a read
and a write quorum call, which clients can use to access the distributed storage.
The distributed storage may return multiple replies to a quorum call. To sim-
plify client access to the storage, Gorums uses a user-defined quorum function to
coalesce the replies into a single reply that can then be returned to the client. For
this particular storage system, we use a majority quorum. By developing a CPN
model of such a distributed storage, we are able to generate test cases consisting
of read and write quorum calls that test the Gorums framework implementa-
tion. For evaluation, we report on results obtained on the distributed storage
system, and present results obtained on a more complex example in the form of
the Paxos consensus protocol [16].

CPNs has been widely used for modeling and verifying models of distributed
systems spanning domains such as workflow systems, communication protocols,
and distributed algorithms [14]. Recently, work has also been done on auto-
mated code generation allowing an implementation of the modeled systems to
be obtained [15]. Comprehensive testing of an implementation is, however, an
equally important task in the engineering of distributed systems, independently
of how the implementation has been obtained. This also applies in the case of
automated code generation, as it is seldom the case that the correctness of the
model-to-text transformations and their implementation can be formally proved.
We have chosen CPNs as the foundation of our MBT approach as it has a strong
track record for modeling distributed systems, and enables compact modeling

120 Paper A

160 R. Wang et al.

of data and data manipulation which is required for message modeling, quorum
functions modeling, and concrete test case generation. Furthermore, CPNs has
the ability to create parametric models, perform model validation prior to test
case generation, and it has mature tool support for both simulation and state
space exploration, which is important in order to implement our approach and
conduct practical experiments.

The rest of this paper is organized as follows. Section 2 introduces quorum-
based distributed systems and the Gorums framework, and Sect. 3 describes
the Gorums-based distributed storage which constitutes our system under test.
Section 4 presents the constructed CPN model for test case generation, and
Sect. 5 shows how state-spaces can be used to obtain test cases and test ora-
cles. In Sect. 6 we present the Go implementation of our test adapter and how it
is connected to the Gorums implementation of the distributed storage in order
to execute the test cases. In Sect. 7 we report on experimental results. Section 8
presents related work, and in Sect. 9 we sum up conclusions and present direc-
tions for future work. The reader is assumed to be familiar with the basic con-
cepts of high-level Petri Nets. This paper is an extended and revised version of
an earlier workshop paper [25].

2 Quorum-Based Distributed Systems and Gorums

Distributed algorithms are commonly used to implement replicated services, and
they rely on a quorum system [24] to achieve fault tolerance. That is, to access
the replicated state, a process only needs to contact a quorum, e.g. a majority
of the processes. In this way, a system can provide service despite the failure of
individual processes. However, communicating with and handling replies from
sets of processes often complicate the protocol implementations. The Gorums [17]
framework has been developed to alleviate the development effort for building
advanced distributed algorithms, such as Paxos [16] and distributed storage [2].

gRPC servers

Gorums client

Gorums

Quorum Call

Quorum
Function

Invoke
RPCs

S1 S3S2

RequestReplies

Fig. 1. Gorums architecture.

The Gorums framework reduces the
complexity of implementing quorum-
based distributed systems by providing
two core abstractions: (a) a flexible and
simple quorum call abstraction, which
is used to communicate with a set of
processes and to collect their responses,
and (b) a quorum function abstrac-
tion which is used to process responses.
These abstractions help to simplify the
main control flow of protocol implemen-
tations. Figure 1 illustrates the interplay
between the main abstractions provided
by Gorums. Gorums consists of a run-
time library and code generator that
extends the gRPC [8] remote procedure

Paper A 121

Model-Based Testing of the Gorums Framework 161

call library. Gorums allows clients to invoke a quorum call, i.e. a set of RPCs,
on a group of servers, and to collect their replies. The replies are processed by
a quorum function to determine if a quorum has been obtained. The quorum
function is invoked every time a new reply is received at the client, to evaluate
whether or not the received set of replies constitutes a quorum. With Gorums,
developers can specify several RPC service methods using protobuf [9], and
from this specification, Gorums’s code generator will produce code to facilitate
quorum calls and collection of replies. However, each RPC/quorum call method
must provide a user-defined quorum function that Gorums will invoke to deter-
mine if a quorum has been obtained for that specific quorum call. In addition,
the quorum function also provides a single reply value, based on a coalescing of
the received reply values from the different server replicas. This coalesced reply
value is then returned to the client as the result of its quorum call. That is, the
invoking client does not see the individual replies.

The contribution of this paper is to provide an MBT approach for generating
test cases to validate the correctness of the Gorums framework implementation
itself. This comes in addition to test cases for quorum function and quorum call
implementations for a specific use of the framework such as for implementing a
distributed storage. The quorum functions for a specific protocol implementation
must follow a well-defined interface generated by Gorums. These only require a
set of reply values as input and a return of a single reply value together with
a boolean quorum decision. Hence, quorum functions can easily be tested using
unit tests. However, some quorum functions involve complex logic, and their
input and output domains may be large, and so generating test cases from a
model provides significant benefit to verify correctness. A quorum call is imple-
mented by a set of RPCs, invoked at different servers, and so different inter-
leavings must be considered due to invocations by different clients. Hence, using
MBT we can produce sequences of interleavings aimed at finding bugs in the
server-side implementations of the RPC methods and also in the Gorums run-
time system.

3 System Under Test: Gorums and Distributed Storage

We have implemented a distributed storage system, with a single writer and mul-
tiple readers. The storage system is replicated for fault-tolerance, and is imple-
mented using Gorums. To test this storage implementation, we have designed
a corresponding CPN model that we use to generate test cases (see Sect. 4). In
this section, we describe the different components of the distributed storage and
how it has been implemented using Gorums.

As with any RPC library, Gorums requires that the server implements the
methods specified in the service interface. For our distributed storage, we have
implemented two server-side methods: Read() and Write(). These can be invoked
as quorum calls from storage clients, to read/write the state of the storage. In our
current implementation, we allow only a single write quorum call to be invoked,
but any number of read quorum calls can be invoked by the client to read the
state of the storage.

122 Paper A

162 R. Wang et al.

A client reading from the storage may observe different replies returned by
the different server replicas. The reason for this is that the read may be inter-
leaved with one or more writes generated by the client. To allow a reader to
pick the correct reply value to return from a quorum call, each server main-
tains a timestamp that is incremented for each new Write(). That is, the reader
will always return the value associated with the reply with the highest times-
tamp. Thus, to implement the reader using Gorums, we can simply implement
a user-defined ReadQF quorum function for the Read() quorum call as shown
in Algorithm 1. As this code illustrates, a set of replies from the different servers
are coalesced into a single reply that can then be returned from the quorum call.
The reply of the quorum function is determined by the reply from the server(s)
having the highest timestamp.

The user-defined quorum functions are implemented as methods on an object
of type QuorumSpec, named qs in Algorithm 1. This object holds information about
the quorum size, such as ReadQSize, and other parameters used by the quorum
functions. This qs object must satisfy an interface generated by Gorums’s code
generator. In Algorithm 1, ReadQSize is used to determine if sufficient replies
have been received to return the server reply with the highest timestamp.

Algorithm 1. Read quorum function

1: func (qs QuorumSpec) ReadQF(replies []ReadReply)
2: if len(replies) < qs.ReadQSize then ! read quorum size
3: return nil, false ! no quorum yet, await more replies

4: highest := ⊥ ! reply with highest timestamp seen
5: for r := range replies do
6: if r.Timestamp ≥ highest.Timestamp then
7: highest := r

8: return highest, true ! found quorum

4 CPN Testing Model for the Distributed Storage

In this section, we describe the CPN model of our test framework devel-
oped in order to generate test cases for the Gorums framework and the dis-
tributed storage implementation presented in Sect. 3. We model the entire sys-
tem, parametrized by the number of clients and servers. Some key features of
the model are the use of colored tokens for distinguishing multiple incoming and
outgoing messages, and the quorum specification based on the numbers of replies
received so far.

Figure 2 shows the top-most module of the CPN model. The substitution
transition Clients represents the clients (users) of the distributed storage system
while Servers represent the servers. The places ClientToServer and ServerToClient
are used for modeling the message channels for communication between the
clients and the servers. The CPN model has been constructed in a folded manner

Paper A 123

Model-Based Testing of the Gorums Framework 163

so that the number of servers is a parameter that can be configured without
making changes to the net-structure. Below we provide more details on selected
modules of the CPN model. The complete CPN model including all color sets,
variable declarations, and function definitions is available from [5].

Fig. 2. Top-level module of the CPN model.

Figure 3 shows the client submodule of the Clients substitution transition in
Fig. 2. The substitution transition QuorumCalls is used to model the behavior of
applications running on the clients, which makes the read and write quorum calls.
In particular, the submodules of QuorumCalls serve as test driver modules used to
generate system tests for the distributed storage and the Gorums framework. The
content of QuorumCalls depends on the specific test scenarios to be investigated
for the system under test, and we give a concrete example of a test driver module
in Sect. 6. The substitution transitions Read and Write represent the quorum calls
provided by the distributed storage. The invocation of quorum calls is done by
placing tokens on the Read and Write places. The port places ServerToClient and
ClientToServer are linked to the identically named socket places in Fig. 2.

Fig. 3. The Clients module.

124 Paper A

164 R. Wang et al.

Fig. 4. The Read module.

Figure 4 shows the submodule of the Read substitution transition which pro-
vides an abstract implementation of the Read() quorum call. The main purpose
of the Read module is to generate test cases for the ReadQF quorum func-
tion. A read quorum call is triggered by the presence of a token with the color
READINVOKED(r), where r identifies the call and is used to match replies from
servers to the call. The execution of a read quorum call starts by sending a read
request to each of the servers. This is modeled by the transition SendReadReq
and the expression on the arc to place ClientToServer, which will add tokens
representing read requests being sent to the servers. In addition, a list-token is
put on place ReadReplies, which is used to collect the replies received from the
servers. The call then enters a WaitingReply state and waits for replies coming
back from the servers. When a read’s reply comes back, represented by a token on
place ServerToClient, then transition ApplyReadQF will be enabled. This transi-
tion takes the current list of readreplies and appends the received readreply

to form readreplies’. The quorum function is then invoked, as represented
by the arc expressions to WaitingReply and Read. If enough replies have been
received, then a read result is returned to the Read place containing the value
with the highest timestamp. As we will see later, we use occurrences of the
ApplyReadQF transition for generating test cases for the ReadQF quorum func-
tion. In addition, we record the result computed by the CPN model as the test
oracle and compare it to the result of our SUT’s implementation of the ReadQF
quorum function. The submodule for the Write() quorum call is similar. It has
a transition ApplyWriteQF, which we use as a basis for generating test cases and
obtain a test oracle for the WriteQF quorum function.

Figure 5 shows the server submodule of the Servers substitution transition in
Fig. 2. The replicated state of each server is modeled by the place State. The two
substitution transitions are used for modeling the handling of write requests and
read requests on the server side.

Paper A 125

Model-Based Testing of the Gorums Framework 165

Fig. 5. The Server module.

Figure 6 shows the submodule of the substitution HandleWriteRequest mod-
eling the processing of a write request from a client. The incoming write request
will be presented as a value in the list-token on place ClientToServer and contains
a value v’ to be written in the distributed storage together with a timestamp
t’. The server compares the timestamp of the incoming write request with the
timestamp t for the currently stored value v. If the timestamp of the incom-
ing write request is larger, then the new value is stored on the server, and a
write acknowledgment is sent back in a write reply to the client. Otherwise, the
stored value remains unchanged and a negative write acknowledgment is sent
to the client in the write reply. Handling of an incoming request requires that
the server is running (as opposed to failed) as modeled by the double arc
connecting ServerStatus and HandleWriteRequest. The handling of read requests
is modeled in a similar manner, except that no comparison is needed, and the
server simply returns the currently stored value together with its timestamps.

Fig. 6. The HandleWriteRequest module.

5 Test Case Generation

The generation of test cases for Gorums and the distributed storage system
is based on the analysis of executions of the CPN model. Test cases can be
generated for both the quorum functions and the quorum calls.

126 Paper A

166 R. Wang et al.

The test cases generated for the quorum functions are unit tests, whereas the
test cases generated for quorum calls are system tests consisting of concurrent
and interleaved invocations of read and write quorum calls. The latter tests both
the implementation of the quorum calls and the Gorums framework implemen-
tation. In addition to the test cases, we also generate a test oracle for each test
case to determine whether the test has passed.

5.1 Unit Tests for Quorum Functions

Test cases for the ReadQF quorum function can be obtained by considering
occurrences of the ApplyReadQF transition (Fig. 4). When this transition occurs,
the variable readreplies’ is bound to the list of all replies that have been
received from the servers so far, and which the quorum function is invoked on.
In addition, we can use the implementation of the quorum function in the CPN
model as the test oracle. This means that the expected result of invoking the
quorum function can be obtained by considering the value of the token put
back on place WaitingReply. The value of this token contains the result of invok-
ing the quorum function in its second component. Generally, occurrences of
ApplyReadQF can be detected using either state spaces or simulations:

State-space based detection. We explore the full state space of the CPN
model searching for arcs corresponding to the ApplyReadQF transition. When-
ever an occurrence is encountered we emit a test case together with the
expected result. In this case, we obtain test cases for all the possible ways in
which the quorum function can be invoked in the CPN model.

Simulation-based detection. We run a simulation of the CPN model and use
the monitoring facilities of the CPN Tools [4] simulator to detect occurrences
of the ApplyReadQF transition and emit the corresponding test cases. The
advantage of this approach over the state-space based approach is scalability,
while the disadvantage is potentially reduced test coverage.

Test cases are generated based on detecting transition occurrences. This is
done in a uniform way for both detection approaches. Specifically, we rely on a
detection function, which must evaluate to true whenever a specific transition
occurrence is detected. When this happens, a generator function is invoked to
generate the actual test case. The state space for the CPN testing model of the
distributed storage service is relatively small and we can obtain all test cases
based on state space-based detection. The Paxos consensus protocol considered
in Sect. 7 is more complex, and hence we rely on simulation-based detection for
its test case generation.

Listing 1 shows an example of how our test cases are represented using XML.
The test case for the ReadQF quorum function corresponds to two replies (one
with value 0 and timestamp 0, and one with value 42 and timestamp 1). With
three servers, this constitutes a quorum, and the value returned from the quorum
function is therefore expected to be 42 with the timestamp of 1.

Paper A 127

Model-Based Testing of the Gorums Framework 167

<Test TestName="ReadQFTest">

<TestCase CaseID="1">

<TestValues>

<Content>

<Value>0</Value>

<Timestamp>0</Timestamp>

</Content>

<Content>

<Value>42</Value>

<Timestamp>1</Timestamp>

</Content>

</TestValues>

<ExpectResults>

<Value>42</Value>

<Timestamp>1</Timestamp>

</ExpectResults>

<ExpectQuorum>true</ExpectQuorum>

</TestCase>

</Test>

Listing 1. Example of generated test cases for read quorum function.

5.2 System Tests of Quorum Calls

The generation of test cases and expected results is based on the submodule of
the QuorumCalls substitution transition (see Fig. 3). This module acts as a test
driver for the system by specifying scenarios for read and write quorum calls to
the underlying quorum system. By varying this module, it is possible to generate
different scenarios of read and write quorum calls.

Figure 7 shows an example of a test driver in which the client executes one
read and one write quorum call as modeled by the transition InvokeRDWR. Upon
completion of these two calls, there are server failures and a new read and a write
call is invoked (modeled by the transition InvokeRDWRFailures). The server fail-
ures are modeled by changing the color of the server-tokens on place ServerStatus
which is used with the place ServerStatus on the HandleWriteRequest (see Fig. 6).
Each quorum call has a unique identifier (1, 2, 3, and 4) for identifying the call.
Each write call also has a value (in this case 42 and 7) to be written to the
distributed storage.

To make test case generation independent to the particular test driver mod-
ule, we exploit that the read and write quorum calls, made during an execution
of the CPN model, can be observed as tokens on the Read and Write socket places
(see Fig. 3). When there is a READINVOKED(i) token on place READ for some
integer i, it means that a read quorum call identified by i has been invoked.
When the read quorum call has terminated, there will be a token with the color
READRESULT(i,v) present on the place Read, where v is the value read by the
call. The invocation and termination of write quorum calls can be detected in
a similar manner by considering the tokens with the colors WRITEINVOKED(i,v)

128 Paper A

168 R. Wang et al.

Fig. 7. The QuorumCalls module.

and WRITERESULT(i,b) on the place Write (Fig. 3), where the boolean value b

denotes whether the value v was written or not.
Based on this, we can generate test cases in XML format specifying both the

concurrent and sequential execution of read and write calls. Listing 2 (discussed
further below) shows an example where first a read and a write are initiated and
upon completion of these two calls, a new read call is initiated.

<Test TestName="SystemTest">

<TestCase CaseID="WRprRDsqRD">

<Routine RoutineID="A" OperationName="Write">

<OperationValues>

<Value>7</Value>

</OperationValues>

<Routine RoutineID="B" OperationName="Read">

<OperationValues>

<Value>7</Value>

<Value></Value>

</OperationValues>

</Routine>

</Routine>

<Routine RoutineID="A" OperationName="Read">

<OperationValues>

<Value>7</Value>

</OperationValues>

</Routine>

</TestCase>

</Test>

Listing 2. Example of a generated test cases for the concurrent and sequential
execution of read and write calls.

We handle concurrent executions by nesting the read and write Routine

tag as illustrated in Listing 2, while non-nested Routine tags are considered
sequential. For write calls, we use the value tag to specify the value to be written,
and for read calls we use the value tag to describe permissible values for the test
case (see next section) returned by read calls. The absence of a value between
value tags indicates that the result could be null—corresponding to the case
where no value have yet been written into the storage.

Paper A 129

Model-Based Testing of the Gorums Framework 169

It should be noted if the CPN model specifies that a read and write call may
execute concurrently (independently), but happened to be executed in sequence
in a concrete execution of the CPN model (e.g., first the read executes and com-
pletes and then the write executes an completes), then that will be specified as a
sequential test case in the XML format. This is not a problem as the CPN model
captures all the possible executions and hence there will be another execution
of the CPN model in which the read and the write are running concurrently.

5.3 Test Oracle for System Tests

Checking that the result of an execution with read and write quorum calls is as
expected is more complex than for quorum functions. This is because the result
of concurrently executing read and write calls depends on the order in which
messages are sent and received. Figure 8 shows an example test case in which
there are two routines (threads of execution) that concurrently execute read
and write quorum calls. When Write1 and Reada are initialized and executed
concurrently, the returned result of Reada could be the old value in the servers
before Write1 writes a new value to servers, or the returned result of Reada could
be the value already written by Write1 . The same situation applies to Write2
and Readc . Since they are executed concurrently, the returned value of Readc

could be the value written by Write1 or Write2 .

Write1 Read1 Write2 Write3

Reada Readb Readc Readd

Fig. 8. An example of concurrent and sequential execution of quorum calls.

This means that if we execute (simulate) the CPN model with a test case
containing concurrent read and write quorum calls, then the result returned
upon completion of the calls may be different if we execute the same test case
against the Go implementation. The reason is that we cannot control in what
order the messages are sent and delivered by the underlying gRPC library, i.e.,
due to non-determinism in the execution. When we apply a state-space based
approach for extracting the test cases, e.g., for the quorum function, then we can
compute all the possible legal outcomes of a quorum call since the state space
captures all interleaved executions. In contrast, we cannot obtain all legal values
when extracting test cases from a single execution of the CPN model.

The first step towards constructing a general test oracle is to characterize
the permissible values of a read quorum call. These are:

1. the initial value of the storage in case no writes were invoked before the read
was invoked, or;

130 Paper A

170 R. Wang et al.

2. the value of the most recent write invoked but not terminated prior to the
read call (if any) or;

3. the value of the most recent write that has terminated prior to invocation of
the read or;

4. the value of a write that was invoked between the invocation and completion
of the read.

The above can be formally captured in the stateful automaton shown in Fig. 9
(left), which can be used to monitor the global correctness of the distributed
storage. The four events are shorthands for the abstract tokens per client-request
observed in the model, e.g., READINVOKED(i) is abbreviated RIi .

The set S is used to collect the set of permissible values for a read call. On
a read call RIi , any pending write WI (c) observed since the last write-return
WI (c) is a potential read-result. We abuse notation from alternating automata
with parametrized propositions [22] to capture that on a read invocation, we
remain in the initial state and collect further input for a new instance of the
monitor with the same current state (indicated by the dashed line) for subsequent
read-invocations. We explain Fig. 9 (right) in the next section.

S = ∅
RIi

WI (c) S " {c}

WRc S = {c}

RRi (x) x ∈ S

WI (c) S " {c}

RRi (x) x $∈ S

S1 S2 S3

R1 R2 Rn

Fig. 9. Read-write automaton (left) and monitor deployment (right).

6 Test Case Execution

Fig. 10. QuoMBT testing framework.

We have developed the QuoMBT test
framework in order to perform model-based
testing of quorum-based systems imple-
mented using the Gorums framework. Also,
we have implemented a client application
and a distributed storage system which
together with Gorums constitute the SUT.
Figure 10 gives an overview of the testing
framework comprised of CPN Tools and a
test adapter. CPN Tools is used for model-
ing and generation of test cases and oracles (see Sects. 4 and 5). The generated

Paper A 131

Model-Based Testing of the Gorums Framework 171

test cases and oracles are written into XML files by CPN Tools, and then read
by the test adapter. The reader of the test adapter feeds the test cases into the
client application (test cases for quorum calls) and the distributed storage (test
cases for quorum functions) implemented by the Gorums framework. Each test
case is executed with the provided test values as inputs. The tester included in
the test adapter compares the test oracle’s output against the output of each test
case in order to determine whether the test fails or succeeds. The test adapter
is implemented in the Go programming language.

The reader in the test adapter can read XML files for unit tests of read and
write quorum functions, and for system level tests involving quorum calls. The
implementation of the reader uses Go’s encoding/xml package, which makes it
easy to define mappings between Go structs and XML elements. In order to map
XML content into Go structs, each field of the Go struct has an associated XML
tag, which is used by Go’s XML decoder to identify the field to populate with
content from the XML. We could have generated Go-based table-driven tests,
which is already supported by the Go standard library. However, we chose to
use an XML-based format for the generated test cases to enable reuse of the test
generator across programming languages.

We have implemented the tester in the test adapter using the testing package
provided by the Go standard library. This tester can start the implemented
client application and execute generated test cases for the SUT. Go’s testing
infrastructure allows us to simply run the go test command to execute our
generated tests, which will provide pass/fail information for each test case. In
addition, this test infrastructure can also provide code coverage. When testing
the distributed storage, we distinguish between quorum functions and quorum
calls, because quorum functions are defined by developers when implementing
their specific abstractions, whereas quorum calls are provided generally by the
Gorums library. This separation also provides a modular approach to testing.

Our test adapter implements a Go-based tester for testing quorum functions,
i.e., performing the unit tests. We simply iterate through the test cases obtained
from the reader, invoking the ReadQF and WriteQF functions with the test
values, and compare the results against the test oracles. The unit tests for read
and write quorum functions can be performed without running any servers.

The system level tests require a set of running servers to test the complete
system, including parts of the Gorums framework. When doing the system level
tests involving quorum calls, the servers shown in Fig. 1 must be started first.
Then, the test adapter starts a client so that it can execute the quorum calls.
The test value, obtained from XML files, for each write quorum call is written
to servers by calling the write quorum call, and for each read quorum call, the
value returned by the servers will be captured by the tester to compare against
the test oracle. For each write quorum call, the tests simply check if it returns
an acknowledgment from servers.

The non-trivial part of the system test case execution is the concurrent and
sequential executions of read and write quorum calls. For the detailed implemen-
tation of the storage involving quorum calls under test, the testing function for

132 Paper A

172 R. Wang et al.

quorum calls run through each test case read from the reader. For the run of each
test case, the write and read quorum calls can be executed both sequentially and
concurrently depending on the test driver used. For the sequential executions,
the decision to execute write or read calls is made according to their sequences
in the XML files generated by CPN Tools. For the concurrent executions of write
and read quorum calls, the test execution makes use of go-routines provided by
the Go programming language. Therefore, within each run of test cases, a write
or read quorum call is executed based on their sequence in the XML files. Mean-
while, there may be other read calls that can be executed concurrently with the
running write or read quorum call and this is then done in a separate go-routine.
After executing each test case, the returned values of quorum calls are collected.

In order to obtain a test oracle for quorum calls which can be used in both
state space-based and simulation-based test case generation, we use the automa-
ton in Fig. 9 (left) to perform run-time verification of the Go implementation
when executed on the system test cases derived from the CPN model. Specif-
ically, our test adapter implements a run-time monitor corresponding to the
automaton in order to keep track of the invoked and terminated write calls and
thereby determining whether a value returned from a read call is permissible. Our
test framework currently runs the client (the single writer and multiple readers)
within a single Go process. This allows us to directly call into the monitor before
the client sends the fan-out messages to servers, and after the quorum function
returns the resulting quorum value, to check the result of the read request for
plausibility against the permitted values specified above. This corresponds to
monitoring all calls and returns in a particular deployment, i.e., correlating read
calls and returns of the client in the system against those of the writer in the
shaded area of Fig. 9 (right).

7 Experimental Evaluation

We now consider experimental evaluation of our model-based testing approach
based on CPNs. In Sect. 7.1, we present in detail the results obtained for the
distributed storage system. In Sect. 7.2 we summarise experimental results for
an additional case study in which we have applied our approach to the Paxos
consensus protocol for data replication. The main purpose of the Paxos case
study is to demonstrate the generality of our approach and to show that it
can be applied also to more complex examples of Gorums-based distribution
systems. The library which we have developed for CPN Tools as part of this
work to support test case generation is available via [19].

7.1 Results on Distributed Storage

To perform an evaluation of our model-based test case generation, we consider
the code coverage obtained using different test drivers for concurrent and sequen-
tial execution of quorum calls in the client application. Our experimental evalu-
ation comprises both successful scenarios and scenarios involving server failures

Paper A 133

Model-Based Testing of the Gorums Framework 173

and programming errors. The toolchain of the Go language includes a code cov-
erage tool which we have used to measure statement coverage.

Table 1 summarizes the experimental results obtained using different test
drivers in which there are not server failures included. We consider the following
test drivers: one read call (RD), one write call (WR), a read call followed by a
write call (RD; WR), a write call followed by a read call (WR; RD), a read and
a write call executed concurrently (WR||RD), a read and a write call executed
concurrently and followed by a read call ((WR||RD); RD).

Table 1. Experimental results for distributed storage – successful scenarios.

Test driver Test case generation Test case execution

(coverage in percentage)

System Unit

ID Name Nodes Arcs Time

(seconds)

QC QF Gorums

library

QCs QFs

RD WR RD WR

S1 RD 39 72 <1 1 3 24.6 84.4 0 100 0

S2 WR 39 72 <1 1 3 24.6 0 84.4 0 100

S3 RD; WR 254 543 <1 1 7 39.1 84.4 84.4 100 100

S4 WR; RD 254 543 <1 1 12 40.8 84.4 84.4 100 100

S5 WR||RD 1,549 4,379 1 6 17 40.8 84.4 84.4 100 100

S6 (WR||RD); RD 3,035 7,867 2 6 17 40.8 84.4 84.4 100 100

The table shows the number of nodes/arcs in the state space of the CPN
model with the given test driver, the state space and test case generation time
in seconds, the number of test cases generated for quorum calls (QC), the number
of test cases generated for quorum functions (QF). For the test case execution,
we show the code coverage (in percentage) that was obtained for the system
level and unit tests. The results for successful execution scenarios show that the
statement coverage for read (RD-QF) and write (WR-QF) quorum functions
is 100% for both system and unit tests, as long as both read and write calls
are involved. The statement coverage for read (RD-QC) and write (WR-QC)
quorum calls is up to 84.4%. For the Gorums library as a whole, the statement
coverage reaches 40.8%. It is worthwhile noting that the sizes of the state spaces
considered are small. This is due to the fact that the CPN testing model describes
the quorum-based system at a high level of abstraction which in turn is what
makes the approach feasible.

The test cases considered above validates that the implementation of the
distributed storage and the Gorums framework works correctly when there are
no server failures. To further increase the code coverage and further evaluate our
approach, we additionally evaluated the following aspects:

Programming errors. Gorums requires the developer to implement the quo-
rum functions for the specific quorum-based system. To evaluate our ability

134 Paper A

174 R. Wang et al.

to detect programming errors in these function, we injected programming
errors in the quorum functions for the distributed storage (see Algorithm1)
such that the requirement for having a quorum was incorrectly implemented.

Server and communication failures. Quorum-based systems are designed to
tolerate server failures. To test the Gorums framework under such conditions,
we consider the S6 driver from Table 1 and created a scenario in which first S6
is executed, then there is one or more server failures, and then S6 is repeated.
A related scenario is that the client attempts to make quorum-calls before
the servers have started.

Rerunning the test cases from Table 1 in the presence of programming errors
resulted in the test cases not passing. This demonstrates our ability to detect
programming errors in the quorum functions.

The server failures scenarios are handled in the test adapter by a component
that can terminate any number of the servers when executing such test cases.
Our test case execution showed that the distributed storage and the Gorums
framework in a configuration with three servers are able to handle up to one
server failure (as expected). The size of the state spaces generated for these
scenarios ranged between 1,500 states (all servers failed) and 3,000 (no server
failure). The total number of test cases ranged from 9 to 16.

The results for scenarios involving failures and programming errors show that
the statement coverage for read (RD-QF) and write (WR-QF) quorum functions
is still 100% for both system and unit tests. The statement coverage for read (RD-
QC) and write (WR-QC) quorum calls is increased to 96.7%. For the Gorums
library as a whole, the statement coverage is also increased to 52.3%. The reason
for the lower coverage of the Gorums library is that it contains code generated
by Gorums’s code generator, and among them, various auxiliary functions that
are never used by our current implementation. The total number of lines of code
for the system under test is approximately 2100 lines, which include generated
code by Gorums’s code generator (around 1800 lines), server code (around 120
lines), client code (around 80 lines) and the code for quorum functions (around
60 lines).

As part of analyzing the results of the code coverage and experimenting with
the test case generation, we also discovered a code path that was not covered. So
we added an additional test that would cover this particular path. This involved
passing nil as an argument to either the read (RD-QC) or write (WR-QC) quo-
rum calls. The code path in question had recently been introduced to support
a new feature in Gorums, but when the code path was exercised without acti-
vating its intended feature, the test case revealed that this code path had a bug
causing the test client to panic. The bug has since been reported to the Gorums
developers, and a fix has been implemented.

7.2 Results on the Paxos Consensus Protocol

To show that our approach is more generally applicable, we report on one addi-
tional case study which we have conducted with our model-based testing app-
roach for CPNs and the support provided by QuoMBT. The example is an

Paper A 135

Model-Based Testing of the Gorums Framework 175

implementation of the Paxos protocol using the Gorums framework. Paxos is a
fault-tolerant consensus protocol that makes it possible to construct a replicated
service using a group of server replicas. Paxos is considerably more complex than
the distributed storage system, and each Paxos node (server replica) implements
a proposer, an accepter, and a learner subsystem in addition to software compo-
nents for failure and leader detection. Furthermore, three quorum calls (prepare,
accept, and commit) are used in the implementation of the protocol. Due to the
complexity of the Paxos protocol we have used simulation-based test case gen-
eration using up to 10 simulation runs to extract test cases.

Table 2 summarizes the experimental results obtained. The table shows the
statement coverage obtained for the different subsystems of our Paxos imple-
mentation. Note that the Unit tests are for the quorum functions and hence not
applicable for the other subsystems. The two numbers written below System
tests and Unit tests gives the total number of test cases generated for 3 and 5
replica configurations, respectively. The test case generation for each configura-
tion considered took less than 10 seconds, and the execution of each test case
took less than one minute.

Table 2. Experimental results for test case generation and execution.

Subsystem Component System tests Unit tests

15/38 74/424

Gorums library 51.8% -

Paxos core Proposer 97.4% -

Acceptor 100.0% -

Failure detector 75.0% -

Leader detector 91.4% -

Replica 91.4% -

Quorum calls Prepare 83.9% -

Accept 83.9% -

Commit 83.9% -

Quorum functions Prepare 100.0% 90.0%

Accept 100.0% 85.7%

The results show that the statement coverage of unit tests for Prepare and
Accept quorum functions are up to 90% and 85.7%, respectively. For the sys-
tem tests, the statement coverage for Prepare, Accept and Commit quorum calls
reaches 83.9%, respectively; the results of statement coverage for Prepare and
Accept quorum functions are up to 100%; for the Paxos implementation (Paxos
core in the table), the Proposer module’s statement coverage reaches 97.4%; the
statement coverage of the Acceptor module is up to 100%; the statement cover-
ages of the Failure Detector and Leader Detector modules reach 75.0% and 91.4%,

136 Paper A

176 R. Wang et al.

respectively; the statement coverage of the Paxos replica module reaches 91.4%;
for the Gorums library as a whole, the highest statement coverage reaches 51.8%.

Similar to the distributed storage system, we obtain a high statement cover-
age for the Paxos implementation. In addition, using the generated test cases we
identified several programming errors in the Paxos implementation which could
then be fixed. To construct the CPN testing model for the Paxos protocol, we
reused the modeling patterns for quorum functions and quorum calls developed
for the distributed storage system. Furthermore, the test case generation algo-
rithms were directly used without change to generate test cases for the Paxos
protocol. The parts that had to be developed specifically for the Paxos protocol
was the observation and detection functions, and parts of the formatting func-
tion used to generate the XML test case representation. Finally, parts of the test
adapter had to be implemented to match the quorum calls and quorum functions
that are specific for the Paxos implementation. This shows that significant parts
of our approach can be used for other Gorum-based protocol implementations.

8 Related Work

Model-based testing is a large research area, and MBT approaches and tools have
been developed based on a variety of modeling formalisms, including flowcharts,
decision tables, finite-state machines, Petri Nets, state-charts, object-oriented
models, and BPMN [13]. Saifan and Dingel’s survey [20] provides a detailed
description of how model-based testing is effective in testing different aspects
of distributed systems, and it classifies model-based testing based on different
criteria and compares several model-based testing tools for distributed systems
based on this classification. The comparison, however, does not identify work
that can be applied to systems that rely on a quorum system to achieve fault-
tolerance.

The Gorums framework has only recently been developed, and hence there
does not yet exist work that have considered model-based testing of this frame-
work. Chubby [3] was one of the first implementations of Paxos that were
deployed in a production environment, and thus were extensively tested. They
highlight that at the time (2007), it was unrealistic to prove correct a real sys-
tem of that size. Thus to achieve robustness, they adopted meticulous software
engineering practices, and tested random sequences of network outages, message
delays, timeouts, and process crashes. Using our CPN model and our generated
tests, we aim to test many of the same attributes in a more systematic manner.
Xiangdong et al. [10] applied a CPN-based simulation method on a quorum-
based distributed storage system called Cassandra [1]. Cassandra is highly con-
figurable, and the focus in their work was to find appropriate parameter settings
to achieve the best performance. To this end, they developed a CPN-based sim-
ulator specifically for Cassandra, which allow tuning various system parameters
such as cluster size, timeouts and read/write ratios, for their CPN models. In our
work, we focus on using the CPN test models for generating test cases to perform
both unit and system tests to the implementations of distributed systems.

Paper A 137

Model-Based Testing of the Gorums Framework 177

The Integration and System Test Automation (ITSA) tool follows a CPN-
based approach to MBT [28]. The tool can generate test code for a variety of
languages including Java, C/C++, C# and HTML. Compared to the ITSA tool,
our MBT approach is not tied to a particular programming language, since the
test cases can be generated as an XML format, which can be read by any pro-
gramming language. The ITSA tool also uses the state space of the testing model
to generate and select test cases. To obtain concrete test cases with input data,
the tool relies on a separate model-to-implementation mapping. In contrast, we
obtain the input data for the quorum functions and calls directly from the data
modeling contained in the CPN testing model. As a case study, the ISTA tool
has been applied to an online shopping system. However, their approach does
not appear to be suitable for testing complex distributed system protocols, since
they do not handle concurrency and failures, which is at the core of our work in
this paper.

Faria et al. [6] use timed event-driven CPNs to generate test code. They do
not use CPNs as a direct interface to the user, but generate them from UML
sequence diagrams. Their tool suite has a different focus in that they instrument
a running system to observe the messages specified in the sequence diagrams.
The toolset can only perform JUnit tests on Java-based applications, and it has
not been used for unit and system testing of distributed systems. Liu et al. [18]
has also proposed a CPN-based test generation approach. The approach requires
defining a conformance testing-oriented CPN (CT-CPN) model and a PN-ioco
relation specifying how an implementation conforms to its specifications. Their
test case generation algorithm for the CT-CPN model is simulation-based. In our
approach on the other hand, we can directly generate test cases using both state
space-based and simulation-based test case generation for an existing implemen-
tation of the system under test. A model-based test generation technique based
on CPNs is used by Daohua, Eckehard and Jan [27] to verify a module of a
satellite-based train control system. They use CPN Tools to generate the reach-
ability graph of the test model, and use state space analysis with CPN Tools
to extract the expected output of each test case from the path of the reachabil-
ity graph. However, their technique does not support simulation-based test case
generation, which is of utmost importance for scalability.

Moreover, Watanabe and Kudoh [26] propose two different CPN-based test
suite generation methods for concurrent systems. However, their methods do not
directly address a particular way to derive a CPN testing model for a distributed
system, nor do they analyze achieved code coverage. Wei et al. [29] describe two
algorithms for generating test cases and test sequences from a CPN model. In
their method, a CPN model of the system under test is created. This model is
then used as input to their APCO algorithm to generate an initial set of test
cases which can be converted to test sequences using their SPS algorithm. Then,
the set of original test cases and the test sequences can be exported as XML for-
matted files. They demonstrated their MBT approach for testing a radio module
in a centralized railway control system. In contrast to our approach, Wei et al. do
not consider test scenarios with failures, do not handle concurrency, and their

138 Paper A

178 R. Wang et al.

approach has not been used to validate distributed systems. Finally, we discuss
Farooq, Lam and Li’s test sequence generation technique [7]. They derive a CPN
model from a UML Activity Diagram, and use the derived model to generate
test sequences. They demonstrate their approach on a fictional enterprise com-
merce system, describing the process of purchasing products online. In our MBT
approach, we have designed a testing framework, consisting of the constructed
CPN test models, test case generation algorithms and a test adapter, in order
to enable the execution of the generated tests on real distributed systems.

9 Conclusions and Future Work

The main contribution of our work is an MBT approach that can be used for
testing quorum-based distributed systems implemented using Gorums. Our app-
roach includes modeling patterns, test case generation algorithms, and a test case
execution infrastructure. As case studies, we have applied our approach to a dis-
tributed storage system and a Paxos implementation to illustrate and evaluate
its applicability. The results are promising in that we have obtained high code
coverage by considering both common case execution scenarios and failure sce-
narios. Furthermore, the results have been obtained with relatively simple test
drivers and a small number of test cases. We have shown that in addition to
obtaining results on code coverage, our generated unit and system tests are able
to detect programming errors.

An important attribute of our approach is that the CPN testing model has
been constructed such that it can serve as a basis for model-based testing of
other quorum-based systems. This has been demonstrated by the application of
our approach to the more complex Paxos consensus protocol. In particular, it
is only the modeling of the quorum calls on the client and server side that are
system dependent. To experiment with different quorum functions for a given
quorum system, it is only the implementation of the quorum functions in Stan-
dard ML that needs to be changed. The state space and simulation-based test
case generation approaches are independent of the particular quorum system
under test. Our current solution uses the CPN model to generate test cases and
record the correct response from the quorum function. The global monitor pre-
sented in Sect. 5 independently specifies safe behavior in the form of correct read
calls.

The work presented in this paper opens up several directions of future work.
We have obtained good coverage results on the quorum functions and quorum
calls with the current testing model by considering both successful execution
scenarios and scenarios involving server failures and programming errors. How-
ever, in order to increase coverage and consider more of Gorums’s code paths,
we need to test the quorum calls under additional failures scenarios and adverse
conditions, such as network errors. This will require extensions to the model e.g.
for generating timeouts, which in turn must be recorded in the test cases. This
in turn will require extensions to the test adapter such that the environment can
replay these events during test case execution.

Paper A 139

Model-Based Testing of the Gorums Framework 179

Model-based testing can be used to test a system either by connecting a
model (acting as a test driver) directly to an instance of the running system,
or, as we do in this paper, generate test cases offline and execute these test
cases against the system. The main challenge related to this, is how to handle
non-determinism during test case execution. In our current approach, we have
addressed this by using monitors known from the field of run-time verification.
Instead of the automaton, a different formal specification logic for (distributed)
systems could have been used, e.g. Scheffel and Schmitz’s distributed temporal
logic [21]. Their three-valued logic would allow us to adequately capture that
the monitor has neither detected successful nor failed completion.

To further evaluate the generality of our modeling and test case generation
approach, we need to apply it to additional quorum-based systems. For example,
we can extend our current distributed storage to support multi-writer storages
with multiple clients. This will challenge the limits of state space-based gener-
ation of test cases as was also demonstrated with the Paxos protocol. A future
direction is to also extend our approach to be applicable also to non quorum-
based distributed systems. In particular, it becomes important to investigate in
more detail the test coverage that can be obtained with simulation versus the
test case coverage that can be obtained with state spaces. We anticipate that
this will motivate work into techniques for on-the-fly test case generation and
test case selection during state space exploration.

References

1. Apache Software Foundation. Apache Cassandra. http://cassandra.apache.org
2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing

systems. J. ACM 42(1), 124–142 (1995)
3. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an engineering per-

spective. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2007, pp. 398–407. ACM (2007)

4. CPN Tools. CPN Tools. http://www.cpntools.org
5. CPN Testing Model for Gorum-based Distributed Storage, July 2018. http://home.

hib.no/ansatte/lmkr/DistributedStorage.xml
6. Faria, J.P., Paiva, A.C.R.: A toolset for conformance testing against UML sequence

diagrams based on event-driven colored Petri nets. Int. J. Softw. Tools Technol.
Transfer 18(3), 285–304 (2016)

7. Farooq, U., Lam, C.P., Li, H.: Towards automated test sequence generation.
In: Australian Conference on Software Engineering (ASWEC 2008), pp. 441–450
(2008)

8. Google Inc. gRPC Remote Procedure Calls. http://www.grpc.io
9. Google Inc., Protocol Buffers. http://developers.google.com/protocol-buffers

10. Huang, X., Wang, J., Qiao, J., Zheng, L., Zhang, J., Wong, R.K.: Performance and
replica consistency simulation for quorum-based NoSQL system cassandra. In: van
der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 78–98.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57861-3 6

11. Jensen, K., Kristensen, L.M.: Coloured Petri nets: a graphical language for mod-
elling and validation of concurrent systems. Commun. ACM 58(6), 61–70 (2015)

140 Paper A

180 R. Wang et al.

12. Jepsen. Distributed Systems Safety Analysis. http://jepsen.io
13. Jorgensen, P.: The Craft of Model-Based Testing. CRC Press, Boca Raton (2017)
14. Kristensen, L.M., Simonsen, K.I.F.: Applications of coloured Petri nets for func-

tional validation of protocol designs. In: Jensen, K., van der Aalst, W.M.P., Balbo,
G., Koutny, M., Wolf, K. (eds.) Transactions on Petri Nets and Other Models
of Concurrency VII. LNCS, vol. 7480, pp. 56–115. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38143-0 3

15. Kristensen, L.M., Veiset, V.: Transforming CPN models into code for TinyOS: a
case study of the RPL protocol. In: Kordon, F., Moldt, D. (eds.) PETRI NETS
2016. LNCS, vol. 9698, pp. 135–154. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39086-4 10

16. Lamport, L.: The Part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–
169 (1998)

17. Lea, T.E., Jehl, L., Meling, H.: Towards new abstractions for implementing
quorum-based systems. In: Proceedings of 37th IEEE International Conference
on Distributed Computing Systems (ICDCS), pp. 2380–2385 (2017)

18. Liu, J., Ye, X., Li, J.: Colored Petri nets model based conformance test generation.
In: IEEE Symposium on Computers and Communications (ISCC), pp. 967–970.
IEEE (2011)

19. MBT/CPN. Repository, July 2018. https://github.com/selabhvl/mbtcpn.git
20. Saifan, A., Dingel, J.: Model-based testing of distributed systems. Technical report

548, School of Computing, Queen’s University, Canada (2008)
21. Scheffel, T., Schmitz, M.: Three-valued asynchronous distributed runtime verifi-

cation. In: Twelfth ACM/IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE), pp. 52–61. IEEE (2014)

22. Stolz, V.: Temporal assertions with parametrized propositions. J. Logic Comput.
20(3), 743–757 (2010)

23. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22, 297–312 (2012)

24. Vukolic, M.: Quorum Systems: With Applications to Storage and Consensus. Mor-
gan and Claypool, San Rafael (2012)

25. Wang, R., Kristensen, L.M., Meling, H., Stolz, V.: Application of model-based
testing on a quorum-based distributed storage. In: Proceedings of PNSE 2017.
CEUR Workshop Proceedings, vol. 1846, pp. 177–196 (2017)

26. Watanabe, H., Kudoh, T.: Test suite generation methods for concurrent systems
based on coloured Petri nets. In: Software Engineering Conference, pp. 242–251.
IEEE (1995)

27. Wu, D., Schnieder, E., Krause, J.: Model-based test generation techniques verifying
the on-board module of a satellite-based train control system model. In: 2013 IEEE
International Conference on Intelligent Rail Transportation Proceedings, pp. 274–
279, August 2013

28. Xu, D.: A tool for automated test code generation from high-level Petri nets. In:
Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp.
308–317. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21834-
7 17

29. Zheng, W., Liang, C., Wang, R., Kong, W.: Automated test approach based on all
paths covered optimal algorithm and sequence priority selected algorithm. IEEE
Trans. Intell. Transp. Syst. 15(6), 2551–2560 (2014)

Paper A 141

PAPER B
AUTOMATED TEST CASE GENERATION FOR
THE PAXOS SINGLE-DECREE PROTOCOL USING
A COLOURED PETRI NET MODEL

R. Wang, L. M. Kristensen, H. Meling, and V. Stolz.

In Journal of Logical and Algebraic Methods in Programming, volume 104, pages 254–273,
Elsevier Ltd, 2019.

Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Automated test case generation for the Paxos single-decree

protocol using a Coloured Petri Net model

Rui Wang a,∗, Lars Michael Kristensen a, Hein Meling b, Volker Stolz a

a Department of Computing, Mathematics, and Physics, Western Norway University of Applied Sciences, Norway
b Department of Electrical Engineering and Computer Science, University of Stavanger, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 March 2018
Received in revised form 10 December 2018
Accepted 13 February 2019
Available online 14 February 2019

Keywords:
Coloured Petri Nets
Distributed systems
Model-based testing

Implementing test suites for distributed software systems is a complex and time-
consuming task due to the number of test cases that need to be considered in order
to obtain high coverage. We show how a formal Coloured Petri Net model can be used to
automatically generate a suite of test cases for the Paxos distributed consensus protocol.
The test cases cover both normal operation of the protocol as well as failure injection.
To evaluate our model-based testing approach, we have implemented the Paxos protocol
in the Go programming language using the quorum abstractions provided by the Gorums
framework. Our experimental evaluation shows that we obtain high code coverage for our
Paxos implementation using the automatically generated test cases.

 2019 Elsevier Inc. All rights reserved.

1. Introduction

Systematic testing is an important activity in software development. This is especially important for fault-tolerant dis-
tributed systems, because they are notoriously difficult to implement correctly [1]. The reason for this difficulty is that such
systems must cope with both concurrency and failures, e.g. due to crashes and network partitions. Distributed systems
therefore employ protocols with complex logic to tolerate individual component failures without causing service disrup-
tion for users. Testing approaches and programming abstractions that can be used to systematically test and simplify the
implementation of protocols for distributed systems are therefore important.

Model-based testing (MBT) [2] has emerged as a powerful approach for testing software, and as part of our ongoing
research effort, we are investigating the application of MBT on protocols for state machine replication (SMR). SMR is a core
technique for developing fault-tolerant distributed systems that can tolerate a bounded number of server failures. In MBT,
we construct a model of the system under test (SUT) and its environment, in order to generate test cases. The goal of MBT
is validation and error-detection by finding observable differences between the behavior of the implementation and the
intended behavior of the SUT, as defined by the model. A test case consists of inputs to the SUT and the expected output,
which determines whether the execution of the test was successful or failed. Finally, it involves implementing a test adaptor
that can be used to embed the SUT, enabling the test cases to be executed against the SUT, and their output compared
against the expected output.

Coloured Petri Nets (CPNs) [3] are a formal modeling language that can model distributed systems combining Petri Nets
and the Standard ML programming language. Petri Nets provide the foundation for modeling concurrency, synchronization,

* Corresponding author.
E-mail addresses: rwa@hvl.no (R. Wang), lmkr@hvl.no (L.M. Kristensen), hein.meling@uis.no (H. Meling), vsto@hvl.no (V. Stolz).

https://doi.org/10.1016/j.jlamp.2019.02.004
2352-2208/ 2019 Elsevier Inc. All rights reserved.

Paper B 145

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 255

communication, and resource sharing, while Standard ML provides the primitives for compact data modeling and sequential
computations. Construction, simulation, validation, and verification of CPN models are supported by CPN Tools [4]. CPNs and
CPN Tools have been widely used for modeling, validation, and verification of distributed systems protocols [5], but their
application in software testing has only been explored to a limited extent [6–8]. Recently, CPNs have been explored in the
context of automated code generation to obtain an implementation of a modeled system [9]. Even though the automated
code generation is applied to obtain such an implementation of the modeled system, it is seldom that the correctness of the
model-to-text transformations and their implementation can be formally proved. Thus, it is also an important task in the
engineering of distributed systems to comprehensively test the implementation. Therefore, we have developed the MBT/CPN
library [10] that extends CPN Tools with the support for model-based test case generation. The reason we chose CPNs as the
foundation for our testing approach is that CPNs have a strong track record for modeling distributed systems and are able to
create parametric models and perform model validation. Moreover, CPNs also have mature tools to support both simulation
and state space exploration, which is important for implementing our approach and for our practical experiments.

The contribution of this paper is the application of CPNs and the MBT/CPN library [10] for model-based testing of an
implementation of Paxos [11]. Paxos is a fault-tolerant consensus protocol that makes it possible to construct a replicated
service, or SMR, using a group of server replicas. Paxos is an important foundational building block, and a whole family of
Paxos-based protocols have been developed [12–15], focusing on different attributes such as latency and throughput. More-
over, Paxos is also the basis for many production systems such as Google’s Chubby [16] and Spanner [17], and Amazon Web
Services [18]. However, Paxos is also known for being difficult to understand and implement correctly [19]. The main aim of
our work has been to develop a practically-oriented approach that narrows the gap between the provably correct in theory,
and a correct implementation in practice. We use finite-state model checking to automatically validate the correctness of
small configurations of the CPN model used for test case generation. This increases confidence in the test cases that are
then subsequently extracted from running a set of simulations of the CPN model. The use of simulation to extract test cases
(which are then executed against the SUT) ensures scalability of our approach. It also means that our approach (in general)
only tests the SUT against a subset of the behaviors specified by the CPN model. As such our approach should be seen as
aimed at validating an implementation and detecting implementation errors.

A secondary contribution is an implementation of the single-decree Paxos protocol that is especially amenable to testing.
Single-decree Paxos allows a collection of servers to operate as a coherent group and to agree on a common value, while
tolerating the failure of some of its members. The implementation, written in Go, takes advantage of quorum abstractions
provided by the Gorums middleware library [20]. These abstractions include the ability to perform invocations on a set
of server replicas, and collect, analyze, and combine a quorum of replies into a single representative reply to be used in
the next protocol step. These abstractions also help to shield the programmer from having to explicitly deal with low-level
communication and error handling.

The paper is organized as follows. §2 introduces the Paxos consensus protocol and gives an overview of the constructed
CPN model, while §3 provides detailed models of the various Paxos agents. §4 gives an overview of Gorums and its ab-
stractions, and outlines our Gorums-based implementation of Paxos. §5 presents our testing approach, and our test adapter
developed to execute the test cases generated from the CPN model. §6 discusses test case generation and our experimental
results obtained using CPN Tools and the MBT/CPN testing library. §7 discusses related work. Finally, §8 concludes the pa-
per and discusses future work. The reader is assumed to be familiar with the basic syntactical and semantical concepts of
Petri Nets (places, transitions, tokens, and transition enabling and occurrence). The CPN model and Paxos implementation
presented herein are only partial. The full details of the CPN model are available via [21].

2. The Paxos consensus protocol and CPN model overview

The objective of a distributed consensus algorithm such as Paxos is to have a single value chosen among those proposed,
while the safety (S) and liveness (L) properties [22,23] below are upheld with a correct replica being a replica that does not
fail:

S1 Only a proposed value may be chosen.
S2 Only a single value is chosen.
S3 Only a chosen value may be learned by a correct replica.
L1 Some proposed value is eventually chosen.
L2 Once a value is chosen, correct replicas eventually learn it.

Note that the definition permits multiple values to be proposed for consensus. An algorithm satisfying the above safety
properties is considered safe in that all replicas that learn the chosen value remain consistent with each other. However, we
note that distributed consensus is impossible in an asynchronous system model [24]. Therefore, to satisfy liveness, periods
of synchrony are required.

The single-decree Paxos consensus protocol can be used by a distributed application, in which the Paxos replicas need
to agree on a single common value among potentially many input values. We assume that the input values are sent to the
Paxos replicas from one or more clients, and then the decided output value is returned to these clients.

146 Paper B

256 R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

Fig. 1. Top-level CPN module for Paxos.

Fig. 2. The Clients CPN module.

The constructed CPN model of the single-decree Paxos protocol is comprised of 23 hierarchically organized modules.
Fig. 1 shows the top-level module of the CPN model consisting of two substitution transitions (drawn as rectangles with
a double border) connected by the two places Request and Response. The name of the submodule associated with each
substitution transition is written in the name-tag positioned next to the substitution transition. The substitution transition
Clients and its associated submodule Clients are modeling the behavior of the clients that may propose values to be chosen.
The substitution transition Replicas and its associated submodule are modeling the behavior of the distributed replicas
executing the Paxos protocol in order to reach consensus on a value proposed by the clients. The client sends a request to
the Paxos replicas by putting a token on the place Request and then waits for the decided response value to be returned as
a token on place Response.

Fig. 2 shows the submodule of the Client substitution transition. The port places Request and Response are associated
with the identically named socket places in Fig. 1. This means that any tokens added to or removed from these places
by transitions in the ProposeValue module will be reflected in the top-level module. The submodule of the ProposeValue
substitution transition models the behavior of sending a client request value for consensus to the Paxos replicas.

Paxos [11,22] is often described in terms of three separate agent roles: proposers that can propose values, acceptors that
accept a value among those proposed, and learners that learn the chosen value. A Paxos replica may take on multiple roles:
in a typical configuration (and also in the CPN model), all replicas play all roles. Paxos is safe for any number of crash
failures, and can make progress with up to f crash failures, given n = 2 f + 1 acceptors.

Fig. 3 shows the Replicas module which is the submodule of the substitution transition Replicas in Fig. 1. The module
has a substitution transition for each Paxos agent connected by socket places to model the communication between the
different agents. The detailed behaviors of the agents are then modeled in the submodule of the substitution transitions.
The Replicas module has been constructed such that we can configure any number of replicas, each encapsulating the three
Paxos agents, without modifying the net-structure. This allows us to easily generate test cases for differently sized Paxos
configurations.

The Paxos protocol operates in rounds, which refer to a set of semantically related messages that may or may not
conclude the consensus protocol. We say that the protocol solves consensus in some round. Due to asynchrony and failures,

Paper B 147

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 257

Fig. 3. The single-decree Replicas module.

Fig. 4. The single-decree Paxos consensus protocol with three phases.

a consensus protocol may need to run several rounds to solve consensus. When describing the protocol, we use the variables
rnd, crnd, and vrnd to denote round number, current round, and voted in round. Every round is associated with a single
proposer, which is the leader for that round. Other proposers can start new (higher) rounds concurrently by sending a
〈Prepare〉 message to acceptors, to collect 〈Promise〉s from the acceptors to follow a new proposer. This is essential for
Paxos to make progress in case the current leader goes mute. Every round runs in three phases:

1. A proposer sends a 〈Prepare〉 message to the acceptors and collects at least f + 1 〈Promise〉 messages;
2. the proposer then sends 〈Accept〉 messages for some value v to the acceptors, who respond by sending 〈Learn〉 mes-

sages back to the proposer acknowledging the value v;
3. the proposer sends the decided value in 〈Commit〉 messages to learners.

The common case execution of the three phases is shown in Fig. 4. The first number in each message is the rnd = 1,
and v is the value that the proposer wants the acceptors to choose. The gray boxes labeled v represent the execution of
a state machine command derived from the decided value v . While not shown in the figure, each replica has instances of
each of the Paxos agents. The communication between the different Paxos agents has been modeled based on the quorum
abstractions provided by the Gorums framework [20], which we discuss in §4. Specifically, the communication takes the
form of quorum calls, one for each of the Paxos phases: Prepare, Accept, and Commit.

The value v to choose is the value with the highest round among those provided in the 〈Promise〉 messages, or if no
votes are provided in the 〈Promise〉 messages, any value can be chosen by the proposer; this would typically be a value
that the proposer received from a client. In Paxos, acceptors are said to have chosen a value v , if a majority of acceptors
have voted for v in the same round. Once a value has been chosen by acceptors in a round, no other value can be chosen
in any other round. However, if there is no majority of acceptors that have voted for v , then the acceptors may vote for
different values in other rounds. Since rounds execute concurrently, there is no guarantee of progress even if there are no
failures or message loss. Therefore, Paxos typically relies on an eventual leader detection protocol, often implemented from

148 Paper B

258 R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

Fig. 5. The Proposer module.

the ! failure detector [25]. While ! may be inaccurate for some time, eventually it makes correct proposers agree on which
proposer is the leader. Using !, and under the assumption that n ≥ 2 f + 1 acceptors, Paxos satisfies Properties L1 and L2.

3. Modeling the Paxos agents

This section presents the behavioral modeling of the Paxos agents. One of the Proposers is designated as a leader and
proposes the client request value for consensus. The Acceptors choose the consensus value among those proposed, and the
Learner of each replica learns the decided value. Once a value has been learned by a Learner, a response may be sent by
this Learner to the client. This response is presented as a token on the port place Response.

3.1. Proposers

The submodule of the Proposer substitution transition is shown in Fig. 5. It contains three substitution transitions:
LeaderDetector, FailureDetector, and ProposerCore. The Proposer of each replica receives the client request (presented as a
token on the port place Request) for consensus, sent from the submodule of the Clients substitution transition.

In Paxos, one of the Proposers is responsible for driving the consensus process, namely the leader. However, due to the
asynchronous nature of the environment in which we are operating, we may have that many Proposers believe they are
the leader, thus the Paxos protocol can only guarantee progress if one of them is eventually chosen. Therefore, the objective
of the first phase of Paxos is to obtain permissions from the Acceptors that a particular Proposer can serve as the leader.
However, to be able to detect if a new proposer should initiate the first phase, we use the LeaderDetector substitution
transition which has a submodule to pick a leader among the Proposers. This submodule is informed about failures from
the failure detector. The FailureDetector substitution transition has a submodule that can detect the failure of any of the
Proposers. Then, another leader can be selected by the submodule of the LeaderDetector substitution transition and it can
take over the leadership by starting the first phase of Paxos with a higher round number than previous leaders.

Paxos uses round numbers to rank replicas, and each replica has a unique set of round numbers. More specifically, each
round is assigned to a single proposer. The choice of the proposer for round i is determined by a deterministic mapping
p : B → P , where B is the set of round numbers and P is the set of proposers. In this paper, we assume that B is the
set of natural numbers, and that proposers have assigned identities 0, 1, . . . , |P | − 1, where |P | = n. Then, we can choose
mapping p such that p(i) = i (mod |P |).

A client request presented as a token value on the port place Request will be sent to the ProposerCore, waiting to be
handled by the leader as can be seen from Fig. 5.

The submodule of the ProposerCore substitution transition is shown in Fig. 6 and models the internal behavior of the
Proposer. In this module, the InitProposer substitution transition has a submodule to initialize Proposers, obtain a new

Paper B 149

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 259

Fig. 6. The ProposerCore module.

leader, and receive a client request for consensus. Then, the value of the current round number of the leader and the value
of the received client request will be presented on the port places as tokens, respectively. These tokens will be handled by
the submodule of the Phases substitution transition.

A successful round of the single-decree Paxos protocol has three phases, modeled by submodules of the three substitution
transitions shown in Fig. 7. The first phase involves two types of messages known as the 〈Prepare〉 and 〈Promise〉 messages.
The leader candidate creates a 〈Prepare〉 message with its current round number and invokes a Prepare quorum call. This
is modeled by the submodule of the Prepare substitution transition, shown in Fig. 6, which sends the 〈Prepare〉 message to
Acceptors in order to propose itself to be a leader. After the Acceptors receive the 〈Prepare〉 message, and if they accepted it,
then each Acceptor returns back a 〈Promise〉 message to the leader candidate by the Prepare quorum call. This is modeled by
the submodule of the Acceptor substitution transition shown in Fig. 3. When the leader candidate receives enough 〈Promise〉
messages from Acceptors (obtain a quorum), then the first phase is finished, which means the leader candidate now can
become a leader, and propose the client request to Acceptors for consensus.

In the second phase, the leader creates an 〈Accept〉 message with its current round number, crnd, and the value v
obtained from the client request, and invokes the Accept quorum call, modeled by the submodule of the Accept substitution
transition, shown in Fig. 6. This quorum call sends the 〈Accept〉 message to the Acceptors, requesting them to vote for
consensus value v . Upon receiving an 〈Accept〉 message whose round number is greater or equal to the Acceptor’s round
number, the Acceptor will return a 〈Learn〉 message to the leader. Once the leader has received a quorum of 〈Accept〉
messages from Acceptors, the second phase is done. For the third phase, the leader invokes the Commit quorum call on the
Learners, as modeled by the submodule of the Commit substitution transition, shown in Fig. 6. This enables the Learners to
learn the chosen consensus value and can send it to the client.

Fig. 8 shows the submodule of the PhaseOne substitution transition. The leader uses its current round number to create a
〈Prepare, 0, crnd〉 message by triggering the transition SendPrepareMessage so that this message can be placed on the port

150 Paper B

260 R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

Fig. 7. The Phases module.

place Prepare as a token to invoke the Prepare quorum call. This quorum call returns a 〈Promise, cid, rnd, (vrnd, v value)〉
message as we already discussed, where cid is the call ID (initialized as 0 in 〈Prepare〉 message); rnd is the round number
confirmed by the Acceptor; vrnd is the most recent round in which the Acceptor voted, and v value is the consensus value
it voted for. The place FDControl provides an upper bound on the number of timeouts/failures in our test cases. This place
is not part of the CPN model for single-decree Paxos, but is used to control the test environment. If no timeout occurs, and
the leader obtained a quorum of 〈Promise〉 messages, the second phase can start. The place FailedReplica is used to collect
the identity of failed replicas, which we use in §6 for validation of the model. The second and third phases are modeled in
a similar manner as the first phase, and we do not include them here.

After the 〈Promise〉 message returns, a timeout could happen to trigger the failure detector when the ProcessPromiseMes-
sage transition occurs. This is used to capture scenarios where a failure of any replica occurs. Such failure is modeled as an
event that may occur after a quorum has been obtained for the quorum call, which, in this case, is represented as a token
of the 〈Promise〉 message appearing on the port place Prepare. At this stage, an occurrence of the ProcessPromiseMessage
transition (Fig. 8) may result in a timeout modeled by the creation of a token on the port place TimeoutFD signaling that a
failure has occurred. We may then have a finite sequence of transition occurrences for the accomplishment of the Prepare
quorum call (in this case) and for finishing the remaining transitions in the submodule of the LeaderDetector substitution
transition. After this, the transitions for leader detection in the submodule of the FailureDetector substitution transition will
occur as they are given higher priority compared to other transitions in the model. This ensures that the execution of the
failure detector cannot be forever postponed and the current leader ID (round number) for this failed round is obtained,
which then causes the execution of the leader detector to elect a new leader. The fact that the failure detector will be exe-
cuted in a finite number of steps from when a failure has occurred, restricts the behavior of the model and in turn implies
that the model satisfies properties L1 (a proposed value is eventually chosen) and L2 (that correct replicas eventually learns
the chosen value).

3.2. Acceptors

This section details the model for the acceptors. Fig. 9 shows the Acceptor module. The submodule consists of Han-
dlePrepare and HandleAccept substitution transitions. The former handles 〈Prepare〉 messages sent by the submodule of the
Proposer substitution transition shown in Fig. 3 through the port place PtoAPrepare. The latter similarly handles 〈Accept〉
messages also sent by the Proposer through port place PtoAAccept.

Paper B 151

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 261

Fig. 8. The PhaseOne module.

Fig. 9. The Acceptor module.

The AcceptorState place represents the state of each Acceptor. It is initialized with each replica’s ID, round number
rnd = 0, last voted round vrnd = 0, and voted value v value = ε (empty string).

The submodule of the HandlePrepare substitution transition is shown in Fig. 10. The HandlePrepare transition handles
〈Prepare〉 messages sent by the Proposer. If the crnd of the 〈Prepare〉 message is higher than the Acceptor’s rnd, then the
token placed on the AcceptorState port place is updated accordingly, and a new token for the 〈Promise〉 message can be
placed on the AtoPPrepare port place according to the expression of the arc connecting the HandlePrepare transition and
AtoPPrepare place. We do not show the submodule of the HandleAccept substitution transition as it is similar to HandlePre-
pare. The main difference is that it updates the triplet (rnd, vrnd, v value) in the AcceptorState port place, and places a
〈Learn〉 message on the AtoPAccept place.

3.3. Learners

Finally, we discuss the Learner substitution transition shown in Fig. 3, which has a submodule with a single HandleCom-
mit substitution transition, as shown in Fig. 11. This submodule handles the 〈Learn〉 message sent by the Proposer, checking
that a quorum of learn messages have been received before returning the decided consensus value to the client by placing a
token on the Response port place. This behavior is modeled by the submodule of the HandleCommit substitution transition,
shown in Fig. 12.

152 Paper B

262 R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

Fig. 10. The HandlePrepare module.

Fig. 11. The Learner module.

Fig. 12. The HandleCommit module.

Paper B 153

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 263

Fig. 13. Gorums abstractions.

4. Gorums and single-decree Paxos implementation

Gorums [20] is a framework for implementing quorum-based distributed systems. This section describes Gorums and
how we use it to implement single-decree Paxos [11]. Our goal here is to provide a Paxos implementation that is amenable
to testing based on the CPN model in §3, and in §5 we describe our testing approach.

4.1. Gorums abstractions

Gorums is a library whose goal is to alleviate the development effort for building advanced distributed algorithms, such
as Paxos [11] and distributed storage [26,27]. These algorithms are commonly used to implement replicated services, and
they rely on a quorum system [28] to achieve fault tolerance. In a quorum system, such as Paxos, protocol replicas need to
exchange and update information about each other’s state. However, to ensure consistency, a replica must contact a quorum,
e.g. a majority of the replicas. In this way, a system can provide service despite the failure of individual replicas. However,
communicating with and handling replies from sets of replicas often complicate the protocol implementations.

To reduce this complexity, Gorums provides three core abstractions: (a) configurations that group a set of replicas to
hide the existence of individual replicas, (b) a flexible and simple quorum call abstraction, which is used to communicate
with a configuration, i.e. a set of replicas, and to collect their responses, and (c) a quorum function abstraction which is
used to process responses. These abstractions can help to simplify the main control flow of protocol implementations, as
we illustrate later in this section.

Fig. 13 illustrates the interplay between the main abstractions provided by Gorums. Gorums consists of a runtime library
and code generator that extends the gRPC [29] remote procedure call library from Google. Specifically, Gorums allows clients
to invoke a quorum call, i.e. a set of RPCs, on a group of servers, and to collect their replies. The replies are processed by a
quorum function to determine if a quorum has been received. Note that the quorum function is invoked every time a new
reply is received at the client, to evaluate whether or not the received set of replies constitutes a quorum.

Protocol developers using Gorums can specify RPC service methods using protobuf [30], and from this specification,
Gorums’s code generator will produce code to facilitate quorum calls and collection of replies. Each quorum call method
must provide a user-defined quorum function that Gorums will invoke to determine if a quorum has been received for that
specific quorum call. In addition, the quorum function will also provide a single reply value, based on a coalescing of the
received reply values from the different server replicas. This coalesced reply value is then returned to the client as the result
of its quorum call. That is, the invoking client does not see the individual replies.

The quorum functions for a specific protocol implementation must follow a well-defined interface generated by Gorums.
These only require a set of reply values as input and a return of a single reply value together with a boolean quorum
decision. Hence, quorum functions can easily be tested using manually written unit tests. However, some quorum functions
involve complex logic, and their input and output domains may be large, and so generating test cases from a model, provide
significant benefit for verifying their correctness.

A quorum call is implemented by a set of RPCs, invoked at different servers, and so must consider different interleavings
due to invocations by different clients. Hence, using model-based testing we can produce sequences of interleavings aimed
at finding bugs in the server-side implementations of the RPC methods and also in the Gorums runtime system.

Fig. 14 gives the Prepare quorum call module of the Prepare substitution transition in Fig. 6. This module models the
behavior of the quorum call and quorum function abstractions provided by Gorums for sending the 〈Prepare〉 messages from
a Proposer (leader) to Acceptors when the transition SendPrepareMessages occurs. Then, after such 〈Prepare〉 messages are
handled by Acceptors, the replied 〈Promise〉 messages from Acceptors can be processed when the transition ApplyPrepareQF
occurs, which models the behavior of the Prepare quorum function. The logic to implement such quorum function will be
discussed in §4.2.

154 Paper B

264 R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

Fig. 14. The Prepare quorum call module.

type SinglePaxosServer interface {
Prepare(context.Context, *PrepareMsg) (*PromiseMsg, error)
Accept(context.Context, *AcceptMsg) (*LearnMsg, error)
Commit(context.Context, *LearnMsg) (*Empty, error)
ClientHandle(context.Context, *Value) (*Response, error)
Ping(context.Context, *Heartbeat) (*Heartbeat, error)

}

Listing 1: The SinglePaxosServer interface that Paxos replicas must implement.

Our goal in this paper is to provide a framework for generating test cases to validate the correctness of the Gorums
implementation itself, in addition to different quorum function and quorum call implementations for our Gorums-based
Paxos implementation.

4.2. Implementing single-decree Paxos using Gorums

We have implemented the single-decree Paxos protocol as our system under test, using Gorums and the Go programming
language. The system consists of n = 2 f + 1 replicas that run the Paxos protocol, taking client requests as input, aimed at
reaching consensus on a single output response. The implementation corresponds to the CPN model discussed in §2 and §3.

In our implementation, we first define a set of RPC service methods for Paxos using the interface description lan-
guage (IDL) of protocol buffers [30]. This IDL is then supplied to the Gorums code generator, which generates the code
necessary to invoke quorum calls for the methods defined in the IDL. Each of the Paxos replicas must implement the Sin-
glePaxosServer interface shown in Listing 1, which is generated from the IDL. The methods Prepare(), Accept() and
Commit() in this interface represent Paxos quorum calls that can be invoked by the different replicas in order to access and
update each other’s Paxos state.

In addition to the Paxos methods mentioned above, the SinglePaxosServer interface also contains ClientHandle()
and Ping(). The former is a quorum call used by clients to communicate their proposed value to the Paxos replicas and
receive the decided value. Recall that multiple clients can propose a value, possibly simultaneously, but only one of the
proposed values will be decided, and returned to all clients. The Ping() is simply a regular RPC call used by the failure
detector to determine if a replica has failed.

In the following, we explain the main control flow of the single-decree Paxos protocol, as shown in Listing 2; ignoring
error handling and ctx initialization. On Line 3 of the Proposer, the Prepare() quorum call sends a 〈Prepare〉 message to
the Acceptors, whom return 〈Promise〉 messages back to the Proposer. Once a quorum of promises has been received,

Paper B 155

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 265

1 func (p *Proposer) runPaxosPhases() error {
2 preMsg := &PrepareMsg{Rnd: crnd}
3 prmMsg, err := p.config.Prepare(ctx, preMsg)
4 if prmMsg.GetVrnd() != Ignore {
5 p.cval = prmMsg.GetVval()
6 }
7 accMsg := &AcceptMsg{Rnd: crnd, Val: p.cval}
8 lrnMsg, err := p.config.Accept(ctx, accMsg)
9 ackMsg, err := p.config.Commit(ctx, lrnMsg)

10 return nil
11 }

Listing 2: Proposer’s code for Paxos phases, slightly simplified, and without error handling.

type QuorumSpec interface {
PrepareQF(replies []*PromiseMsg) (*PromiseMsg, bool)
AcceptQF(replies []*LearnMsg) (*LearnMsg, bool)
CommitQF(replies []*Empty) (*Empty, bool)
ClientHandleQF(replies []*Response) (*Response, bool)

}

Listing 3: The QuorumSpec interface must be implemented to process replies.

1 type PaxosQSpec struct {
2 quorum int
3 }
4
5 func (q PaxosQSpec) PrepareQF(replies []*PromiseMsg) (*PromiseMsg,bool) {
6 if len(replies) < q.quorum {
7 return nil, false
8 }
9 reply := &PromiseMsg{Rnd: replies[0].GetRnd()}

10 for _, r := range replies {
11 if r.GetVrnd() >= reply.GetVrnd() {
12 reply.Vrnd = r.GetVrnd()
13 reply.Vval = r.GetVval()
14 }
15 }
16 return reply, true
17 }

Listing 4: The PrepareQF processes 〈Promise〉 replies from replicas.

the Prepare() quorum call returns with a single combined 〈Promise〉 message. We explain later in this section, how we
leverage Gorums’s quorum function abstraction to determine whether or not a quorum has been received, and how to
combine the replies into a single 〈Promise〉 message.

Next, the Proposer determines from the 〈Promise〉 if any of the Acceptors have voted in a previous round, vrnd. If
so, the corresponding value from the 〈Promise〉 message (Line 5) that was voted for, must also be used by the Proposer
when constructing its 〈Accept〉 message on Line 7. Otherwise, the Proposer uses the value cval that it received from a
client.

At this stage the Proposer invokes the Accept() quorum call, asking the Acceptors to choose the value included in
the 〈Accept〉 message. The Acceptors respond back with a 〈Learn〉 message, followed by the Proposer invoking the
Commit() quorum call to propagate the decision to the Learners, which concludes the protocol.

We have implemented the SinglePaxosServer interface methods on an object of type PaxosReplica, encap-
sulating the state and behavior of the Paxos agents: Proposer, Acceptor, and Learner. The behavior of each agent
corresponds to different CPN models in §3. Further, the PaxosReplica takes care of dispatching the method calls to their
respective Paxos agents.

We now turn our attention to the handling of replies from quorum calls. For each quorum call defined in the IDL,
Gorums adds a quorum function signature to an interface called QuorumSpec, as shown in Listing 3. This interface must
be implemented by the protocol developer; Listing 4 shows the implementation of the PrepareQF quorum function. These
methods are implemented on the PaxosQSpec type, which holds information about the quorum size (Line 2).

156 Paper B

266 R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

Fig. 15. Overview of the test framework.

PrepareQF is called by the Gorums runtime with the set of replies that have been received so far; it is called once
for each reply. In the first part (Lines 6–8), we check if there are enough replies to return from the quorum call, or return
false to signal to Gorums that we must wait for more replies.

If enough replies have been received, we continue to construct a combined 〈Promise〉 message by examining all the
replies, and picking the value, v val, from the 〈Promise〉 message with the highest voted round, vrnd. If such a locked-in
value is found in the replies, this means that the Proposer is constrained and must continue to use this value in the
remainder of the protocol. Otherwise, the Proposer is unconstrained, and can pick its own client value.

Similar constructs are used for all the methods in the QuorumSpec interface, but we do not show them here. However, we
note that one of the benefits of using Gorums’s quorum functions is that they are amenable to unit testing.

5. Test case execution

To perform model-based testing of our Paxos implementation described in §4.2, we have implemented a client appli-
cation, which together with the Paxos implementation and Gorums constitute the SUT. Fig. 15 gives an overview of our
test framework, which consists of CPN Tools and a test adapter. Our test approach involves three steps: (a) use CPN Tools
to construct a test model of our SUT; (b) perform simulation-based test case generation by using the MBT/CPN library to
generate test cases with oracles represented in an XML format; (c) implement a test adapter to execute the generated test
cases on the SUT, and compare the test results against generated oracles.

5.1. The test adapter

A central part of our test approach is the development of a test adapter which can execute the system and unit test
cases generated from CPN Tools using our MBT/CPN library [10] (discussed in §6). The test adapter consists of a reader
and a tester, both implemented in Go. The reader of the adapter can read test cases with oracles in the XML format
generated from the CPN test model. The tester component has been implemented using the testing package from the Go
standard library. Go’s testing infrastructure comprises the go test command which allows us to simply run and execute
our generated tests and obtain pass/fail information for each test case execution. Moreover, the Go testing infrastructure
includes a tool which can be used to evaluate our approach by measuring the statement coverage for both unit and system
tests.

5.2. Test case execution

We distinguish between unit and system tests for our SUT. The unit tests are used to test the central protocol logic used
to implement the single-decree Paxos protocol, such as quorum functions discussed in §4. The system tests are used to
test the complete Paxos implementation and Gorums library with clients. This separation provides a modular approach to
testing. Additionally, under system tests, we consider failure scenarios for the Paxos replicas when in different Paxos phases,
cf. Fig. 8.

5.2.1. Unit tests
The test adapter implements a Go-based tester that can execute the unit tests obtained from the reader. The tester

invokes the methods to be tested with the supplied input values, and upon completion compares the results against the

Paper B 157

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 267

<Test Name="TestPrepareQF">
<TestCase ID="1">

<TestValues>
<PromiseMsg>

<Rnd>0</Rnd>
<Vrnd>0</Vrnd>
<Vval></Vval>

</PromiseMsg>
<PromiseMsg>

<Rnd>0</Rnd>
<Vrnd>0</Vrnd>
<Vval></Vval>

</PromiseMsg>
</TestValues>
<TestOracles>

<Quorum>true</Quorum>
<PromiseMsg>

<Rnd>0</Rnd>
<Vrnd>0</Vrnd>
<Vval></Vval>

</PromiseMsg>
</TestOracles>

</TestCase>
</Test>

Fig. 16. XML format for PrepareQF().

test oracle’s expected output, also obtained from the reader. The unit tests can be performed without running the Paxos
protocol and clients. The methods we consider for unit tests include PrepareQF() and AcceptQF(), discussed in §3 and §4.2.
Fig. 16 shows an excerpt from the XML representation of a test case for PrepareQF(), which corresponds to a test case where
Paxos is configured with three replicas and the quorum size is two. The test input for the PrepareQF() method in the test
case is two 〈Promise〉 messages with values for the fields Rnd, V rnd and V val. The expected output of the PrepareQF()
is a 〈Promise〉 message together with the Quorum boolean true, indicating that a quorum was obtained for these input
messages.

5.2.2. System tests
Execution of the system tests requires that the Paxos replicas are running and ready to handle the requests from clients

so that we can test the complete system including the Gorums library.
Therefore, for system tests, the tester first starts the Paxos replicas and then iterates through the test cases obtained from

the reader. For each test case, the tester starts clients in order to send client requests to the Paxos replicas. Each client has
a single request value to send for consensus. As an example, the test adapter can execute two clients concurrently to send
their requests to the Paxos replicas. After the Paxos replicas have decided, a response value is sent back to the clients. The
tester checks whether the response for each client belongs to the expected responses (oracles) and whether the responses
are the same for all clients, i.e., the consensus was reached.

In addition to testing success scenarios, we also test scenarios with different types of failures. This includes forcing
the failure detector to timeout, triggering a new leader to be promoted. In this way, we can test leader changes and
fault tolerance of the Paxos protocol. To make the implementation amenable for such failure scenarios during system test
execution, our test adapter must be able to observe the messages exchanged between the replicas, and to interfere, for
example, in a test case where we simulate a lost message or trigger a timeout.

We have considered three major harnessing approaches below for how we can effectively test a particular scenario, and
we motivate our final choice. Further details on the first two approaches and their pros and cons can be found in [31].

In the first approach, one would isolate the involved (Unix) processes in individual, networked, containers or virtual
machines, and if necessary interfere with the environment by, e.g., introducing network partitions. This is a heavy-weight
approach, where a lot of implementation effort will have to be spent on manipulating the environment based on a test
case description. Also, the test case adapter coordinating the environment needs an understanding of the messages to be
exchanged between replicas, so that it can decide that a particular setup has now been reached and it should interfere.

The second approach is more light-weight in that the Paxos replicas would connect to the test adapter instead of directly
to each other. The test adapter can then observe the protocol and either relay message, or introduce faults [32]. This
approach can reuse marshaling logic in the test adapter, which makes analyzing the message content easier than in the
virtual machine approach above.

Our approach is even more light-weight in that we do not use an external test adapter. Instead, to track the state of a
replica, we compile an instrumented version of the server that contains several points for test case interaction. By using
this approach, we can use test cases to describe not only the successful scenarios, but also different failure scenarios and
guide the test case execution. As an example, consider a Paxos configuration with three replicas. A test case may contain
events that cause the leader to fail during either the first or the second phase of the Paxos protocol. After such a failure, a
new leader will eventually emerge, restarting the Paxos phases. In a configuration with five replicas, a test case can, e.g., be

158 Paper B

268 R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

<Test Name="systemtest">
<TestCase ID="1">

<TestValues>
<ClientPropose>M1</ClientPropose>
<ClientPropose>M2</ClientPropose>
<P1Failure>1</P1Failure>

</TestValues>
<TestOracles>

<Leader>0</Leader>
<Leader>1</Leader>
<Response>M1</Response>
<Response>M2</Response>

</TestOracles>
</TestCase>

</Test>

Fig. 17. XML format for testing a three-way replicated Paxos system.

configured to let the first leader fail in the first phase, and after the second leader emerges and the Paxos phases restart, the
second leader can be made to fail in the second phase. Finally, the third leader can restart and complete the Paxos phases
successfully.

To enable the test adapter to know when it is possible to inject a failure, we have instrumented the Proposer with
an AdapterConnector to communicate the Proposer’s state, such as the current leader and which Paxos phases have
completed, to the test adapter. Moreover, between each state change, the Proposer will wait for a decision from the test
adapter to determine if the current Paxos phase should fail, e.g. triggering a leader failure. The decisions made by the test
adapter regarding failures of the Paxos phases are configured for each test case in the XML file. Fig. 17 shows an example
of a test case for the Paxos protocol with three replicas, where there is a failure in the first Paxos phase. The test input for
this example consists of two clients sending requests concurrently to the Paxos replicas. The test oracles include the legal
responses from Paxos replicas, and the expected leaders. Leader 0 is the first leader, and after it fails, leader 1 becomes the
new leader. The test adapter checks whether the correct leaders are chosen, and whether the response returned to each
client belongs to the set of legal responses. Furthermore, it also tests whether the responses obtained by all clients are
equal, so that we can determine if they have reached consensus.

6. Model validation and test case generation

For the test case generation we rely on the MBT/CPN library [10], which we have developed as an extension to CPN Tools.
The MBT/CPN library is based on extracting test cases from execution sequences of the CPN model by partially observing
occurring events. MBT/CPN supports both state space and simulation-based test case generation. State space-based test
case generation works for finite-state models and is based on computing all reachable state and state changes of the CPN
model. Simulation-based test case generation is based on running a set of simulations and extracting test cases from the
corresponding set of executions.

The CPN test model for the Paxos protocol has an infinite state space and also for restricted and representative con-
figurations with a finite state space, state-based test case generation is infeasible due to the state explosion problem. We
therefore only use state space for validating the CPN model for small configurations (see §6.1) in order to gain confidence in
the correctness of the test generation CPN model. For the test case generation itself, we rely on simulation-based test case
generation due to the high complexity of the Paxos protocol.

6.1. Model validation

A distinct advantage of relying on formal models such as CPNs for test case generation is that restricted configurations of
the test case generation model with a finite state space can be verified using model checking prior to test case generation.
This can be used to increase confidence in the correctness of the test case generation model and the generated test cases.
To obtain configurations of the Paxos CPN test generation model with a finite state space, we have bounded the behavior of
the Paxos agent roles such that only a finite number of messages can be generated in the system.

Specifically, we consider configurations of our CPN model with two clients, where each client can send one client re-
quest message (modeled as a string) into the Paxos system. These two request messages can be sent in any order, and the
Paxos system then makes a decision on which client request message should be chosen and handled. The model terminates
when both clients have received the decision response from the Paxos system. For the Paxos agent roles, we have limited
the number of messages when executing the Paxos phases by configuring an upper bound of one on the number of time-
outs/failures. This is done by means of place FDControl discussed in §3.1 and shown in Fig. 8. The most complex scenario
currently covered is where the first Paxos phase fails once, then the Paxos system restarts the first phase; but this time the
second phase fails once and the Paxos system restarts again, and then Paxos completes successfully for both phases. This
scenario involves the Proposer (leader) sending the 〈Prepare〉 message three times, the 〈Accept〉 message two times, and
the 〈Commit〉 message once.

Paper B 159

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 269

In other words, we explicitly model failure scenarios where messages timeout or get lost in particular phases of the
protocol, and combinations thereof. After the associated restarts of the Paxos protocol in the presence of these failures, the
model lets the run complete successfully without further errors.

We have used the model checker and ASK-CTL library available in CPN Tools to verify that the CPN model (in the
restricted configurations) satisfies the correctness properties S1–S3 and L1–L2 as formulated in §2. The ASK-CTL library
makes it possible to specify temporal properties in a state and event-oriented variant of the computation tree logic (CTL).
Below we show how the behavioral properties can be specified in CTL relative to the developed test case generation CPN
model. We use M(p) to denote the marking (multi-set of tokens) on a place p in the marking (state) M . For a token
(value) t , we use t ∈ M(p) to denote that t is a token on place p in the marking M .

S1 Only a proposed value may be chosen: To check this property we consider the place ServerResponse in Fig. 2. Proposed
values are represented as tokens on place ClientRequest in the initial marking (state), and the chosen consensus
value will appear as a token on place ServerResponse. The property can therefore be formulated in CTL as:

AG (t ∈ M(ServerResponse) ⇒ t ∈ M0(ClientRequest))

S2 Only a single value is chosen: As any chosen value will appear as a token on place ServerResponse we can verify this
property by checking that there is at most one token on this place in any reachable state. In CTL this can be
formulated as:

AG (|M(ServerResponse)| ≤ 1)

S3 Only a chosen value may be learned by a correct replica: We consider the tokens on AcceptorState (Fig. 9) of the form
(r, rnd, vrnd, v) where the first component specifies the replica and the last component specifies the chosen value.
The value learned by each replica will appear as tokens on place Response (Fig. 3), where the first component
specifies the replica and the second component specifies the learned value. To account only for correct replicas,
we consider the fusion place FailedReplica (Fig. 8) and restrict the property to replicas not present on this place.
The property can therefore be checked using the following CTL formula where R denotes the set of replicas:

AG(∀r ∈ R \ M(FailedReplica) :
(r, v) ∈ M(Response) ⇒ ∃(r′, rnd, vrnd, v) ∈ M(AcceptorState))

L1 Some proposed value is eventually chosen: For this property we can check that eventually a token will be put on place
ServerResponse. In CTL this can be formulated as:

AG AF (M(ServerResponse) -= ∅)

L2 Once a value is chosen, correct replicas eventually learn it: We consider the place AcceptorState holding any chosen
value, and check that this value is eventually learned by non-failing replicas by considering the place Response in
Fig. 3. In CTL this property can be formulated as:

AG (∃(r, rnd, vrnd, v) ∈ M(AcceptorState) ⇒
AF(∀r ∈ R \ M(FailedReplica) : (r, v) ∈ M(Response))

We have executed the above queries against the test case generation CPN model configured with two replicas which
yields a relatively small state space with less than 2000 states. In the process of checking these properties we found a
number of minor modeling errors that we were then able to correct. In particular, we use the support in CPN Tools to
obtain error traces (in case a property was violated) which helped in identifying the source of the problem. Even if the
Paxos model is too complex to conduct model checking for larger configurations (due to the state space size), being able to
verify the model for smaller configurations increases the confidence in the correctness of our test case generation for larger
configurations of the Paxos protocol.

6.2. Test case specification

Test case generation from the CPN model requires identification of observable events originating from occurrences of
transitions. A test case is comprised of observable events, where the input events represent stimuli to the system and the
output events represent the expected outputs used as test oracles to determine the pass/failure of a test case. The formal
foundation used to check whether the execution of the SUT conforms to the specification as provided by the test case is
hence based on trace equivalence.

The generation of test cases with MBT/CPN requires an implementation of a test case specification defined by the Standard
ML signature (interface) shown in Listing 5.

160 Paper B

270 R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

signature TCSPEC = sig
val detection : Bind.Elem -> bool;
val observation : Bind.Elem -> TCEvent list;
val format : TCEvent -> string

end;

Listing 5: Signature for test case specification.

fun detection (Bind.DecidedValue’Request _) = true
| detection (Bind.DecidedValue’Apply_RequestQF _) = true
| detection (Bind.PhaseOne’Process_PromiseMsg _) = true
| detection (Bind.PhaseTwo’Process_LearnMsg _) = true
| detection _ = false;

exception obsExn;
fun observation (Bind.DecidedValue’Request (_,b)) = [InEvent (SYS_Propose (#value b)]
| observation (Bind.DecidedValue’Apply_RequestQF (_,b) = [OutEvent (SYS_Decide (#value b))]
| observation (Bind.PhaseOne’Process_PromiseMsg (_,b) = [InEvent (SYS_P1Failure (#crnd b))]
| observation (Bind.PhaseTwo’Process_LearnMsg (_,b) = [InEvent (SYS_P2Failure (#rnd b)))]
| observation _ = raise obsExn;

Listing 6: Implementation of test case specification for system level tests.

The type Bind.Elem is an existing data type in CPN Tools representing binding elements, i.e., a transition and an as-
signment of values to the variables of the transition. The type TCEvent is the type defined for observable events. The
detection function is a predicate on binding elements that evaluates to true for binding elements representing observable
events. The purpose of the observation function is to map an observable binding element into an observable input or out-
put event belonging to the TCEvent type. The observation function may return a list of observable events in case one
might want to split a binding element into several observable events in the test case. Finally, the formatting function maps
observable events into a string representation which is used in order to export the test cases into files.

For the Paxos protocol we generated both system test and unit tests. The system level test is concerned with the proposed
values, chosen value, selected leaders, and failure of replicas. The unit test are concerned with testing the quorum functions,
which forms the core of the Gorums-based implementation. Listing 6 shows a slightly simplified implementation of the
detection and observation function for system level tests. We omit the formatting function as the XML format for test cases
is already described in §5.2.

The first two binding elements for which the detection function returns true correspond to events representing the
proposal and choice of a value. The two next binding elements correspond to events representing replica failures. The obser-
vation function then generates the observable events, which can be either an InEvent representing stimuli to the system
or an OutEvent representing expected outputs. The implementation of the test case specification for unit tests covers the
prepare, accept, and commit quorum functions and the implementation is similar to the system test case specification.

6.3. Experimental results on statement coverage

We have used statement coverage to evaluate the quality of our test case generation. Several other metrics exist to
assess test coverage, but currently only statement coverage is supported by the Go tool chain. Table 1 summarizes the
experimental results obtained using simulation-based test case generation for the Paxos protocol. We have considered Paxos
configurations with 3 and 5 replicas and generated 1, 2, 5 and 10 simulation runs of the CPN model. As we did not see any
increase in the number of test cases by going from 5 to 10 simulations, we did not increase the number of simulation runs
further. The table shows the coverage obtained for the different subsystems of our Paxos implementation. Note that the
Unit tests are for the quorum functions and hence not applicable for the other subsystems. The two numbers written below
System tests and Unit tests gives the total number of test cases generated for 3 and 5 replica configurations, respectively.
The test case generation for each configuration considered took less than 10 seconds, and the execution of each test case
took less than one minute.

The results show that, for the configuration with both 3 and 5 replicas, the statement coverage of unit tests for Prepare
and Accept quorum functions are up to 90% and 85.7%, respectively. For the system tests, the statement coverage for Prepare,
Accept and Commit quorum calls reaches 83.9%, respectively; the results of statement coverage for Prepare and Accept
quorum functions are up to 100%; for the Paxos implementation (Paxos core in the table), the Proposer module’s statement
coverage reaches 97.4%; the statement coverage of the Acceptor module is up to 100%; the statement coverages of the
Failure Detector and Leader Detector modules reach 75.0% and 91.4%, respectively; the statement coverage of the Paxos
replica module (discussed in §4.2) reaches 91.4%; for the Gorums library as a whole, the highest statement coverage reaches
51.8%. The results and test cases considered above validate that the implementation of the single-decree Paxos system
and the Gorums framework work in both correct scenarios and scenarios involving failures of replicas. The reason for the
lower coverage results of the Gorums library is that Gorums contains code generated by Gorums’s code generator, and
among them, various auxiliary functions and error handling code that are not used by our current implementation. The
total number of lines of code for the SUT is approximately 3890 lines, which include generated code by Gorums’s code

Paper B 161

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 271

Table 1
Experimental results for test case generation and execution.

Subsystem Component System tests Unit tests

Test cases for 3/5 replicas

15/38 74/424

Coverage

Gorums library 51.8% –

Paxos core Proposer 97.4% –
Acceptor 100.0% –
Failure Detector 75.0% –
Leader Detector 91.4% –
Replica 91.4% –

Quorum calls Prepare 83.9% –
Accept 83.9% –
Commit 83.9% –

Quorum functions Prepare 100.0% 90.0%
Accept 100.0% 85.7%

generator (around 3150 lines), the code for Paxos replica (around 110 lines), the client code (around 80 lines), the Proposer
code (around 170 lines), the Acceptor code (around 40 lines), the code for failure detector (around 170 lines), the code for
leader detector (around 100 lines), and the code for quorum functions (around 70 lines).

As part of analyzing the test results and executing generated test cases, we have discovered bugs in the implementation
of the Paxos protocol, which are not captured by using manually written table-driven tests in Go. We have found bugs
related to: the leader detector elects a wrong leader; only the leader’s failure detector is executed; the elected new leader
obtains a wrong round number; clients cannot receive responses from the Paxos replicas; the Paxos system can only handle
one request from one client; and after the current leader fails, the failed leader executes the Paxos phases again. This shows
how our MBT approach is able to detect non-trivial programming errors in complex distributed systems protocols.

7. Related work

Chubby [33] was one of the first implementations of Paxos that were deployed in a production environment, and thus
were extensively tested. The authors highlight that at the time (2007), it was unrealistic to prove correct a real system of
that size. Thus to achieve robustness, they adopted meticulous software engineering practices, and tested their system thor-
oughly. One of their testing strategies was to test their implementation when subjected to a random sequence of network
outages, message delays, timeouts, process crashes and recoveries, schedule interleavings, and so on. Using our CPN model
and our generated tests, we aim to test many of the same attributes in a more systematic manner.

Modbat is an MBT tool implemented in Scala and hence compatible with Java bytecode-based applications [34]. Models
are specified as annotated, non-deterministic extended finite state machines. Modbat explores the transition system and
executes the calls specified on the transitions. It has been used successfully in a similar setting as ours on the ZooKeeper
distributed coordination service. It explores different possible interleavings and non-deterministic outcomes due to schedul-
ing decisions or network communication in the real system which are judged by an oracle essentially implementing a model
checking component. Unlike our CPN models, the specifications are not for consumption by other tools such as model check-
ers, nor is there an interactive component that allows exploring a particular execution of the model. As in our approach, it
requires some manual effort connecting the engine to the SUT.

A testing approach for true concurrency using I/O Petri nets has been discussed by Ponce de León et al. [35]. The authors
define a concurrent conformance relation for input–output labeled transitions systems, IOLTS. They present a test case
selection algorithm using criteria such as all paths of length n, or traversing each basic behavior a certain number of times.
Since test case selection is also a challenge in our setting, it remains an open question how their unfoldings would work in
our CPN setting.

MBT has been used with success (as measured through productivity gain) in Microsoft’s Protocol Documentation Quality
Assurance Process. Grieskamp et al. [31] used Spec Explorer on protocols, where a so-called model program describes the
test case, including how to check an observation against a possibly non-deterministic outcome. The main difference to our
work is that their model programs are rule-based, and as such only get a visual representation as a graph through state
space exploration. Our CPN models give developers a better overview as they directly link client- and server interactions.
Spec Explorer uses the coordination language Cord for slicing models into tractable subsets of test cases that may impact
coverage and completeness, but not correctness. We have not yet tackled the issue of test case selection, relying on user
interaction through simulation when state space exploration becomes infeasible.

A CPN-based test generation approach is proposed by Liu et al. [6]. This approach requires defining a conformance
testing-oriented CPN (CT-CPN) model and a PN-ioco relation which specifies how an implementation conforms to its spec-
ifications. Furthermore, this approach uses simulation-based test case generation algorithm for the CT-CPN model. In our

162 Paper B

272 R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273

approach, on the other hand, test cases can be generated directly by using a simulation-based approaches for an existing
implementation of the SUT. In addition, Wu, Schnieder, and Krause [7] use a model-based test generation technique based
on CPNs to verify a module of a satellite-based train control system. They use CPN Tools to generate the reachability graph
of the test model and then use state space analysis with CPN Tools to extract the expected output of each test case from
the path of the graph. However, their approach does not support simulation-based test case generation, which is of essential
for scalability. Zheng et al. [8] provide a technique for test cases and sequences generation. In their method, two algorithms
are used to generate test cases and sequences from a CPN model of the SUT. The CPN model is first used as input to their
APCO algorithm to generate an initial set of test cases. These test cases can then be converted to test sequences by using
their algorithm. After that, the set of original test cases and test sequences can be exported as XML formatted files. They
have applied their technique to a radio module in a centralized railway control system. In contrast to our approach, Zheng
et al. do not consider testing any failure scenarios of the system, do not handle any concurrent execution of the system, and
their approach has not been used to validate any distributed systems.

Formal verification of protocols for distributed systems tackles protocols on a more abstract level, and is interested in
finding flaws and inconsistencies primarily in the specification. Such approaches are not necessarily interested in a correct
implementation, and only rarely can executable code directly or automatically be derived from the specification. Formal
verification of such complex systems often suffers from undecidability issues that require careful management of any au-
tomation (see [36]), or substantial effort to encode the system in a decidable fragment (see Padon et al. [37] for their
encoding of Paxos and Multi-Paxos in EPR, the effectively-propositional fragment of first-order logic). We see our approach
of testing a concrete implementation as orthogonal to approaches that aim to validate the correctness of a protocol in gen-
eral: frequently, the final, often manual, step of actually programming a proven-as-correct algorithm introduces mistakes,
and also generated code may suffer from problems or assumptions about the underlying infrastructure (see e.g. Fonseca’s
analysis of IronFleet among others [38]).

8. Conclusions and future work

The main contribution of our work is an MBT approach for advanced distributed systems protocols based on formal
modeling. As we have illustrated on the Paxos protocol, application of our approach includes constructing a CPN testing
model for the system under test, executing simulation-based test case generation algorithms, and applying a test case exe-
cution framework which combines test cases obtained from CPN Tools and a test adapter. Our experiments with this testing
approach on a single-decree Paxos protocol implemented by the Gorums framework have demonstrated good code coverage
and considered both unit and system tests. Furthermore, for the system tests, we have considered not only tests represent-
ing successful, non-faulty executions of the Paxos protocol, but also tests in which replicas may fail during the protocol’s
execution, and show that the implementation can handle these failure scenarios. We have shown that our approach detected
errors and bugs in the Paxos implementation.

An attribute of our testing approach is that the constructed CPN testing model can also help us to obtain a better
understanding of a complex protocol to be implemented. Furthermore, our Paxos CPN testing model can also serve as a
basis for MBT of multi-decree Paxos and other fault-tolerant distributed systems implemented with the abstractions of
the Gorums framework. For example, given a distributed system implemented by the Gorums framework, it is only the
implementation of the quorum functions that needs to be changed when modeling the behaviors of quorum calls and
quorum functions.

Another attribute is that we have used simulation-based test case generation for the Paxos system with differently sized
configurations, e.g. with three or five replicas. Another contribution worth mentioning is our implementation of single-
decree Paxos using Gorums. It is well-known that the Paxos protocol is difficult to understand and implement correctly.
However, by leveraging the Gorums framework and its abstractions, our single-decree Paxos implementation is simpler and
hence more reliable than it would be without Gorums. Additionally, we expect that it will be relatively easy to extend our
implementation to multi-decree Paxos.

Our work opens up several paths for future work. For MBT of both successful scenarios of our Paxos protocol and
scenarios involving failure injections of replicas, we have obtained good statement coverage results for unit and system
tests. However, we need to consider more of Gorums’s code paths so that we can increase the results of the coverage for
the Gorums library itself. In order to do this, we need to test the Paxos protocol under additional failures scenarios and
adverse conditions, such as network errors and partitions. This will require extensions to the current CPN testing model
and XML format to describe and configure such failure scenarios so that we can use the generated test cases to guide
the test case execution based on different failures scenarios. This also requires an extension to the test adapter such that
it can execute the Paxos system under test with additional configurations in test cases to handle the failure scenarios. In
addition to the single-decree Paxos, we also plan to evaluate our testing approach on additional complex protocols in order
to evaluate the generality of our testing approach. In the short term, we are extending our current CPN testing model and
Go implementation to a multi-decree Paxos protocol, and then perform MBT for such a complex Paxos system.

References

[1] Jepsen, Distributed systems safety analysis, http://jepsen .io.

Paper B 163

R. Wang et al. / Journal of Logical and Algebraic Methods in Programming 104 (2019) 254–273 273

[2] M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Approach, Elsevier, 2010.
[3] K. Jensen, L.M. Kristensen, Coloured Petri Nets: a graphical language for modelling and validation of concurrent systems, Commun. ACM 58 (6) (2015)

61–70.
[4] CPN Tools, CPN Tools homepage, http://www.cpntools .org, 2017.
[5] L.M. Kristensen, K.I.F. Simonsen, Applications of Coloured Petri Nets for Functional Validation of Protocol Designs, Springer, 2013, pp. 56–115.
[6] J. Liu, X. Ye, J. Li, Colored Petri Nets model based conformance test generation, in: IEEE Symp. on Computers and Communications, ISCC, IEEE, 2011,

pp. 967–970.
[7] D. Wu, E. Schnieder, J. Krause, Model-based test generation techniques verifying the on-board module of a satellite-based train control system model,

in: 2013 IEEE Intl. Conf. on Intelligent Rail Transportation Proceedings, 2013, pp. 274–279.
[8] W. Zheng, C. Liang, R. Wang, W. Kong, Automated test approach based on all paths covered optimal algorithm and sequence priority selected algorithm,

IEEE Trans. Intell. Transp. Syst. 15 (6) (2014) 2551–2560, https://doi .org /10 .1109 /TITS .2014 .2320552.
[9] L.M. Kristensen, V. Veiset, Transforming CPN models into code for TinyOS: a case study of the RPL protocol, in: Proc. of ICATPN’16, in: Lecture Notes

in Computer Science, vol. 9698, Springer, 2016, pp. 135–154.
[10] MBT/CPN repository, https://github .com /selabhvl /mbtcpn, Aug 2018.
[11] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998) 133–169.
[12] L. Lamport, Fast Paxos, Distrib. Comput. 19 (2) (2006) 79–103, https://doi .org /10 .1007 /s00446 -006 -0005 -x.
[13] L. Lamport, D. Malkhi, L. Zhou, Vertical Paxos and primary-backup replication, in: Proceedings of the 28th ACM Symp. on Principles of Distributed

Computing, PODC ’09, ACM, Calgary, AB, Canada, 2009, pp. 312–313.
[14] I. Moraru, D.G. Andersen, M. Kaminsky, There is more consensus in egalitarian parliaments, in: ACM SIGOPS 24th Symp. on Operating Systems Princi-

ples, SOSP ’13, 2013.
[15] H. Meling, K. Marzullo, A. Mei, When you don’t trust clients: Byzantine proposer fast Paxos, in: 32nd IEEE International Conference on Distributed

Computing Systems, ICDCS, IEEE, 2012, pp. 193–202.
[16] M. Burrows, The Chubby lock service for loosely-coupled distributed systems, in: Proc. of the 7th Symp. on Operating Systems Design and Implemen-

tation, OSDI ’06, USENIX Association, 2006, pp. 335–350.
[17] D.F. Bacon, N. Bales, N. Bruno, B.F. Cooper, A. Dickinson, A. Fikes, C. Fraser, A. Gubarev, M. Joshi, E. Kogan, A. Lloyd, S. Melnik, R. Rao, D. Shue, C. Taylor,

M. van der Holst, D. Woodford, Spanner: becoming a SQL system, in: Proc. of the 2017 ACM Intl. Conf. on Management of Data, SIGMOD ’17, ACM,
Chicago, Illinois, USA, 2017, pp. 331–343.

[18] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, M. Deardeuff, How Amazon web services uses formal methods, Commun. ACM 58 (4) (2015)
66–73, https://doi .org /10 .1145 /2699417.

[19] H. Meling, L. Jehl, Tutorial summary: Paxos explained from scratch, in: R. Baldoni, N. Nisse, M. van Steen (Eds.), 17th International Conference on
Principles of Distributed Systems, OPODIS, in: Lecture Notes in Computer Science, vol. 8304, Springer, 2013, pp. 1–10.

[20] T.E. Lea, L. Jehl, H. Meling, Towards new abstractions for implementing quorum-based systems, in: Proc. of 37th IEEE Intl. Conf. on Distributed Com-
puting Systems, ICDCS, 2017, pp. 2380–2385.

[21] CPN testing model of the single-decree Paxos, http://dkan .isp .uni -luebeck.de /story /automated -tcs -gen -cpns, March 2018.
[22] L. Lamport, Paxos made simple, ACM SIGACT News 32 (4) (2001) 18–25.
[23] J.-P. Martin, L. Alvisi, Fast Byzantine consensus, IEEE Trans. Dependable Secure Comput. 3 (3) (2006) 202–215.
[24] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus with one faulty process, J. ACM 32 (2) (1985) 374–382, https://doi .org /

10 .1145 /3149 .214121.
[25] T.D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for solving consensus, J. ACM 43 (1996) 685–722, https://doi .org /10 .1145 /234533 .

234549.
[26] H. Attiya, A. Bar-Noy, D. Dolev, Sharing memory robustly in message-passing systems, J. ACM 42 (1) (1995) 124–142.
[27] L. Jehl, R. Vitenberg, H. Meling, SmartMerge: a new approach to reconfiguration for atomic storage, in: Y. Moses (Ed.), Distributed Computing – 29th

Intl. Symp., DISC 2015, in: Lecture Notes in Computer Science, vol. 9363, Springer, 2015, pp. 154–169.
[28] M. Vukolić, Quorum Systems: With Applications to Storage and Consensus, Synthesis Lectures on Distributed Computing Theory, vol. 3 (1), Morgan &

Claypool Publishers, 2012.
[29] Google Inc., gRPC remote procedure calls, http://www.grpc .io.
[30] Google Inc., Protocol buffers, http://developers .google .com /protocol -buffers.
[31] W. Grieskamp, N. Kicillof, K. Stobie, V. Braberman, Model-based quality assurance of protocol documentation: tools and methodology, Softw. Test. Verif.

Reliab. 21 (1) (2011) 55–71, https://doi .org /10 .1002 /stvr.427.
[32] H. Meling, A framework for experimental validation and performance evaluation in fault tolerant distributed system, in: Workshop on Dependable

Parallel, Distributed and Network-Centric Systems, DPDNS, IEEE, 2007, pp. 1–8.
[33] T.D. Chandra, R. Griesemer, J. Redstone, Paxos made live: an engineering perspective, in: Proceedings of the Twenty-Sixth Annual ACM Symposium on

Principles of Distributed Computing, PODC ’07, ACM, 2007, pp. 398–407.
[34] C. Artho, Q. Gros, G. Rousset, K. Banzai, L. Ma, T. Kitamura, M. Hagiya, Y. Tanabe, M. Yamamoto, Model-based API testing of apache ZooKeeper, in: 2017

IEEE Intl. Conf. on Software Testing, Verification and Validation, ICST, 2017, pp. 288–298.
[35] H. Ponce de León, S. Haar, D. Longuet, Model-based testing for concurrent systems: unfolding-based test selection, Int. J. Softw. Tools Technol. Transf.

18 (3) (2016) 305–318, https://doi .org /10 .1007 /s10009 -014 -0353 -y.
[36] C. Hawblitzel, J. Howell, M. Kapritsos, J. Lorch, B. Parno, M.L. Roberts, S. Setty, B. Zill, IronFleet: proving practical distributed systems correct, in:

Proceedings of the ACM Symposium on Operating Systems Principles, SOSP, ACM, 2015.
[37] O. Padon, G. Losa, M. Sagiv, S. Shoham, Paxos made EPR: decidable reasoning about distributed protocols, Proc. ACM Program. Lang. 1 (2017)

108:1–108:31, https://doi .org /10 .1145 /3140568.
[38] P. Fonseca, K. Zhang, X. Wang, A. Krishnamurthy, An empirical study on the correctness of formally verified distributed systems, in: Proc. of the Twelfth

European Conf. on Computer Systems, ACM, 2017, pp. 328–343.

164 Paper B

PAPER C
MBT/CPN: A TOOL FOR MODEL-BASED
SOFTWARE TESTING OF DISTRIBUTED SYSTEMS
PROTOCOLS USING COLOURED PETRI NETS

R. Wang, L. M. Kristensen, and V. Stolz

In Verification and Evaluation of Computer and Communication Systems, volume 11181 of
Lecture Notes in Computer Science, pages 97–113, Springer International Publishing, 2018.

MBT/CPN: A Tool for Model-Based
Software Testing of Distributed Systems

Protocols Using Coloured Petri Nets

Rui Wang(B), Lars Michael Kristensen, and Volker Stolz

Department of Computing, Mathematics, and Physics,
Western Norway University of Applied Sciences, Bergen, Norway

{rwa,lmkr,vsto}@hvl.no

Abstract. Model-based testing is an approach to software testing based
on generating test cases from models. The test cases are then executed
against a system under test. Coloured Petri Nets (CPNs) have been
widely used for modeling, validation, and verification of concurrent soft-
ware systems, but their application for model-based testing has only been
explored to a limited extent. The contribution of this paper is to present
the MBT/CPN tool, implemented through CPN Tools, to support test
case generation from CPN models. We illustrate the application of our
approach by showing how it can be used for model-based testing of a
Go implementation of the coordinator in a two-phase commit protocol.
In addition, we report on experimental results for Go-based implemen-
tations of a distributed storage protocol and the Paxos distributed con-
sensus protocol. The experiments demonstrate that the generated test
cases yield a high statement coverage.

1 Introduction

Society is heavily dependent on software and software systems, and design- and
implementation errors in software systems may render them unavailable and
return erroneous results to their users. It is therefore important to develop tech-
niques that can be used to ensure correct and stable operation of the software.

Model-based testing (MBT) [13] is a promising technique for using models of
a system under test (SUT) and its environment to generate test cases for the
system. MBT approaches and tools have been developed based on a variety of
modeling formalisms, including flowcharts, decision tables, finite-state machines,
Petri nets, state-charts, object-oriented models, and BPMN [6]. A test case usu-
ally consists of test input and expected output and can be executed against
the SUT. The goal of MBT is validation and error-detection by finding observ-
able differences between the behavior of an implementation and the intended
behavior. Generally, MBT involves: (a) constructing a model of the SUT and its
environment; (b) define test selection criteria for guiding the generation of test
cases and the corresponding test oracle representing the ground-truth; (c) gen-
eration and execution of test cases; (d) comparison of the output from the test

c© Springer Nature Switzerland AG 2018
M. F. Atig et al. (Eds.): VECoS 2018, LNCS 11181, pp. 97–113, 2018.
https://doi.org/10.1007/978-3-030-00359-3_7

Paper C 167

98 R. Wang et al.

case execution with the expected result from the test oracle. The component
that performs (c) and (d) is known as a test adapter and uses the test oracles to
determine whether a test has passed or failed.

Coloured Petri Nets (CPNs) [5] is a modeling language for distributed and
concurrent systems combining Petri nets and the Standard ML programming
language. Petri nets provide the primitives for modeling concurrency, synchro-
nization and communication while Standard ML is used for modeling data. Con-
struction and analysis of CPN models is supported by CPN Tools [2] which
have been widely used for modeling and verifying models of complex systems
for domains such as concurrent systems, communication protocols, and dis-
tributed algorithms [9]. Recently, work on automated code generation has also
been done [8]. Comprehensive testing is an important task in the engineering of
software, including the case of automated code generation, as it is seldom the
case that the correctness of the model-to-text transformations and their imple-
mentation can be formally established. We have chosen CPNs as the foundation
of our MBT approach due to its strong track record in modeling distributed
systems, and the support for parametric models and compact modeling of data.
Moreover, CPNs enables model validation prior to test case generation, and CPN
Tools supports both simulation and state space exploration which is paramount
for the development of our approach and for conducting practical experiments.

The main contribution of this paper is to present our approach to model-
based testing using CPNs and the supporting MBT/CPN tool. MBT/CPN
has been implemented on top of CPN Tools to support test case generation
from CPN models. It has been developed as part of our ongoing research into
MBT for quorum-based distributed systems [15]. The main idea underlying our
approach is for the modeler to capture the observable input and output events
(transitions) in a test case specification. A main facility of the tool is the uniform
support for both state space and simulation-based test case generation. A second
contribution of this paper is to experimentally evaluate the tool on a two-phase
commit protocol implemented using the Go programming language, and to sum-
marize experimental results from the application of MBT/CPN to a distributed
storage protocol [15] and the Paxos distributed consensus protocol [14]. The dis-
tributed storage protocol and the Paxos protocol have both been implemented
in the Go programming language [3] using a quorum-based distributed systems
middleware [10]. These experiments show a high statement coverage and demon-
strate in addition that the approach is able to detect programming errors via
the generation and execution of unit and system tests.

The rest of this paper is organized as follows. Section 2 gives an overview of
MBT/CPN and its software architecture. In Sect. 3 we introduce the two-phase
commit transaction protocol that we use as a running example to present the
features of MBT/CPN. Sections 4 and 5 explain how test case generation and
test case execution are supported. Section 6 presents our experimental evaluation
of MBT/CPN. In Sect. 7, we sum up conclusions and discuss related work. We
assume that the reader is familiar with the basic concepts of Petri nets. The
MBT/CPN tool is available via [11].

168 Paper C

MBT/CPN: A Tool for Model-Based Software Testing 99

2 Tool Overview and Software Architecture

The MBT/CPN tool is implemented in the Standard ML programming lan-
guage on top of the simulator of CPN Tools. In CPN models, Standard ML is
used to define the data types of the model, to declare the colour set of places
and the variables of transitions, for defining guards of transitions, and for the arc
expressions appearing on the arcs connecting places and transitions. MBT/CPN
provides the user with a set of Standard ML functions which can be invoked in
order to perform test case generation.

Figure 1 gives an overview of the modules that constitute MBT/CPN and
puts the tool into the context of model-based test case generation. The main
outputs of the MBT/CPN tool are files containing Test Cases which can be
read by a Reader of a test Adapter and executed by a Tester against the System
Under Test (SUT). The Tester will provide the input events as stimuli to the SUT
and compare the observed outputs from the SUT with the expected outputs.

Fig. 1. Overview of MBT/CPN modules.

The application of MBT/CPN
requires the user to identify
the observable events originat-
ing from occurrences of binding
elements in the CPN model. A
binding element is a pair con-
sisting of a transition and an
assignment of values to the vari-
ables of the transition. A bind-
ing element hence represents
a mode in which a transition
may be enabled and may occur.
A test case is comprised of
observable events where input
events represent stimuli to the
SUT and output events repre-
sent expected outputs. It is the expected outputs that are used as test oracles
during test case execution to determine the overall test outcome.

The MBT/CPN base module defines a generic colour set (data type) used to
represent the observable events in test cases:

colset TCEvent = union InEvent:TCInEvent + OutEvent:TCOutEvent;

The definition of the colour sets TCInEvent and TCOutEvent depends on the
SUT in terms of the events to be made observable. These must be defined by the
user of the tool and can use the standard colour set constructors in CPN Tools.
The tool supports two approaches for extracting test cases from the model:

State-space based test case generation. This approach is based on generat-
ing the state space of the CPN model and extracting test cases by considering
paths in the state space. This approach is implemented in the SSTCG module
on top of the state space tool of CPN Tools.

Paper C 169

100 R. Wang et al.

Fig. 2. Standard ML interface for test case specification.

Simulation-based test case generation. This approach is based on conduct-
ing a simulation of the CPN model and extracting the test case corresponding
to the execution. This approach is implemented in the SIMTCG module on
top of the simulation monitoring facilities of CPN Tools.

The state-space based approach works for finite-state models and is based
on computing all reachable states and state changes of the CPN model. The
simulation-based approach is based on running a set of simulations and extract-
ing test cases from the corresponding set of executions. The advantage of the
state-space based approach is that it covers all the possible executions of the
CPN model which gives a high test coverage. However, if the CPN model is com-
plex, the state-space based approach may be infeasible due to the state explosion
problem. The advantage of the simulation-based approach over the state-space
based approach is scalability when the complexity of the CPN model is high,
while the disadvantage is potentially reduced test coverage.

The CNF (configuration) module is shared between the state space- and
simulation-based test case generation. It supports configuring the output direc-
tories and naming of test cases, and configuration of a test case generation spec-
ification. The test case specification is used to specify the observable input and
output events during test case generation and is comprised of a:

Detection function constituting a predicate on binding elements that evaluates
to true for binding elements representing observable events.

Observation function which maps an observable binding element into an
observable input or output event belonging to the TCEvent colour set.

Formatting function mapping observable events into a string representation
which is used in order to export the test cases into files.

The test case specification is provided by the user implementing a Standard
ML structure satisfying the TCSPEC signature (interface) shown in Fig. 2. The
type Bind.Elem is an existing data type in CPN Tools representing binding
elements. The observation function is specified to return a list of observable
events to cater for the case where one might want to split a binding element into
several observable events in the test case. We will give examples of detection and
observation functions for the two-phase commit protocol example in Sect. 4.

The detection and observation functions are specified independently of
whether simulation-based or state space-based test case generation is employed.
This allows the input from the user to be specified in a uniform way, indepen-
dently of which approach will be used for the test case generation. This makes it

170 Paper C

MBT/CPN: A Tool for Model-Based Software Testing 101

Fig. 3. Standard ML interface for test case generation.

easy to switch between the two approaches. The tool invokes the detection func-
tion on each arc of the state space (occurring binding element in a simulation)
to determine whether the corresponding event is observable, and if so, then the
observation function will be invoked to map the corresponding binding element
into an observable event. The Export module implements the export of the test
cases into files and relies on the CNF module for persistence and naming.

When an implementation of the test case specification has been provided by
the user, the MBT/CPN tool can be used to generate test cases. The primitives
available for the user to control the test case generation are provided by the
Test Case Generation module which implements the TCGEN interface (signature)
partly shown in Fig. 3. The ss function is used for state-space based test case
generation. The sim function is used for simulation-based test case generation
and takes an integer as a parameter specifying the number of simulation runs
that should be conducted to generate test cases. Both functions return a list of
test cases, where each test case is comprised of a list of test case events (TCEvent).
The export function is used for exporting the test cases into files according to
the settings which the user provided via the CNF configuration module (Fig. 1).

3 Example: Two-Phase Commit Transaction Protocol

We use the two-phase commit transaction (TPC) protocol from [5] to explain
the use of MBT/CPN. The CPN model is comprised of four hierarchically
organized modules. Figure 4 shows the CPN module for the coordinator process
and Fig. 5 shows the CPN module for the worker processes. Figure 6 shows model-
based test case generation and exporting. Due to space limitations, we do not
show the top-level CPN module and have also omitted the submodule of the
CollectVotes substitution transition in Fig. 4. Each port place (place drawn with
a double border) in the coordinator module is linked via so-called port-socket
assignments to the accordingly named place in the workers module. The colour
sets and variable used are shown in Fig. 7.

The coordinator starts by sending a message to each worker (transition Send-
CanCommit), asking whether the transaction can be committed or not. Each
worker votes Yes or No (transition ReceiveCanCommit). The coordinator then
collects each vote as modeled by the CollectVotes submodule of the CollectVotes
substitution transition. Based on the collected votes, the coordinator sends back
an abort or commit decision.

Paper C 171

102 R. Wang et al.

The coordinator will decide on commit if and only if all workers voted yes.
The workers that voted yes then receive the decision (transition ReceiveDecision)
and send back an acknowledgement. The coordinator then receives all acknowl-
edgements (transition ReceiveAcknowledgement). After having executed the pro-
tocol, the place Completed will contain a token with colour abort or commit

depending on whether the transaction was to be committed or not.
When presenting MBT/CPN in the remainder of this paper, we show how

it can be used to generate test cases from the TPC CPN model. These can then
be executed by a test adapter against an implementation of the coordinator
process in the Go programming language. The workers module is used to obtain
input events (stimuli) for the coordinator implementation, and the coordinator
CPN module is used to obtain expected outputs (test oracles) which in turn
determine whether a test is successful or not. In that respect, the CPN module
of the coordinator serves as an abstract specification of the coordinator process
against which the behavior of the implementation can be compared.

Fig. 4. MBT/CPN example in CPN Tools: Coordinator module.

172 Paper C

MBT/CPN: A Tool for Model-Based Software Testing 103

4 Test Case Generation

The first step in using the MBT/CPN tool for test case generation is to
extend the TCEvent base colour set by defining the colour sets TCInEvent and
TCOutEvent according to the input and output events of the system that are to
be observed. For the TPC protocol, we can define the input events to be the
votes of the individual workers. The output events can be defined as the deci-
sions sent to the individual workers and the overall decision as to whether the
transaction is to be committed or aborted. Relying on the colour set definitions
already in the CPN model (Fig. 7), this can be implemented as shown in Fig. 8.
In the TCOutEvent colour set, WDecision is used for the decision sent to each
worker while SDecision is used for the overall system decision.

For the TPC protocol, the input events corresponding to the votes sent by
the workers can be obtained by considering occurrences of the ReceiveCanCommit
transition (Fig. 5), while the output events can be obtained by considering the
ReceiveDecision and ReceiveAcknowledgement transitions. This means that the

Fig. 5. MBT/CPN example in CPN Tools: Workers module.

Paper C 173

104 R. Wang et al.

Fig. 6. MBT/CPN example in CPN Tools: Model-based test case generation and
exporting.

Fig. 7. Colour set and variable declarations.

detection function for the TPC protocol must return true if and only if the
occurrence of the binding element corresponds to one of the above-mentioned
transitions. The implementation of the detection function is shown in Fig. 9.

The observation function maps binding elements into observable input and
output events. For the TPC protocol this function can be implemented as in
Fig. 10. The function accesses the values bound to the variables (w,vote, and
decision) of the transitions and uses the constructors of the TCEvent and
TCOutEvent data types to construct the observable events.

174 Paper C

MBT/CPN: A Tool for Model-Based Software Testing 105

Fig. 8. Definitions of the colour sets TCInEvent, TCOutEvent and TCEvent.

Fig. 9. The implementation of the detection function for the TPC protocol.

Fig. 10. The implementation of the observation function for the TPC protocol.

The MBT/CPN tool has built-in for exporting the test cases into an XML
format. The use of XML makes it easy to reuse the test generator for systems
under test implemented in different programming languages. The concrete XML
format will depend on the observable events and hence the user needs to provide
a format function as part of the test case generation specification that maps
each observable event into a string representing an XML element. This function
is typically implemented as a pattern match on the TCEvent data type. For the
TPC protocol it would for instance map the InEvent corresponding to worker
one (wrk(1)) voting No into the following XML element:

<Vote><WorkerID>1</WorkerID><VoteValue>0</VoteValue></Vote>

The complete formatting function for the TPC protocol is similar in com-
plexity to the detection and the observation functions.

5 Test Case Execution

To perform model-based testing using the test cases generated by MBT/CPN,
the developer (user) must implement a test Adapter as was shown in Fig. 1. The

Paper C 175

106 R. Wang et al.

implementation of the test adapter depends on the concrete SUT, but consists
of the same overall components independently of the SUT. To illustrate how
MBT/CPN test cases can be used, we outline how to implement a test adapter
for a Go implementation of the coordinator process. The adapter consists of
a Reader and a Tester. The implementation of the Reader (around 30 lines of
code) is based on the encoding/xml package from the Go standard library, while
the implementation of the Tester (around 80 lines of code) is based on testing
packages of the Go standard library. Go’s testing infrastructure allows us to
run the go test command to execute the test cases and it provides pass/fail
information for each test case. In addition, it provides information about code
coverage. The full Go implementation of the adapter and also the coordinator
SUT is available together with the MBT/CPN distribution [11].

The purpose of the reader is to read the XML files containing test cases and
convert them into a representation which can be used by the tester. In this case,
the encoding/xml package of the Go standard library supports the implementa-
tion of the Reader. The purpose of the tester is to provide input and read the
output from the SUT according to the test case being executed. Hence, the tester
serves as an intermediate between the test cases and the SUT. In this case, our
coordinator SUT is implemented in Go, and the communication between the
coordinator SUT and the tester is implemented using Go channels. The tester
provides input to the coordinator SUT via the channels and implements the test
oracles by comparing the values received with the expected output as specified
in the test case. An important property of the tester implementation is that it
is transparent to the coordinator SUT that it is interacting with the tester and
not a real set of worker implementations.

The messages exchanged between the tester and the coordinator SUT are
defined according to the mapping between the colour sets defined for messages
in the CPN model (Fig. 7) and corresponding types in Go. Figure 11 shows the
declarations of messages in Go for such communication which include CanCommit,
Vote, Decision and Ack (Go code organized in two columns to save space).

The Go implementation of the coordinator SUT itself follows closely the
CPN module of the coordinator (Fig. 4). Figure 12 shows the coordinator inter-
face implemented in Go, which consists of methods for sending and delivering
messages through channels. The method Start is the entry point of the coordi-
nator which starts the coordinator’s main control flow as a goroutine (thread).
Within this loop, the coordinator receives incoming Vote and Ack messages
through channels, delivered by the invocations of DeliverVote and DeliverACK

methods, respectively. The coordinator invokes CollectVotes method to col-
lect received Vote messages, and invoke SendDecision and SendFinalDecision

methods to send Decision messages and a final Decision message.

176 Paper C

MBT/CPN: A Tool for Model-Based Software Testing 107

Fig. 11. Message declarations in Go.

Fig. 12. Interface of the coordinator SUT in Go.

6 Experimental Evaluation

We report on experimental results on applying the MBT/CPN tool on the
two-phase commit protocol with the coordinator as the system under test. In
addition, we summarize experimental results obtained using our approach on
two larger case studies: a distributed storage protocol and the Paxos consen-
sus protocol. All three systems under test have been implemented in Go and
the distributed storage and consensus protocol furthermore rely on the Gorums
middleware [10]. The case studies illustrate the use of both simulation- and state
space based test case generation. We use statement coverage of the system under
test as the quantitative evaluation criteria of the test cases generated by our app-
roach. Other criteria exist such as branch-, condition-, and path coverage, but
these are currently not supported by the Go tool chain.

6.1 Two-Phase Commit Protocol

Table 1 gives experimental results from application of our approach to the two-
phase commit protocol for different number of workers W. The Gen column spec-
ifies the approach used for test case generation (state spaces (SS) or simulation

Paper C 177

108 R. Wang et al.

(SIM)). The Size-Steps column specifies the size of the state space (nodes/arcs)
and the number of simulation runs. The Test Cases column specifies the number
of test case generated and the Time gives the total time (in second) used for
test case generation (including state space generation and model simulation).
Finally, the Coverage gives the statement coverage obtained for the coordinator
implementation. The lines of code for the coordinator is around 120 lines.

Table 1. Experimental results for the two-phase commit protocol.

W Gen Size - Steps Test Cases Time Coverage

2 SS 59/86 4 <1 94.7%

2 SIM 5 3 <1 84.2%

2 SIM 10 4 <1 94.7%

3 SS 357/614 8 <1 94.7%

3 SIM 10 4 <1 94.7%

3 SIM 20 8 <1 94.7%

4 SS 2,811/5,957 16 5 94.7%

4 SIM 50 13 <1 94.7%

4 SIM 100 16 <1 94.7%

5 SIM 100 31 <1 94.7%

5 SIM 200 32 <1 94.7%

10 SIM 5000 1,015 13 94.7%

10 SIM 10000 1,024 25 94.7%

15 SIM 10000 8,627 91 84.2%

15 SIM 20000 14,946 265 94.7%

For simulation-based test case generation, we stopped increasing the num-
ber of simulations when reaching the same number of test cases as obtained
with state space based generation which represents the maximum number of
test cases that can be obtained. It can be seen that as W increases more sim-
ulations are needed in order to reach the maximum number of test cases. In
general, we recommend using state-space based test case generation whenever
possible as it ensures coverage of all executions of the CPN model, and resort
to simulation-based test case generation if the state space is too big to be gen-
erated with the available computing power. For the two-phase commit protocol
we have not pursued state space based test case generation beyond four workers
as it becomes quite time consuming. It can, however, be seen that simulation-
based test case generation can easily handle configurations with 5, 10, and 15
workers demonstrating the scalability of simulation-based test case generation.
The coverage results show that test cases generated based on state space and
simulation based approaches can both reach 94.7%. The reason why the results
do not reach 100% is that the coordinator contains error handling code, which is

178 Paper C

MBT/CPN: A Tool for Model-Based Software Testing 109

not covered by the generated test cases, as any failures are not part of the model.
The other coming two examples also have failures modeled explicitly. Further,
the results also show that the statement coverage for both SIM-5 and SIM-10000
is 84.2%. This is a consequence of the simulation-based approach not covering
all the possible executions of the CPN model in the absence of guided search.
The longest time used for test case execution was approximately four hours (case
SIM-20000) with more than 14,000 test cases.

6.2 Distributed Storage Protocol

The distributed storage protocol has been implemented by the Go language and
Gorums framework. It is a single-writer, multi-reader distributed storage using
read and write quorum calls and functions. The quorum calls and functions
are abstractions provided by the Gorums framework/library. Clients can then
invoke a write call with read calls concurrently and/or sequentially to access
the distributed storage. By using our MBT/CPN tool, we have generated test
cases based on the state-space based exploration to perform both system tests by
invoking the read and write quorum calls concurrently and sequentially, and unit
tests for quorum functions. The CPN model of the distributed storage makes it
possible to generate system test cases for both successful scenarios and scenarios
involving server failures and programming errors. We use a state-space based
approach since the state space of the CPN testing model of the distributed
storage protocol is relatively small. This is due to the fact that the CPN model
describes the distributed storage system at a high level of abstraction which in
turn means that we obtain all test cases without encountering state explosion.

Table 2 gives the experimental results obtained using different test drivers
to invoke the read and/or write quorum calls concurrently and/or sequentially,
without server failures included. The test drivers we have considered include:
one read call (RD), one write call (WR), a read call followed by a write call
(RD;WR), a write call followed by a read call (WR;RD), a read and a write call
executed concurrently (WR||RD), a read and a write call executed concurrently
and followed by a read call ((WR||RD);RD).

The results show that, for successful execution scenarios, the statement cov-
erage for read (RD-QF) and write (WR-QF) quorum functions is 100% for both
system and unit tests, as long as both read and write calls are involved. The
statement coverage for read (RD-QC) and write (WR-QC) quorum calls is up to
84.4%. For the Gorums library as a whole, the statement coverage reaches 40.8%.
The total number of lines of code for the system under test is approximately 2100
lines. The highest number of generated test cases for systems tests involving quo-
rum calls is 6; the highest number of test cases for unit tests is 17. These test
cases are generated within 2 s.

In addition to the successful scenarios, we has also considered to test the
system under programming errors and server failures. We injected programming
errors in the read and write quorum functions for the distributed storage such
that the clients receive incorrectly replies from the storage system. The results
show that our test adapter can capture injected errors by using generated test

Paper C 179

110 R. Wang et al.

Table 2. Experimental results for distributed storage protocol.

Test driver Test case execution (coverage in percentage)

System Unit

ID Name Gorums library QCs QFs

RD WR RD WR

S1 RD 24.6 84.4 0 100 0

S2 WR 24.6 0 84.4 0 100

S3 RD;WR 39.1 84.4 84.4 100 100

S4 WR;RD 40.8 84.4 84.4 100 100

S5 WR||RD 40.8 84.4 84.4 100 100

S6 (WR||RD);RD 40.8 84.4 84.4 100 100

cases from our MBT/CPN tool. For server failures scenario, we mainly test
the fault tolerance of the distributed storage system. For example, a distributed
storage system with three servers can tolerate one server failure. The test adapter
we implemented can terminate one or more servers during the test case execution.
We considered the S6 driver from Table 2 and created a scenario where S6 is
executed first, then there is one or more server failures, and then S6 is repeated.
The results for the scenario involving server failures show that the statement
coverage for read (RD-QF) and write (WR-QF) quorum functions stay the same
(100%) for both system and unit tests. The coverage for read (RD-QC) and
write (WR-QC) quorum calls is increased from 84.4% to 96.7%. For the Gorums
library as a whole, the statement coverage is increased from 40.8% to 52.3%.

6.3 Paxos Consensus Protocol

Paxos is a consensus protocol that can handle a group of server replicas to con-
struct a replicated service, and ensure fault-tolerance. It is far more complex
than the distributed storage system and the two-phase commit protocol. We
have applied our MBT/CPN tool to validate a Go implementation of the single-
decree Paxos. For such an implementation, each Paxos server replica implements
a proposer, an acceptor, and a learner subsystem. In addition to these sub-
systems, the implementation also includes software components for failure and
leader detection. Further, the communication and message handling between
Paxos subsystems are implemented with quorum calls and functions (prepare,
accept, and commit), which are abstractions from the Gorums framework. The
total number of lines of code for the single-decree Paxos protocol is approxi-
mately 3890 lines.

The Paxos protocol is too complex for state space exploration, and we have
therefore used simulation-based test case generation with up to 10 simulation
runs. A summary of our experimental results is shown in Table 3. It shows the
statement coverage obtained for the different Paxos subsystems, quorum calls

180 Paper C

MBT/CPN: A Tool for Model-Based Software Testing 111

and functions. Note that the unit tests are only for the quorum functions. The
total number of generated test cases for 3 and 5 replicas configurations, respec-
tively are given below System tests and Unit tests in the table. The time used to
generate test cases for each configuration is less than 10 s, and the time used to
execute each test case is less than one minute.

Table 3. Experimental results for test case generation and execution.

Subsystem Component System tests Unit tests

15/38 74/424

Gorums library 51.8% -

Paxos core Proposer 97.4% -

Acceptor 100.0% -

Failure Detector 75.0% -

Leader Detector 91.4% -

Replica 91.4% -

Quorum calls Prepare 83.9% -

Accept 83.9% -

Commit 83.9% -

Quorum functions Prepare 100.0% 90.0%

Accept 100.0% 85.7%

The results show that, for unit tests, the statement coverage of Prepare and
Accept quorum functions reach 90% and 85.7%, respectively. For system tests,
the statement coverage of Prepare, Accept and Commit quorum calls are up to
83.9%, respectively; the statement coverage for the Failure Detector and Leader
Detector modules are 75.0% and 91.4%, respectively; the statement coverage of
the Paxos replica module is up to 91.4%; for the Gorums library as a whole, the
highest statement coverage is 51.8%.

7 Conclusions

The MBT/CPN tool augments the CPN Tools with facilities for model-based
test case generation, and is based on the user identifying observable events for-
malized in a test case specification. As illustrated on the TPC protocol, this
entails implementing a detection, observation, and formatting function which is
applied by the tool during test case generation. An important feature of our
approach is the uniform support for test case generation based on state spaces
and simulation. We have shown by practical experiments on the TPC protocol,
the distributed storage protocol, and the Paxos consensus protocol that we can
obtain a high SUT code coverage and that our approach can be used to detect
implementation errors.

Paper C 181

112 R. Wang et al.

The application of MBT in the context of CPNs have until now been limited.
Xu [16] presents the Integration and System Test Automation (ITSA) tool which
supports test code generation for languages such as Java, C/C++, and C! based
on state spaces. To obtain concrete test cases with input data, the ITSA tool
relies on a separate model implementation mapping. In contrast, we obtain the
input data for the system under test and call directly from the data contained in
the testing model. Tretmans et al. have presented the TorX [12] tool which is used
to randomly generate test cases based on a walk through the state space. The test
cases can be generated either offline or on-the-fly during the test execution. There
is also an adapter component in TorX to translate the inputs to be readable by
the system under test, and check the actual outputs from the system under test
against expected outputs. Conformiq Qtroniq [4] can be used to derive functional
test cases from a system model, and can generate test cases online or offline by
using a symbolic execution algorithm. Such test cases then are mapped into the
TTCN-3 format. The expected outputs can also be generated from the model.
The Automatic Efficient Test Generation (AETG) [1] tool is aimed at efficient
generation of test cases by decreasing the number of test data required for the
input test space. However, the test oracles have to be furnished manually.

There are several interesting directions to further develop the MBT/CPN
tool. Related to [17], one area is to provide a higher degree of automation when
implementing the test adapter such that for instance the data types required in
the adapter implementation can be automatically obtained. For simulation-based
test case generation investigating how a search heuristic can be specified and
synthesized is an important. Such heuristics will most likely require knowledge
about the SUT implementation and its CPN model specification. For the latter,
we are currently investigating how to measure so-called Modified Condition/De-
cision Coverage, which is prescribed e.g. in safety critical system development
[7]. Another direction for future work is to investigate if the use of partial state
spaces combined with a search heuristics can provide a fruitful middle ground
between simulation-based and state space-based test case generation.

References

1. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23(7),
437–444 (1997)

2. CPN Tools. CPN Tools homepage. http://www.cpntools.org
3. Google Inc., The Go Programming Language. https://golang.org
4. Huima, A.: Implementing conformiq qtronic. In: Petrenko, A., Veanes, M., Tret-

mans, J., Grieskamp, W. (eds.) FATES/TestCom -2007. LNCS, vol. 4581, pp. 1–12.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73066-8 1

5. Jensen, K., Kristensen, L.: Coloured petri nets: a graphical language for modelling
and validation of concurrent systems. Comm. ACM 58(6), 61–70 (2015)

6. Jorgensen, P.: The Craft of Model-Based Testing. CRC Press, Boca Raton (2017)
7. Kelly, J.H., Dan, S.V., John, J.C., Leanna, K.R.: A Practical Tutorial on Modified

Condition/Decision Coverage. Technical report (2001)

182 Paper C

MBT/CPN: A Tool for Model-Based Software Testing 113

8. Kristensen, L.M., Veiset, V.: Transforming CPN models into code for TinyOS: a
case study of the RPL protocol. In: Kordon, F., Moldt, D. (eds.) PETRI NETS
2016. LNCS, vol. 9698, pp. 135–154. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-39086-4 10

9. Kristensen, L.M., Simonsen, K.I.F.: Applications of coloured petri nets for func-
tional validation of protocol designs. In: Jensen, K., van der Aalst, W.M.P., Balbo,
G., Koutny, M., Wolf, K. (eds.) Transactions on Petri Nets and Other Models
of Concurrency VII. LNCS, vol. 7480, pp. 56–115. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38143-0 3

10. Lea, T.E., Jehl, L., Meling, H.: Towards new abstractions for implementing
quorum-based systems. In: Proceedings of 37th IEEE International Conference
on Distributed Computing Systems (ICDCS), pp. 2380–2385 (2017)

11. MBT/CPN. Repository, January 2018. https://github.com/selabhvl/mbtcpn.git
12. Tretmans, G., Brinksma, H.: TorX: automated model-based testing. In: Hartman,

A., Dussa-Ziegler, K. (eds.) 1st European Conference on Model-Driven Software
Engineering, vol. 12, pp. 31–43 (2003)

13. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verifi. Reliab. 22, 297–312 (2012)

14. Wang, R., Kristensen, L., Meling, H., Stolz, V.: Automated test case generation for
the paxos single-decree protocol using a coloured petri net model. J. Log. Algebraic
Method. Programm. (JLAMP) (Submitted)

15. Wang, R., Kristensen, L., Meling, H., Stolz, V.: Application of model-based testing
on a quorum-based distributed storage. In: Proceedings of PNSE 2017, CEUR
Workshop Proceedings, vol. 1846, pp. 177–196 (2017)

16. Xu, D.: A tool for automated test code generation from high-level petri nets. In:
Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp.
308–317. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21834-
7 17

17. Xu, D., Xu, W., Wong, W.E.: Automated test code generation from class state
models. Int. J. Softw. Eng. Knowl. Eng. 19(04), 599–623 (2009)

Paper C 183

PAPER D
VISUALIZATION AND ABSTRACTIONS FOR
EXECUTION PATHS IN MODEL-BASED
SOFTWARE TESTING

R. Wang, C. Artho, L. M. Kristensen, and V. Stolz.

In Integrated Formal Methods, volume 11918 of Lecture Notes in Computer Science, pages
474–492, Springer International Publishing, 2019.

Visualization and Abstractions
for Execution Paths in Model-Based

Software Testing

Rui Wang1(B), Cyrille Artho2, Lars Michael Kristensen1, and Volker Stolz1

1 Department of Computing, Mathematics, and Physics,
Western Norway University of Applied Sciences, Bergen, Norway

artho@kth.se
2 School of Computer Science and Communication,

KTH Royal Institute of Technology, Stockholm, Sweden
{rwa,lmkr,vsto}@hvl.no

Abstract. This paper presents a technique to measure and visualize
execution-path coverage of test cases in the context of model-based soft-
ware systems testing. Our technique provides visual feedback of the tests,
their coverage, and their diversity. We provide two types of visualizations
for path coverage based on so-called state-based graphs and path-based
graphs. Our approach is implemented by extending the Modbat tool
for model-based testing and experimentally evaluated on a collection of
examples, including the ZooKeeper distributed coordination service. Our
experimental results show that the state-based visualization is good at
relating the tests to the model structure, while the path-based visualiza-
tion shows distinct paths well, in particular linearly independent paths.
Furthermore, our graph abstractions retain the characteristics of distinct
execution paths, while removing some of the complexity of the graph.

1 Introduction

Software testing is a widely used, scalable and efficient technique to discover
software defects [17]. However, generating sufficiently many and diverse test
cases for a good coverage of the system under test (SUT) remains a challenge.
Model-based testing (MBT) [21] addresses this problem by automating test-case
generation based on deriving concrete test cases automatically from abstract
(formal) models of the SUT. In addition to allowing automation, abstract test
models are often easier to develop and maintain than low-level test scripts [20].
However, for models of complex systems, an exhaustive exploration of all possible
tests is infeasible, and the decision of how many tests to generate is challenging.

Visualizing the degree to which tests have been executed can be helpful in
this context: visualization can show if different parts of the model or SUT have
been explored equally well [13], if there are redundancies in the tests [13], and if
there are parts of the system that are hard to reach, e. g., due to preconditions
that do not hold [3]. In this paper, we focus on the visualization of test paths
on the test model, as this provides a higher level of abstraction than the SUT.

c© Springer Nature Switzerland AG 2019
W. Ahrendt and S. L. Tapia Tarifa (Eds.): IFM 2019, LNCS 11918, pp. 474–492, 2019.
https://doi.org/10.1007/978-3-030-34968-4_26

Paper D 187

Visualization and Abstractions for Execution Paths 475

The main contribution of this paper is to present a technique to capture and
visualize execution paths of the model covered by test cases generated with MBT.
Our approach records execution paths with a trie data-structure and visualizes
them with the aid of lightweight abstractions as state-based graphs (SGs) and
path-based graphs (PGs). These abstractions simplify the graphs and help us to
deal with complexity in moderately large systems. The visual feedback provided
by our technique is useful to understand to what degree the model and the SUT
are executed by the generated test cases, and to understand execution traces
and locate weaknesses in the coverage of the model. Being based on the state
machine of the model, the state graph focuses on the behaviors of a system in
relation to the test model. The path graph shows paths as transition sequences
and eliminates crossing edges.

Our second contribution is to provide a path coverage visualizer based on the
Modbat model-based API tester [2]. Our tool extends Modbat and enables the
visualization of path coverage without requiring modifications of the models.
Users of the tool can choose to visualize all execution paths in the SGs and
PGs, or limit visualization to subgraphs of the SGs and PGs for models of large
and complex systems. Our third contribution is an experimental evaluation on
several model-based test suites. We analyze the number of executed paths against
quantitative properties of the graphs. We show how edge thickness and colors
help to visualize the frequency of transitions on executed paths, what kinds
of paths have higher coverage than others, and what kinds of tests succeed or
fail. We also compare the resulting SGs and PGs with full state-based graphs
(FSGs) and full path-based graphs (FPGs). The FSGs and FPGs are the graphs
without applying abstractions; they are used only in this paper for comparison
with the SGs and PGs. We show that our abstraction technique helps to reduce
the number of nodes and edges to get concise and abstracted graphs.

The rest of this paper is organized as follows. Section 2 gives background on
extended finite state machines and Modbat. In Sect. 3, we give our definition
of execution paths and the trie data structure used for their representation.
In Sect. 4, we introduce our approach for the path coverage visualization. In
Sect. 5, we present the two types of graphs and the associated abstractions used.
Section 6 presents our experimental evaluation of the path coverage visualizer
tool and analyzes path coverage of selected test examples. In Sect. 7, we discuss
related work, and in Sect. 8 we sum up conclusions and discuss future work.

2 Extended Finite State Machines and Modbat

We use extended finite state machines (EFSMs) as the theoretical foundation for
our models and adapt the classical definition [6] to better suit its implementation
as an embedded language, and several extensions that Modbat [2] defines.

Definition 1 (Extended Finite State Machine). An extended finite state
machine is a tuple M = (S, s0, V, A, T) such that:

– S is a finite set of states, including an initial state s0.

188 Paper D

476 R. Wang et al.

– V = V1 × . . . × Vn is an n-dimensional vector space representing the set of
values for variables.

– A is a finite set of actions A : V → (V,R), where res ∈ R denotes the result
of an action, which is either successful, failed, backtracked, or exceptional.
A successful action allows a test case to continue; a failed action constitutes a
test failure and terminates the current test; a backtracked action corresponds
to the case where the enabling function of a transition is false [6]; exceptional
results are defined as such by user-defined predicates that are evaluated at
run-time, and cover the non-deterministic behavior of the SUT. We denote
by Exc ⊂ R the set of all possible exceptional outcomes.

– T is a transition relation T : S ×A×S ×E; for a transition t ∈ T we denote
the left-side (origin) state by sorigin(t) and the right-side (destination) state
by sdest(t), and use the shorthand sorigin → sdest if the action is uniquely
defined. A transition includes a possible empty mapping E : Exc → S, which
maps exceptional results to a new destination state.

Compared to the traditional definition of an EFSM [6], we merge the enabling
and update functions into a single action α ∈ A, and handle inputs and outputs
inside the action. Actions deal with preconditions, inputs, executing test actions
on the SUT, and its outputs. An action may also include assertions; a failed
assertion causes the current test case to fail. Finally, transitions support non-
deterministic outcomes in our definition.

Modbat. Modbat is a model-based testing tool aimed at performing online test-
ing on state-based systems [2]. Test models in Modbat are expressed as EFSMs
in a domain-specific language based on Scala [18]. The model variables can be
arbitrarily complex data structures. Actions can update the variables, pass them
as part of calls to the SUT, and use them in test oracles.

Figure 1(left) shows the ChooseTest model that we will use as a simple run-
ning example to introduce the basic concepts of Modbat and our approach to
execution path visualization and abstraction. A valid execution path in a Modbat
model starts from the initial state and consists of a sequence of transitions. The
first declared state automatically constitutes the initial state. Transitions are
declared with a concise syntax: “origin” → “dest” := {action}. The ChooseTest
model in Fig. 1 consists of three states: “ok”, “end”, and “err”. It also uses
require in the action part as a precondition to check if a call to the random
function choose returns 0 (10% chance). Only in that case is the transition from
“ok” to “err” enabled. Function assert is then used to check if a subsequent
call to choose returns non-zero. If 0 is returned (10% chance), the assertion
fails. Thus, transition “ok” → “err” is rarely enabled; and if enabled, it fails
only infrequently.

Choices. Modbat supports two kinds of choices: (1) Before a transition is exe-
cuted, the choice of the next transition is available. (2) Within an action, choices

Paper D 189

Visualization and Abstractions for Execution Paths 477

Fig. 1. Model ChooseTest (left) with steps and internal choices (right).

can be made on parameters that can be used as inputs to the SUT or for com-
putations inside the action. The latter are internal choices, which can be choices
over a finite set of numbers or functions. These choices are obtained in Modbat
by calling the function choose. In our example, the action in transition “ok” to
“err” has two internal choices shown as c0 and c1 in Fig. 1 (right).

Transitions and Steps. We divide an action into smaller steps to distinguish
choices between transitions from internal choices inside an action. A step is a
maximal-length sequence of statements inside an action that does not contain
any choices. Our definition of choices corresponds to the semantics of Modbat,
but also that of other tools, such as Java Pathfinder [22], a tool to analyze
concurrent software that may also contain non-deterministic choices on inputs.

Action Results. Modbat actions (which execute code related to transitions) have
four possible outcomes: successful, backtracked, failed, or exceptional. A suc-
cessful action allows a test case to continue with another transition, if available.
An action is backtracked and resets the transition to its original state if any
of its preconditions are violated. An action fails if an assertion is violated, if
an unexpected exception occurs, or if an expected exception does not occur.
In our example, the action of transition “ok” to “err” is backtracked if the
require-statement in the action evaluates to false, and the action fails if the
assert-statement evaluates to false. Exceptional results are defined by custom
predicates that may override the destination state (sdest(t)) of a transition t;
see above. If no precondition or assertion is violated, and no exceptional result
occurs, the action is successful.

3 Execution Paths and Representation

Path coverage concerns a sequence of branch decisions instead of only one branch
at a time. It is a stronger measurement than branch coverage, since it considers
combinations of branch decisions (or statements) with other branch decisions (or
statements), which may not have been tested according to the plain branch or
statement coverage [16]. It is hard to reach 100% path coverage, as the number
of execution paths usually increases exponentially with each additional branch
or cycle [15].

190 Paper D

478 R. Wang et al.

A finite execution path is a sequence of transitions starting from the initial
state and leading to a terminal state. A terminal state in our case is a state
without outgoing transitions, or a state after a test failed. We denote by Sterminal

the set of terminal states.

Definition 2 (Execution Path). Let M = (S, s0, V, A, T) be an EFSM. A
finite execution path p of M is a sequence of transitions, which constitute a path
p = t0t1 . . . tn, tn ∈ T , such that sorigin(t0) = s0, the origin and destination
states are linked: ∀i, 0 < i ≤ n, sorigin(ti) = sdest(ti−1), and sdest(tn) ∈ Sterminal .

We first represent the executed paths in a data structure based on the tran-
sitions executed by the generated test cases, and then use this to visualize path
coverage of a test suite in the form of state-based and path-based graphs.

We record the path executed by each test case in a trie [5]. A trie is a prefix
tree data structure where all the descendants of a node in the trie have a common
prefix. Each trie node n stores information related to an executed transition,
including the following: t (executed transition); ti (transition information); trc
(transition repetition counter) to count the number of times transition t has been
executed repeatedly without any other transitions executing in between during a
test-case execution, with a value of 1 equalling no repetition; tpc (transition path
counter) to count the number of paths that have this transition t executed trc
times in a test suite; Ch, the set of children of node n; and lf , a Boolean variable
to decide if the current node is a leaf of the tree. The transition information ti
consists of the sorigin(t) and sdest(t) states of the transition, a transition identifier
tid , a counter cnt to count the number of times this transition is executed in a
path, an action result res, which could be successful, backtracked, or failed, and
sequences of transition-internal choices C for modeling non-determinism.

As an example, consider a test suite consisting of three execution paths:
p0 = [a → b, b → b, b → c, c → d], p1 = [a → b, b → b, b → b, b → c, c → d], and
p2 = [a → b, b → b, b → e], where a, b, c, d, and e are states. These execution
paths can be represented by the trie data structure shown in Fig. 2 where the
node labeled root represents the root of the trie. Note that this data structure is
not a direct visual representation of the paths and it is not the trie data structure
that we eventually visualize in our approach. Each non-root node in the trie in
Fig. 2 has been labeled with the transition it represents. As an example, node 1
represents the transition a → b and node 2 represents the transition b → b. This
reflects that all the three execution paths stored in the trie have a → b followed
by b → b as a (common) prefix. Each non-root node also has a label representing
the transition counters associated with the node. For the transition counters,
the value before the colon is trc (transition repetition counter), while the value
after the colon is tpc (transition path counter). For example, the transition b → b
associated with node 2 has been taken three times in total. Two paths, (p0 and
p2) execute this transition once (label trc=1:tpc=2), while one path p1 executes
it twice (label trc=2:tpc=1). A parent node and a child node in the trie are
connected by a mapping 〈tid , res〉)→ n in each node which associates a transition
identifier and action result (res) with a child (destination) node n.

Paper D 191

Visualization and Abstractions for Execution Paths 479

Fig. 2. Example trie data structure representing three executed paths.

Fig. 3. Basic visualization elements of the state-based graphs (SGs). (Color figure
online)

4 Path Coverage Visualization

Our path coverage visualizer can produce two types of directed graphs: state-
based graphs (SGs) and path-based graphs (PGs). These two types of graphs
are produced based on the data stored in the trie data structure representing
the executed paths of the testing model. Figures 3 and 4 illustrate the basic
visualization elements of the SGs and PGs, respectively, with the help of the
DOT Language [9], which can be used to create graphs with Graphviz tools [4].

The SGs and PGs have common node and edge styles (shape, color and thick-
ness) to indicate different features of the path- execution coverage visualization.

Node Styles. We use three types of node shapes in the graphs for path coverage
visualization. Elliptical nodes represent states in the SG as shown in Fig. 3.
Point nodes represent the connections between transitions/steps in the PG
as shown in Fig. 4. Diamond nodes visualize internal choices in both the SGs
and PGs as shown in Figs. 3e and 4e. Each diamond node has a value inside
indicates the chosen value. There is also an optional counter value label aside
each diamond node to show how many times this choice has been taken. The
edge labels of the format n : m will be discussed later.

192 Paper D

480 R. Wang et al.

Fig. 4. Basic visualization elements of the path-based graphs (PGs). (Color figure
online)

Edge Styles. A directed edge in both the SGs and PGs represents an executed
transition and its related information as stored in the trie structure. We distin-
guish different kinds of edges based on the action results, using shape and color
styles. Black solid edges are used to represent successful transitions (Figs. 3a and
4a). Blue dotted edges are used to visualize backtracked transitions (Figs. 3d and
4d). Red solid edges labeled (f) are used to visualize failed transitions (shown
in Figs. 3b and 4b). Black solid loops represent self-transitions (Figs. 3c and 4c)
and are used when sdest(t) and sorigin(t) of a transition t are the same state.
Black dotted edges labeled (e) are used to represent exceptional results for the
SG (shown in Fig. 3f). This allows the visualization to distinguish between the
normal destination state sdest(t) and the exception destination state. For the
PG, this kind of edge is ignored by merging the point nodes of sorigin(t) and the
exception destination state of a transition t into one point node. If a transition
t consists of multiple steps (Figs. 3e and 4e), we only apply the edge styles to
the last step edge which connects to sdest(t), while other step edges use a black
solid style.

Each edge may have a label for additional information, such as transition
identifier tid , and values of the counters trc and tpc. Here we use the format
trc : tpc. It is optional to show these labels. For example, in both Figs. 3 and 4,
the values of counters are all 1 : 1 indicates that each transition in a test case is
executed only once without any repetitions, and there is only one path that has
this transition executed.

The thickness of an edge indicates how frequently a transition is executed for
the entire test suite. The thicker an edge is, the more frequently is its transition
executed. Let nTests be the total number of executed test cases. Then, the

thickness of an edge is given by ln(
∑

count∗100
nTests + 1), where the value of count

is the tpc value of a transition in each path if there are no internal choices for
this transition. If a transition has internal choices, then we use the value of the
counter for each internal choice as the value of count. Since we merge edges in the
graphs corresponding to the same transitions or the same choices from different
paths, we then compute the sum of values of counts obtained for the transition
or choice.

Paper D 193

Visualization and Abstractions for Execution Paths 481

5 State-Based and Path-Based Graphs

We now present the details of the state-based (SG) and path-based (PG) graphs
with abstractions that form the foundation of our visualization approach. These
abstractions underly the reduced representation of the execution paths.

McCabe [12] proposed basic path testing and gave the definition of a linearly
independent path. A linearly independent path is any path through a program
that contains at least one new edge which is not included in any other linearly
independent paths. A subpath q of an execution path p is a subsequence of
p (possibly p itself), and an execution path p traverses a subpath q if q is a
subsequence of p. In this paper, for the visualization of execution paths, we
merge subpaths from different linearly independent paths in both SG and PG
with the aid of the trie data structure.

5.1 State-Based Graphs

An SG is a directed graph SG = (Ns, Et), where Ns ≡ {ns0
, ns1

, . . . , nsi
} is a

set of nodes including both elliptical nodes representing states with their names
and diamond nodes representing internal choices with their values as discussed
in Sect. 4. Elliptical nodes use the name of their state as node identifier; diamond
nodes are identified by a tuple 〈v , cn〉, where v is the value of the choice, and
cn is an integer number starting from 1 and increasing with the number of dia-
mond nodes. Et ≡ {et0 , et1 , . . . , eti

} is a set of directed edges representing both
transitions and steps. These edges connect nodes according to node identifiers.

An SG is an abstracted graph of the unabstracted full state-based graph
(FSG). An FSG may have redundant edges representing the same transition/step
between two states; it may also contain choices with the same choice value
appearing more than once. These situations, in general, contribute to making
the FSG large, complex and difficult to analyze, especially for large and com-
plex systems. Note that the FSG is only used by us to show its complexity in
this paper for comparison with the SG. The FSG for the ChooseTest model
(discussed in Sect. 3) is already very dense after only 100 test cases (see Fig. 5).

ok

end 8 4 7 9 6 0 8 2 5 4 7 1 9 6 0

2

err

2 5 4 9 3

Fig. 5. FSG for 100 test cases of ChooseTest.

In order to reduce the complexity of graphs such as Fig. 5, we abstract the
FSG to get the SG, and use edge thickness to indicate the frequency of transitions
in the executed paths. We use the ChooseTest model with 1000 executed test
cases as an example to show how the SG is obtained in four abstraction steps:

194 Paper D

482 R. Wang et al.

1. Merge edges of subpaths: the trie data structure is used to merge subpaths of
linearly independent paths when storing transitions in the trie. As discussed
for Fig. 2, transition a → b followed by b → b is a (common) prefix for all the
three execution paths p0, p1 and p2. In other words, all these three execution
paths traverse the subpaths a → b and b → b. Therefore, to obtain the SG,
edges representing transition a → b and b → b from three execution paths
are merged into one edge by the trie data structure. We then use an edge
label of the form “trc : tpc” to show how a transition represented by this
edge is executed. (Here, we do not show edge labels due to space limitations.)
After merging edges of subpaths, we get only linearly independent paths in
the graph. Fig. 6 shows the graph of the ChooseTest model after merging
subpaths. There are seven linearly independent paths: p0 = [ok → end],
p1 = [ok → ok , ok → end], p2 = [ok → ok , ok → err(backtracked), ok →
end], p3 = [ok → ok , ok → err], p4 = [ok → err(backtracked), ok → end],
p5 = [ok → err(failed)] and p6 = [ok → err].

2. Merge edges of linearly independent paths: from Fig. 6, it can be noticed that
after merging edges of subpaths, the graph may still have redundant edges
between two states that represent the same transition with the same action
result from different linearly independent paths. For example, there are four
edges between the “ok” and “end” states, from four linearly independent
paths: p0, p1, p2 and p4. We merge such edges into one single edge. We also
aggregate the path coverage counts. The aggregated counts can be shown as
an optional edge label on the form “trc : tpc”, using “;” as the separator, e. g.,
“1 : 304; 1 : 158; 1 : 177; 1 : 290” for the edge between the “ok” and “end”
states after merging p0, p1, p2 and p4.

3. Merge internal choice nodes: internal choice nodes of a transition are merged
in two ways. First, based on Step 1, when storing transitions in the trie, each
transition has recorded choice lists; we merge choice nodes from different
choice lists if these choice nodes have the same choice value and they are
a (common) prefix of choice lists. For example, for choice lists [0, 1, 3] and
[0, 1, 3] (0, 1, 2, 3 are choice values), we notice that these two choice lists both
have choice nodes with value 0 and 1, and they are a (common) prefix for
these two lists. We then merge choice nodes with value 0 and 1 to become one
choice node, respectively, when storing transitions in the trie. Second, if there
are still choice nodes of a transition from different linearly independent paths,
with the same value appearing more than once, such as choices in Fig. 6, then
we merge them into one choice node during Step 5.1. For both approaches,
we get the result of the sum of the values of counters of merged choice nodes.
This result denotes the total number of times a choice value appears in the
SG, and it can then be shown in addition to the outcome of the choice on the
label of the final choice node after merging. Note that to avoid visual clutter,
we elide showing the target state for backtracked transitions.

4. Merge loop edges: loop edges represent self-transition loops and backtracked
transitions; they are merged if they represent the same transition with the
same action result.

Paper D 195

Visualization and Abstractions for Execution Paths 483

ok

end 8 2 5 4 7 1 9 3 6 0 8 2 5 4 7 1 9 3 6 0 0

2 4 7 1 9 3

err

0

(f)

8 2 5 4 7 1 9 3 6

Fig. 6. The graph for 1000 test cases of ChooseTest after merging subpaths.

ok

end 8 2 5 4 7 1 9 3 6 0 0

8 2 5 4 7 1 9 3 6

err

0

(f)

Fig. 7. SG for 1000 test cases of ChooseTest with all abstractions applied.

Figure 7 illustrates the final SG with all abstractions after 1000 test cases.
One characteristic of the SG is that it is a concrete instance of its underlying state
machine graph. The EFSM shows potential transitions, whereas the SG shows
the actually executed steps of actions, and internal choices for non-determinism.
For example, Fig. 7 is a concretization of the state machine shown in Fig. 1. As
shown in Fig. 1, the transition “ok” → “err” has a precondition with an internal
choice over values 0 to 9 (see Fig. 7). Only choice 0 enables this transition; the
transition is backtracked the original state “ok” otherwise, as shown with the
blue dotted edges. If the transition is enabled by a successful choice with value
0, the assertion, which is another internal choice that fails only for value 0 out
of 0 to 9, is executed; its failure is shown by the red solid (failing) edge in Fig. 7.

5.2 Path-Based Graphs

The PG is a directed graph PG = (Np, Et), where Np ≡ {np0
, np1

, . . . , npi
} is a

set of nodes, including point nodes representing connections between transitions
and diamond nodes representing internal choices with their values (see Sect. 4);
and Et ≡ {et0 , et1 , . . . , eti

} is a set of directed edges representing both transitions
and steps. They connect nodes using the identifiers of nodes.

The nodes in PG in contrast to SG do not correspond to states in the EFSM;
instead, each node corresponds to a step in a linear independent path through
the EFSM. Therefore, each point node is allocated a point node identifier pn, an
integer starting from 0 (we elide the label in the diagrams here). The value of pn

196 Paper D

484 R. Wang et al.

8 2 5 4 7 1 9 3 6 0 8 2 5 4 7 1 9 3 6 0 0

2 4 7 1 9 3 0

(f)

8 2 5 4 7 1 9 3 6

Fig. 8. Path-based graph for 1000 test cases of the ChooseTest model.

increases with the number of point nodes. Each diamond node is identified by a
tuple 〈v , cn〉, similar to the diamond nodes in the SG. For the edges representing
transitions, they are connected by point nodes according to their identifiers,
which results in constructing paths one by one. All constructed paths start with
the same initial point node and end in different final point nodes. The number of
constructed paths in the PG indicates the number of linearly independent paths.

An PG is an abstracted graph of the full state-based graph (FPG) without
any abstractions. (Here, we do not show the FPG of the ChooseTest model due
to space limitations.) As was the case for SG, we apply abstractions to reduce
the complexity of the FPG to obtain the PG and use thickness to indicate the
frequency of transitions taken by executed paths. The reduction is based on three
abstractions:

1. Merge edges of subpaths using the same approach as for step 1 of the SG.
2. Merge internal choice nodes with the first approach of step 3 used to merge

choice nodes for the SG.
3. Merge loop edges representing self-transition loops and backtracked transi-

tions as for the SG.

Unlike for the SG, we do not merge edges of linearly independent paths and
choice nodes from different linearly independent paths for the PG, since our goal
for the PG is to show linearly independent paths after applying the abstractions.

Figure 8 shows the abstracted PG for the ChooseTest model. It can be seen
that there are seven black final point nodes from seven paths, which indicate that
seven linearly independent paths have been executed. The information about the
number of linearly independent paths is one characteristic of the PG, and this
information is not easy to derive from the SG shown in Fig. 7.

5.3 User-Defined Search Function

As the SG and PG graphs might become unwieldy for complex testing models,
the user can specify a selection function to limit the visualization to a subgraph.
After completion of the tests, the user can filter the graph into a subgraph by
providing a query in the form of a quadruple 〈tid , res, l , ptid〉 to locate a recorded
transition in the trie data structure, where tid is the transition identifier for the
transition that the user wants to locate; res is the action result of this transition;

Paper D 197

Visualization and Abstractions for Execution Paths 485

l is the level of this transition in the trie; ptid is the transition identifier for this
transition’s parent in the trie. With this selection function, users can select a
subtrie to generate both SG and PG with the corresponding root node in lieu of
an interactive user-interface. It should be noted that this projection only affects
visualization, and not the number of executed tests.

6 Experimental Evaluation

We have applied and evaluated our path coverage visualization approach on a
collection of Modbat models. The list of models includes the Java server socket
implementation, the coordinator of a two-phase commit protocol, the Java array
list and linked list implementation, and ZooKeeper [11]. The array and linked
list models, as well as the ZooKeeper model, consist of several parallel EFSMs,
which are executed in an interleaving way [2].

Table 1 summarizes the results. For each Modbat model, we have considered
configurations with 10, 100, 200, 500 and 1000 randomly generated test cases.
The table first lists the statistics reported by Modbat: the number of states (S)
and transitions (T) covered for each model (including their percentage), and the
number of test cases (TC) and failed test cases (FC). The second part of the
table shows the metrics of the graphs we generate. For both SGs and PGs, we
list: the total number of Nodes (including both state nodes and choice nodes);
the total numbers of Edges (E), the number of failed edges (FE), and loops (L).
In addition to these graph metrics, for the PGs, our path coverage visualizer
calculates the numbers of linearly independent paths (LIP), the longest paths
(LP), the shortest paths (SP), the average lengths of paths (AVE), and the
corresponding standard deviation (SD).

In Table 1, when comparing the results of the SG and PG obtained from all
the models, we can see that for any increase in the number of test cases by going
from 10 to 1000, the SG has a smaller number of nodes and edges than the PG.
This shows that the SG is constructed in a more abstract way than the PG and
is useful for giving an overview of the behavior. For the PG, although there are
more nodes and edges in the graph compared to the SG, we can directly see
the information about the number of linearly independent paths (LIP column
in Table), so that we know how execution paths are constructed and executed
from the sequences of transitions executed. This information cannot be easily
seen from the SG.

In addition, the results in Table 1 indicate what degree the models are exe-
cuted by the generated test cases. For example, for the coordinator model, the
numbers of nodes and edges in both the PG and SG do not increase after 100
test cases are executed, and there are no failed edges. This gives us confidence
about how well this model is explored by the tests. The same situation occurs
for the array and linked list models. For the Java server socket and Zookeeper
models, the number of failed edges for each model keeps increasing with more
tests. This indicates that for these kinds of complex models, there are parts that
are hard to reach and explore, so there might be a need to increase the number

198 Paper D

486 R. Wang et al.

Table 1. Experimental results for the Modbat models.

or quality of the tests. Moreover, we can see from Table 1 that for some models
such as the ZooKeeper model, there are very large numbers of nodes and edges in
both the SG and PG for, e. g., 1000 test cases executed. To deal with such large
and complex models, we can use the user-defined search function discussed in
Sect. 5.3 to limit the visualization to a subgraph. We do not show any subgraphs
due to space limitations.

We use the Java server socket model to further discuss our experimental
results based on the graphs obtained. The static visualization of the EFSM (see
Fig. 9) shows the transition system and uses red edges to show expected excep-

Paper D 199

Visualization and Abstractions for Execution Paths 487

tions, since the notion of failed tests does not apply. After applying abstractions,
Fig. 10 shows the SG and PG for the Java server socket model with ten test cases
executed, including failed transitions in red and labeled with (f).

reset

open

open

toggleBlocking

bound

getLocalPort

err

NotYetBoundExc.

closed

close

toggleBlocking

connected

accept accepting

startClient

closeclose

readFrom

interrupt

(accept)

accept

close

ClosedChannelExc.

close

Fig. 9. EFSM for the Java server socket model.

Compared to the EFSM in Fig. 9, the SG in Fig. 10 shows the concrete exe-
cutions instead of possible executions as shown by the EFSM. We see from the
SG that all states have been visited after ten test cases; the SG also provides
information about possible exceptions and failures occurred, actual paths and
choices taken; the edge thickness indicates how often transitions were taken.

A good path-coverage-based testing strategy requires that the test cases exe-
cute as many linearly independent paths as possible. For the PG in Fig. 10, we
can directly see that there are eight linearly independent paths. Each linearly
independent path has a sequence of edges which represent executed transitions
of the path. This gives us a simpler way of showing the paths as transition
sequences, at the expense of a graph that has more nodes and edges overall.
In addition, all loops, backtracked edges and taken choices are directly shown
with their related linearly independent paths in the PG, and there is one linearly
independent path which shows a failed test in the graph. Also, like the SG, the
edge thickness in the PG indicates how often transitions were taken.

To show how our abstraction reduces the complexity of graphs, we use the
Java server socket model as an example. Figure 11 shows the FSG without apply-
ing any abstractions for the Java server socket model with 10 test cases executed.
This graph should be contrasted with the SG shown in Fig. 10(left). From this
FSG, we notice that the FSG has many redundant edges between both state
nodes and choice nodes, and it also has more choice nodes, as opposed to the SG

200 Paper D

488 R. Wang et al.

reset

open

err

bound

closed

accepting

connected false true

(e)

(f)

false

false

true

true

(f)

false

Fig. 10. SG (left) and PG (right) for the above model after ten tests.

in Fig. 10. Here, we do not show the FPG for the Java server socket model due
to space limitations, but we give the detailed comparison between the SG and
FSG and between the PG and FPG for the Java server socket model in Table 2.
For instance, with 1000 test cases, the PG has three times fewer edges than the
FPG; the SG has only 11 nodes and 27 edges, as compared to 61 nodes and 5491
edges in the FSG. This comparison shows that with the help of abstractions, the
SG and PG are much more concise and less complex than the FSG and FPG.

reset

open

err

bound

closed

accepting

connectedfalse false true

(e) (e)

true false false (f)(f)

Fig. 11. FSG for the Java server socket model after ten tests.

7 Related Work

Coverage analysis is an important concern in software testing. It can be used
as an exit criterion for testing and deciding whether additional test cases are

Paper D 201

Visualization and Abstractions for Execution Paths 489

Table 2. Comparison between PG and FPG, and between SG and FSG of the Java
server socket model.

Model TC PG FPG SG FSG

Nodes Edges Nodes Edges Nodes Edges Nodes Edges

E FE L E FE L E FE L E FE L

JavaNio

Server-

Socket

10 57 79 1 17 70 97 2 21 9 23 1 6 13 109 2 31

100 177 243 1 48 376 497 3 100 9 23 1 6 15 545 3 145

200 363 528 4 111 811 1101 8 221 10 25 1 7 26 1239 8 353

500 779 1147 8 247 1943 2613 14 520 11 27 1 8 40 2910 14 816

1000 1269 1904 15 439 3721 4982 28 996 11 27 1 8 61 5491 28 1510

needed, and related to which aspects of the SUT. For source code coverage,
tools generally only report a verdict on which line of code has been executed
how often. In the tool Tecrevis, a visual representation of redundancy in unit
tests provides a graphical mapping between each test case and the artifacts in
the SUT (here: methods) that indicates which tests exercise the same compo-
nent [13]. In path coverage, the underlying graph is usually derived from the
source code, the control flow graph, or from the call graph of the SUT when
considering function calls. In our approach, we are not directly concerned with
visualizing paths of the SUT, but rather, paths on the testing model used for
test-case generation. Correspondingly, our graphs are usually more concise than
the control flow graph, as not all branches of the SUT may need to be modeled at
the level of ESFMs. In particular, with respect to related work and the coverage
analysis domain, visualization is usually an orthogonal concern to quantifying
coverage, and not often considered.

Visualization makes coverage information understandable. Ladenberger and
Leuschel address the problem of visualizing large state spaces in the ProB tool
[14]. They introduce projection diagrams, which through a user-selectable func-
tion partition the states into equivalence classes. A coloring scheme for states
and transitions indicates whether the state space has been exhausted, or all col-
lapsed transitions share the same enablement. As their diagrams are based on
the actually explored state space, they do not directly visualize coverage of the
underlying model as in our approach. Moreover, they do not cover multiple tran-
sitions between the same pair of states as in our application scenario; however,
this could be accounted for by adjusting the thickness of edges by the number
of collapsed edges. Similarly, Groote and van Ham [10] applied an automated
visualization to examples from the Very Large Transition System (VLTS) Bench-
mark set [8]. A relation between the graphical representation of the underlying
model (in the form of UML sequence diagrams) and a set of paths from test
cases is presented by Rountev et al. [19]. Their goal is deriving test cases, and
as such they are not concerned with a representation of the paths.

The basic visualization elements of both SG and PG we have defined in
this paper are based on the concept of simple path proposed by Ammann and
Offutt [1]. An execution path is a simple path if there are no cycles in this path,

202 Paper D

490 R. Wang et al.

with the exception that the first and last states may be identical (the entire
path itself is a cycle) [1]. Based on this definition, any execution path can be
composed of simple paths. Therefore, in this paper, the concept of the simple
path is applied by considering only transitions from sorigin(t) to sdest(t) (or
sorigin(t) if t is a self-transition or backtracked transition).

8 Conclusions and Future Work

The main contribution of this paper is to present an approach to capture and
visualize test-case-execution paths through models. This is achieved by first
recording execution paths with a trie data structure, then visualizing them using
state-based graphs (SGs) and path-based graphs (PGs) obtained by applying
abstractions. The SG conveys the behavior of the model well. The PG only
shows executed paths, without providing detail. It avoids crossing edges, which
makes the PG more scalable, even though it contains more nodes and edges as
such. Also, the PG directly indicates the number of linearly independent paths.

To obtain the SGs and PGs, we have proposed abstractions as our initial
technique to reduce the size and complexity of graphs. We have implemented our
approach as a path coverage visualizer for the Modbat model-based API tester.
An experimental evaluation on several model-based test suites shows that our
abstraction technique reduces the complexity of graphs, and our visualization of
execution paths helps to show the frequency of transitions taken by the executed
paths and to distinguish successful from failed test cases.

Future work includes investigating other techniques and tools to support
more visualization features in the SGs and PGs, using more abstractions for the
further reduction of larger graphs and applying the SGs and PGs not only for
visualizing execution paths of models, but also for the SUT. Another direction of
future work is to investigate approaches to perform state space exploration effi-
ciently for selecting good test suites and visualizing execution paths. Although
our current visualization approach has been applied to the Modbat tester, it
is also possible to use it for other testing platforms. Furthermore, additional
coverage metrics such as branch-coverage of boolean subexpressions within pre-
conditions and assertions, or the more detailed modified condition/decision cov-
erage (MC/DC) [7] could be used to refine the intermediate execution steps even
further. In essence, many of the coverage techniques available at the SUT-level
could be lifted to the model level.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

2. Artho, C.V., et al.: Modbat: a model-based API tester for event-driven systems. In:
Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 112–128. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 8

Paper D 203

Visualization and Abstractions for Execution Paths 491

3. Artho, C., Rousset, G., Gros, Q.: Precondition coverage in software testing. In:
Proceedings of 1st International Workshop on Validating Software Tests (VST
2016), Osaka, Japan. IEEE (2016)

4. AT&T Labs Research. Graphviz - Graph Visualization Software. https://www.
graphviz.org

5. Brass, P.: Advanced Data Structures. Cambridge University Press, Cambridge
(2008)

6. Cheng, K., Krishnakumar, A.: Automatic functional test generation using the
extended finite state machine model. In: Proceedings of 30th International Design
Automation Conference, DAC, pp. 86–91, Dallas, USA. ACM (1993)

7. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to software testing. Softw. Eng. J. 9(5), 193–200 (1994)

8. CWI and INRIA. The VLTS benchmark suite (2019). https://cadp.inria.fr/
resources/vlts/. Accessed 20 May 2019

9. Gansner, E., Koutsofios, E., North, S.: Drawing graphs with dot (2006). http://
www.graphviz.org/pdf/dotguide.pdf

10. Groote, J.F., van Ham, F.: Interactive visualization of large state spaces. Int. J.
Softw. Tools Technol. Transf. 8(1), 77–91 (2006)

11. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination
for internet-scale systems. In: Barham, P., Roscoe, T. (eds.) 2010 USENIX Annual
Technical Conference. USENIX Association (2010)

12. Jorgensen, P.C.: Software Testing: A Craftsman’s Approach. Auerbach Publica-
tions, Boca Raton (2013)

13. Koochakzadeh, N., Garousi, V.: TeCReVis: a tool for test coverage and test redun-
dancy visualization. In: Bottaci, L., Fraser, G. (eds.) TAIC PART 2010. LNCS,
vol. 6303, pp. 129–136. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15585-7 12

14. Ladenberger, L., Leuschel, M.: Mastering the visualization of larger state spaces
with projection diagrams. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 153–169. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 10

15. Lawrence, J., Clarke, S., Burnett, M., Rothermel, G.: How well do professional
developers test with code coverage visualizations? An empirical study. In: IEEE
Symposium on Visual Languages and Human-Centric Computing, pp. 53–60. IEEE
(2005)

16. Lu, S., Zhou, P., Liu, W., Zhou, Y., Torrellas, J.: Pathexpander: Architectural
support for increasing the path coverage of dynamic bug detection. In: Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 38–52. IEEE Computer Society (2006)

17. Myers, G.J., Badgett, T., Thomas, T.M., Sandler, C.: The Art of Software Testing,
vol. 2. Wiley Online Library, Hoboken (2004)

18. Programming Methods Laboratory of École Polytechnique Fédérale de Lausanne.
The Scala Programming Language. https://www.scala-lang.org

19. Rountev, A., Kagan, S., Sawin, J.: Coverage criteria for testing of object interac-
tions in sequence diagrams. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp.
289–304. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-
9 22

20. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2007)

204 Paper D

492 R. Wang et al.

21. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22, 297–312 (2012)

22. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. J. 10(2), 203–232 (2003)

Paper D 205

PAPER E
MULTI-OBJECTIVE SEARCH FOR MODEL-BASED
TESTING

R. Wang, C. Artho, L. M. Kristensen, and V. Stolz

The 20th IEEE International Conference on Software Quality, Reliability, and Security, Vilnius,
Lithuania, IEEE, 2020. (submitted)

Multi-objective Search for Model-based Testing
Rui Wang

Department of Computer Science, Electrical Engineering
and Mathematical Sciences

Western Norway University of Applied Sciences
Bergen, Norway

rwa@hvl.no

Cyrille Artho
School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology
Stockholm, Sweden

artho@kth.se

Lars Michael Kristensen
Department of Computer Science, Electrical Engineering

and Mathematical Sciences
Western Norway University of Applied Sciences

Bergen, Norway
lmkr@hvl.no

Volker Stolz
Department of Computer Science, Electrical Engineering

and Mathematical Sciences
Western Norway University of Applied Sciences

Bergen, Norway
vsto@hvl.no

Abstract—This paper presents a search-based approach rely-
ing on multi-objective reinforcement learning and optimization
for test case generation in model-based software testing. Our
approach considers test case generation as an exploration versus
exploitation dilemma, and we address this dilemma by imple-
menting a particular strategy of multi-objective multi-armed
bandits with multiple rewards. After optimizing our strategy
using the jMetal multi-objective optimization framework, the
resulting parameter setting is then used by an extended version
of the Modbat tool for model-based testing. We experimentally
evaluate our search-based approach on a collection of examples,
such as the ZooKeeper distributed service and PostgreSQL
database system, by comparing it to the use of random search for
test case generation. Our results show that test cases generated
using our search-based approach can obtain more predictable
and better state/transition coverage, find failures earlier, and
provide improved path coverage.

Index Terms—model-based testing, test case generation,
bandit-based methods, multi-objective optimization, genetic al-
gorithm, search-based software testing

I. INTRODUCTION

The complexity of software systems today has amplified
the importance of software testing as a scalable and efficient
technique to discover defects. However, producing test cases
by hand is tedious, expensive, and error-prone. Model-based
testing (MBT) [1] addresses this problem by automatically
generating test cases from abstract (formal) models of the
system under test (SUT). These abstract models encode the
intended behaviors of the SUT and are often easier to develop
and maintain compared to low-level test scripts [2]. However,
for complex software systems, it is infeasible to explore and
generate all the possible test cases for the software system
under test. This means that a challenging decision needs to be
made on how many tests cases to generate.

MBT is conducted via the automatic generation and ex-
ecution of a test suite, that is, a set of test cases. Before
starting MBT process, it is necessary to choose test adequacy
criteria in order to evaluate the extent to which a test suite

contains sufficient test cases. These criteria may consider the
discovery of defects and obtaining a good code coverage.
In this paper, our test adequacy criteria include state- and
transition coverage, linearly independent path coverage, and
the number of test cases needed to find the first failure.

It is a challenge for MBT to obtain test adequacy by
generating a small test suite having few redundant test cases.
Uncontrolled random approaches might result in test suites
having redundant test cases which only cover few execution
paths of the model and the SUT. Also, the decisions required
to select a possible test case to generate faces the exploration
versus exploitation dilemma when searching/exploring the
state space. This dilemma can be described as finding a
balance between: a) the exploration of diverse states/transitions
which have not been selected to construct a test case; or have
been selected fewer times, but might result in better addressing
the test adequacy criteria; and b) the continuous exploitation
of the states/transitions which have empirically resulted in
better outcomes, with regard to the test adequacy criteria, when
constructing a test case.

In this paper, we focus on the test case generation with
a search-based approach relying on multi-objective reinforce-
ment learning and optimization. Our aim is to find and
generate a subset of test cases that optimizes the results when
considering the chosen test adequacy criteria. We consider
that 1) the process of test case generation is a problem
that faces the exploration versus exploitation dilemma when
searching/exploring possible test cases; 2) obtaining good and
balanced results of the chosen test adequacy criteria with fewer
generated test cases is a multi-objective optimization problem.
In particular, we want to implement an efficient search that (1)
does not require user-defined weights, which rely on domain
knowledge; and (2) adjusts the choices dynamically based on
the coverage of previous tests.

The main contribution of this paper is to present a search-
based test case generation approach combining: 1) generation

Paper E 209

of test cases based on a particular strategy of multi-objective
multi-armed bandits with multiple rewards; and 2) optimizing
the chosen adequacy criteria with a Pareto-efficient multi-
objective genetic algorithm, in the form of the non-dominating
sorting genetic algorithm (NSGA-II) [3]. We evaluate our
approach on several models developed for the Modbat model-
based API tester [4] by comparing our search-based testing
with the random testing. Our experiments show that our
search-based approach can obtain more predictable and better
results of the chosen adequacy criteria compared to random
test case generation, when considering the trade-offs of the
criteria.

A second contribution is an implementation of our bandit-
based search strategy in the Modbat model-based API tester,
which is a new feature for the Modbat 3.4 release [5].
We define test adequacy criteria as multi-objectives so that
Modbat implements our search-based test case generation in
addition to its standard random search. The test adequacy
criteria are optimized using the jMetal [6], [7] multi-objective
optimization framework which applies the NSGA-II algorithm
on the Modbat models that we use as training set to find a
Pareto optimal solution set having reward parameter settings.
The parameter settings in the Pareto optimal solution set is
then used as inputs to our bandit-based search strategy to
generate test cases for other advanced Modbat models and
targeting the chosen test adequacy criteria.

The rest of this paper is organized as follows. Section II
provides background on the Modbat model-based API tester,
the definition of execution paths as test cases, and the test ade-
quacy criteria. In Section III, we present our approach of multi-
objective test case generation and optimization. Section IV
presents our experimental evaluation and analyzes the results
obtained from the experiments. Section V discusses related
work, and in Section VI, we conclude and discuss future work.

II. MODEL-BASED SOFTWARE TESTING

Our work assumes that a mechanism for automated test
execution of a system under test (SUT) is provided in the
form of a test harness and properties (such as assertions)
about the behavior of the SUT. In addition to executing test
cases automatically, MBT can also generate inputs (or calls) to
the SUT automatically, and verify that its output matches the
expected output [1]. We introduce MBT of state-based systems
in the context of the Modbat tester [4].

A. Modbat Model-based API Tester

Modbat is a model-based testing tool that performs online
testing of state-based systems that runs on a Java Virtual
Machine [4]. Modbat uses extended finite state machines
(EFSMs) [8] as its theoretical foundation and implements
extensions in a domain-specific language based on Scala [9].
The EFSMs used by Modbat is formally defined as:

Definition 1 (Extended Finite State Machine [10]). An ex-
tended finite state machine is a tuple M = (S, s0, V, A, T)
such that:
• S is a finite set of states, including an initial state s0.

• V = V1 × . . . × Vn is an n-dimensional vector space
representing the set of values for variables.

• A is a finite set of actions A : V → (V,R), where
res ∈ R denotes the result of an action, which is
either successful, failed, backtracked, or exceptional.
A successful action allows a test case to continue; a
failed action constitutes a test failure and terminates the
current test; a backtracked action corresponds to the case
where the enabling function of a transition is false [8];
exceptional results are defined as such by user-defined
predicates that are evaluated at run-time, and cover the
non-deterministic behavior of the SUT. We denote by
Exc ⊂ R the set of all possible exceptional outcomes.

• T is a transition relation T : S × A × S × E; for a
transition t ∈ T , we denote the left-side (origin) state
by sorigin(t) and the right-side (destination) state by
sdest(t), and use the shorthand sorigin → sdest if the
action is uniquely defined. A transition includes a possible
empty mapping E : Exc → S, which maps exceptional
results to a new destination state.

Listing 1 illustrates a Modbat model of a garage door
control system that we will use as a running example to
introduce the basic concepts of Modbat. A valid execution
path in a Modbat model starts from the initial state (auto-
matically derived from the first declared state) and consists
of a sequence of transitions. Transitions are declared with
a concise syntax: “origin” → “dest” := {action}. The
GarageDoorTester model in Listing 1 consists of five states:
“DoorUp”, “DoorClosing”, “DoorDown”, “DoorOpening”,
and “End”. The initial state is “DoorDown” in Line 4.

The GarageDoorTester model tests the garage door system
shown in Listing 2 (only fields, public methods and the stop
private method are shown due to page limitations). The garage
door system controls the opening and closing of a 2-meter
garage door using open and close methods to set a door
motor with a speed +0.125m/s or −0.125m/s , respectively
(Line 14 and Line 21 in Listing 2). The system uses a private
method waitLimitHit (Line 18 and Line 25) to check the
status of the door every second and it calls the stop private
method (Line 28) when the door is fully open or closed. The
system takes 16 seconds to open or close the garage door, as
implemented by waitLimitHit method. When the garage door
is fully open or closed, the speed of the door motor is set to
zero and the motor is stopped by the stop private method.

Modbat has built-in require and assert methods. The
GarageDoorTester model in Listing 1 uses the require method
(Line 5, Line 6, Line 14 and Line 15) in transitions to check if
preconditions are fulfilled. Preconditions must be fulfilled in
order for a transition to be enabled. For example, if the require
methods in Line 5 and Line 6 expressing preconditions are sat-
isfied, then the transition “DoorDown” → “DoorOpening”
is enabled. The open method is then called to open the
garage door. The preconditions are similar for the transition
“DoorUp” → “DoorClosing” that calls the close method.
The attribute stay of a transition is used to delay (in this case

210 Paper E

16 seconds) while waiting for the door to be fully open or
closed. After the open or close method is called and the corre-
sponding transition is executed, the assert methods in Line 10
and Line 11 in transition “DoorOpening” → “DoorUp”,
or in Line 19 and Line 20 in transition “DoorClosing” →
“DoorDown”, are used as assertions to check that the status
of the door and door motor is correct when the door is fully
open or closed.

1 class GarageDoorTester extends Model {
2 val garage = new GarageDoor()
3 // transitions
4 "DoorDown" -> "DoorOpening" := {
5 require(gargage.doorFullyClosed)
6 require(garage.motorStopped)
7 garage.open()
8 } stay 16000
9 "DoorOpening" -> "DoorUp" := {

10 assert (garage.doorFullyOpen)
11 assert (garage.motorStopped)
12 }
13 "DoorUp" -> "DoorClosing" := {
14 require(gargage.doorFullyOpen)
15 require(garage.motorStopped)
16 garage.close()
17 } stay 16000
18 "DoorClosing" -> "DoorDown" := {
19 assert (garage.doorFullyClosed)
20 assert (garage.motorStopped)
21 }
22 "DoorDown" -> "End" := skip
23 "DoorUp" -> "End" := skip
24 }

Listing 1: Modbat model GarageDoorTester.

Modbat actions (which execute code related to transitions)
have four possible outcomes: successful, backtracked, failed,
or exceptional. Given the different possible outcomes of Mod-
bat actions, different rewards of our bandit-based search strat-
egy are defined in Section III. A successful action allows a test
case to continue with another transition, if available. An action
is backtracked and resets the transition to its original state if
any of its preconditions are violated. An action fails if an asser-
tion is violated, if an unexpected exception occurs, or if an ex-
pected exception does not occur. In our GarageDoorTester ex-
ample, the action of transition “DoorUp”→ “DoorClosing”
is backtracked if any require methods in the action evaluate
to false, and the action fails if any assert methods evaluate
to false in, e. g., “DoorClosing” → “DoorDown”. If no
preconditions or assertions are violated, and no exceptional
result occurs, the action is successful.

B. Execution Paths and Test Cases

For Modbat models, a finite execution path consists of
a sequence of transitions starting from the initial state and
leading to a terminal state (a state without outgoing transitions,
or a state after a test failed). Each finite execution path
represents a test case generated from a Modbat model. That
is, a test case is an execution path consisting of a sequence
of transitions. Execution paths of Modbat models are formally
defined as:

1 class GarageDoor {
2 val garageTopHeight = 2d // two meters
3 val garageBottomHeight = 0d
4 val motorSpeeds = Map[String, Double]("Zero"

-> 0.0, "PlusSpeed" -> 0.125, "MinusSpeed"
-> -0.125)

5 // initial door close
6 var currentDoorHeight = garageBottomHeight
7 // initial motor speed 0.0
8 var motorSpeed = motorSpeeds("Zero")
9 var motorStopped = true

10 var motorUp = false
11 var motorDown = false
12 var doorFullyOpen = false
13 var doorFullyClosed = true
14 def open() {
15 motorUp = setMotorSpeed("PlusSpeed")
16 if(motorUp) {
17 doorFullyClosed = false
18 waitLimitHit()
19 }
20 }
21 def close() {
22 motorDown = setMotorSpeed("MinusSpeed")
23 if(motorDown) {
24 doorFullyOpen = false
25 waitLimitHit()
26 }
27 }
28 private def stop() {
29 motorStopped = setMotorSpeed("Zero")
30 if (motorStopped){
31 currentDoorHeight match {
32 case garageTopHeight
33 => doorFullyOpen = true
34 case garageBottomHeight
35 => doorFullyClosed = true
36 }
37 }
38 }
39 ...
40 }

Listing 2: Garage door system.

Definition 2 (Execution Path [10]). Let M = (S, s0, V, A, T)
be an EFSM. A finite execution path p of M is a sequence of
transitions, which constitute a path p = t0t1 . . . tn, tn ∈ T ,
such that sorigin(t0) = s0, the origin and destination states
are linked: ∀i, 0 < i ≤ n, sorigin(ti) = sdest(ti−1), and
sdest(tn) ∈ Sterminal ; Sterminal is the set of terminal states.

C. Test Adequacy Criteria as Multi Objectives

For MBT, test adequacy criteria are often chosen to guide
the automatic test case generation so that it produces a good
test suite [1]. Modbat supports test adequacy criteria including
state- and transition coverage [4], and linearly independent
path coverage [10]. The state- and transition coverage indicates
the number of states and transitions, respectively, that have
been explored by a test suite. A linearly independent path
(LIP) is any path through a program that contains at least one
new path edge (transition) which is not included in any other
linearly independent path [10]. Therefore, the linearly inde-
pendent path coverage indicates the execution paths covered
by a test suite.

Paper E 211

These test coverage metrics can be measured as the outcome
of the executed test suite and visualized (along with the
test model) using Graphviz [4], [10] by Modbat. In addition
to coverage, Modbat can also provide the measurement of
failures found after a test suite is executed [4]. Thus, for
our test case generation approach, we choose four different
test adequate criteria: 1) state coverage (Covs); 2) transition
coverage (Covt); 3) linearly independent path (LIP) coverage
(Covlip); and 4) the number of test cases used to find the
first failure (NTestfail1). We use these test adequacy criteria
as objectives for multi-objective optimization.

Prior to this work, Modbat already supported static weights
for transition choices, which affect the likelihood of choosing
a given transition. However, a good setting of these weights
requires insight into the semantics of the model, and the
weights remain fixed during the entire test generation process.

III. MULTI-OBJECTIVE OPTIMIZATION

A test suite consists of a set of test cases derived from
the test model, and each test case represents one execution
path which in turn consists of a sequence of transitions. The
generation of a test case therefore relies on the decisions
made in each step to select the transitions that are to be
part of the constructed execution paths. As introduced earlier,
the decision made to select a transition faces the exploration
versus exploitation dilemma in terms of finding a balance
between: a) the exploration of different transitions which have
not yet been selected; or have selected fewer times; and
b) the continuous exploitation of already selected transitions
which have empirically resulted in better outcomes (e. g., a
high coverage). Reinforcement learning [11] is the subfield of
machine learning devoted to studying problems and designing
algorithms that analyze this dilemma. The multi-armed bandit
problem, extensively studied by Berry and Fristedt [12], is a
well-established class of sequential decision problems in the
context of reinforcement learning.

A. Bandit Search-based Test Case Generation

Bandit problems consider a player (agent) that needs to
choose among K arms (actions) in I rounds on a multi-armed
bandit slot gambling machine. The objective is to maximize
the cumulative reward (money) as much as possible in a
casino by consistently taking the optimal arm (action) over
rounds [13]. At each round i = 1, . . . , I , the player selects
an arm (action) j ∈ {1, . . . ,K} and receives the reward r(j,i)
(money). The player (agent) has a goal: on one hand, finding
out (exploit) which arm could be currently optimal to have the
highest expected reward; on the other hand, exploring other
arms (actions) that currently are not optimal, but may turn out
to be optimal in the long run [13], [14], [15].

Several algorithms, such as ε-greedy [11], Boltzmann Ex-
ploration (Softmax) [16], and Reinforcement Comparison [11]
have been proposed to solve bandit problems. In our approach,
we rely on the Upper Confidence Bounds (UCB) family [15] of
algorithms. For reinforcement learning, the regret is one popu-
lar measure of a policy’s success in addressing the exploration

versus exploitation dilemma. The regret is the expected loss
due to the fact that the policy does not always play the best
(optimal) action [15]. Compared to other algorithms, the UCB
family has been theoretically analyzed and has an expected
optimal logarithmic growth of regret uniformly over time [15],
[13]. An extension of UCB-style algorithms has proven very
successful in computer Go [17]. Lai and Robbins [18] showed
that the regret for the multi-armed bandit problem has to grow
at least logarithmically in the number of rounds. We use the
UCB1 bandit algorithm from the UCB family [15] as a basis
for implementing our multi-objective search strategy for test
case generation.

The UCB1 algorithm operates as follows:
a) each bandit arm is played once at the initialization of the

algorithm.
b) afterwards, the algorithm iteratively plays bandit arm j

that maximizes

x̄j +

√
2 lnn

nj
(1)

where x̄j is the average reward (in [0, 1]) from arm j , nj
is the number of times arm j was played, and n is the
overall number of plays so far.

The UCB1 algorithm indicates that the reward term x̄j encour-
ages the exploitation of higher reward arms, while the term√

2 lnn
nj

encourages the exploration of less-visited arms [15].
Based on the UCB1 algorithm, we consider each transition

tj ∈ T to select for constructing an execution path (a test case)
as a bandit arm to play. We denote the reward function as r :
T → R. After executing a transition tj ∈ T , its corresponding
immediate reward rtj ∈ R is received accumulatively, and
computed as rtj = r̄tj + r̂tj , where r̄tj is a transition outcome
average reward iteratively accumulated, and r̂tj is a transition
action expected reward iteratively accumulated. All rewards
are in the interval [0, 1], and we show how to compute them
shortly.

The above implies that our bandit heuristic search (BHS)
strategy for test case generation becomes the following:

a) each transition t ∈ T is selected once at the initialization
of the strategy.

b) afterwards, the strategy iteratively select a transition tj ∈
T that maximizes

r̄tj + r̂tj +

√
2 lnnsorigin(tj)

ntj
(2)

where r̄tj is the transition outcome average reward (in
[0, 1]) for transition tj , r̂tj is the transition action ex-
pected reward for transition tj , ntj is the number of times
transition tj was selected, and nsorigin(tj) is the number
of times that the origin state sorigin of the transition tj
is visited and used to select transitions.

This strategy indicates that the reward terms r̄tj and r̂tj jointly
encourage the exploitation of higher rewarded transitions,

while the term
√

2 lnnsorigin (tj)

ntj
encourages the exploration of

less-selected transitions.

212 Paper E

To iteratively compute a transition outcome average reward
r̄tj , we consider four types of transition outcome rewards
as a set of rewards Rto including the rto_self , rto_success ,
rto_back , and rto_fail . Among these four types, the rto_self
is a self-transition reward for a successful transition that has
sorigin = sdest , while the rto_success is a reward given to a
successful transition that has sorigin 6= sdest . The rto_back
is the reward for a backtracked transition, and the rto_fail
is the reward for a failed transition. We denote a transition
outcome reward received at the i ’th iteration for a transition
tj ∈ T by rto(tj ,i)

∈ Rto , and ntj denotes the number
of times transition tj was selected. Therefore, we compute
the accumulated transition outcome average reward r̄tj for a
transition tj using Equation 3:

r̄tj =
1

ntj

ntj∑

i=1

rto(tj ,i)
(3)

The excepted transition action reward r̂tj is the sum of the
given rewards for pass/fail, weighted by how many times the
two verdicts actually occurred. To compute an expected reward
iteratively, we take into account four different rewards for
two types of transition actions (precondition and assertion)
as a set of rewards Rta including the passed precondition
reward rprecond_pass , failed precondition reward rprecond_fail ,
passed assertion reward rassert_pass , and failed assertion re-
ward rassert_fail . Then, the excepted transition action reward
r̂tj for a transition tj can be computed using Equations 4, 5
and 6.

r̂tj = r̂tj_precond + r̂tj_assert (4)

r̂tj_precond =
Cprecond_pass

Cprecond_total
× rprecond_pass

+
Cprecond_fail

Cprecond_total
× rprecond_fail

(5)

r̂tj_assert =
Cassert_pass

Cassert_total
× rassert_pass

+
Cassert_fail

Cassert_total
× rassert_fail

(6)

In Equation 4, r̂tj_precond represents the expected precondi-
tion (action) reward for the transition tj ; r̂tj_assert represents
the expected assertion (action) reward for the transition tj .
Likewise, the counts for passed and failed preconditions and
assertions used in Equations 5 and 6, as well as their total
number, are updated during each iteration. The overall steps
for test case generation with our bandit heuristic search strat-
egy are summarized in pseudocode in Algorithm 1. This is the
heuristic search strategy that we have implemented in Modbat.
We explain the steps related to our search strategy, without
showing the pseudocode for how transitions and test cases are
executed. Modbat initializes a list of transitions transitions
and s from an initial state s0. We need to initialize the number
of test cases n , all counter variables (with 0 values), and

reward variables. In Line 4, the function EXECUTETRAN-
SITIONS generates and executes a test case consisting of a
sequence of selected transitions from an initial state s0 to
a terminal state sterminal . In Line 6 in function EXECUTE-
TRANSITIONS, the function BANDITHEURISTICSEARCH is
invoked to select a transition trans using our bandit heuristic
search strategy. Then, this selected transition trans is executed
by the function EXECUTETRANSITION shown in Line 7,
with a transition result of type result as the function return
value. Meanwhile, function EXECUTETRANSITION calls the
function UPDATEEXPECTEDREWARD in Line 16 to update the
transition action expected reward r̂tj for the selected transition
trans based on Equations 4, 5 and 6. After receiving the return
value result in Line 7, the function UPDATEAVERAGERE-
WARD in Line 30 updates the transition outcome average
reward r̄tj for trans with Equation 3, based on the result type
of trans .

B. Bandit Search-Based Test Suite Optimization with JMetal

The aim of our bandit heuristic search strategy is to guide
the test case generation with the objective of addressing the
test adequacy criteria with smaller test suites containing less
redundant test cases. The strategy relies on the configuration of
eight different rewards to initialize the test case generation (as
shown by the Require in Algorithm 1). Therefore, to achieve
our aim, we need to find optimal solutions to configure these
rewards and obtain optimized test adequacy criteria (objec-
tives) defined as in Section II-C, while considering the trade-
offs of these criteria. Thus, we consider our bandit heuristic
search strategy as a multi-objective optimization problem: tune
our bandit heuristic search strategy shown in Algorithm 1 to
find the optimal solutions. With these optimal solutions found,
we can use them for the test case generation of Modbat models
in general with our strategy.

Formally, we assume for our multi-objective bandit search
optimization problem that a solution can be described in terms
of an 8-dimensional reward decision vector ~r in the reward
decision space R8. Such a solution can be used to initialize
the generation of a test suite ts ∈ TS (initialization of
Algorithm 1), where TS is a set of test suites. Then, the vector-
valued objective function ~f : R8 → O evaluates the quality of
a specific solution by assigning it an objective vector ~o = ~f(~r)
in the objective space O. We define the reward decision vector
as

~r =(rto_self , rto_success , rto_back , rto_fail , rprecond_pass ,

rprecond_fail , rassert_pass , rassert_fail),
(7)

and the objective vector with our four objectives (test adequacy
criteria) as

~o =(f1(~r), f2(~r), f3(~r), f4(~r))

=(Covs,Cov t,Cov lip ,NTest fail1),
(8)

according to our test adequacy criteria defined in Section II-C.
Without loss of generality, it is assumed that all objectives
are all equally important and our goal is to optimize them.

Paper E 213

Algorithm 1 Bandit Heuristic Search for Test Case Generation
Require: Initialize s , transitions , n , rto_self , rto_success , rto_back , rto_fail ,

rprecond_pass , rprecond_fail , rassert_pass , rassert_fail , Cprecond_pass ,
Cprecond_fail , Cassert_pass , Cassert_fail .

1: function EXECUTETESTS
2: for i = 1 to n do . n:number of test cases
3: EXECUTETRANSITIONS

4: function EXECUTETRANSITIONS
5: while s is not a sterminal do . s:current state, starting from s0
6: trans ← BANDITHEURISTICSEARCH(transitions)
7: result ← EXECUTETRANSITION(trans)
8: UPDATEAVERAGEREWARD(result , trans)

9: function BANDITHEURISTICSEARCH(transitions)
10: if transitions has any never selected transitions then
11: return t1st_unselected in transitions
12: else
13: return tj′ in transitions having argmax{r̄tj + r̂tj +√

2 lnnsorigin (tj)

ntj
}

14: function EXECUTETRANSITION(trans)
15: UPDATEEXPECTEDREWARD(trans)

16: function UPDATEEXPECTEDREWARD(trans)
17: if precondition of trans then
18: if pass then
19: update Cprecond_pass += 1
20: else
21: update Cprecond_fail += 1

22: update Cprecond_total = Cprecond_pass + Cprecond_fail

23: if assertion of trans then
24: if pass then
25: update Cassert_pass += 1
26: else
27: update Cassert_fail += 1

28: update Cassert_total = Cassert_pass + Cassert_fail

29: update r̂trans = r̂ttrans_precond + r̂ttrans_assert for trans with Equa-
tions 5,6

30: function UPDATEAVERAGEREWARD(result , trans)
31: switch result do
32: case success
33: rto(trans,i)

= rto_success

34: case self
35: rto(trans,i)

= rto_self

36: case backtracked
37: rto(trans,i)

= rto_back

38: case failed
39: rto(trans,i)

= rto_fail

40: update r̄trans = 1
ntrans

∑ntrans
i=1 rto(trans,i)

for trans

Therefore, to solve our multi-objective bandit search opti-
mization problem, we need to find those reward decision
vectors as solutions that optimize the vector-valued objective
function ~f : R8 → O. These solutions balance the trade-offs
between the objectives, and we measure the optimality of the
solutions through the concepts of Pareto optimality and Pareto
dominance [19], [20], [21].

Following the concept of Pareto dominance, given two
solutions ~r ∈ R8 and ~r ′ ∈ R8 as reward decision vectors
which can be used to initialize two test suites ts and ts′, ~r is

said to dominate, or Pareto-dominate, ~r ′ (written as ~r � ~r ′)
if and only if their objective vectors ~o = ~f(~r) and ~o ′ = ~f(~r ′)
satisfy: ∀i ∈ {1, 2, . . . , k}, ~f(~r) > ~f(~r ′)∧∃i ∈ {1, 2, . . . , k} :
~f(~r) > ~f(~r ′). Here, we use k = 4 since we have four
test adequacy criteria used as objectives. All reward decision
vectors that are not dominated by any other reward decision
vectors are said to form the Pareto optimal set R8∗ ⊆ R8,
while the corresponding objective vectors are said to form
the Pareto frontier O∗ = ~f(R8∗) ⊆ O. That is, the Pareto
optimal set R8∗ contains only non-dominating reward decision
vectors as optimal solutions to our multi-objective bandit
search optimization problem. Each non-dominating reward
decision vector can then be used to initialize the generation
of a test suite. This means that we find an optimal subset of
test suites TS∗ ⊆ TS which balance the trade-offs of our
four different test adequacy criteria: no other subset of TS
can improve one objective without making another objective
worse.

To obtain a Pareto optimal set R8∗ for our multi-
objective bandit search problem, we apply the jMetal [6],
[7] Java-based framework for multi-objective optimization
using meta-heuristics. jMetal is specifically oriented towards
multi–objective optimization, and implements a number of
state-of-the-art multi–objective optimization algorithms, such
as the NSGA-II [3]. NSGA-II is one of the most well-known
and widely used multi-objective evolutionary algorithm to
obtain the Pareto optimal set.

Modbat

Bandit Heuristic Search

Models SUT

JMetal

NSGA-II

Bandit Search Problem

Pareto Optimal Set
Pareto Frontier

re
w

ar
ds

objectives

Fig. 1: Multi–objective bandit-search optimization.

Fig. 1 gives an overview of our implementation used to
solve our multi–objective bandit search optimization problem
for Modbat models with the aid of jMetal v5 [7] and NSGA-
II. The working principle of jMetal is based on algorithms
(such as NSGA-II) chosen by users and user-defined problems
to solve. Users need to first define their multi–objective
optimization problems with objective functions, and then solve
them with the chosen algorithm. We have implemented our

214 Paper E

multi–objective bandit search optimization problem in jMetal
with our defined vector-valued objective function ~f : R8 → O.
Then we use the NSGA-II genetic algorithm provided by
jMetal to solve this problem. The process goes through eval-
uation rounds of the NSGA-II algorithm with the number of
rounds and population provided. For each evaluation round,
we run different Modbat models in parallel using 8 different
values of rewards (generated by the NSGA-II from jMetal) as
the input parameters for our bandit heuristic search strategy.
After the Modbat models are executed, the results of our
defined four test adequacy criteria for all models are sent
to jMetal as the values of the objectives which can then be
used by the NSGA-II algorithm to generate reward values
for the next evaluation round. When all evaluation rounds
of the NSGA-II algorithm are finished, jMetal provides files
containing the Pareto optimal set and the Pareto frontier found
by the NSGA-II. The detailed configuration of our experiment
will be discussed in Section IV.

IV. EXPERIMENTAL EVALUATION

We have evaluated our bandit heuristic search strategy on a
collection of Modbat models which have earlier been used
to generate test cases with the standard random approach
provided by Modbat.

A. Experimental Setup

The collection of models that we consider includes four sim-
ple models as a training set and two large and complex models
as the test set. The simple models in the training set encompass
the ChooseTest model [10], the Java Server Socket model [22],
the Java Array List model [23], and the Java Linked List
model [23]. The large complex models in the test set are the
ZooKeeper [24] and PostgreSQL [25] models. The Java Array
and Linked List models, PostgreSQL model, as well as the
ZooKeeper model, consist of several parallel EFSMs, which
are executed in an interleaved way [4]. Table I summarizes
the total numbers of states, transitions, numbers of different
EFSMs, and non-commenting lines of code (NCLOC) for
each model. Note that states refer to labeled states, which
in EFSMs are augmented with variables that may be from
a potentially infinite-sized domain; therefore, the full number
of extended model states is usually in thousands or millions
per test. Moreover, in Table I, we summarize the declared
states of all types of models involved, but we do not count
states of multiple model instances in a given test multiple
times. Likewise, transitions may include internal choices over
different functions, or invoke functions that are arbitrarily
complex. This means that the numbers in Table I only give
a picture of the syntactic complexity of a model.

Specifically, we first apply our strategy on the four simple
Modbat models in the training set using jMetal to optimize our
strategy. Then, the weights of the eight rewards in the resulting
Pareto optimal set are used in Modbat’s configuration as the
optimal parameters for our strategy on the two large complex
Modbat models in the test set.

Table I: Number of declared states, transitions, EFSMs, and
code size for each model for the evaluation

Model States Transitions EFSM(s) NCLOC
ChooseTest 3 3 1 10
JavaServerSocket 7 17 1 105
ArrayList 5 51 3 392
LinkedList 5 59 3 428
PostgreSQL 13 15 2 414
ZooKeeper 17 58 2 2225

The experiments have been performed using an Ubuntu
18.04.4 LTS (GNU/Linux 4.15.0-88-generic x86_64) on an
Intel(R) Xeon(R) Gold 6136 CPU 3.00GHz (48 CPUs). For the
experimental setup of Modbat, we configure that each Modbat
model runs 40 test suites. We preconfigure the seed for the
random number generator and fixed 40 seeds to make the test
generation deterministic. Each test suite consists of 50 test
cases.

To configure the NSGA-II algorithm provided in jMetal,
we use its default settings except that the population size
is set to 50, and the maximum number of generations in
the evolutionary search is set to 100. The reason for using
these two relatively small values is to keep the time used for
the experimental evaluation manageable. Furthermore, for the
optimization process, we configure Modbat and jMetal to run
the four simple models in parallel. That is, for each evaluation,
jMetal provide the values of 8 rewards as a parameter setting
for Modbat to run four models in parallel (random values for
8 rewards as the initialization). The resulting values of the
four test adequacy criteria of each model are then collected
and used as objectives for jMetal to execute NSGA-II (16
objectives together in total due to 4 models). All collected
resulting values of four test adequacy criteria are within 0 to
100, which are defined or computed as follows:
• State coverage: Covs ∈ {0, . . . , 100}
• Transition coverage: Cov t ∈ {0, . . . , 100}
• Score of Cov lip : Cov lip ∗ 2,Cov lip ∈ {1, . . . , 50}
• Score of NTest fail1 : 102− NTest fail1 ∗ 2,NTest fail1 ∈
{1, . . . , 51}

The two last scores are calculated based on the fact that with
50 tests, at most 50 linearly independent paths are possible,
and that the best possible outcome is if the first test finds a
failure; if no test finds a failure, we count the score as if the
51st test (which is never tried) would have found it.

As each parameter setting for 8 rewards was tested with
40 seeds and 50 test cases per seed on four models, we ran
8,000 tests per parameter setting to determine fitness. With
a population size of 50 and 100 generations, we ran a total
number of 40 million tests in the training phase, which took
four days using a 48 CPUs cluster. For the ZooKeeper model,
we just apply 50 optimal solution candidates in the Pareto
optimal set directly and collect the results for the test adequacy
criteria; while for the PostgreSQL, we perform mutation
testing using 86 mutants to inject 86 different errors to the
PostgreSQL. Then, we apply 50 optimal solution candidates
to 86 mutated PostgreSQL, respectively.

Paper E 215

Covs Covt
Covlip

score

NTestfail1

score

40
seeds

4 objectives

Compute
Average

Global
Average

Compute
Average

Average Vector

Fig. 2: Result computations for the random approach.

B. Data Post-processing

We have compared the performance of our bandit heuristic
search strategy and its optimization to the random approach
already provided by Modbat. Fig. 2 shows the basic process of
collecting and computing result data of the random approach
for each model. We compute the average of collected resulting
values for each objective obtained using the 40 fixed seeds to
get an average result vector for the four objectives (Pareto
frontier). Based on the average vector, we also compute a
global average to indicate an overall result of the random
approach. For the PostgreSQL model, since it has 86 mutated
versions, we perform this process for each mutated version,
respectively, to collect result data. Then, we have 86 resulting
average vectors and 86 global averages for the 86 mutated
versions of the PostgreSQL model.

Fig. 3 illustrates the basic process for each model to collect
and compute results from the Pareto solution set obtained by
our bandit heuristic search strategy and its optimization with
jMetal. For each model, the Pareto solution set has 50 solution
candidates, and each candidate has resulting values obtained
for four objectives (Pareto frontier) using the 40 fixed seeds.
Therefore, for each candidate, we compute the average result
vector and the global average by applying the same process as
for the random approach. Then, for the Pareto solution set, we
have 50 average result vectors and 50 global averages in total.
Also, for the PostgreSQL model, we first perform this process
for its 86 mutated versions. For each mutated version, we then
compute an global average result from the 50 average vectors,
and an overall average result from the 50 global averages as
the final result for this mutated version.

C. Analysis of Results

We visualize the result data collected using the processes
discussed in Fig. 2 and Fig. 3 using box plots. Each box in
the plot shows the range between the first and third quartiles

Covs Covt
Covlip
score

NTestfail1

score

40
seeds

4 objectives

Compute
Average

Global
Average

Compute
Average

Average Vector

Covs Covt
Covlip
score

NTestfail1

score

40
seeds

4 objectives

Compute
Average

Global
Average

Compute
Average

Average Vector

Pareto solution set: 50 solution candidates

Fig. 3: Result computations for the bandit heuristic search
approach

(Q1 and Q3) as a rectangle, with a solid red line indicating
the median value. The distance between Q1 and Q3 is the
inter-quartile range (IQR); 25 % of the data lies below Q1,
and 75 % of the data lies below Q3. The blue dashed lines
indicate the smallest (largest) observed point from the dataset
that falls within a distance of 1.5 times the IQR below Q1
(and above Q3, respectively). Circles indicate outliers that lie
outside 1.5 times the IQR.

Fig. 4 and Fig. 5 shows the box plots for the Java Server
Socket and Array List models of the training set. The result
data are collected directly when jMetal finish all generations
of the NSGA-II algorithm. The size of the resulting dataset
to generate each box plot for the random approach is 40
(obtained from 40 seeds shown in Fig. 2), while for the
heuristic approach the size of the dataset is 50 (obtained from
50 average vectors shown in Fig. 3).

From Fig. 4 and Fig. 5, we can observe that for the box
plots of the Java Server Socket model, our bandit heuristic
approach gives better results on the transition coverage Cov t

and the score of NTest fail1 compared to the random approach.
Concerning state coverage Covs and the score of Cov lip , the
random approach is slightly better. From the box plots of the
Array List model in Fig. 4 and Fig. 5, it can be observed that

JavaSocket
CovS

Rand Heur

JavaSocket
CovT

Rand Heur

ArrayList
CovS

Rand Heur

ArrayList
CovT

Rand Heur

P
er

ce
nt

ag
e

0
10
20
30
40
50
60
70
80
90

100

Fig. 4: Comparison of state and transition coverages for Java
server socket and array list models

216 Paper E

JavaSocket
NTestFail1
Rand Heur

JavaSocket
CovLIP

Rand Heur

ArrayList
NTestFail1
Rand Heur

ArrayList
CovLIP

Rand Heur

S
co

re

0
10
20
30
40
50
60
70
80
90

100

Fig. 5: Comparison of scores to number of test cases used to
find the first failure and LIP coverage for Java server socket
and array list models

PostgreSQL
CovS

Rand Heur

PostgreSQL
CovT

Rand Heur

ZooKeeper
CovS

Rand Heur

ZooKeeper
CovT

Rand Heur

P
er

ce
nt

ag
e

0
10
20
30
40
50
60
70
80
90

100

Fig. 6: Comparison of state and transition coverages for
PostgreSQL and ZooKeeper models

our bandit heuristic approach has better performance on all
objectives in comparison to the random approach. The box
plots for both the Linked List and ChooseTest models show
that the heuristic approach has better results on all objectives,
which is similar to the results of Array List model. Hence,
we do not specifically discuss their box plots here due to the
space limitations.

After we obtained the Pareto optimal set from the training
phase of the four simple models in the training set, we apply
the resulting values of eight different rewards in the Pareto
optimal set to the 86 mutated PostgreSQL and ZooKeeper
models, respectively, from the test set. Fig. 6 and Fig. 7 show
the collected data for the PostgreSQL and ZooKeeper models
as box plots. The size of the dataset is 86 for the PostgreSQL
model with the heuristic approach, since we collected results
from 86 mutated versions of the PostgreSQL model. For each
version, we collect an average result for each objective from
50 average vectors as was shown in Fig. 3. For the random
approach of the PostgreSQL model, the size of the dataset is
also 86. This dataset has 86 average vectors, and each vector is

PostgreSQL
NTestFail1
Rand Heur

PostgreSQL
CovLIP

Rand Heur

ZooKeeper
NTestFail1
Rand Heur

ZooKeeper
CovLIP

Rand Heur

S
co

re

0
10
20
30
40
50
60
70
80
90

100

Fig. 7: Comparison of scores to number of test cases used
to find the first failure and LIP coverage for PostgreSQL and
ZooKeeper models

computed from the results of 40 seeds as was shown in Fig. 2.
For the ZooKeeper model, the sizes of datasets for the heuristic
and random approaches are the same as the datasets for the
four simple models in the training set.

From the box plots for the PostgreSQL model, we see that
the heuristic approach is slightly better than random approach,
since the box plot of the transition coverage Cov t of the
heuristic approach does not have the extra outlier (around 85)
shown in the plot of the random approach in Fig. 6.

For the resulting box plots of the ZooKeeper model in Fig. 6
and Fig. 7, although the box plots of the random approach
seems to have better results on the four objectives than the
heuristic approach, the box plots also show that the distribution
of the resulting data for heuristic approach is more concen-
trated than the random approach. For instances, the resulting
box plot of the NTest fail1 score for the random approach has
some extremely bad results (0) and extremely good results
(100), compared to the box plot of the heuristic approach.
The box plots of the heuristic approach from other models also
reflect this characteristic, i. e., they have a more concentrated
distribution of their resulting data than random approach.

D. Discussion

Our box plots compare the performance between our bandit
heuristic approach and a random approach for each objective
separately. To compare all values at a glance, Table II shows
the global average over all four metrics across all generated
tests, as obtained by the process shown in Fig. 2 and Fig. 3.
For PostgreSQL, we additionally average the fault-detection
rate over 86 mutants [25] on the code.

For the training set, we can see a large improvement on the
results both in the best and in the average case, which shows
that our heuristic adapts well to four different types of models
and produces consistent results. For the test set (PostgreSQL
and ZooKeeper), the difference is less clear. The heuristic
approach for PostgreSQL has better transition coverage, but
the difference is not significant, and the average scores even

Paper E 217

Table II: Comparison of global averages obtained by heuristic
and random approaches for each model.

Model Heuristic Random
Max GA Aver GA GA

ChooseTest 76.81 61.11 50.80
JavaServerSocket 82.26 75.38 64.35
ArrayList 82.62 68.95 59.15
LinkedList 71.19 69.77 58.06
PostgreSQL 72.74 48.45 48.45
ZooKeeper 72.91 69.55 84.79

match up to two digits after the decimal point. For ZooKeeper,
the random search does better than the heuristic approach.

Therefore, the results of the bandit heuristic search for the
test set are not as good as the results from the training set. The
reason for this are that our training set is too small, resulting in
overfitting. Even so, the results of the PostgreSQL model from
the test set also show a potential for the heuristic approach to
perform much better than the random approach.

V. RELATED WORK

A. Test Generation with Multi-objective Optimization

Test generation related to multi-objective optimization using
Pareto-effective approaches have been developed in the exist-
ing literature. Oster and Saglietti [26] proposed a technique
for test data generation using multi-objective optimization and
evolutionary algorithms to handle two objectives including
data flow coverage and the number of test cases required. They
used two variants of genetic algorithms, including the Multi-
Objective Aggregation (MOA) and classical NSGA to compare
with a random approach and a simulated annealing algorithm,
in order to test object-oriented programs implemented in Java.
The results showed that simulated annealing outperformed
other algorithms, but NSGA offered a higher flexibility since it
can provide a complete solution set instead of a single optimal
result.

A multi-objective approach to test data generation was
presented by Harman et al. [27], which focused on applying
multi-objective optimization to branch coverage and generat-
ing branch adequate test sets for branch adequate testing. Two
objectives were considered by the authors, including branch
coverage and dynamic memory consumption. The authors
compared the effectiveness of three search approaches: a
random, a weighted genetic algorithm search, and the NSGA-
II. The case studies were carried out on testing C code from
both real-world and synthetic examples.

In this paper, we define four test adequacy criteria as objec-
tives. Instead of branch coverage, we consider path coverage
as one of our test adequacy criteria, since path coverage is
a stronger test adequacy criterion than branch coverage and
it concerns a sequence of branch decisions instead of only
one branch at a time. Also, our approach is based on models
of the system under test. Path coverage and other criteria are
optimized at the model level rather than coverage of the SUT
code. We notice that the process of test case generation faces
the exploration versus exploitation dilemma, so we propose

the heuristic search strategy to handle this dilemma and guide
the test case generation. We then use the jMetal framework
with the genetic algorithm NSGA-II to tune the strategy in
order to optimize the four objectives we defined, with respect
to their trade-offs. For the experimental evaluation, we also
compare our approach with a random approach.

B. Search-based Test Generation

Our bandit-based heuristic approach also relates to some
extent to work on search-based testing, where random testing
is augmented with heuristics to find fault-revealing test cases
more efficiently [28]. In random testing, the problem of choos-
ing suitable input with the right values and types exists; these
problems are taken care of in model-based testing because the
user provides a model that generates these inputs. Similarities
exist in three of the six heuristics used in Guided Random
Testing [28]: 1) Impurity: We use a different weight for self-
loop transitions, which contain at least some impure methods
as not to be completely redundant; 2) Bloodhound: We also
choose transitions based on coverage, but we use coverage
at the model level rather than coverage of the SUT code; 3)
Orienteering: At this point, we do not consider the time it
takes to execute a transition, because the execution times of
transition actions did not differ in major ways in our examples.

In addition to using Pareto-efficient approaches for search-
based test generation, Salahirad et al. [29] discussed different
fitness functions for white-box testing. Their findings confirm
that high (source code) coverage is a prerequisite for successful
fault detection, and that branch coverage stands out as the most
effective single criterion. They also used treatment learning to
discover which metrics best predicts fault detection. We have
not investigated how different subsets of our criteria (espe-
cially when used within a limited resource budget) compare
to each other, as we only have four, and hence much less
than they had to consider. Rojas et al. [30] found that multi-
objective optimization algorithms based on Pareto dominance
are less suitable than a linear combination of the different
non-conflicting objectives. It is not obvious to us how we
would prioritize weights among the four different objectives,
a question which also [30] left for their future work.

C. Test Section with Multi-objective Optimization

Related work also exists in multi-objective optimization
for test selection. Yoo and Harman [31] presented a multi-
objective formulation of the regression test case selection
problem to show how multiple objectives can be optimized
using a Pareto efficient approach. Their goal was to find a
subset of a test suite, which is a Pareto optimal set with
respect to the chosen test criteria. They gave three algorithms
to compare their effectiveness, including a single-objective
greedy algorithm, NSGA-II, and vNSGA-II. The evaluation
was carried out on five programs in the Siemens suite and a
program from the European Space Agency. For each program,
the authors randomly selected test suites from existing avail-
able test suites as the input to the multi-objective optimization

218 Paper E

process. The results showed that the NSGA-based approaches
can out-perform the greedy approach.

Mondal et al. [32] studied multi-objective test case selection
to analyze both coverage-based and diversity-based test case
selection approaches. They proposed two approaches for bi-
and three-objectives optimization, respectively, by considering
code coverage, test case diversity, and test execution time.
They used the Additional-Greedy and NSGA-II algorithms
for bi-objective optimization and NSGA-II only for three-
objective optimization on 16 versions of five real-world pro-
grams, such as JBoss and Apache Ant. The results showed an
improvement of the fault detection rate by the three-objective
optimization approach.

For our work, we do not have existing available test suites,
so we focus on using the bandit-based heuristic search to
generate optimal test cases directly, with the aid of the
Pareto-efficient approach to optimize the four test adequacy
criteria. Also, instead of considering test execution time as an
objective, we use the number of test cases to find the first
failure together with three different coverages as objectives.

VI. CONCLUSIONS AND FUTURE WORK

Our main contribution is a heuristic search based test case
generation approach for model-based testing, aiming at per-
forming well on test adequacy criteria with considering their
trade-offs. We have proposed a bandit-based heuristic search
strategy to handle the exploration versus exploitation dilemma
for test case generation. Then, we applied an optimization
technique to tune our strategy and optimize the chosen test
adequacy criteria with the aid of the jMetal multi-objective op-
timization framework and the NSGA-II Pareto-efficient multi-
objective genetic algorithm. We have evaluated our approach
on several models for the Modbat model-based testing tool by
comparing the results of the bandit-based heuristic search with
a random test case generation approach. Our experiments show
that our bandit-based heuristic search approach has potential
to obtain better and more consistent results on the chosen
adequacy criteria compared to random test case generation,
while considering the trade-offs of the test adequacy criteria.

The second contribution is an implementation of the bandit-
based heuristic search strategy in the Modbat. This imple-
mentation is now included as a new feature in the Modbat
3.4 release. We have defined test adequacy criteria as multi-
objectives so that Modbat implements our strategy for test case
generation in addition to its standard random search. The test
adequacy criteria are optimized using the jMetal framework
which applies the NSGA-II algorithm on the Modbat models
that we use as the training set to find a Pareto optimal set. The
reward parameter settings obtained in the Pareto optimal set
can then be used to initialize the test case generation with our
bandit-based heuristic search strategy to generate test cases for
advanced Modbat models in general and targeting the chosen
test adequacy criteria.

The work presented in this paper opens up several directions
of future work. The results of our heuristic search from the
training set are promising, but the results from the test set

are not as good, especially for the ZooKeeper model, due
to overfitting. To leverage the potential of our approach, we
need to obtain more and more diverse models for the training
set so that multi-objective optimization can get well-fitted
reward parameter settings in Pareto optimal set. Additionally,
increasing the size of the population and the number of
generations for the NSGA-II might give us better results in the
Pareto optimal set. Also, we may consider using alternative
algorithms provided by jMetal to solve our multi-objective
optimization problem.

Another direction of future work is to investigate self-
optimizing approaches with optimization on the models at run-
time to achieve the potential of our bandit heuristic search
strategy for test case generation. Furthermore, other test ade-
quacy criteria such as the execution time of test cases could
be considered as additional objectives for the optimization.
Also, in addition to bandit heuristic search strategy, we plan
to implement other heuristic strategies for test case generation.
Finally, the application of our approach to platforms other than
Modbat is another possibility.

ACKNOWLEDGEMENTS

This work was partially supported by the European Hori-
zon 2020 project COEMS under grant agreement no. 732016
(https://www.coems.eu/).

REFERENCES

[1] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software testing, verification and reliability, vol. 22,
no. 5, pp. 297–312, 2012.

[2] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[3] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II,” in International conference on parallel problem solving from
nature. Springer, 2000, pp. 849–858.

[4] C. Artho, A. Biere, M. Hagiya, E. Platon, M. Seidl, Y. Tanabe,
and M. Yamamoto, “Modbat: A model-based API tester for event-
driven systems,” in Haifa Verification Conference, ser. Lecture Notes
in Computer Science, vol. 8244. Springer, 2013, pp. 112–128.

[5] “Modbat 3.4,” https://github.com/cyrille-artho/modbat/tree/3.4.
[6] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-

objective optimization,” Advances in Engineering Software, vol. 42,
no. 10, pp. 760 – 771, 2011.

[7] A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the JMetal multi-
objective optimization framework,” in Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO Companion ’15. New York, NY, USA:
Association for Computing Machinery, 2015, pp. 1093–1100.

[8] K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test gener-
ation using the extended finite state machine model,” in 30th ACM/IEEE
Design Automation Conference. IEEE, 1993, pp. 86–91.

[9] Programming Methods Laboratory of École Polytechnique Fédérale de
Lausanne, “The Scala Programming Language,” https://www.scala-lang.
org.

[10] R. Wang, C. Artho, L. M. Kristensen, and V. Stolz, “Visualization and
abstractions for execution paths in model-based software testing,” in
Integrated Formal Methods, ser. Lecture Notes in Computer Science,
W. Ahrendt and S. L. Tapia Tarifa, Eds., vol. 11918. Springer, 2019,
pp. 474–492.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA: MIT Press, 2011.

[12] D. A. Berry and B. Fristedt, “Bandit problems: sequential allocation
of experiments (monographs on statistics and applied probability),”
London: Chapman and Hall, vol. 5, pp. 71–87, 1985.

Paper E 219

[13] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of Monte Carlo tree search methods,” IEEE Trans. on Comput.
Intelligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

[14] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” arXiv preprint arXiv:1402.6028, 2014.

[15] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[16] M. Tokic and G. Palm, “Value-difference based exploration: adaptive
control between epsilon-greedy and softmax,” in Annual Conference on
Artificial Intelligence. Springer, 2011, pp. 335–346.

[17] S. Gelly and D. Silver, “Monte-Carlo tree search and rapid action value
estimation in computer Go,” Artificial Intelligence, vol. 175, no. 11, pp.
1856–1875, 2011.

[18] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[19] Y. Collette and P. Siarry, Multiobjective optimization: principles and
case studies. Springer Science & Business Media, 2013.

[20] M. Ehrgott, Multicriteria optimization. Springer Science & Business
Media, 2005.

[21] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen et al., Evolutionary
algorithms for solving multi-objective problems. Springer, 2007.

[22] C. Artho and G. Rousset, “Model-based testing of the Java network
API,” arXiv preprint arXiv:1703.07034, 2017.

[23] C. Artho, M. Seidl, Q. Gros, E. Choi, T. Kitamura, A. Mori, R. Ramler,
and Y. Yamagata, “Model-based testing of stateful APIs with Modbat,” in
Proc. 30th Intl. Conf. on Automated Software Engineering (ASE 2015).
Lincoln, USA: IEEE, Nov 2015, pp. 858–863.

[24] C. Artho, Q. Gros, G. Rousset, K. Banzai, L. Ma, T. Kitamura,
M. Hagiya, Y. Tanabe, and M. Yamamoto, “Model-based API testing
of Apache ZooKeeper,” in 2017 IEEE Intl. Conf. on Software Testing,
Verification and Validation (ICST). IEEE, 2017, pp. 288–298.

[25] D. Tziatzios, “Model-based testing for SQL databases,” Master’s thesis,
KTH, School of Electrical Engineering and Computer Science (EECS),
2019.

[26] N. Oster and F. Saglietti, “Automatic test data generation by multi-
objective optimisation,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2006, pp. 426–438.

[27] K. Lakhotia, M. Harman, and P. McMinn, “A multi-objective approach to
search-based test data generation,” in Proc. of the 9th annual conference
on Genetic and evolutionary computation. ACM, 2007, pp. 1098–1105.

[28] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler, “GRT:
program-analysis-guided random testing,” in Proc. 30th Intl. Conf. on
Automated Software Engineering (ASE 2015). Lincoln, USA: IEEE,
Nov 2015, pp. 212–223.

[29] A. Salahirad, H. Almulla, and G. Gay, “Choosing the fitness function
for the job: Automated generation of test suites that detect real faults,”
Softw. Test., Verif. Reliab., vol. 29, no. 4-5, 2019.

[30] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri, “Com-
bining multiple coverage criteria in search-based unit test generation,”
in Search-Based Software Engineering, M. Barros and Y. Labiche, Eds.
Springer, 2015, pp. 93–108.

[31] S. Yoo and M. Harman, “Pareto efficient multi-objective test case
selection,” in Proceedings of the 2007 international symposium on
Software testing and analysis, 2007, pp. 140–150.

[32] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite diversifi-
cation and code coverage in multi-objective test case selection,” in 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2015, pp. 1–10.

220 Paper E

	Dedication
	Preface
	Acknowledgments
	Abstract
	Sammendrag
	I Overview
	Introduction
	Fault-tolerant Distributed Computing
	State-machine Replication
	Quorum Systems
	The Gorums Framework

	Software Testing
	Testing Levels
	Testing Terminology and Artifacts
	Testing Approaches
	Testing Coverage

	Model-based Software Testing
	The Process of Model-based Testing
	A Taxonomy of Model-based Testing

	The Modbat Model-based API Tester
	Coloured Petri Nets
	Research Questions
	Research Method
	Outline
	Supplementary Material

	Distributed Systems and Protocols
	Distributed Applications
	Synchronous and Asynchronous Systems
	Distributed Programming Abstractions
	Process Abstractions
	Communication Link Abstractions
	Failure Detection
	Leader Election

	Distributed Storage Systems with Shared Memory
	Distributed Consensus Algorithms and Protocols
	Consensus Algorithms
	Basic Consensus Protocols
	Advanced Consensus Protocols

	Safety and Liveness Properties

	Model-Based Testing for Fault-Tolerant Distributed Systems and Protocols
	Gorums and Distributed Storage Service
	Gorums and Single-decree Paxos
	Model-based Testing Framework and Approach
	CPN Testing Models
	CPN Testing Model for a Distributed Storage Service
	CPN Testing Model for Single-decree Paxos

	Results and Contributions
	Related Work

	A Software Tool for Test Case Generation with Coloured Petri Nets
	Software Architecture of the MBT/CPN Software Tool
	Automated Model-based Testing
	Test Case Generation
	Test Case Execution with a Generated Test Adapter

	Results and Contributions
	Related Work

	Path Coverage Visualization and Multi-objective Search with Modbat
	Extended Finite State Machines (EFSMs)
	Representation of Execution Paths
	Path Coverage Visualization
	Basic Visualization Elements
	State-based and Path-based Graphs

	Multi-objective Search
	Bandit Heuristic Search for Test Case Generation
	Bandit Search-Based Test Suite Optimization

	Results and Contributions
	Related Work

	Conclusions and Future Work
	Research Questions Revisited
	Summary of Contributions
	Contributions to the theoretical foundations and approaches
	Contributions to the MBT software tools and techniques
	Contributions to the SUT case studies and experiments

	Future Work
	Theoretical foundations and approaches
	MBT software tools and techniques
	Case studies and experiments

	Bibliography

	II Articles
	Model-based Testing of the Gorums Framework for Fault-tolerant Distributed Systems
	Automated Test Case Generation for the Paxos Single-decree Protocol using a Coloured Petri Net Model
	MBT/CPN: A Tool for Model-Based Software Testing of Distributed Systems Protocols using Coloured Petri Nets
	Visualization and Abstractions for Execution Paths in Model-based Software Testing
	Multi-objective Search for Model-based Testing

