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allowed to be very flat or very long compared to their triangular bases, and the edges of
quadrilateral faces can be nonparallel. Moreover, the triangular faces of each element are
either parallel or skew to each other. To estimate the error of the interpolation operator
defined on the finite space whose basis functions are defined on the general prismatic
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Interpolation error elements, we consider quadratic polynomials as the basis functions for that space which
Semiregular prismatic element are bilinear on the reference prism. We then prove that under this modification of the
Maximum angle condition semiregularity criterion, the interpolation error is of order O (h) in the H!-norm.
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1. Introduction

The finite element method is one of the most flexible and powerful methods to solve numerically a wide variety of
partial differential equations [3,13,11,14]. A fundamental problem is to estimate the error between the exact solution and
its computable finite element approximation. This error can be bounded by the best approximation of the exact solution
in the finite element space consisting of piecewise polynomial functions (see Céa’s lemma [4]). Hence, it is important to
estimate the interpolation errors.

In the process of estimation of the interpolation error, some constant times a power of the discretization parameter h
appears. It is crucial that this constant does not blow up when h tends to zero. For linear elliptic boundary value problems
in 2-dimensional space, Zlamal [15] introduced the minimum angle condition that guarantees a bound on the constant in
the final error which comes from the estimation error of the defined interpolation operator. See also Synge [12]. BabuSka
and Aziz [2] proposed that the minimum angle condition can be relaxed to the maximum angle condition. In 3-dimensional
space, the natural extension of the maximum angle condition for tetrahedral elements was proposed by KfiZek [9]. Recently,
the generalization of the maximum angle condition in d-dimensional spaces (d > 2), by means of sing [5], for d-simplices is
introduced and extended in [7,8] and also the equivalence of the maximum angle condition and its generalized version is
proved.

The maximum angle condition enables us to keep an optimal error whereas we are allowed to consider degenerating
families of elements in order to cover the narrow or flat parts of a given bounded domain. For instance, in geophysical
simulations [10], where the domain consists of horizontal triangles as a base and regular vertical layer, all finite prismatic
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Fig. 1. Partition of frustum into prisms satisfying Definition 3.

elements are produced by the Cartesian product of triangles and the closed intervals called triangular prisms. For such
simulation, high aspect-ratio for the elements must be allowed. Therefore, we [6] analyzed the behavior of the interpolation
error under the maximum angle condition on the above prisms.

The aim of this paper is to estimate the interpolation error for a more general class of prismatic elements than previously
considered in [6]. This class of elements naturally appear e.g. in some standard geometric models. In Fig. 1 an example of
a frustum is given. We interpolate a given function by quadratic polynomials which are bilinear on the reference prism.
To introduce general prismatic element, similar to [6] we consider the maximum angle condition for all dihedral angles. In
addition, we assume that the ratios between the three edges that connect the triangular faces is bounded from below by
some positive constant. Note that these ratios for triangular prisms are one. We relax the conditions from [6] to allow e.g.
slanted or skew elements. In particular small deformations of the geometry from [6] are covered. We refer to [6] for further
motivation and context.

We use the technique of reference element in several parts of the main proof in order to demonstrate that the inter-
polation error is of order O(h) in the H'-norm for sufficiently smooth functions and sufficiently small h. In that proof we
use a positive lower bound for the Jacobian determinant. In our case, this determinant is a quadratic polynomial in three
variables whose coefficients are expressed in terms of volumes of tetrahedra formed by the vertices of the prism.

The outline of the paper is as follows. First, in Section 2, we introduce notations and give some definitions. In addition,
we propose an extension of the semiregularity property that allows us to consider some degenerate families of prismatic
elements. In Section 3, we obtain a positive lower bound for the Jacobian determinant in Theorem 6, since we use the
technique of the reference element to prove the main result. In Section 4 we prove Theorem 7 which states that the
interpolation error is of the order O(h) under the extended semiregularity condition, followed by some conclusions in
Section 5.

2. Main definitions and geometric preliminaries

We will consider meshes whose elements are defined in this definition:

Definition 1. A straight-side, triangular based prism is a convex polyhedron with six vertices, two triangular faces and three
quadrilateral (convex planar) faces. Furthermore, each quadrilateral is incident to the other four faces. The two triangles are
not incident. See Fig. 2 (right). In this paper, we will refer to this as a general prism.

We define general prismatic meshes as follows:

Definition 2. A general prismatic mesh P, of a bounded polyhedral domain is a face-to-face partition whose elements are
general prisms, where h is the maximum diameter of all elements in the mesh.

The following lemma helps us to order the vertices of the prism 7. For more details, see also Remark 1.

Lemma 1. The three edges which connect the two triangular faces of P are either parallel or if we extend these edges in one direction
then they meet each other at some point.

Proof. The planes containing the three quadrilateral faces intersect in one point or this intersection is empty. O
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Fig. 2. The reference prism P (left) and an arbitrary prismatic element P (right). Further, the mapping F is given by formula (9).

Remark 1. We order the vertices of P similar to [9, pp. 517-518], in such a way that the non-parallel edges A3Ag, A4A;
and AsA; satisfy Lemma 1 and the triangular face A3A4As is closer to the intersection point than the triangle AgA1A;. See
Fig. 2 (right). If the edges are parallel, then we do not need to order the vertices similar to the nonparallel case except that
the vertices Ap and As are the end points of the same edge connecting the triangular faces. Furthermore, we assume that
in any case the maximum angle for the triangular base is at vertex Ayp.

We now define the modification of the semiregularity property from [6] to our setting that will be used throughout the
paper.

Definition 3. A family of general prismatic meshes F = {Py}y_o is semiregular if there exist constants y < m, ¢y > 0, and
c2 > 0 such that the following conditions hold:

a) Maximum angle condition : For any P € Py and any P, € F let yp be the maximum angle of any triangular faces and
dihedral angle between any two faces of P. Then

yp<Y. (1)

b) Edge ratio condition : For any P € P, and any P € F let Ly, and Lygx be the minimum and maximum lengths of
the three edges connecting the triangular faces. Then

Limin

>C1.

Lmax
c) Tetrahedra ratio condition : For any P € P, and any Pj, € F let the vertices of P be ordered as in Remark 1. Then
Vol7T (Ag, A3, A4, As)
> Cy.
VolT (Ag, A1, A2, A3)

Lemma 2. The conditions a), b) and c) from Definition 3 are independent.

Proof. In Figs. 3-5 we present examples showing the independence. In each figure, all vertices of triangles on the base and
on the top of the considered prisms are denoted by e and ), respectively.

Consider first a case in which a) fails, but b) and c) hold, see Fig. 3. Let Ag = (0, 0, 0), A; = (—h, —h?%,0), A, = (h, 0, 0),
A3 =(0,0,h), Ay = (—h, —h?%, h), and As = (h, 0, h) be the vertices of the prism. In this case, ZA1ApA2 — m as h — 0, so
condition a) fails. On the other hand, conditions b) and c) hold with c; =1 and ¢c; = 1.

Consider next a case in which c) fails but a) and b) hold, see Fig. 4. Let Ag = (O, ﬁh, 0), A1 = (—%h, —éh, 0), Ay =
(3h, —‘éh,O), Az = (0, @hz,h), Ag=(—1h2, —‘éhz,h), and As = (3h2, —“/éhz,h). The triangles on the base and top of
the prism are equilateral. Now, if h tends to zero, this family degenerates into a regular tetrahedron, so clearly condition a)

holds. Further, condition b) with c; =1 is fulfilled, meanwhile condition c) is violated, since the ratio of the volume of the
two tetrahedra 7 (Ao, A3, A4, As) and T (Ag, A1, Az, A3) is h2.
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Fig. 3. Orthogonal projection of prism onto Xy-plane with vertices Ag = (0,0,0), Ay = (—=h, —h2,0), Ay = (h,0,0), A3 = (0,0,h), Ag = (—h, —h? h),
As = (h,0,h).
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Fig. 4. Orthogonal projection of the prism onto Xjy-plane with vertices Ag = (O,?h,O), Ay

= (-1n,—Lno0), A, = Ah,—Lh,0),
A3 =(0, Lh2,h), A= (-2, =32 h), As = (3n2, —2h2 h).
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Fig. 5. Orthogonal projection of the prism onto J2-plane with vertices Ag = (0, —h, —h), A; = (h,0,—h?), Ay = (0,h,—h), A3 = (0,—h,h),
A4 = (0,h, h), As = (h,0,h?).
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Finally, we consider a case in which b) fails, but the two other conditions hold. Let Ag = (0, —h, —h), A1 = (h, 0, —h?),
Ay = (0,h, —h), A3 = (0,—h,h), A4 = (0,h,h), and As = (h, 0, h?), see Fig. 5. Now assume that h — 0. Then the family
degenerates into a pyramid, so clearly condition a) holds. Moreover, the family satisfies condition ¢) with c; = 1. But
condition b) is violated, since Lyin/Lmax =h. O

The condition c¢) in Definition 3 implies bounds on ratios of the volumes of other tetrahedra as well. We will see this in
Lemma 5.
To prove Lemma 5, we need the following lemmas from [9].

Lemma 3. [9] Let ¢ < n < T be angles of an arbitrary face of an arbitrary tetrahedron. Assume furthermore thatt <y.Thent > 7 /3
and

Ty _]
,T € V|-

7 [ 2

Lemma 4. [9] Let A be an arbitrary vertex of an arbitrary tetrahedron T and let x < < ¢ be angles between faces passing through

A. Assume furthermore that ¢ <%y.Then ¢ > 7 /3 and

roe (577

Lemma 5. There exist positive constants Cij(c1,m),i =0, ..., 3, which depend only on ¢y and m such that
i)
Vol(7 (Ao, A1, Az, A3)) > Co(c1, m)abLyx.
where
T=Y. . _
5 )s sm(y)),

a =| A1Ap |, and b =| AxAp |
ii) The ratio of the volumes of the tetrahedra T (Ag, A1, A2, A4) and T (Ao, A1, A2, A3) is bounded from below by C1(c1, m).
iii) The ratio of the volumes of the tetrahedra T (Ao, A1, A2, As) and T (Ag, A1, Az, A3) is bounded from below by Ca(cq, m).
iv) The ratio of the volumes of the tetrahedra T (Ao, A1, A2, A3) and T (Ao, A3, A4, As) is bounded from below by C3(c1, m).

m :=min (sin(

Proof. i) The rays A4A1 and A3Ap meet each other at some point or are parallel. One is depicted in Fig. 6, where the angle
— —

between the lines A4A3 and AgAs, denoted by 6, is not the smallest angle in the triangle AgA3A4. Note that for other

possibilities we have similar results. Lemma 3 implies that sin(6) is bounded from below by the positive constant m as in

[9]. Then

. . | A4M |
sin(0) =sin(wr — 0) = >m,
| AgAs |
and consequently
| A1Ao| _ | AaM |
> >m
| AgA3 | — | AsAs |
Hence,
| A1Ag |=m| AgAs |, (2)
and similarly
| A2Ag |>m| AsAs | . (3)

We denote the angles between the edges A3Agp and A1Ap, and the edges AsA; and A1Ap, by o and B, respectively, see
Fig. 6. Now, according to [9, pp. 517-518], Lemmas 3-4, and condition b), if « is greater than or equal to 8, we get

1
Vol(T (Ao, A1, Az, A3)) > 6'“3 | A1Ao || A2A0 || A3Ao |

> —c1m? | A1Ao || A2Ao | Limax-

| =
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M

A
Fig. 6. Quadrilateral face of prism 7 made by vertices Ag, A1, A3, and Ag.

A3

Aq

Fig. 7. Quadrilateral face of prism P, where 8 >« and | A4A1 |<| A3Aq|.

Otherwise S is greater than «. In this case, either | A3A1 |>| A4A1 | or | A4A1 |>| A3A1 |. First, we assume that | A3A1 |>]
A4A1 |. Then

Vol(T (Ao, A1, Az, A3)) = —m*sin(a) | A1Ao || A2Ao || A3Ao |

—_ =

> 6clm2 sin(@) | A1Ao || A2A0 | Limax-

To obtain a lower bound for sin(«), it suffices to use the law of sines for the triangle AgA1As (see Fig. 7), conditions a)
and b), which implies
[ AsAr] _ 1 AsAr ]

>m >mcy, (4)
| A3Ag | | A3Ao |

sin (o) = sin (8)
and therefore
1 .
Vol(T (Ao, A1, Az, A)) = cctm’ sin(@) | A1Ao || A2Ao | Linax-
Now, if | A4A1 |>| AsA1 |, we consider the triangle AgA1M, see Fig. 8 (which also defines § =7 — o — ). Then
| MA1 |
| MAo |
> m | A4Aq |
| A3Ag | + | AgA3 | cos(t —0)
> m | A4A11| .
| AsAg |+m~1 | A1Ap |

sin (&) = sin(8 + B1)

(5)
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Fig. 8. Quadrilateral face of prism P, where 8 >« and | A4A1 |>| A3Aq |.

Note that for the above inequalities we used Lemma 3, since o < 8 + 1, and (2), respectively. Writing the law of sines for
the triangle ApA1A3 once again, leads to

_ sin(8)
| A1Ap |= sin(8)

Substitute the right-hand side of (6) into (5), we have

| A3Ag |<m™1 | As3Aq . (6)

m3 | AsAq | cym?3 1
sin (o) > > > —Cq
(14+m?) | A3Ap| — (14+m2) — 2

)

and consequently

1
Vol(T (Ao, A1, Az, A3)) > ﬁc%ms | A1Ao || A2A0 | Limax-

ii) To estimate a lower bound for the ratio of the volumes of the tetrahedra 7 (Ag, A1, A2, Ag) and T (Ao, A1, Az, A3), if
LA4A1Ag is greater than or equal to ZA4ApA1, condition b) implies

Vol(7 (Ao, A1, A2, Ag)) - m? | A1Ao || A2Ao || AgAq | > crm3
Vol(T (Ao, A1, A2, A3)) — | A1Aoll A2Ao | Lmax

Otherwise, exchanging the indices of the vertices Ag, A3, A4, A1 in Fig. 8 into 1, 4, 3, 0, respectively, and following the same
proof as in part i), there exists a positive constant C*(cq, m) such that

Vol(T (Ao, A1, Az, Ag)) = C*(c1,m) | A1Aq || A2Ao | Linax-

iii) The proof is same as in parts i) and ii).
iv) From part i), (2) and (3), we have

Vol(7 (Ao, A1, Az, A3)) - Coler,m) | A1 Ao || A2Ao | Lmax
Vol(T (Ao, A3, A4, As)) — | A4A3 || A5 A3 | Limax

>m?Co(c1,m). O

In what follows, we use the standard denotation Wf,(Q), k=0,1,...,p > 1, for Sobolev spaces with norms ||l =
ll.ll,p,o and seminorms |.|g.p = |.lk,p,o. The symbol C(S) stands for the space of continuous functions over .

To prove the main result of the paper we will employ the technique based on a transfer of the prism P € P, onto the
reference prism P =K x Z, where K is the triangular base and 7 is the altitude of P.

The vertices Ao, ..., As of the prism P are given in Fig. 2 (left). The associated basis functions ¢y, ..., ¢5 for bilinear
functions are
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P&, 9,.2)=(1-%—9)(1-2),
h1(%,5.2)=3(1-2),
$2(%.9.2) =31 -2),

$3(&, 9.0 =1-%2-9)2,
P4k, 3.2) =32,

$5(%,§,2) = yz.

(7)

The prismatic interpolant 7%75 of the function 7 defined on P is constructed as follows:
5
tpl= ii(A)d;. (8)
i=0
By definition, ﬁﬁﬁ(i\i) =1#(Ap), i=0,...,5, for any il € C(P).
Let
5
FR3.2)=) Aipi(%.3.2). (9)
i=0

Equation (9) defines a mapping F : P — P, which is a bijection from the prism P onto the prism P. Hence we can
define ¢; on P such that

$i(A) = ¢i(A) = ¢i(F~1(A)), for all points A of P € Py,.
With any prismatic mesh P, we associate the finite element space
Vi={ueC(Q) | ulpeQ(P) VPeP,

where Q(P)={¢ | ¢ = Z?:o ci¢;}. For similar cases, see [1], Section 5.3. Then the interpolation operator 7 : C(Q) — Vj
is uniquely determined by the requirement

mhu(Aj) =u(A;y) for A;,i=0,...,50f P € Pp. (10)
Consider B be a (3 x 5) matrix whose entries are denoted by Bj;,

B=|[Bip | Bap ],

where
[ B11 Bi2 Biz
Bip=| Ba1 B B3
| Bs1 B3z B33
i Al,x - AO,x AZ,x - AO.x A3,x - AO,x
= Al,y—AO,y AZ,y_AO,y A3,y_AO,y s
L A],z - AO,Z Az,z - AO,z A3,z - AO,z
and
[ Bis Bis
Byp=| B24 Bas
| B3a B3s

[ Asx—Aox— (Bi1+B13) Asx— Agx— (Bi2+ Bi3)
=| A4y — Aoy — (B21+B23) Asy— Aoy — (Baz+ B23)
| A4z —Aoz— (B31+B33) Asz;—Aoz— (B32+ B33)

Letj denote the Jacobian of the mapping F. Then

ax  dx  dx

0x dy 9z

j= ay 9y dy
| 9x 3y o0z
9z 4 9z
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B13 + B1aX + B15¥
B3 + BaX + Basy
B33 + B34X+ B35y

Bi2 + Bis2
By + Bys2
B3y + B3s2

B11 + B1aZ
B1 + B2az
B31 + B34Z

(11)

In order to obtain the rate of convergence of the interpolation operator, we will estimate an upper bound for [det()| ",
which plays the key role in the proof of Theorem 7. We will show that the lower bound of |det(J)| depends on the volumes
of tetrahedra in the prism P.

3. Jacobian determinant

For prisms [6] the determinant of the Jacobian is a constant. We see that for the general prisms, according to (11), det(j)
is a polynomial in terms of %, §, and z. To show that det(]) # 0, using the linearity property of the determinant, the Jacobian
determinant has the explicit form

det()) = A+ BX 4+ CJ + Dz — EXz — F§2 + G2?, (12)

where

A=

C=

B11
B2
B31

B11
B2
B31

B11
B2
B3

B12
B2
B3,

B12

B2
B3,

B12
B3
Bs;

B3
B3
B33

6Vol(T (Ao, A1, Az, A3)),

B1g
By
B3q

6Vol(T (Ao, A1, A2, Ag)) —A
Bi —A,

Bis
Bys
Bss

=6Vol(T (Ao, A1, Az, As)) —A
=Ci —A,
B12
By Baz Baa|—|B21 Baz Bos
B3z B3z By B31 B33z Bss
= 6{Vol(T (Ao, A2, A3, As)) + VoI(T (Ao, A1, As, A3))} — 2A
=D+ Dy —2A,

B11 Bis Bis

By1 Bas Bas
B31 B3s Bss

= 6{Vol(T (Ao, A3, A1, As)) — Vol(T (Ao, A4, A1, As))} +B
=D, —E; +B,
B2 Bis Bis

By, Bag Bas
B3z B3sq Bss

= 6{Vol(7 (Ao, A2, A3, As)) — VoI(T (Ao, Az, As, As))} +C
=Dy —F +C,
Bi3 Bis Bis

B3 Bag4 Bas
B33 B3s Bss

= 6{Vol(T (Ao, A3, A4, As)) — Vol(T (Ao, A3, A4, A2)) — Vol(T (Ao, A3, A1, As))} +A
=Gy —D; —-Dy+A.

Bi13 Bia B11 Biz Bis

D=

E=

F=

G=
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Therefore,
det) =A(1 —x— )1 —2) +B1x1 -2 +C1y(1 —2) +D12(1 — §)
+D22(1 —X) + E1X2 + F1 92 + G122 + A2 — Az — (D1 + Dy)2%. (13)

Theorem 6. Let F = {Py}n_.o be a semiregular family of general prisms of a bounded polygonal domain. Then, there exists a positive
constant C(c1, c3, m) which depends on ¢y, c; and m, such that

idet()| " < C(cr, ¢2,m)(abLingy) - (14)

Proof. For a fixed z = 2o, det()) is linear, and thus attains its maximum and minimum at vertices of the triangle 0 <&, <
1,X+ y <1,Z=Zy. Therefore it is enough to consider the restriction of det(]) to the three vertical lines. Then the extremal

values of detd) can be found at one of these points: the six vertices of the prism Ai,i=0,...,5, as well as if points
(0,0,-D/2G), (1,0, (E—D)/2G) and (0, 1, (F— D)/2G) are in the domain of definition.
Now, if the minimum value of det(]) occurs at one of the vertices A;,i=0,...,5, then
_min det(j) = min{A, By, C1,G1. Gy +Ey — D2, Gy +Fy — Dy} (15)
{Ao,....As}

On the right-hand side of (15), all terms are six times the volume of a tetrahedron. Indeed,
Gi+E —Dy— 6{V01(P(A0, .., As)) = VoI (T (Ao, A1, Aa., A5))} -D,
=6{Vol(P(Ao, ... A3))

— {VOI(T (Ao, A1, Az, As)) + Vol (T (Ao, A1, As, A3))}}
=6Vol(T (A1, A4, A3, As)), (16)

and
Gi+F —D; = 6{Vo1(7>(A0, ..., As)) = Vol(T (Ao, A1, Az, A4))] — Dy
=6{Vol(P(4o. ... A5))

— {VoI(T (Ao, A1, A2, Ag)) +VoI(T (Ao, Az, A, Ap)} |
= 6Vol(T (A3, A4, As, A2)). (17)

Now, Lemma 5 provides the lower bounds for A, By, and C;. In addition, condition c) and part i) of Lemma 5 imply that

G1 > c2Co(c1, m)abLmgx.

Using the same proof as in Lemma 5 for (16) and (17), we obtain the lower bounds which consist of constants in terms of
c1 and m, times abLygx.
Now if the critical point P = (0,0, —D/2G) is a point, where det(J) has a minimum value, we have
. D?
det()(P) =A— —. 18
D (P 1C (18)
Due to the valid interval of z, there are two possibilities for D and G, D > 0,G <0 or D <0, G > 0. When G < 0, we obtain
det(j)(P()) > A. For D <0,
N 1
det()(P()) = 7= {4AG1 — (D +Dy)%}. (19)

If A <Gy, we get

. 1
det()(P(¢) > E{2A— (D1 4+ D2)}{2A+ D; + Dy}

ZA1{2A+D1 +D2}

> 2MA, (20)

where
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2A— (D1 +D 1 1
0<p =A@y 1, 1T
4G 2 4
When A; tends to zero, consequently P tends to (0,0, 0), and due to Lemma 5, the family of functions detd)(P(c)) for all
P € Pp € F is equicontinuous and by (18) we obtain
det()(P()) — A.

Otherwise, G; < A and

A 1
det()(P)) = E{ch — (D1 +Dy)}{2G; + D; + Dy}

Since in this case, condition 2G; — (D1 + D;) < 0 leads to P be outside of the domain, then the valid condition is 2G; —
(D1 + Dy) > 0. Hence,

det()(P()) = 2{2G1 + D1 + D}
> 2A2Gq, (21)

where
2Gi— D1 +Dy) 1
o vt

4G 4
When 1, tends to zero, G; and (D + D3)/2 tend together, and from definition of G we have

O<Ap=

2G— 2A— (D; +D;) = —D. (22)

This means that P tends to (0,0, 1) and by (18) and condition c), the family of functions det(j)(P(C)) for all P € Py and
‘Pn € F is equicontinuous, and det(J)(P () tends to

1 1

A+ D=2 +D2) > G = A, (23)

Now, let P = (1,0, (E — D)/2G) be a critical point, where the Jacobian matrix has a minimum value. Then

. (E—D)?

det(J)(P() =By — ——. 24
(P)) =By yr (24)

Since (E —D)/2G € (0, 1), then we have either D > E, G <0 or D <E, G > 0. For the first case, from (24), we get
det()(P()) = B1. (25)

For the case that D <E, G > 0, if By <G, we have
“ 1
det()(P(¢)) = —{4B1G — (E — D)?}
4G
1
> _—{2B1 — (E—D)}{2B E-D
> 1c (2B — (E—D)}{2B; + }

1
>—{2B; —(E—D)}{E—-D
_4G{ 1—( WH }
> A3{B1 +E1 + D1 — A},
where
E-D

1
0<A3= —.
4G 2

Furthermore,
Bi+E +Di—A= G{Vol(T(Ao, A1, A2, Ag)) + Vol (T (Ao, As, A1, As))
+Vol(T (Ag, Az, A3, Ag)) — Vol (T (A, A1, Ay, A3))}
=6{Vol(P(Ao. ... A5)) — Vol(T(Az, As, A3, Ag))

+Vol(T (A, As, A1, As)) — Vol (T (Ao, A1, Ay, A;))}.
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Using

Vol(T (A2, As, A3, Ag)) + Vol (T (Ao, A1, Az, A3))
= Vol(P(Ao. ..., As)) — Vol(T (A3, A4, Az, A1),

implies

By +E +D; —A= G{VOI(T(AO, A4, A1, As)) +Vol(T(As, As, Ay, Al))]. (26)
Hence

det()(P(c)) > 623Vol(T (Ao, A4, A1, As)), (27)

and a same proof as in Lemma 5, parts i) and ii), to obtain a lower bound for Vol<3)(T(A0, Ay, A1, A5)) implies the desirable
result. Further, if A3 — 0, then E-D — 0 and P, — (1,0, 0), and according to Lemma 5, the family of Jacobian determinant
at P for all P € Py € F is equicontinuous. Therefore (24) yields

det(J)(P(c)) — By.
The other case is D <E, G > 0 and G < By. Since the third coordinate of P, must be in (0, 1), we have
(E—D) < 2G. (28)

Hence, we use (E — D)2 < 4G2 to obtain

N 1
det () (P () = ;- (4B1G — (E— D)%}
>B;1—G
=(1— A4)Byq,

where

G
O<lg=—<1.
B,

If A4 tends to zero, then G tends to zero. By (28), D — E (or conversely), and from (25) we conclude that det(j)(P(C)) — By.
When A4 — 1, then G — B; and (24) tends to

_(E-D? 1

By B, E{ZBl — (E-D)}{2B; + (E - D)}

> %{2B1 —(E-D)}
> 3Vol(T (Ao, As, A1, As)). (29)

Note that for the last inequality we used (26). Now, the same argument for (27) implies (14).
Finally, for P() = (0, 1, (F — D)/2G),

. F — D)2
det()(P()) =€y — %

Moreover, D >F, G< 0, or D <F, G> 0, since (F—D)/2G < (0, 1).
Let D > F and G < 0. By (30), we then have

(30)

det()(P(c)) = C1.
Now, let D < F, G > 0. If C; < G we have

“ 1
det () (P () = ;- (4C:1G — (F - D)%}
1
> E{ch — (F—D)}{2C1 + F— D}

1
> E{ch — (F-D)}{F — D}
> As5{C; +F1 + Dy — A}, (31)
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where

F-D 1
<=

O<As=—— .
4G 2

Using
Vol(T (A1, Aa, As, A3)) + Vol (T (Ao, A1, Az, A3))
=Vol(P(Ao. ..., As)) — Vol (T (A1, Az, As, A3)),
implies
Ci+F+Dy—A= 6lV01(T(A0, A1, Az, As)) + Vol(T (Ao, Az, As, Ag))
+ Vol (7 (Ao, A1, As, A3)) — Vol(T (Ao, A1, Aa, Ag))]
- 6{Vo1(7>(A0, ..., As)) = VoI(T (A1, As, As, A3))
+Vol(T(Ag, Az, As, Ag)) — Vol (T (Ao, Ay, Ay, A3))]
=6{Vol(T (A0, A2, As, Aa)) +Vol(T (A1, A2, As, A2))}. (32)
Then we can obtain the lower bound for (31) as follows.

det()(P(c)) = 615Vol(T (Ao, Az, As, Ad)).

Extending the proof of Lemma 5, one comes to (14).
Now, if A5 — 0, then F—D — 0, and as a result Py — (0, 1,0). Similar to previous cases, due to Lemma 5, here the
family of Jacobian determinant at P for all prisms belonging to F is also equicontinuous and we get

det()(P()) — Ci. (33)

For the case that G < Cq,

N 1
det () (P () = ;- (4C:1G — (F - D)%}

>C —G
=1 -2,
where
G
O<ig=—<1.
(8]

If Ag approaches to zero, then G — 0, which implies (33).
To end the proof, let A¢ tend to 1. Then G — Cy, and consequently by (32), (30) tends to

F-D)? _ 1 2C; — (F—D)}{2C; + (F—D
—T—E{ 1— (F=D)}{2C; + (F— D)}

(]
1
> 526~ (F-D)}
> 3Vol3) (7 (Ao, A2, As, Ag)). O (34)

4. Interpolation error

Theorem 7. Let u € W%(Q) and F = {Py}n_o be a family of semiregular prismatic partitions of 2. Then, there exists a positive
constant C*, independent of the diameter h(P), such that

lu —mpuly 2,0 < C*{A(P) uly.0 +h*(P) ul3 2.0} (35)
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Proof. From the definition of semi-norm we have

lu — 7'r7z-u|%,2’73 = / (‘ —(u— m:u)’ + ’—(u - m:u)’z + ’%(u - 7T7>U)‘2>dx. (36)
P

To estimate (36), first we will estimate it on P. Then, from equation (40) in [6], we have

J BED 320 12 | 9% 2 a2 45
i — 7l X<12 (’ ‘ — — AAA)X, 37
/la @ )’ / X2 + X0y + %0z + 0X0y9z (37)
P
where
2012 1, u Pu o d%u
a?’ =an g H(z”ay Hanga
2flanian 2 +imian 2 +anjan |
avlen g oo Hanlen g2 +Henlen g oo
o s 9%u |2
<24[J<11>‘3X2’ H(Zl)‘ayz‘ +J(31)’322‘ +Itnltn —M,y'

2
2 2
+J(11)J(31)‘ axaz‘ J(Zl) (3])‘ ayaz‘ ]
For the last inequalities we used the so-called sum of squares inequality
(Xa) =s Za
j=1

In the remaining computations, we will use C as an unspecified positive constant. It is not necessarily the same in two lines
of a computation, for instance in equation (38). We get

BED ~ 2, 2
905 —C{Jm)J(u)‘ale + (21>J<22)‘ ’ +J<31)J(32>‘3zz‘
2
2 %2 2w u 2 0°u
+ (T H(mJ(zz))’—aXay |+ Gl + i) axaz‘
o n P du
2 2 2 2
+ + —’ }
(J(ZZ)J(31) J(Zl)J(32)) ayaz
3% |2
el = ol S+ T | 2+ oo 2
O N 0
anlan Hanles) 33y anlan Haslan)| 54,
72 12 72 12
+ + ‘ }
(J(23)-](31) J(21)J(33) ayaz
i 2 _
950502 {Jm)Juz)J(B)‘ Py ‘ +J<21)J<22>J<23>’ 2y3 ’
3u 2
2 2 R u 2 m R ) 2%\ 9”u
+J(31>J(32>J<33>‘—3’ +<J<12>J<11>J<23>+U<12>J<21>+J(11>J(22>)J<13>)‘ 3 ‘
0z ax<0y
o o s o s o oy s Bu 2
2 2 2 2 2 2 2 2
+ (J<11>J(12>J<33> + (a2l +J<11>J<32>)J<13>)‘—3,(232‘
2 2 202 W 2 2 R u 2
(@i tany + i) Fos) + oo onlis)) ‘ W‘
2 72 2 72 12 2 72 72 72 12 2 72 2 72 12 0 ’ u 2
+ (U<12)J<z1> +Jantaz))las) + Talen Heaan)les) + Ta)len HGZ)J(ZU)J(”)) ‘ Wyaz‘

oy a o a s Bu 2
2 2 2 2 2 2 2 2
+Uealenles + el +J<32)J(21))J<23))‘_3y2az‘
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22w 2w 2R 2 u 2
+ (oo Rt dtis) + Gl +J<32>J<21))J<33))‘ Py ‘
o o a G aya Bu 2
2 2 2 2 72 2 72 2
+ (oo Tt dtos) + Gl +J<32>J<21))J<33))‘—ayazz ‘ |

a2 |?
0%02

a2 |2 3
907 533

9 2 —_— —_—
, and g | e denote the length of the segments A4A3 and AsAs

To estimate the upper bounds for
by c and d respectively. Now, we have

’

(Arx— Ao’ + (A1y — Aoy’ =@, (Aax—A30° + (Agy — A3 y)* <2,
(A2x — Ao ) + (Azy — Ao y)? <b?, (Asx — A3 x)? + (Asy — A3 )% <d?,
which imply
llan| = [B11 + (Asx — Aox — (B11 + B13))Z]
< |A1x— Aox|(1 = 2) + |Asx — A3x|Z
<a+c,
lian)| = |Ba1 + (Aay — Aoy — (B21 + B23))Z|
<|A1y = Aoy|(1=2) + |Agy — A3y |2
<a+c,
lia1)| =|B31 + (Asz — Aoz — (B31 + B33))Z|
<[(A1z = Aoz|(1 =2) + A2z — As|Z
<a+c,

and similarly

lfan|<b+d, llan| <b+d, | <b+d.

Now the upper bounds of | J jy |, i=1,2,3, j=1,2 can be expressed in terms of a, b, and m as follows.

{|j<11) Nl j(31)|} <(1+m by,
{lian | lea | Jea|} = @ +m™Hb.
Moreover

}j(lB)‘ = |A3,x - AO,x| + |A4,x - A],x| + ’AS,x - AZ,x’ < 3Lmax,
’j(23)‘ = |A3,y - AO,y’ + |A4,y - Al,y| + ‘As,y - A2,y‘ < 3Lmax,
|j(33)‘ = ’A3,Z - AO,z’ + ‘A4,z - Al,z‘ + ‘AS,Z - AZ,Z‘ < 3Lmax-

Therefore,

921 ‘2

92u 2 (9%u 2 9%u 2 Zu 2 | 8%u 2 92u 2
o | +[552] +15zl | | ]

<2401 +m~! 404”— ol
=241+ ) ax2 dy? 972 9x0y 0x0z 9yoz
=241 +m H)4a* Y | DPuf?,

[B1=2

and
2 A~

5359

2
<2401 +m™H4a?p? Y | DPup?,
|B1=2

2
<61 +mNH2’LE, Y | DPul’,
1BI=2

‘ 9201
X092

2
<10 x 18°(1 +m )*a®bLig > [ DPu?.

1B1=3

’ 331
0X0y02Z
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Using Theorem 6, (37) can be expressed as follows.
o . . .
‘ —Uu-m
X
P

5c/|c1etd)|—1(1 +m2a2{((1+m 2@ +b%) +L2) Y [DPuf?
1B1=2

2 .
dX

+(@+m2p212,) Y [DPuldx
1B1=3

<C/|det(])|’1 {h*(P) Y |D’3u| +hiP) Y |Dﬂu\
1B1=2 1B1=3

Similarly, we have

/ . . A
‘—A(u—”
A 8y

<c/|c1et(])|— A+m 22 {(A+m 2@+ b7 +12,) Y [DPul’
1B1=2

2 .
dX

+ (A +m 2P Lh,) Y yDﬂu\
181=3

<c/|det(])|*1b2 Py Y yDﬂu\ +htP) Y \Dﬁu\
1B1=2 1B1=3

From equation (45) in [6], we get

/ (i(ﬁ - ﬁﬁa)lzdk

=[5

2 30 |2 330 2\ .
ve (sl )
%292 0X0y02 Y202

Since
9211 |2 2,4
@ <6 x 187 L0 Z
|B1=2
310 2
w3l = 10 x 1821 +m~NH*a* L2, Z |DPu K
1B1=3
3 |2
FIPER <10 x 182(1 +m_1)4b4 Liax Z |Dﬂu 2’
y 181=3
we get

/‘%(a —fzﬁa)‘zd)?

P
_c/|c1etd)|*1L;ax{L,%wX > ]Dﬂu\z—i—(l +m (@ + bt +a?b?) Y yoﬂuyz}dx
P |B1=2 181=3
C/ldetG)FlLﬁm 2Py Yy ynﬂuyz+h4(7>) > yDﬂu\z}dx
|B1=2 1B1=3

P

189

(39)

(40)
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Now, we estimate (36) as follows.

2
lu—mpuli, p

_ d ol 7‘1 a A 'S A 71 3 A A A 7‘1 a A A~ A
= [ |det())| ‘J(ll)ﬁ(” — T pl) +J(21)E(u — T pll) +J(31)E(u — T pll)
P

‘J(lz)y(u npu)—kj(zz)aA(u ﬂpu)+J(32)aA(u Tpl

-1 ~ A A 1 ~ A A -1 A A
+ ‘_]03)3(” — ﬂﬁu) +J(23)®(u — 7T75u) +J(33)£(U — TT.A
7 121 2 -l eV ]
3/Wdaan((uun| 1y P10 P )| 55 @ =250

P
J . L
( (21)| +|J(22)| +|.](23)| )‘@(u_nﬁu)‘

0 . A2\ A
+ (10Gh 2+ 10gh, P+ 105 P )| 55— 250 )dx. (41)

Theorem 6 and computations of cofactors lead to

)
).

)- (42)

2\ .
Ja

6
Jan 110Gy 110G 1 = e (1 m™)bLmey < €
{ (11) (12) (13) } |de (J)I (

6
55 I oy 1 155 1} < ——— (1 +m DaLlme < C
{ (21) (22) (23) } |d (J)| (

2
e by gy 1) £ ———a+m H%ab <C
{101 ey 1 ey 1 < det()] ( Lo

S—= Q=

Using (42) for (41) yields

Iu—ﬂPUI%,z,pSC/( ‘aA(u

P
and by (38), (39), and (40) we deduce

0 .~ .
8—2(u—n73u)

0
— (1l — T
max

+ a3

2 4
u—mpuli 5 p < C{(hP)” Ul 50 + ((P)) " [ul3 2. ).
which implies (35). O

5. Conclusion

In this paper, we proposed the combination of the edge and tetrahedra ratio conditions with the maximum angle con-
dition in three dimensional space, as the natural version of semiregularity for possibly degenerating families of prismatic
elements. We have shown that the new semiregularity condition property guarantees that an optimal order of interpolation
error is preserved.

In future work, we plan to estimate interpolation errors for pyramidal elements under similar conditions.
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