

BACHELOR’S THESIS
Utvikling av Sandkasse for API-Testing

Creating a Sandbox for API Testing

Are Dæhlen

Christopher Ishaque Jamil

Anders Kvamsøe

Bachelor, Computer Science/ Engineering
Department of Computer Science, Electrical Engineering and
Mathematical Sciences
Faculty of Engineering and Science
02.06.2020

We confirm that the work is self-prepared and that references/source references to all sources used in the work are provided, cf.
Regulation relating to academic studies and examinations at the Western Norway University of Applied Sciences (HVL), § 10.

 Faculty of engineering and science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

ii

 TITTELSIDE FOR HOVEDPROSJEKT

Rapportens tittel: Dato:

02.06.2020 Utvikling av sandkasse for API-Testing
Creating a Sandbox for API Testing
Forfattere: Antall sider u/vedlegg: 32

Are Dæhlen
Christopher Ishaque Jamil
Anders Kvamsøe

Antall sider m/ vedlegg: 37

Studieretning:

Dataingeniør / Informasjonsteknologi

Antall disketter/CD-er:

0

Kontaktperson ved studieretning:

Violet Ka I Pun

Gradering:

Ingen

Merknader:

Oppdragsgiver:

 ZData AS

Oppdragsgivers referanse:

Oppdragsgivers kontaktperson:

Kjetil Tollevsen

Telefon:

93637637

Sammendrag:
Målet med denne oppgaven har vært å lage en sandkasse for testing av APIer som oppdragsgiver kan bruke i sin
utviklerportal. Det har vært et sentralt fokus på å ta i bruk eksterne teknologier for å kunne øke kvaliteten på det ferdige
prosjektet. Produktet vi har utviklet og beskrevet i denne oppgaven, er en løsning ZData kan fortsette utvikling på og
utvide det til å passe alle deres spesifikasjoner.

Summary:
The goal of this assignment has been to create a sandbox for testing APIs that ZData can use in their developer portal.
There has been a central focus on using external technologies to improve the quality of the completed project. The
product we have developed and described in this thesis, is a solution ZData can continue to develop and expand it to fit all
its specifications.

Stikkord:

ASP.NET Core

Sandbox

API

Høgskulen på Vestlandet, Fakultet for ingeniør- og naturvitskap
Postadresse: Postboks 7030, 5020 BERGEN Besøksadresse: Inndalsveien 28, Bergen
Tlf. 55 58 75 00 Fax 55 58 77 90 E-post: post@hvl.no Hjemmeside: http://www.hvl.no

http://www.hvl.no/

 Faculty of engineering and science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

iii

Preface

Through this document we describe the development of our project and bachelor

thesis: “Creating a sandbox for API testing.” The project was done by Are Dæhlen,

Christopher Ishaque Jamil and Anders Kvamsøe.

Thank you to ZData for giving us the opportunity to work on this interesting project.

Special thanks to Henrik and Kjetil at ZData, who were our primary contacts. They were

a tremendous help to us throughout development of the project.

Also, a big thanks to our HVL supervisor Violet Ka I Pun for guiding us on the project

and giving us invaluable feedback on our report.

 Faculty of engineering and science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

iv

Table of contents
PREFACE ... III

1 INTRODUCTION ... 1

1.1 MOTIVATION AND GOAL ... 1

1.1.1 Project owner’s motivation and goal ... 1

1.1.2 Project group’s motivation and goal .. 1

1.2 CONTEXT... 1

1.3 LIMITATIONS .. 2

1.4 RESOURCES ... 2

2 PROJECT DESCRIPTION .. 3

2.1 PRACTICAL BACKGROUND ... 3

2.1.1 Project owner ... 3

2.1.2 Initial requirements specification ... 3

2.2 SIMPLE APPLICATION FLOW ... 4

3 PROJECT DESIGN ... 7

3.1 POSSIBLE APPROACHES .. 7

3.1.1 Development using .NET Core .. 7

3.1.2 Development using Java Servlets and JavaScript ... 7

3.1.3 Discussion of alternative approaches ... 8

3.2 SELECTION OF TOOLS AND PROGRAMMING LANGUAGES .. 8

3.2.1 Visual Studio 2019 .. 8

3.2.2 ASP.NET Core .. 8

3.2.3 ASP.NET Core Identity... 8

3.2.4 Entity Framework Core ... 9

3.2.5 Microsoft SQL Server .. 9

3.2.6 Mailgun .. 9

3.2.7 Docker .. 9

3.2.8 Kubernetes ... 9

3.2.9 Postman API Client ... 9

3.2.10 RestSharp ... 9

3.3 SPECIFICATION ... 10

3.4 PROJECT DEVELOPMENT METHOD .. 10

3.4.1 Development method ... 10

3.4.2 Project Plan .. 10

3.4.3 Risk analysis ... 11

 Faculty of engineering and science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

v

3.4.4 Risk management ... 11

3.5 EVALUATION METHOD ... 12

4 DESIGN AND CREATION... 13

4.1 DESIGN PATTERNS ... 13

4.1.1 MVC .. 13

4.1.2 Repository design pattern .. 14

4.1.3 MVCHR ... 14

4.2 CREATION ... 15

4.2.1 Initialisation .. 15

4.2.2 Database integration ... 15

4.2.3 Mailgun integration ... 17

4.2.4 API information from input forms .. 18

4.2.5 Testing with XUnit .. 18

4.2.6 Azure pipelines and deployment .. 20

4.2.7 Mocked input ... 21

4.2.8 Kubernetes and Docker .. 22

4.2.9 API Communication .. 22

5 EVALUATION ... 25

5.1 EVALUATION METHOD ... 25

5.1.1 Direct feedback from the project owner .. 25

5.1.2 Expanding Test Cases ... 26

5.2 EVALUATION RESULTS .. 26

6 DISCUSSION .. 28

6.1 PLANNING ... 28

6.2 EXECUTION .. 28

6.3 ADVANTAGES AND DISADVANTAGES OF SELECTED APPROACH ... 29

6.3.1 Planning ... 29

6.3.2 Execution .. 29

7 CONCLUSION ... 30

7.1 ACHIEVEMENT AND GOALS .. 30

7.2 FUTURE POSSIBILITIES .. 31

7.3 CLOSING REMARKS .. 32

REFERENCES ... 33

APPENDIX... 35

APPENDIX A - GANTT CHART .. 35

APPENDIX B – RISK ANALYSIS .. 36

APPENDIX C – EVALUATION FORM WITH RESPONSE FROM ZDATA .. 37

 Faculty of engineering and science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

vi

Table of figures
Figure 2.1: ZData logo .. 3

Figure 2.2: The registration page of the application ... 4

Figure 2.3: An example user’s sandbox dashboard with one sandbox created. 5

Figure 2.4: An individual sandbox’s dashboard with an overview of all available APIs 5

Figure 2.5: Test of the POST Company API with automatically generated data. 6

Figure 3.1: Model of interaction .. 10

Figure 4.1: Dependencies in the MVC design pattern taken from Overview of ASP.NET Core
MVC (Smith. 2020) ... 13

Figure 4.2: Visual representation of the repository design pattern taken from Introduction to
Repository Design Pattern, Cubet (Cubet, 2020) .. 14

Figure 4.3: Example of abstraction from database commands in C# 16

Figure 4.4: ER-model from ZData .. 16

Figure 4.5: ApplicationDbContext class which inherits from IdentityDbContext 17

Figure 4.6: Connection string for locally hosted SQL server ... 17

Figure 4.7: Forms for the user to input data. Can also generate sample data by clicking the
magic wand. ... 18

Figure 4.8: Overview of file structure for the repository design pattern. 19

Figure 4.9: Code snippet from ClientsControllerTest which mocks the ClientsHandler and
defines the return values for two methods. .. 20

Figure 4.10: Pipeline with all tasks after successful execution ... 20

Figure 4.11: Release pipeline with deployment to two different environments 21

Figure 4.12: Pipeline variables ... 21

Figure 4.13: Code snippet from AccountPostForm, populating HTML fields with random and
example data.. 22

Figure 4.14: Code snippet of creating a sandbox from SandboxHandler.cs 23

Figure 4.15: Displayed JSON and HTTP Status on the web page after a user submits data. 23

Figure 7.1: Final styling and design of web pages ... 32

1

1 Introduction

1.1 Motivation and goal

1.1.1 Project owner’s motivation and goal

The scope of this project is to develop a sandbox for testing the APIs delivered by ZData AS

(henceforth referred to as ZData). The motivation behind this project for ZData is to make their

APIs easily accessible for testing by interested clients, as well as a useful tool where both

developers and business managers can judge if their application would benefit from such an API.

The developer sandbox will work as an effective way to advertise their services to a larger

audience, as well as putting pressure on their competitors. The goal of this project will be to have

an easily accessible, accurate and user-friendly developer sandbox in place to work as an efficient

marketing tool for ZData’s services.

1.1.2 Project group’s motivation and goal

Our motivation for this project was largely rooted in the interest in learning more about the

different techniques and technologies that the IT industry uses for development. In addition, we

were also motivated by the opportunity to receive guidance from professionals in the field. The

goal of this project was to deliver a high-quality product as a testament to our personal skill and

ability, and as a referenceable project for future use. This also was a large expansion of

competence in the IT-development field as there were many new things to learn. During the

implementations of this project, we gained experience in a large number of new technologies

and their application, in addition to the ability to practice collaboration in a professional setting.

To help us achieve these goals we cooperated closely with ZData and our advisor from HVL.

1.2 Context

ZData is a broker that acts as the intermediary between banks and their commercial clients. Their

client base consists of companies such as Unicef, Toyota, Plantasjen, etc. Their aim is to

streamline the experience of connecting payments and financial services of these clients to

various banks. All of these clients rely on the ability to invoice their own customers, pay their

bills, transfer funds internally between departments. Doing this efficiently and automatically

decreases the running costs of the business, and increases profit margins. Efficiency and

automation are key principles of the services offered by ZData, which makes them attractive to

their clients.

ZData is currently experiencing tremendous growth as a result of global trends in the fintech

industry, having doubled their employee count since last year. Automation and open-banking are

making software brokers like ZData extremely relevant on the global stage. The creation of a

developer sandbox in which prospective clients can test and verify various aspects of ZData’s

2

software services before committing themselves to establish a collaboration, is a way to ensure

quality of the product for clients.

ZData is not the first business to construct a developer portal. Some other competing businesses

already offer their own sandboxes. These sandboxes range widely from design and capability,

with most of them lacking in some way or another. For instance, one has a very robust interface

which is easy to use and understand, while it lacks some of the essential functionality that is

needed for a complete testing environment. Another competitor has the exact opposite issue,

where all functionality is present, but the overall design is not very user friendly. ZData wants to

be competitive and offer their own developer sandbox that is more user friendly and offers a

greater ease-of-use experience with all of the necessary tools to raise their attractiveness to

potential clients.

1.3 Limitations

The main limitations the project faced were related to time constraints and a lack of experience.

Many of the technologies and techniques required to complete this project were new to us.

Technologies such as Azure DevOps, Docker and Mailgun are tools we had never worked with

before. Developing in sprints would also be a new experience. Therefore, a period of adjustment,

where things go more slowly and more errors and mistakes are made, was to be expected. The

main coding portion of the project was estimated to take approximately six weeks, which is

relatively short for the estimated workload.

ZData believed the amount of time was sufficient, evidenced by the additional tasks the

company set for us if the project was finished ahead of schedule. All the technologies and

techniques made available to us were meant to make the project develop more easily and

quickly, so as we became acquainted with them, development would speed up exponentially in

comparison to working without them.

1.4 Resources

ZData is offering their software and expertise. We used our own computers for development.

ZData provided software including Azure DevOps, MailGun, API etc. There was also a senior

software engineer available for questions and assistance throughout the development of the

project. Workspace was supplied by both HVL and ZData. Development of the project was done

in sprints and everything was developed in Visual Studio 2019.

3

2 Project description

2.1 Practical background

2.1.1 Project owner

ZData is a Norwegian software enterprise established in 1990. They specialize in all types of

electronic banking services for commercial use. The main business model of ZData is to increase

profit margins of their clients by facilitating and automating their clients in and out payment

routines, as well as giving them a better overview and control over their own liquidity and

finances. Because of the EU directive PSD2 (EU, 2015) all banks must now open their systems. It

means that third parties will be able to access customer payments accounts, and therefore offer

account information and payment information services. ZData intends to offer more and better

services to their clients as a direct consequence of this directive.

ZData has APIs developed for connecting to all banks in the Nordic countries, and a number of

banks in Europe. Their clients range from small local businesses, to large, multinational

businesses, numbering over 5000 in total.

Our contact person is located in their main office in Bergen. (ZData AS, 2020)

Figure 2.1: ZData logo

2.1.2 Initial requirements specification

Specified by ZData, the primary requirement specifications for our project were to create a

sandbox used to automate testing, by generating mockup data, of their existing banking related

APIs. This sandbox is planned to be a part of their developer environment, and to be one of the

main ways to attract new customers with easy implementation and testing of their services.

There is also a requirement for a simple login system for the development environment that can

facilitate the creation and authentication of users.

The primary goal of this project is to provide any interested customer with a convenient and

simple way to test their APIs, regardless of their technical background. The sandbox should be

understandable and user-friendly for both developers and business strategists.

4

2.2 Simple application flow

Our application has a relatively easy and understandable flow, starting with a registration

system. Here the user will enter information about themselves, as well as an email, phone

number and password. Figure 2.2 illustrates how the registration page looks.

Figure 2.2: The registration page of the application

Once a user has registered an account, an email will be sent to the submitted email address with

a confirmation link to validate the account. A login page is also available for users with an

existing account. After logging in or verifying their email the user is taken to the dashboard page,

where they can either select a sandbox that they have already created or create a new one. See

5

Figure 2.3 for a visual representation of the dashboard page with one sandbox already created.

Figure 2.3: An example user’s sandbox dashboard with one sandbox created.

When clicking the Create New Sandbox button the user is taken to another page where they are

asked to enter relevant information such as a sandbox name and a client id. When submitting

this information, a new sandbox is created and can be viewed from the dashboard alongside

other existing sandboxes that the user has created. The user also has the option to edit or delete

sandboxes they have created from the dashboard.

When the user clicks on the name of a sandbox they have created they are taken to that

sandbox’s dashboard. From here all of ZData’s different APIs can be selected and tested (See

Figure 2.4).

Figure 2.4: An individual sandbox’s dashboard with an overview of all available APIs

When selecting an API from a sandbox’s dashboard the user is sent to a page where they will

need to either fill in or automatically generate the necessary information that the API requires to

make its call. More information about how this data is generated can be found in section 4.2.8.

6

Below in Figure 2.5 an example of a call to the POST Companies API using automatically

generated data with a response and the request details visible in a json format.

 Figure 2.5: Test of the POST Company API with automatically generated data.

7

3 PROJECT DESIGN

3.1 Possible approaches

There are a few different options available for web development, both modern and classic, and

selecting the appropriate approach is important. All options have their pros and cons, and

individual needs and requirements should influence the decision. We considered several options

before landing on what we found to be the most appropriate method of development for this

project.

3.1.1 Development using .NET Core

The approach of developing the solution in .NET Core would be a more challenging

process for our group, seeing as we had less experience with this than other possible

solutions. Using .NET Core would, however, make the development of the sandbox

application smoother, as this is what ZData has used in their other solutions. .NET

implements the Common Type System (CTS) (Microsoft, 2016a), meaning any

implementation is language independent. This means that a programmer can compile

code in languages such as C++, Java or Visual basic, and with the proper set of supported

types this code can be used in a .NET implementation. This feature is an important factor

when selecting a language to build applications with, as it will have the benefit of making

the application easily scalable with other required features that may not be achievable

with .NET. The framework also comes with the benefit of being easily interfaceable with

Windows or other Microsoft systems, seeing as the framework is built by Microsoft

themselves

Some disadvantages of .NET Core include slower performance due to the management of

code behind the scenes, limited object relational(OR) support as it comes only with Entity

Framework, and it does not come with multi-platform support from Microsoft (Rongala,

2015).

A personal advantage for us with using .NET is that we could easily seek guidance from our

internal advisors at ZData. Another advantage was that it will make it easier to connect

our solution to their website. Furthermore, developing the solution in .NET will make the

project easier to maintain for ZData in the future. If this project was made in another

language their internal developers have less experience with, maintaining our solution

may be difficult. (See section 3.2.2 for more information.).

3.1.2 Development using Java Servlets and JavaScript

Java is the programming language that is most commonly used in the world (Oracle, 2019).

Because of this, the Java community is bigger than Microsofts, offering a larger user base with

relevant experience. Java is very OS independent, allowing applications to be deployed on any OS

easily. It is also backwards compatible, which facilitates migrating a project between Java

versions. The versatility of Java enables it to be used for development in a wide range of

8

industries. Java has a very efficient GUI, making it attractive for user clients. However, Java’s

great versatility comes at a price. As described by Rongala (2015) it is considered slower than

many other languages, and generally requires more memory for optimal function. He also

describes that it is more susceptible to security breaches because it is platform independent.

Java does support most of the APIs the project owner requires, either through JavaScript

implementation (Mozilla, 2020) or the back-end of the Java Servlets (Oracle, 2019).

3.1.3 Discussion of alternative approaches

Although using Java servlets and JavaScript for this project would be perfectly suitable, the

project owner has decided that this project will be developed in .NET Core. This will also bring

certain advantages as explained above, but the learning process may take a longer time. We do

feel comfortable working in .NET, as the internal advisors will be able to guide us, and we believe

that this will produce the best end result.

We chose .NET Core as the approach to implement the project mainly because it allows

integrating the sandbox we developed in this project seamlessly into ZDatas development

environment, as it implements the same framework. Although developing this project in a

different environment was possible, it would be more difficult. It would be especially difficult to

make the project communicate efficiently with ZData’s other services, and we would therefore

simply be making things more difficult for ourselves by developing in another environment.

3.2 Selection of tools and programming languages

3.2.1 Visual Studio 2019

Visual Studio 2019 is an IDE specially designed for programming in Windows. It is developed by

Microsoft, and its primary focus is developing in C++ and C#. As an IDE with built in Azure DevOps

integration, it is a logical choice for this specific project (Microsoft, 2019a).

3.2.2 ASP.NET Core

ASP.NET Core is an open-source, cross-platform framework for developing modern web

applications. It supports many modern programming paradigms and should offer the required

performance for the project. Microsoft supports ASP.NET Core on Windows (Microsoft, 2020a).

3.2.3 ASP.NET Core Identity

ASP.NET Core Identity is a service that provides an easy-to-use solution for handling user

authentication in ASP.NET Core development. With the use of the APIs the service provides

everything from identity management to single sign-on (Anderson, R., 2020).

9

3.2.4 Entity Framework Core

Entity Framework Core (EF Core) is a cross-platform version of Entity Framework and is used for

database communication. EF Core can serve as an object-relational mapper, which allows

developers to work with a database using .NET objects as well as abstracting the underlying

database logic. It also supports many different database engines, which means that the same

code will work if the database engine needs to be changed in the future (Microsoft, 2016b).

3.2.5 Microsoft SQL Server

Microsoft SQL Server is a relational database management system, which is built for storing and

retrieving data by other applications (Tutorialspoint, n.d.). It was chosen by the project group as

the database management system, as this is a system we have familiarity and experience with.

3.2.6 Mailgun

Mailgun is an email transaction service, built with API’s in mind. The service provides a

framework for sending and receiving emails. They also offer a service to simplify messaging the

users of their clients (Mailgun Technologies Inc, 2020).

3.2.7 Docker

Docker is a platform as a service that uses OS-level virtualization to deliver software in packages

called containers. Containers are isolated and self contained. They can communicate with each

other only through specific channels. All containers can run on a single OS, and therefore use

fewer resources than virtual machines (Docker Inc, 2020).

3.2.8 Kubernetes

Kubernetes is an open-source container-orchestration system for automating the deployment,

scaling and management of the containers in the application. With many of these containers

running on a single OS, it becomes necessary to manage them effectively (Kubernetes, 2020).

3.2.9 Postman API Client

Postman API Client is a tool used for API development. It allows the user to create and execute

queries which will be useful when the project group wants to debug queries made by the

application (Postman, n.d.).

3.2.10 RestSharp

RestSharp is an open-source HTTP client library developed for use in .NET development. It allows

developers to build applications that communicate with APIs, without having to deal with raw

HTTP requests and responses (Stackify, 2017).

10

3.3 Specification

With the choice of approach and selection of tools the project specification is building a web

application in ASP.NET Core, with a back-end communicating with both the SQL Server and

Kubernetes clusters. This is illustrated in Figure 3.1 below.

Figure 3.1: Model of interaction

3.4 Project development method

3.4.1 Development method

We developed the project through three sprints, each lasting two weeks. In advance of the start

of each sprint we defined the size of the scope for that sprint, and decided what elements to

include. Sprints were managed through Azure DevOps, using backlogs and taskboards. The

backlog contained a list of all known requirements and tasks, and in which sprint the task should

be completed. With the help of a velocity chart it was possible to coordinate and plan the

average speed of a sprint, or how many tasks at a certain complexity could be completed per

sprint. After a sprint was finished, the project group reviewed how the sprint went with the

project owner.

With this development method it was possible to include bugs as a requirement of the project,

meaning that any bugs we encountered could be included in the workload and handled during

the sprint, as they are expected and even required to finish the sprint. This made our group agile

and gave us the ability to deal with unforeseen problems.

3.4.2 Project Plan

The project plan was split into four different phases: Initialisation, implementation, evaluation

and documentation. In the initialisation phase we focused on understanding the project

specification and exploring different possible solutions. This phase also included gaining access to

relevant resources like ZDatas DevOps environment, Mailgun and other APIs needed for the start

11

of the project, as well as most of the research required for the project. In the implementation

phase the focus shifted to implementing the solution found in the initialisation phase. We

worked iteratively in three sprints to develop the project while maintaining communication with

the project owner. The final phase was the evaluation phase. In this phase the project group

evaluated how the project went based on the evaluation methods described in section 3.5. The

documentation phase was carried out throughout the other three phases. In this phase we

developed the required documentation artifacts for the project.

The detailed project plan in the form of a Gantt chart can be found in Appendix A.

3.4.3 Risk analysis

Risk analysis can be found in Appendix B.

3.4.4 Risk management

This section describes details and possible mitigations to the risks discovered by the preformed

risk analysis.

Virus outbreak

With the COVID-19 virus spreading rapidly at the startup phase of this project we will have to

limit physical interactions with ZData, our HVL advisor and other parties. To mitigate the risks of

the virus and to keep everyone healthy, meetings and interactions should be done digitally

through video conference calls and emails. If someone gets ill, the project group must take the

necessary precautions to contain the spread of the virus. In addition, the project group members

must have knowledge of all aspects of the project to ensure that progress on the project is not

halted.

Inexperience

Lack of experience could be a problem for our group. We are asked to use several technologies

we have little to no experience with, which can lead to both delays and reduction in quality of

the final product. To mitigate this risk, we should have frequent meetings with the project

owner, where they can help us with the technical problems we might have with the task.

Time constraints

Considering that the duration of this project is relatively short, time management is crucial. The

project consists of two parts, developing an application and writing a report. If too much time is

dedicated to writing the project report, the development of the application might suffer as a

result and vice versa. If this is not handled, it could lead to a reduction in quality of the two parts

in the final product. The project group needs to make sure that our use of time is as efficient as

possible, creating detailed plans for time management as well as making sure of what tasks lie

ahead. When the development phase starts, we need to make sure that everything needed for

development is ready, thus making the most of the time available to the project group.

12

Failure of equipment

As with every piece of technology, computers might fail. The project group needs to mitigate the

work and time lost if such events were to occur. To mitigate this issue the project group will

frequently perform backups by using a git-repository in Azure DevOps.

Misinterpreting project specification

When agreeing upon specific project specifications, misinterpreting certain aspects is always

likely to happen. This needs to be handled as quickly as possible to ensure a productive

workflow. By having frequent meetings in the startup phase, we can make sure that everyone

has a common understanding of the specifications and requirements. Such meetings should be

held at least once a week.

Poor communication with client

ZData is already an established company, and it is important that we understand that we may

not always be their main priority. This can lead to poor communication, which may again lead to

disappointing results. This risk can be mitigated through arranging meetings whenever the

project group feels the need to have parts of the project clarified or evaluated. It will be

important that the project group takes initiative to arrange such meetings when necessary.

Poor collaboration of group members

In any group project there is some risk of poor collaboration and if this risk is not handled the

project result will suffer. As identified by Liu et al. (2010) poor group collaboration is often the

result of three main factors: Poor motivation, a lack of accountability and negative

interdependence. To reduce the chance of poor collaboration the group members must try to

reduce the impact of the three factors mentioned above, which can be done by having weekly

meetings where we discuss how we feel the workload has been distributed and if there needs to

be made any changes.

3.5 Evaluation method

Since the project was developed through sprints, we initially planned to have bi-weekly reviews

following each sprint to evaluate progress, workload, goals and time management. These

reviews would be conducted by us and ZData in unison. We then planned to evaluate our own

work after each sprint and cross-examine each other's code, expand the test cases to include

corer cases for increased robustness, and run the project on different hardware to check

stability. ZData would also evaluate our progress and finished tasks with their own bespoke

metrics and give feedback on what they are satisfied with and what needs improvement. We

intended to have a consistent and frequent evaluation period of the project to increase the

quality of the finished product. Upon the completion of the project, ZData and the project group

planned to evaluate the project through a code review, as well as an evaluation form, and decide

if they are satisfied with the result.

13

4 Design and Creation

The project was created in .NET Core in VS and included a lot of prebuilt modules such as

Razor Pages (explained in section 4.2.1) and MVC (Model-View-Controller). At first the

project was built exclusively on MVC, but this made unit testing very difficult, so the

design pattern was changed to View↔ Controller ↔ Handler ↔ Repository ↔ Model

(MVCHR). It is important to include unit testing in the project as this makes it easier to

debug and verify that the code and its associated methods are working correctly. Changing

the design pattern was not a huge task, and mostly consists of moving methods out of

Controller classes, and into relevant Handler and Repository classes.

4.1 Design patterns

4.1.1 MVC

The design pattern we ended up using throughout the project is a combination of the

Model View Controller(MVC) pattern and the Repository design pattern. The MVC

pattern is based on separating an application into three main groups of components: The

Model, the View and the Controller. In this pattern user requests are sent to the controller

where it communicates with the model to perform user actions and/or query a database.

The controller then selects the view to show to the user, together with any relevant model

data. The illustration in Figure 4.1 shows the main dependencies of the MVC design

pattern.

Figure 4.1: Dependencies in the MVC design pattern taken from Overview of ASP.NET Core MVC (Smith.

2020)

The main reason for using this design pattern is the scalability of the solution that is produced

with MVC in mind. The reason for this is that it is far easier to test, update and debug parts of

your application when they only have one job. With this clear division between different parts of

our application it is easy to understand what component is related to a specific task if it fails or

needs to be updated (Smith, 2020).

14

4.1.2 Repository design pattern

The other design pattern we chose to integrate into our application was the repository

design pattern. The purpose of this design pattern is to separate the data access logic from

other parts of the application, and map it to business entities in the business logic (Cubet,

n.d.). With the help of interfaces, we can hide the unnecessary details of data access logic

from the business logic. In our application this was done by creating a repository class for

each handler, together with an interface. A controller would then use the handler, calling

methods from the repository where the data access logic resides. This way we could

disconnect our controllers from the data access logic that was necessary to perform

queries to the database. This makes the application more scalable, as well as making

testing possible with databases through a mocking technique. Mocking will be described

further in section 4.2.4. See Figure 4.2 for a visual representation of the repository design

pattern.

Figure 4.2: Visual representation of the repository design pattern taken from Introduction to Repository Design Pattern, Cubet

(Cubet, 2020)

4.1.3 MVCHR

The main reason for using the combination of these design patterns in our project was to

allow efficient testing of the application. This was specifically requested by ZData, who

told us to implement their form of tests, making it easier for them to expand tests for the

application later on. By using these combined design patterns we have a consistent

structure for our application, making data access logic and business logic separated, as

well as promoting scalability and testability. When creating a project for a business over

such a short time period, scalability of the application becomes a major priority. The

reason for this is that the developer portal will not be released directly after our six week

period as agreed upon with ZData, and it is important that we focus on laying the

foundations for an application that can be further developed by the internal developers at

ZData. Since the developer sandbox will be a part of their larger developer portal

application, making our work easily implementable into the remaining part of the

application should be prioritized. If the finished solution of our project is a solid and

scalable application, it will be simple for the project owner to further develop our solution

15

to the developer sandbox. A well-thought design pattern is therefore essential to both the

ultimate goal and the satisfaction of the problem owner.

4.2 Creation

4.2.1 Initialisation

In the early stages of the project we had a couple of specific goals to achieve:

• Creating an MVC application with a membership system.

• Creating input forms for sending data to ZData’s relevant API endpoints.

• Implementing the repository pattern to allow tests with mocked database connection.

As mentioned in the introduction to this chapter the project was created as a .NET Core

application in Visual Studio using pre-built modules such as MVC and Razor pages. By

creating a project with the MVC modules, certain aspects of early stages of development

are automatically generated, such as the correct file structure for the solution, a couple of

default pages of the website, and a standard CSS file which gives a unified theme for the

website straight away. Using the automatically generated content is efficient in setting up

the very basic components of the application. We use this standard CSS file for most of the

pages throughout the whole project, with only very minor changes. This allowed us to

almost completely ignore the visual design part of development, and to focus on the

various features that were necessary to achieve the end goal of the application.

Another tool the project group took advantage of during early stages of development

were Razor Pages. This module is built on top of ASP.NET Core MVC and includes a

lightweight framework with full control over HTML. Using this in combination with

ASP.NET Core Identity we could generate all manner of user authentication pages such as

a user registration and login systems. Razor Pages provided us with a simple way to edit

these pages to fit the application. ASP.NET Core Identity is an open source service which

provides a user friendly solution for user authentication, making membership systems

trivial to implement. The group was tasked with implementing an email confirmation

system using the Mailgun API, which would generally have been a difficult task. This was

made very simple due to the implementation of Identity, where different APIs for email

confirmation are supported. This is only an example of the many unique benefits of

ASP.NET Core Identity and Razor Pages, where larger tasks were simply replaced with the

ability to swap a few lines of code with the respective information required such as saving

users to a database and submitting information via forms.

4.2.2 Database integration

The next step was database integration. This step included both creating the database and

handling communication between the application and the database. There are numerous ways

to achieve this task, but with the use of EF Core a lot of heavy lifting can be avoided. The

framework can deal with the task of mapping objects in the application to tables and columns in

16

the database. It also comes with the ability to create database connections and execute database

commands. The commands can be generated from abstracted commands given in the

application as seen in Figure 4.3.

Figure 4.3: Example of abstraction from database commands in C#

The framework uses a model to perform data access. The model consists of entities and a

context-object which is the object used to communicate with the database and allows the

application to query and persist data (Microsoft, 2016b). EF Core uses a set of conventions when

building a model based on how the entities are shaped. The conventions that are discovered can

be extended and/or overwritten based on what is required by the project (Microsoft, 2019b).

The group implemented EF Core through creating entities for sandboxes, clients and users to

match the ER-model found in Figure 4.4

Figure 4.4: ER-model from ZData

With the entities in place we created the context class containing the entities that are stored in

the form of the property DbSet. Each DbSet can be seen as a table in the database. To map the

relation between a user and a sandbox the context class had to inherit from the

IdentityDbContext class. This handles the necessary entities for an Identity user, and the

conventions were overwritten in OnModelCreating to ensure that both the relations were

created as intended and to specify the wanted delete behaviour. The context class is shown in

Figure 4.3.

17

Figure 4.5: ApplicationDbContext class which inherits from IdentityDbContext

To be able to connect the database to the application, the context class had to be added to the

configuration of services, which is run at the startup of the application. This is an easy process,

where the context class is set as the type of the added service and the type of database

management system is set as an option, as can be seen in Figure 4.5. The option also contains a

connection string, which can be set in a JSON-file called appsettings cf. Figure 4.6. When the

project is deployed, the connection string must be changed to match a hosted database. More

details on how this was accomplished can be found in section 4.2.7.

Figure 4.5: Code snippet from ConfigureServices which adds our DbContext and selects a SQL Server

Figure 4.6: Connection string for locally hosted SQL server

4.2.3 Mailgun integration

After having successfully created and integrated a database into our application, the next

upcoming task was to implement an email confirmation system using the Mailgun API. This API

let the project group easily implement the system by using a code snippet made by Eric L

Anderson (Anderson, E., 2020).

Since ASP.NET Core Identity supports email confirmation, we could call the method in the

registration form’s backend as specified via automatically generated comments, and the API call

18

was successfully implemented into the application. Another necessary element to implement this

task was adding a json user secrets file with Mailgun credentials received from ZData. Since user

secrets are locally stored and not checked into source control (Anderson et al., 2020), another

approach had to be taken when deploying the project. This approach is described in section

4.2.6. Implementing these API calls was a relatively straightforward task in the project, and thus

no further commentary on this was necessary.

4.2.4 API information from input forms

The layout of the sandbox web page consists of multiple input fields as seen in Figure 4.7 and in

some cases radio buttons, which the user will need to fill out to get their API response. Some of

the fields are optional, and every field can be filled with mock sample data for the convenience

of the user. More information about mocking data can be found in section 4.2.8. After the user

has input all of their data and clicked the submit button, all of the data is collected and stored in

C# classes. This is then organized and formatted so that it is easier to understand and observe

the information. The data is then sent through the response of the web page and the page is

reloaded with the newly submitted data. This means the data can easily be displayed on the page

as a JSON (JavaScript Object Notation) object for the user to look at so they can get an idea of

how the data is collected and handled. See Figure 4.15 for an example of the JSON format.

Figure 4.7: Forms for the user to input data. Can also generate sample data by clicking the magic wand.

4.2.5 Testing with XUnit

As assigned by the problem owner we were requested to implement tests for the application at

the end of the first sprint. We had a short demonstration by ZData showing how they wanted us

to test our application, and in how their tests usually function. This task turned out to be the

most challenging part of our first sprint, as testing an application with data access logic required

19

a large-scale reconstruction in the software architecture. It was at this point we were advised to

implement the repository design pattern on top of the already existing MVC pattern, opening the

application to testing with data access logic separated from controllers. To achieve this goal we

created an interface for each repository with methods for CRUD operations, as well as methods

for specific queries that needed to be executed in the respective controller. In these repositories

our project group implemented the relevant methods to be used for database access, so that

they could later be mocked for testing. This will be further elaborated on in section 4.2.7. We

also created interfaces and handlers to further separate this logic, making the controllers

completely separate from all business and data access logic. See Figure 4.8 for a visual

representation of the file structure.

Figure 4.8: Overview of file structure for the repository design pattern.

With the architecture being properly set up, we could start creating tests for our application. This

was done by creating a separate test project inside the same solution. Using XUnit we created

three test classes that would function as a testing environment for our controllers. Each method

in the respective controller would have its functionality tested via the creation of Mocks for each

handler using the Moq NuGet package. When mocking an interface in this way we could specify

which methods should be run, and what they should return in the case where they were

executed. See Figure 4.9 below for an example related to our client controller test class, where

we created an instance of the handler using the Moq package and specify the output for two

methods.

20

Figure 4.9: Code snippet from ClientsControllerTest which mocks the ClientsHandler and defines the return values for two

methods.

By using this technique, we were able to make passing test cases for our application with

relevant data that was expected to be returned from the database, as well as mocking expected

behavior from other required method calls.

4.2.6 Azure pipelines and deployment

Deploying an ASP.NET Core app can be done in several ways, but in general it requires a hosting

server and a process manager. The process manager handles starting the application when

requests arrive, as well as restarting the application if it crashes or the server reboots (Microsoft,

2020b). Since the project group had been given access to Azure resource groups, we chose to use

Azure Pipelines to automate deployment of the app to Azure.

Azure Pipelines is a cloud service that can be used to automatically build and test a project, as

well as deploying it to any target (Microsoft, 2019c). The process of deploying to an Azure service

is split into two pipelines when using Azure DevOps. The first pipeline is responsible for building,

testing and publishing the project to a folder used in the other pipeline. To achieve this, the

pipeline consists of multiple tasks as seen in Figure 4.10.

Figure 4.10: Pipeline with all tasks after successful execution

21

These tasks are specified in a YAML-file that is bundled with the project. The second pipeline is a

release pipeline. This pipeline takes the artifact created by the first pipeline, and runs the tasks

required to deploy the app to the targeted service. The project group only used one task in this

pipeline as seen in Figure 4.11, as that is all that we required to target an Azure App Service.

Figure 4.11: Release pipeline with deployment to two different environments

Both pipelines can either be triggered manually, or automatically based on a condition set in it.

For example, the first pipeline can be triggered by changes committed to the master branch,

which in turn can trigger the second one if the build is successful.

As mentioned in section 4.2.3 user secrets for the Mailgun settings were no longer a viable

option when deploying the application, and we could no longer use the connection string to the

database hosted locally (see section 4.2.2). An easy solution to these concerns is using pipeline

variables. Pipeline variables can be used in the release pipeline to perform variable substitution

as part of the deployment task. As the connection string contains login information to the

database and the API key for Mailgun should be kept private these values were hidden using a

feature built into pipeline variables, as seen in Figure 4.12.

Figure 4.12: Pipeline variables

4.2.7 Mocked input

To make the application more user friendly, we have built in the functionality for the sandbox to

autofill its own fields. There is no need for the user to painstakingly fill out every field if they just

want a quick overview of the format and type of data that they should fill in. This also lets users

quickly test each API with predetermined data. All of the mocked input is handled through

22

javascript, with every instance of data being mocked statically. We found no particular need for

the data to be unique every time, so to simplify the process slightly, the data was mocked

statically. However, there is one exception, and that is in regard to the field CompanyId and

MessageId. Since these two fields are used as identifiers to keep each data package separate,

they have to be unique, or the program will end up replacing data continuously. Therefore, the

data is mocked by random generation every time, quite simply by using Guid. Guid is a built in

function in .NET that generates a unique ID, so the only thing needed for this to work seamlessly

is a quick razor reference to C# code, allowing the C# method to inject data into the javascript

function, which populates the HTML field with the relevant data. See figure 4.13 for an example

of the mocking functions.

Figure 4.13: Code snippet from AccountPostForm, populating HTML fields with random and example data.

4.2.8 Kubernetes and Docker

A large part of the second sprint was based on Docker and Kubernetes. These were both

complicated technologies that we had no previous experience with, and a lot of time was spent

on researching their implementation and functionality. Docker is a tool which is designed to

create, run and deploy applications using containers. These containers are units of software that

package up code and all relevant dependencies to ensure that the application runs reliably from

one computing environment to another (Docker Inc, 2020a). Unfortunately, due to the lack of

time and experience, we ended up not using docker to its full extent. The original idea was to

implement a system where a unique container is created for each individual user, so that there

would be some separation between users. Instead we ended up with a system where every

sandbox is created on a shared cluster. This is adequate for small scale production, as long as the

number of users remains low, but should probably be improved and fixed in the future.

4.2.9 API Communication

We successfully hosted the docker image of ZDatas APIs to a Kubernetes cluster. To connect it to

a sandbox from the application, we simply removed the user’s ability to set what the “Sandbox

URL” should be and instead set it to the URL of the hosted docker image, as shown in Figure 4.14.

This was implemented in such a way that customised client URLs could be created by new

Kubernetes clusters in future iterations.

23

Figure 4.14: Code snippet of creating a sandbox from SandboxHandler.cs

With the connection in place, new sandboxes now held a URL reference to a client that could

receive requests. To send the requests the project group used a HTTP client library called

RestSharp. This library contains methods to create a connection to a client, creating requests, as

well as methods for executing requests sent to the client. For the GET endpoints all that was

required was creating a client, creating a request, executing the request and finally parsing the

response from the client. A similar route was used for the POST endpoints, with one additional

step to add the JSON object created by the user to the request body (see figure 4.15).

Figure 4.15: Displayed JSON and HTTP Status on the web page after a user submits data.

The project group had up until this point not been able to test if the serialized JSON-objects

created by our input-forms would be valid request bodies to the APIs. It turned out that all but

24

one request body was valid, as the last request returned the HTTP response code “400 Bad

Request”. To debug this the project group used Postman and identified that the model for the

JSON object missed an array compared to the model the API expected. This was fixed by

updating the affected model to match the required model. Thus, we had created a functional

sandbox.

25

5 Evaluation

5.1 Evaluation method

The intended evaluation method for this project was discussed in section 3.5. This chapter

includes a thorough explanation of how these evaluations were made and how they changed.

Furthermore, this chapter will discuss downsides and advantages of the techniques we used

throughout this project. When developing an application of this size, frequent evaluations and

reviews are necessary to ensure good quality in the end result. In our project we utilized two

distinct methods of evaluation, direct feedback from the project owner, and expanding test

cases.

5.1.1 Direct feedback from the project owner

At the beginning of the project it was suggested by the project owner that the project group

should use Azure DevOps for storing the current solution via Azure Repos. They also used it to

monitor the progress for the ongoing sprint and overall progress using Azure Boards. Azure

DevOps is an online platform with several cloud services, of which we used:

• Azure Pipelines: Supports continuous deployment of applications.

• Azure Boards: Used to plan projects using various development methods.

• Azure Repos: Cloud hosting for private Git Repositories.

(Cool, 2018)

By using these tools we could push our application to the repository, have it automatically

deployed via Azure Pipelines and then change the status of the current task we were working on

in Azure Boards. This was an effective tool for getting feedback from ZData as this would allow

them to see the current solution quickly. It also gave them information about what tasks we

were currently working on with details about progression and the amount of time spent.

By using all of these integrated systems in DevOps we could rely on quality feedback from ZData,

as they had good insights into our workflow and contemporary solution. Meetings were held at

the end of every sprint to inform them about our progress and to review changes that needed to

be made according to their feedback. We would also start planning the next sprint together, by

taking into account time allocations, difficulty and priority for different tasks based on the results

from the previous sprint.

Another tool we utilized was an online chatting service called Slack. This tool was used for short

direct messages in a group where we could ask about technical difficulties and other problems

related to the project. It was not until the second sprint we started using this service more

effectively, but the responses were also lacking. Sometimes we would get replies within minutes

and other times it could take hours. This however became less of a problem as the project went

on, as we developed a better understanding of the times when they were available for questions.

Eventually the time to get a reply was relatively short. This was an unforeseen risk, and it would

have been more efficient to have a predetermined time slot where we could ask questions or at

least an estimated timeframe for when we should ask for guidance.

26

At the end of the project we sent an evaluation form to our advisor at ZData, see Appendix D. By

using this evaluation form we got an overview of the problem owner's satisfaction with different

parts of the application, as well as some feedback about our workflow and communication.

5.1.2 Expanding Test Cases

One approach to evaluating the project that we decided to use is unit testing. Using tests we can

run certain parts of our code in a specified testing environment, without having to worry about

security issues that can happen and impact the performance of the live application. This can help

you detect problems in your code before deploying the current solution, and is an effective way

to evaluate what seems to be a finished application.

More information about the process of writing the tests can be found in section 4.2.5.

Implementing the tests required restructuring the whole architecture of the application. The

project group has lacking experience in properly writing tests of this type, which made it a huge

task. It took about 40 hours over the original estimate of 20. This was addressed when planning

the upcoming sprints, but had a big impact on the total time commitment for sprint one.

Through these tests we were able to ensure the quality of the application, although there were

very few unseen issues when running them. The total time spent on creating the tests may have

been large during the first sprint, but when implementing new tests in the subsequent sprints

the implementation was swift, making the evaluation method effective overall. These tests made

us more confident in the application, and with limited time extensive user testing would not have

been possible.

5.2 Evaluation results

To get an overview of the project owner’s opinions on the solution and project period we

created an evaluation form (see Appendix D). ZData was in general pleased about the

outcome of the project, especially our communication and workflow. We were also

pleased with the communication throughout the project, and seeing as both the project

group and the problem owner were satisfied with how we communicated, this way of

evaluating was a huge contributor to the overall goal of the project.

A less successful part of the project was the integration of different software and

technologies into the application. This is largely because of the compromises we had to

make for the implementation of Docker, as explained in section 4.2.8. ZData does however

explain in question 8 of the evaluation form (see Appendix D) that this could have been

handled smoother if they were better prepared regarding these technologies.

To summarize, the project owner was pleased with the solution that we developed, where

communication with ZData proved to be the most effective way to ensure the quality for

the final product. Getting feedback at the end of each sprint and having an open

communication channel through Slack for guidance was an efficient way to make sure the

problem owner was participating in the solution, and to make the best product possible.

The implementation of unit tests for the application proved to be a less effective

27

evaluation tool, but worked well together with tight communication with ZData. The tests

were a solid way for the project group to evaluate the solution before presenting it to

ZData or when feedback from ZData was unavailable due to lack of time.

28

6 Discussion

6.1 Planning

When working on a project of this scale it is important to prepare sufficiently. Due to being

inexperienced in the field, the project group never quite realized the sheer scale this project

would have before starting the implementation. When planning for the project together with the

problem owner a lot of different technologies were often mentioned, and the breadth of

knowledge required to implement these was definitely underrated. It was difficult to understand

how all of these technologies would fit together when starting out, and going over this with the

problem owner would have been a good idea to plan the overall structure of the application

before even starting on the implementation.

In this project our planning stage went on for longer than expected, and contributed to the

problem with lack of time that we experienced when closing in on the end of the project period.

Regardless of how detailed our Gantt chart for time management was and how much research

we did for the different technologies, developing the solution is going to take a long time. In

hindsight we should have started earlier with the implementation, researching the different

technologies underway, rather than trying to go too in depth into the different technologies

before really knowing how they would fit into the application.

Another resource that could have been used to have a more efficient project period would have

been to have other reference projects from ZData that could have been reviewed early on to

gain insight into what kind of a solution we were creating. These reference projects could have

had similar implementations for the different technologies we were not familiar with, as well as

an example for how to write ZData’s way of Unit testing. With example projects with similar

elements as our own project we could have saved a lot of time on trying to figure out how to

implement new technologies such as Docker and Kubernetes. This is a difficult task as there was

little information about their own products ZData could share with us, but having another

project for reference in early stages of development would have been helpful.

6.2 Execution

A consistent and reliable workflow is important in a group project like this, making sure each

member knows what steps are necessary to go through when implementing a new feature into

the application. Our workflow can be described in 6 steps:

1. Select a task from the Azure DevOps sprint board.

2. Develop a solution to the current task.

3. Test locally to make sure the implementation works as intended.

4. Use push requests to commit solutions to the current branch.

5. Have the implementation verified by another group member, by the use of pull requests,

to ensure high quality.

29

6. Close the relevant Azure DevOps task and start over from point 1.

This workflow worked well throughout the project, minimizing the amount of time used between

tasks. An essential part for this to work was the use of Azure DevOps sprint boards, where we

were given multiple tasks from the problem owner at the beginning of each sprint. By using

these larger tasks that were provided, we could split them up into smaller more manageable

tasks to select from when choosing from the sprint board.

6.3 Advantages and disadvantages of selected approach

6.3.1 Planning

As described in 6.1 our approach to planning for the project was based on envisioning how all

elements and features of the solution would fit together when implemented. This process could

have been streamlined by having more conversations with our ZData advisor early on, and

preparing more relevant questions related to the project to get better insight into how they

would approach this kind of development. Doing this would have been more efficient, leading to

more time for development. The advantage of our current approach is that we, through

research, obtained more in-depth knowledge about different technologies, which means

integrating multiple and different technologies into a single project becomes much easier. This

has the added benefit of allowing us to take a similar approach in future projects, not just the

current one.

6.3.2 Execution

In section 6.2 we described our approach to execution of the project, with a focus on the

workflow during development. Working on smaller tasks that were parts of larger tasks provided

by the problem owner made each individual task seem less daunting when selecting what to

work on next, and provided a clear motivation to collaborate on the same feature since each

group member could work on similar tasks at the same time. One problem we encountered in

our workflow was that when the larger tasks got more complex and contained technologies we

had little to no experience with, it was difficult to separate them into small manageable tasks.

When the technology is unknown it takes a long time to figure out what components are

necessary during implementation. Then the original workflow naturally transforms into each

person working on a larger task by themselves, with meetings to help other group members

understand their implementation. This also became a problem in step five of our workflow. Since

everyone was working og separate parts of the application which were substantially different,

having group members verify each other's code became less relevant. This could have been

improved by taking more time to separate tasks into smaller ones in the later stages of

development, or asking ZData for assistance with separation of tasks. The ultimate goal of the

project was still reached, but this approach was volatile and could have caused major issues in a

larger project.

30

7 Conclusion

7.1 Achievement and goals

At the start of this project, the initial specifications of the project were as follows:

1. To develop a sandbox for testing API’s (Specifically those that belong to ZData).

2. To create a user authentication system.

3. To implement Kubernetes clusters for each user.

4. To create a project that supports further development by external parties.

All of these goals were achieved, although some compromises had to be made.

Developing a sandbox for testing API’s

The sandbox we created consists of two different parts, request and response (or POST

and GET). Building these systems progressed smoothly and continuously, and provided us

with no particular challenges. We successfully created a sandbox that lets the user input

their data and visualize the JSON object created from this data, as well as the user match

their sandbox with a CompanyID to fetch a JSON object from ZDatas external server.

Creating a user authentication system

This was another relatively straightforward goal, in large credit due to ASP .NET CORE

Identity which automates almost everything you need for an authentication system. After

automatically adding everything needed for identity in the project, we tweaked the files

we needed so that they would match what we required. We only spent substantial time

on the implementation of Mailgun. Since we wanted users to validate their email

addresses for the sandbox, Mailgun serves as the automatic sender of the emails. In the

email there is a link that validates the email through the project backend. After this

implementation, the goal was successfully completed.

Implementing Kubernetes clusters for each user

Originally the purpose of this element was for a unique Docker container to be created for

each individual user. However, integrating Docker containers proved to be a real

challenge, and after spending two full days, with every member researching and

experimenting, we decided the effort needed to fully complete this task would exceed the

time we had remaining on the project. We were still able to use Docker containers and

Kubernetes, but we opted for a simplified solution, where all users were situated on a

single Docker container. This means that the data of each individual user is no longer

completely secure since they are all sharing a container. Separating the users is a

necessary step to improve security.

Creating a project that supports further development by external parties

An important requirement of the project was that ZData would be able to expand upon the

original project after we had completed our development process. This meant that we had to

31

make sure the code was readable, well commented, and orderly structured. The addition of Unit

Tests also means that the code has a higher level of quality, and makes it easier for other

developers to test our code, and potentially their own. After the final code review performed by

ZData, and some minor issues were resolved, the feedback we got was that they were satisfied

with the result, and believed they could take this project and continue development without

major delay. We conclude that this constitutes a successful completion of the goal.

7.2 Future possibilities

This project was developed much in the style of client/provider, in which we were the

providers of a product, and ZData was our client requesting a product. As such, should

ZData release this project as a fully-fledged service to supplement the rest of their product

lineup, it seems unlikely that any other student groups or others would be allowed to view

the source code. ZData would likely want to protect their business interests. However, the

contents within the project would surely be useful to anyone interested in designing their

own API sandbox, as many of the same principles would apply.

After our work on the project ends, we expect ZData to start working on relevant

expansion. Ideally, we should have delivered a complete product ready for release, but the

time constraints of the project meant this was not feasible. Had we continued

development ourselves, then we would have implemented the following:

1. Security and encryption of sandbox data

2. Styling and design of web pages

3. Greater amount of options for users to control sandboxes

Should ZData release the project publicly, it would be logical to develop these elements

first.

Security and encryption of sandbox data

The sandboxes each individual user creates are only protected by the authentication of

the user during login. More advanced attacks could theoretically expose data, as this was

not something we designed against. However, implementing a level of encryption, where

the data becomes obfuscated, and only agents with key access can view data, would fix

this issue entirely. This would mean that only the user themselves and ZData would be

able to view the data. There could also be an even heavier layer of security where ZData

can not even view the data, only the server can, which would be in a closed system.

Styling and design of web pages

Having a modern and pleasing design makes web pages more attractive and desirable. The basic

web page designs created through ASP .NET CORE are not unacceptable, but they are simple and

generic as seen in Figure 7.1. Considering ZData has their own unique styling and design on their

web pages, it is only natural that the project would need to be updated to match their overall

look. Regardless of time constraints on the project, we would always have saved this step for the

32

very end, as until the final flow of interaction had been decided. Then an overall design style

could be applied, that would complement the content on each page.

Figure 7.1: Final styling and design of web pages

Greater amount of options for users to control sandboxes

In general, each individual sandbox works exactly to specification, but there is no interplay

between them. It could have been meaningful for users to create a project of sandboxes, and

decide which sandboxes to include in the project, and then send data through the various forms.

As the data is sent and manipulated by each individual sandbox, the user could follow along and

get a great overview over the different services that ZData offers. It might also be an idea to add

some coloring options for each sandbox, especially in a multiple-project-scenario where color

coding would help users immediately identify which project they are working in.

7.3 Closing remarks

Completing development on this project that has massively increased our knowledge and

competency in the field. Learning more about the principles behind MVC and Repositories and

Handlers, and working with modern technologies like Docker and Kubernetes has been a great

challenge, both in difficulty and enjoyment. The unprecedented COVID-19 situation also meant

that the entire project was developed separately, with no meetings being conducted in person.

Overcoming this was an opportunity to grow and learn. It also made individual and independent

contributions to the project more meaningful. Overall, we feel satisfied and content that the

project we sign off on and hand over to ZData meets their requirements and is of acceptable

quality.

33

References

Anderson, E. (2017) Email With ASP.NET Core using Mailgun from:

https://elanderson.net/2017/02/email-with-asp-net-core-using-mailgun/ (Date viewed:

04.05.2020)

Anderson, R. (2020) Introduction to Identity on ASP.NET Core. Available from:

https://docs.microsoft.com/en-

us/aspnet/core/security/authentication/identity?view=aspnetcore-3.1&tabs=visual-

studio (Date viewed: 01.05.2020)

Anderson, R. et al (2020) Safe storage of app secrets in development

in ASP.NET Core. Available from: https://docs.microsoft.com/en-

us/aspnet/core/security/app-secrets?view=aspnetcore-3.1&tabs=windows (Date viewed:

05.05.2020)

AngularJS (2018) AngularJS. Available from:

https://angularjs.org/ (Date viewed: 30.03.2020)

Cool, J (.2018) Introducing Azure DevOps. Available from:

https://azure.microsoft.com/en-us/blog/introducing-azure-devops/ (Date viewed:

19.05.2020)

Cubet (n.d.) Introduction to repository design pattern. Available from:

https://cubettech.com/resources/blog/introduction-to-repository-design-pattern/ (Date

viewed: 02.05.2020)

Docker Inc (2020a) What is a Container. Available from:

 https://www.docker.com/resources/what-container (Date viewed: 25.03.2020)

Docker Inc (2020b) Docker. Available from:

https://www.docker.com/ (Date viewed: 30.03.2020)

EU (2015) Info about Directive (EU) 2015/2366. Available from:

https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366/law-

details_en (Date viewed: 30.03.2020)

Invensis Pvt. Ltd. (2015) Advantages and Disadvantages of .NET and Java. Available from:

https://www.invensis.net/blog/it/advantages-and-disadvantages-of-dotnet-and-java/

(Date viewed: 02.04.2020)

Oracle (2019) Java Servlet Technology. Available from:

https://www.oracle.com/technetwork/java/index-jsp-135475.html (Date viewed:

30.03.2020)

Kubernetes (2020) Production-Grade Container Orchestration. Available from:

https://kubernetes.io/ (Date viewed: 30.03.2020)

Liu, S., et al (2010) Students’ perceptions of the factors leading to

 unsuccessful group collaboration. In: Proceedings, 10th IEEE International Conference on

 Advanced Learning Technologies (ICALT 2010), IEEE, pp. 565–569

Mailgun Technologies Inc (2020) Mailgun. Available from:

https://www.mailgun.com/ (Date viewed: 30.03.2020)

https://elanderson.net/2017/02/email-with-asp-net-core-using-mailgun/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-3.1&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-3.1&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-3.1&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets?view=aspnetcore-3.1&tabs=windows
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets?view=aspnetcore-3.1&tabs=windows
https://angularjs.org/
https://azure.microsoft.com/en-us/blog/introducing-azure-devops/
https://cubettech.com/resources/blog/introduction-to-repository-design-pattern/
https://www.docker.com/resources/what-container
https://www.docker.com/
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366/law-details_en
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366/law-details_en
https://www.invensis.net/blog/it/advantages-and-disadvantages-of-dotnet-and-java/
https://www.oracle.com/technetwork/java/index-jsp-135475.html
https://kubernetes.io/
https://www.mailgun.com/

34

Microsoft(2016a) Common Type System & Common Language Specification. Available from:

https://docs.microsoft.com/en-us/dotnet/standard/common-type-system (Date viewed:

02.04.2020)

Microsoft (2016b) Overview of Entity Framework Core. Available from:

https://docs.microsoft.com/en-us/ef/core/ (Date viewed: 04.05.2020)

Microsoft (2019a) Visual Studio 2019. Available from: https://visualstudio.microsoft.com/vs/

(Date viewed: 30.03.2020)

Microsoft (2019b) Creating and configuring a model. Available from:

https://docs.microsoft.com/en-us/ef/core/modeling/ (Date viewed: 18.05.2020)

Microsoft (2019c), What is Azure pipelines? Available from:

https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-

pipelines?view=azure-devops (Date viewed: 25.05.2020)

Microsoft (2020a) What is ASP.NET Core?. Available from:

https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet-core (Date viewed:

30.03.2020)

Microsoft (2020b), Host and deploy ASP.NET Core. Available from:

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/?view=aspnetcore-3.1

(Date viewed: 25.05.2020)

Mozilla (2020) JavaScript Reference. Available from:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference (Date viewed:

30.03.2020)

Postman (n.d.) Postman API Client. Available from:

https://www.postman.com/product/api-client/ (Date viewed: 21.05.2020)

Smith, S. (2020) Overview of ASP.NET Core. Available from:

https://docs.microsoft.com/nb-no/aspnet/core/mvc/overview?view=aspnetcore-3.1

(Date viewed: 15.05.2020)

Stackify (2017) What is RestSharp? An introduction to RestSharp’s features and functionality.

 Available from: https://stackify.com/restsharp/ (Date viewed: 28.05.2020)

Tutorialspoint (n.d.) MS SQL Server Tutorial. Available from:

 https://www.tutorialspoint.com/ms_sql_server/index.htm (Date viewed: 26.05.2020)

ZData (2020) Om ZData. Available from: https://www.zdata.no/om-zdata/

 (Date viewed: 30.03.2020)

https://docs.microsoft.com/en-us/dotnet/standard/common-type-system
https://docs.microsoft.com/en-us/ef/core/
https://visualstudio.microsoft.com/vs/
https://docs.microsoft.com/en-us/ef/core/modeling/
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet-core
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/?view=aspnetcore-3.1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://www.postman.com/product/api-client/
https://docs.microsoft.com/nb-no/aspnet/core/mvc/overview?view=aspnetcore-3.1
https://stackify.com/restsharp/
https://www.tutorialspoint.com/ms_sql_server/index.htm
https://www.zdata.no/om-zdata/

35

APPENDIX

Appendix A - Gantt chart

36

Appendix B – Risk analysis

Risk L C RF Affected
Groups

Phase

Virus outbreak 4 5 20 Client, Project
group

Startup phase, may be of concern
throughout the entire project.

Inexperience 5 2 10 Client, Project
group

Startup phase, development phase.

Time constraints 3 3 9 Client, Project
group

Development phase.

Failure of equipment 2 3 6 Client, Project
group

Development phase.

Misinterpreting project
specification

3 2 6 Client, Project
group

Startup phase, development phase.

Poor communication with
client

3 4 12 Client, Project
group

Startup phase, development phase.

Poor collaboration of
group members

1 4 4 Client, Project
group

Continuous.

L - Likelihood of risk
C - Severity of risk
RF - Risk factor (L multiplied with C)
Scale 1-5, where 1 is low and 5 is high

37

Appendix C – Evaluation form with response from ZData

After completing the project we sent a form with a few evaluation questions to ZData, so they
could leave us some feedback.

