

Faculty of engineering and science

Department of Computer Science, Electrical Engineering

and Mathematical Sciences

BACHELOR THESIS

Enterprise Architecture modelling for
Bergen Municipality

Jose Juan Peña Gomez

Cato Støle Robstad

Dani Myking

Information technology/Computer Science
Department of Computer science, Electrical engineer and
mathematical science
Rogardt Heldal/Richard Kjepso
3/4-2020

I confirm that the work is self-prepared and that references/source references to all sources used in the work are provided, cf.
Regulation relating to academic studies and examinations at the Western Norway University of Applied Sciences (HVL), § 10.

Faculty of engineering and science

Department of Computer Science, Electrical Engineering

and Mathematical Sciences

 TITTELSIDE FOR HOVEDPROSJEKT
Rapportens tittel: Dato:

01.06.2020 Virksomhetsarkitektur modellereing for Bergen Kommune

Enterprise Architecture modelling for Bergen Municipality

Forfatter(e): Antall sider u/vedlegg: 31

Cato Støle Robstad, Jose Juan Peña Gomez, Dani Myking Antall sider vedlegg: 2

Studieretning:

Informasjonsteknologi/dataingeniør

Antall disketter/CD-er:

0

Kontaktperson ved studieretning:

Rogardt Heldal/Richard Kjepso/Carsten Gunnar Helgesen

Gradering: Ingen

Merknader:

Oppdragsgiver:

 Bergen kommune

Oppdragsgivers referanse:

Oppdragsgivers kontaktperson:

Tom Osnes Svellingen

Telefon:

97737588

Sammendrag:

I bacheloroppgaven har gruppen utarbeidet et system for å automatisk hente ut data fra kildefiler, transformere dataen, og
gjøre den klar for å lage en virksomhetsarkitektur modell. Transformasjonsprosessen blir gjort ved hjelp av scripts og
databaser, og den endelige ferdige dataen lagres i en GitHub repository, som kan brukes til å oppdatere
virksomhetsarkitektur-programvaren for Bergen Kommune, Archi.

In this bachelor thesis the group has created a system to automatically collect data from source files, transform the data, and
make it ready to create a Enterprise architecture modell. The transformation process is done by various scripts and databases,
and the final datamodel is saved in a GitHub repository, where it can be used to update the enterprise architecture software
Bergen Municipality uses, Archi.

Stikkord:

r

Enterprise architecture

Transformation

Database

Faculty of engineering and science

Department of Computer Science, Electrical Engineering

and Mathematical Sciences

Høgskulen på Vestlandet, Fakultet for ingeniør- og naturvitskap
Postadresse: Postboks 7030, 5020 BERGEN Besøksadresse: Inndalsveien 28, Bergen
Tlf. 55 58 75 00 Fax 55 58 77 90 E-post: post@hvl.no Hjemmeside: http://www.hvl.no

1.1

1.2 PREFACE

Thanks to Bergen Municipality for providing us with this interesting project, as well as
providing support and guidance for us to be able to solve it.

Thanks to our supervisor Rogart for providing us guidance and advice on how to
approach the solution.

http://www.hvl.no/

Faculty of engineering and science

Department of Computer Science, Electrical Engineering

and Mathematical Sciences

TABLE OF CONTENT

PREFACE

INTRODUCTION 1

1.1 MOTIVATION AND GOAL 1

1.2 CONTEXT 1

1.3 LIMITATIONS 2

1.4 RESOURCES 2

1.5 ORGANIZATION OF THE REPORT 2

2 PROJECT DESCRIPTION 3

2.1 PRACTICAL BACKGROUND 3

2.1.1 PROJECT OWNER 3

2.1.2 PREVIOUS WORK 3

2.1.3 INITIAL REQUIREMENTS SPECIFICATION 5

2.1.4 INITIAL SOLUTION IDEA 6

2.2 LITERATURE BACKGROUND 7

3 PROJECT DESIGN 8

3.1 POSSIBLE APPROACHES 8

3.1.1 ALTERNATIVE APPROACH 1 8

3.1.2 ALTERNATIVE APPROACH 2 8

3.1.3 DISCUSSION OF ALTERNATIVE APPROACHES. 8

3.2 SPECIFICATION 9

3.3 SELECTION OF TOOLS AND PROGRAMMING LANGUAGES 9

3.4 PROJECT DEVELOPMENT METHOD 10

3.4.1 DEVELOPMENT METHOD 10

3.4.2 PROJECT PLAN 10

3.4.3 RISK MANAGEMENT 11

3.5 EVALUATION METHOD 12

4. DESIGN AND CREATION 13

4.1 UPDATED REQUIREMENTS 13

4.2 DEVELOPMENT 14

4.2.1 INITIAL PHASE AND PLANNING. 14

4.2.2 DEPLOYMENT-MAINTENANCE INTERFACE 16

4.2.3 DATABASE 18

4.2.4 DATABASE-GITHUB SYNCHRONIZATION SYSTEM 22

4.3 TRANSFORMATION PROCESS 23

4.4 DESIGN SCIENCE 27

5. EVALUATIONS 28

5.1 EVALUATION METHODS 28

5.2 EVALUATION RESULTS 29

6. DISCUSSION 30

7. CONCLUSIONS AND FURTHER WORK 31

8. LITERATURE AND REFERENCES 32

9 APPENDIX 34

9.1 RISK LIST 34

9.2 GANTT DIAGRAM 35

1 INTRODUCTION

1.1 Motivation and goal

The task given from Bergen municipality was designing and implementing a solution for
Modelling the Enterprise Architecture for the municipality. Bergen municipality uses the
Enterprise Architecture for simplifying the complexity of both the business and
information technology side of the organization. In consequence they are able to identify
the short- and long-term goals and make the grounds for planning on how to achieve these
goals.

In the previous system, the enterprise architecture model, a model of the whole
organization from the underlying infrastructure to the top level business aspects, would
have to be done and updated manually every time that there was a change in the source
systems. This manual process is a long process and it might end up producing mistakes in
the transformation of the data. Additionally, because of the manual process being done by
one person, this system doesn’t allow concurrent users to work with the same model.

The primary goal of this project is to have a fully automated process to be able to phase out
the previous method of solving the issue which is done manually.

1.2 Context

Bergen municipality is a large enterprise, with over 30 000 employees and delivers
services to its over 280 000 inhabitants. Bergen municipality uses Archi to model the
enterprise, including organizing, processes, ICT-systems, and data. These enterprise
architecture models are built up from several files from source systems.

 In order to ensure precision and credibility in their models of Bergen municipality it’s
important to have a modern, reliable and trustworthy way of updating this information.
That is why, an automated way to retrieve, transform and push new data to the model is
needed. This will also save a lot of time and effort for Bergen Municipality, and would
greatly help them have a constant and consistent model in Archi reflecting their real-life
resources, capabilities and restrictions. This way they know they can trust and rely on their
model.

1

1.3 Limitations

The main limitation for the given project is time. Due to this, main functionalities are
prioritized. Given more time, the bachelor group would be able to provide additional
functionalities such as statistics for changed data or a more extensive and intuitive user
interface developed as a web application.

Another limiting factor was the situation caused by COVID19 restricting the groups ability
to meet with each other, but also to meet with both Bergen Municipality and the project
supervisor in person. Due to this, all meetings have to be done over the Internet, either by
Discord, Zoom or Microsoft Teams. Due to this the team have set regular schedules to
meet both with our project manager and within the team. This way the team will continue
to operate as normal, with a regular schedule.

1.4 Resources

To complete the given project from Bergen municipality, one of the most important
resources has been Bergen municipality's section for digitalization and innovation. Their
knowledge about the enterprise architecture and modelling was important for us to learn
quickly and they gave us good follow up concerning any questions the etam had regarding
any topic. Another important asset has been our supervisor, Rogardt Heldal. Rogardt
decided to join every meeting with Bergen Municipality, and has been of huge help
regarding the development of the project.

1.5 Organization of the report

The report is organized in the following manner:

Chapter 1: An introduction to the project.

Chapter 2: A more detailed description of the project and project owner.

Chapter 3: The design of the project and discussing different approaches and planning.

Chapter 4: Design and creation

Chapter 5: Evaluation

Chapter 6: Discussion

Chapter 7: Conclusions and further work

Chapter 8: Literature and references

Chapter 9: Appendices.

2

2 PROJECT DESCRIPTION

2.1 Practical background

2.1.1 Project owner

Bergen Municipality is the owner of this project, and as stated earlier consists of over
30.000 employees that deliver ICT services to over 280.000 inhabitants. Modelling the
enterprise Bergen municipality with over 30.000 employees and 800 departments can be a
challenging and complex problem. In order to simplify the process, our task to automate
the process of the modelling would greatly enhance their overview of their capacity,
vulnerabilities and provide most recent information about systems and sections. This way
the model of the enterprise architecture can be used in a more advanced way than it is
currently used for.

As an example, this set up for further development and expansion of the architectural
enterprise such as getting extensive information about underlying infrastructure. They
could get easy access to information about e.g. servers with older versions of software
prone to incoming attacks.

2.1.2 Previous work

Enterprise Architecture and ArchiMate

Enterprise Architecture tries to simplify the complexity of both the business and
information technology side of an enterprise. There are several definitions of EA, but in
this report the team will focus on the definition “Enterprise Architecture: a coherent whole
of principles, methods, and models that are used in the design and realisation of an
enterprise’s organisational structure, business processes, information systems, and
infrastructure. “ (2006 Jonkers, p. 3).

By this definition it is easy to see that Enterprise Architecture is a large part of any large
business and is an effective tool if used right to improve the enterprise as a whole. It is
used to identify the short- and long-term goals and make the grounds for planning on how
to achieve these goals.

To model Enterprise Architecture ArchiMate is an open and independent modelling
language and is a visual way of describing architectural objects with relations in models. It
has become a standard for describing and representing Enterprise Architecture.

3

Figure 2.1: Main concepts of the ArchiMate language

Following the main concepts from figure 2.1 we can see ArchiMate has three different
types of elements. Technology (green) elements, Application (blue) elements, and
Business(yellow) elements. This way the whole enterprise can be described, all the way
from the underlying infrastructure such as computers, servers and other technologies to
what application they are running, what version of software, up until the top level, where
the business services are provided.

Archi

Archi is a free and open-source tool used for visualizing and designing models based on
the ArchiMate language, and is widely used within the enterprise architecture
environment. Because it’s built upon the ArchiMate language, Archi uses similar symbols
and relations as ArchiMate to simplify the process of the visual representation of a model.

4

When creating models for Archi in another type of document, Archi follows strict rules to
be able to read the document. There are three main categories of objects. Elements,
relations, and properties.

Elements are used as the name of an object, where one element is an object. This element
can then have multiple relations and properties.

The relations are other target elements related to a source element. In the ArchiMate
language there are many different, where the most common relationships are

● Association: Most basic relation. Only states there is a relation between the
elements, not what it consists of.

● Serving: Relation indicates one element performs a task included in another
elements function

● Realization: Relation shows element A realize element B
● Assignment: Element A have ownership or responsibility of element B
● Access: Element A reads and/or writes to element B.

Properties are used as a description or information about a specific element.

2.1.3 Initial requirements specification

The initial request from the project owner was to deliver a proposed solution with the
following requirements:

● Establishing a data structure for data storage
● Pull data from multiple source systems to be saved in the data structure
● Regularly updating of data when they are changed in the source systems
● Export data from the data structure to Archi
● Update Archi when the data is changed
● Synchronized a GitHub repository with the Archi model
● Automatization and scheduling of the process

Other than these requirements the software has to run in their Microsoft Azure data lake.
These were only the requirements, how the team wanted to solve this issue was up to us to
determine and implement it.

5

2.1.4 Initial solution idea

The initial solution design was to make an application to pull the files from the source
systems, and then transform the raw data into a formatted table storage for viewing, still in
an excel file. This would be used if the data would be shown outside of the model-form in
Archi. After the data was formatted for table storage, the data would be transformed again
into a SQL database, where it would be uploaded to a GitHub repository. Finally, Archi
uses an extension to be able to import GitHub repositories and also to push the
modification of a model to GitHub.

Figure 2.1.4.1: First proposed solution design of the project (Norwegian)

6

2.2 Literature background

During the start of the project, our team lacked knowledge about many aspects of what the
project required such as basic structure and information about EA, Archi and Archimate,
and a more technical side of the transformation and conversion. This required us to
thoroughly research and learn these details for us to be able to create a system that would
be optimal both for our project owner, and for us to be satisfied with the quality of the
product.

A good introduction to EA, as well as how and why to use it effectively has been Jonker’s
one, ‘Enterprise architecture: Management tool and blueprint for the organization’. This
has shown us the importance of having a proper enterprise architecture model and plan for
all organizations, as it can heavily improve both the business and technological sides of an
organization.

Another source for us has been Holm’s thesis on ‘Automated data collection for Enterprise
Architecture Models’, however the main focus points are not completely relevant to our
work. This research focuses on an automated network scan in order to identify all nodes in
a network, to then be able to have all the data needed for an technological aspect of an
enterprise architecture model. Although the main focus point does not align with our
project, there are still similarities that can be drawn from their research and to our project
with Bergen Municipality.

7

3 PROJECT DESIGN

3.1 Possible approaches
Bergen Municipality had no concrete way of approach when it came to implementation the
solution. The initial meetings the team had with the Enterprise Architects was more based
upon the rules and the requirements for the solution, therefore the team stood freely to
implement the product as they wanted to given the requirements was taken into
consideration. Other than the requirement list, the solution had to run in a Microsoft Azure
environment.

3.1.1 Alternative approach 1

The first solution discussed in our team was only using Azure Fabrics with
programming languages such as Java and scripts to transform the raw data to the
accepted Archi format. This would include creating several scripts for handling the
different source files, before all the finished data would be pushed to a GitHub
repository and used with an extension to Archi, to update the Archi model.

After that, a graphical user interface would be implemented to update the Archi
model, or the GitHub repository manually, or have it scheduled to a timer.

3.1.2 Alternative approach 2

A second solution that the team drafted was using mainly databases and scripts to
transform the data from the source files. This would consists of a database for each
enterprise architecture model, each handling models of the data at a different stage,
such as one stage where the data was in the raw format from the source files, another
for a normalised model of the data, and a last one associated with the model for the
enterprise architecture model for Archi tool. This would, like the approach 1, also
include a GitHub repository that pulls the finished model from the database. The
Archi model would then be able to import the model using the same extension
mentioned in approach 1.

3.1.3 Discussion of alternative approaches.

After discussing the different possible approaches alternative 2 have been selected for
implementing. This seemed like an easier approach, as well as giving Bergen Municipality
a database with prepared data for alternative tasks or services instead of just a model for
the EA. The logic of the system is going to be the main focus and the biggest challenge, so
as the team discussed with the project manager from Bergen municipality a conclusion was
reached that the User Interface is going to be a secondary focus.

8

3.2 Specification
Our project is established from the initial solution Bergen Municipality used for enterprise
architecture modelling. This original solution uses Excel to transform the raw data from
the source files into a new Excel spreadsheet, which is converted in CSV format for being
imported into the database. Excel transforms the spreadsheets, and after the
transformations are done, the final transformed data for the enterprise architecture model is
exported into a GitHub repository which can be imported into Archi to create the model
for the enterprise architecture of Bergen Municipality.

With the new implementation the team will adopt the previous transformation rules into a
more complicated system for this to be automated. The first step is to use scripts with the
source files as input to check the format, and convert them for the correct format for the
database. Once it is imported into the database, the action of importing it displays an event
that activates the triggers in charge of the transformation of the data into the different
models, generating two layers of transformations. This way of transforming the data makes
the maintenance of the changes easier, by just updating the first model that completely
depends on the source file.

The database and GitHub repository synchronization system makes sure that the day to day
users of the enterprise architecture model have the opportunity to make local changes that
are saved to the database. This also makes sure that everyone of the model has the correct
version and everything is up to date.

For the deployment and maintenance of the system, a simple UI has been made for the
people in charge of maintaining the databases and data lake system, but with the
implementation of the database and GitHub synchronization this interface will not need to
be used other than actual maintenance or deployment.

3.3 Selection of tools and programming languages

Python - One of the biggest object oriented programming languages, and one of the most
used for scripting.

MySQL - The largest database management system (DBMS) in terms of market share. As
the project is limited to Microsoft Azure Services, the decision had to be a DBMS that is
compatible with Azure and also widely used elsewhere.

9

GitHub - Worlds leading code repository website for making storing database, Archi
ready Excel files. Has integration to Archi.

Archi - Modelling tool for the Enterprise Architecture language ArchiMate widely used
within the Enterprise Architecture environment.

Microsoft Azure - A cloud computing platform developed by Microsoft.

Shell Script (Bash) - Program designed to be run by the Unix shell, a command-line
interpreter.

SQL - “Structured Query Language”. A query language used for databases, to formulate
and run instructions used for relational database systems.

Cron - Feature of Linux systems where it let’s the user schedule tasks like execute scripts
to specific given times

3.4 Project development method

3.4.1 Development method

For the development of the project itself the team has used an agile development method
called Scrum. Scrum is built for teams varying in size of 3-9 people, where the team
members work in “Sprints”. A sprint is a given time interval, usually 1-2 weeks, where a
set of smaller tasks must be completed, which later can be put together to complete the
project.

The team has set the sprint time periods to 2 weeks per sprint, this way each member is
able to complete several tasks. In order to keep everyone up to date on the progress daily
sprint “standups” via discord has been arranged, and at the end of a sprint the team calls in
for a meeting to do a sprint review to talk about how the newly completed sprint went.

3.4.2 Project Plan

In order to plan the progress and development of the project the team made a Gantt chart to
follow during our sprints. Our Gantt chart works as an executive plan, while our sprint
takes more into detail what to do, and when to do it. The team decided to use a web
application named Trello to set up tasks for our sprints, to track who does what and at what

10

times. This makes it easy for everyone and ensures nobody works at the same tasks at any
given time, unless intended to.

Figure 3.4: A screenshot of the Trello board used by our group for this project.

3.4.3 Risk management

There are a few risks to take into consideration when working on a large project like this.
Because of this, the team decided early on in the planning phase to make a risk list to
identify possible risks that could become a problem for the development of the project and
possible measures the team can take in order to nullify or mitigate these risks (ref
Appendix 9.1 Risk list). A risk regarding all projects at this time is of course the pandemic
everyone is facing, COVID-19. Because of this, risks like misunderstanding requirements
or miscommunication can prove vital to this project. This is something that has been
specifically discussed and the team are working closely with Bergen Municipality to
mitigate it.

11

3.5 Evaluation method
Constant evaluation is important in order to deliver high quality software. To ensure this,
the team developed test databases in order to unit test that the developed python scripts are
working as intended. For the database and transformation process, it is possible to quickly
look up the correct model for Archi to see if the enterprise architecture model produced
using our implemented artefacts are providing the same results as the old system for
Bergen Municipality would.

After this testing, the team has to test also the integration for both the scripts and interface,
to make sure everything works well together. In regards to testing the transformation logic
there have also been scheduled regular meetings with Bergen Municipality. This way the
team can ensure the quality and requirements are up to the standard they require, and
ultimately deliver a high quality product all around that can be of use to them.

12

4. DESIGN AND CREATION

4.1 Updated requirements
During the development of the product and with regular meetings with Bergen
Municipality the team have come to update the requirements for the solution. The
updated requirement list includes several steps that makes the software better and
more usable for Bergen Municipality, including tracking sources where the data
comes from, rules for error handling, and tracking data created manually by
architects.

The new and complete requirement list is:

● Establishing a data structure for data storage
● Pull data from multiple source systems to be saved in the data structure
● Regularly updating of data when they are changed in the source systems
● Export data from the data structure to Archi
● Update Archi when the data is changed
● Synchronized a GitHub repository with the Archi model
● Automatization and scheduling the process
● Warning when the data form the source systems changes the format
● Track the history of every event and activity that happens in the models
● Make a way of tracking the deleted, modified and created data and its respective

dates.
● Track all the sources where the data comes from
● If there are conflicts between the source systems and the GitHub repository,

prioritize the changes from the source systems.
● Track the data created by the architects in ArchiMate
● Make a manual maintenance of some part of the models.

This requirement list was made by having several meetings with the enterprise
architects from Bergen Municipality as well as external resources and covers every
need Bergen Municipality requires from a final solution currently.

13

4.2 Development

4.2.1 Initial phase and planning.

In the initial phase of the project the team were introduced to the current solution
from Bergen Municipality and got a comprehensive overview of the limitations this
solution brought with it. This was important for us to keep in mind, to create a
solution that would greatly benefit Bergen Municipality when working with
enterprise architecture in the future.

After the initial phase, having multiple meetings and workshops with the enterprise
architects from Bergen Municipality the team started planning the project thoroughly
with the idea “a well-planned project is key to develop the best possible solution”.
This led to an early created a Gantt chart with deadlines for important artefacts and
worked accordingly to stay well ahead of schedule.

14

For the planning of the solution an Input-process-output diagram (IPOD) has been
made to visualize the implementation and stages of our suggested final product.

Figure 4.2.1 IPO-model of the product

15

4.2.2 Deployment-Maintenance Interface

Since the primary focus of the task has been on the logic and the transformation of the
data, there has not been a large focus on the user interface. In order to execute the scripts,
for creating and updating the models, the team have implemented a command line utility
for the Azure data lake team in Bergen Municipality.

Figure 4.2.2.1: Command line utility. Log in to the command line utility

Figure 4.2.2.2: Command line utility for accessing scripts and databases

16

The main use of the interface is for maintaining and creating the database. The actual users
of the information from the models (Enterprise Architects) will not need the interface since
the complete enterprise architecture model can be pulled from GitHub and imported into
Archi. If there are some changes they want to make locally, they can make these changes
directly in the Archi model, and the rest of the model will be updated at a scheduled
database update, from the local model.

When looking closer at the IPO model, we can see the deployment-maintenance utility line
has three main uses. “Preparation-Load data system”, “Maintenance system” and
“Database creation”. The first one used is “Database creation” as this creates all the three
models of the database (to be explained later). This is simply a SQL script to create the
databases, to initiate the system and have a place for storage of data.

The “Preparation-Load Data System” can be used
after the creation of the new database. As seen in the
model, this uses a python script with the source files
as an input and prepares the data to be put in a
database. Here, it is also possible to convert files
from .xls to CSV files, which are the only accepted
format for Archi. After this is done, all the data from
the source files gets put in the database, ready for use
there.

“Maintenance System” is used for updating the
models from the source files with updated data. This
way, there is no need for deleting the whole database
and GitHub model, every time there is a change in
the source files. The updated source files are checked
by a python script, in order to validate if it has the
correct format or not. If it does not have the correct
format, an error message will display to the user the
saying “format of the current source files does not
match the format of the previous source file”. If it
does match, another script is called using the source
files as input, and updates the three database models
with this data by inserting new data into them or
updating the data that was previously stored.

Figure 4.2.2.3: Command line utility part of the

 IPO-model.

17

4.2.3 Database

After creating the database, it will have three
different models. “Raw data Model”, “Normalized
Model”, and “Archi Model”. These three models
serve their own purpose in the database as a place
for storing current state of representational data.
When the Raw data model is updated using the
scripts from the command line utility, a trigger on
insertion is used to automatically update the
normalized model and likewise from the
normalized model to the Archi model.

Figure 4.2.3.1: Database models, from the IPO-model

Raw data model

The raw data model is the first model the data from the source files reaches. In this
database model, they are formatted just like they were in the source files only they are in
the first layer, or model, of the database.

CREATE TABLE IF NOT EXISTS RawData (
systemtype varchar(255),

system_id int(11),

navn varchar(255),

beskrivelse text,

systemeier varchar(255),

systemkoordinator varchar(255),

admsone int,

sikker_sone int,

elevnett int,

tu_nett int,

internettviktighet varchar(255),

personopplysninger varchar(255),

sensitive_personopplysninger varchar(255),

createdDate DATETIME DEFAULT LOCALTIME,

lastModified DATETIME DEFAULT LOCALTIME,

isDeleted INT(1) DEFAULT 0,

source INT(11) DEFAULT 1,

PRIMARY KEY (systemtype,system_id),

FOREIGN KEY (source) REFERENCES source (srcId)

) DEFAULT CHARSET=utf8;

Code snippet 4.2.3.2 Database model for the Raw Data

18

Normalized data model

After all the data has been pulled into the raw data database, that is used to update a
normalized model of the data. This is a requirement of the solution by Bergen Municipality
to use the EA data elsewhere than just for the visual representation in Archi. This way,
they have another clear and distinct way of accessing the data if it was to be used in
another project, or needed in a normalized form that’s not used for Archi.

After several meetings with the enterprise architects, on how to build the normalized
model the team reached the conclusion that model in figure 4.2.3 was the most optimal
way of representing the data provided. Figure 4.2.3 is a diagram of the source file
“Systemoversikten” and shows how the transformation is taking place when moving the
data from the raw format to the normalized format in the database.

Figure 4.2.3.3 Raw data transformed to a normalized model from the source file “Systemoversikten”

19

Archi model

The final model of the database needed for our solution is the Archi model. In this model
of the database, the data from the normalized database model is transformed to be used for
a visual representation in Archi. Archi requires three types of entities for their objects,
namely Elements, Relations, and Properties. This is created from the normalized data
model when the data is transferred into the Archi model side of the database. After the
Archi model database is created the appropriate accepted format for Archi is ready and can
then be pushed to the GitHub repository.

Underneath the different tables for Elements, Relations and Properties, as well as triggers
for updating these tables are illustrated.

CREATE TABLE Element (

sysId INT UNIQUE DEFAULT NULL,

ID VARCHAR(255),

TYPE VARCHAR(255),

NAME VARCHAR(255),

DOCUMENTATION TEXT,

createdDate DATETIME DEFAULT LOCALTIME,

lastModified DATETIME DEFAULT LOCALTIME,

isDeleted INT(1) DEFAULT 0,

source INT(11) DEFAULT 1,

FOREIGN KEY (source) REFERENCES source (srcId),

FOREIGN KEY (sysId) REFERENCES system (id),

PRIMARY KEY (ID)

);

Code snippet 4.2.3.4: Elements table, implemented in the Archi model database.

20

CREATE TABLE Relation (

ID_R VARCHAR(255) PRIMARY KEY,

TYPE VARCHAR(255),

NAME VARCHAR(255),

DOCUMENTATION TEXT,

SOURCE VARCHAR(255),

TARGET VARCHAR(255),

createdDate DATETIME DEFAULT LOCALTIME,

lastModified DATETIME DEFAULT LOCALTIME,

isDeleted INT(1) DEFAULT 0,

sourceModel INT(11) DEFAULT 1,

FOREIGN KEY (sourceModel) REFERENCES source (srcId),

Foreign Key (TARGET) References Element(ID)

)Engine="InnoDB";

Code snippet 4.2.3.5: Relation table implemented for the Archi model database.

CREATE TABLE Property (

ID_P VARCHAR(255),

KEY_P VARCHAR(255),

VALUE_P VARCHAR(255),

createdDate DATETIME DEFAULT LOCALTIME,

lastModified DATETIME DEFAULT LOCALTIME,

isDeleted INT(1) DEFAULT 0,

source INT(11) DEFAULT 1,

 PRIMARY KEY (ID_P, KEY_P),

FOREIGN KEY (source) REFERENCES source (srcId)

);

Figure 4.2.3.6: Table for Properties in the Archi model database.

21

 4.2.4 Database-Github synchronization system

After the data has been transformed and is stored in the Archi model database, it is
exported using a python script for updating the GitHub repository. Then, the data is stored
in the database and once again it is converted to CSV, and pushed to GitHub. The GitHub
is used as a central base for the correct and updated information, because of the
functionality from the Archi extension that allows for GitHub repositories to be imported
directly. This way, the architects using this system only need access to Archi and the
GitHub repository.

Figure 4.2.4.1: Database-GitHub synchronization part of the IPOD diagram

As previously mentioned, there might be any local changes needed to be done to the
enterprise architecture model. Because of this, another functionality is needed. This is
where the “UpdateDB Archi model script” comes in. This allows for users to make
changes locally and push their version to GitHub. To ensure the database is up to date with
the corrected model, the script is run using cron, a tool used for scheduling execution of
scripts or events periodically for either set times, dates or intervals depending on needs.
This ensures that ever so often (depending on Bergen Municipalities needs) the database
for the Archi model is updated using the GitHub repository to reflect the changes locally
made from users.

22

4.3 Transformation process
The process of transforming the data that are going to be represented in the enterprise
architecture model have been a big part of this project. As mentioned, the transformation
of the data coming in from the source files are happening in the different data models of
the database. This is done by using triggers to update the two latter models (Normalized
and Archi models), when getting new data into the raw model. Chapter 4.2 described how
the normalized model was created from the raw data, but this chapter will mainly focus on
how the transformation process from the normalized model to the Archi model is being
made.

Figure 4.3.1: Model of transformation from source files to the Archi model in the database. Systemoversikten Data Model.

23

Figure 4.3.1 explains how the Elements, Relations and Properties are created from various
tables in the normalized model, that again are created from the source files. The blue
arrow-lines are the creation of Elements, Relations and Properties.

To properly update the Elements, Properties and Relations tables in the Archi model, the
triggers make sure that every piece of information needed is added, so that the model is
complete and compatible with the Archi import rules. Figure 4.3.2 shows one of the
triggers used to update Element and Property tables (in Archi model) from the network
table (in the normalized model)

DELIMITER //

CREATE TRIGGER trig_ElemFromNets_Ins AFTER INSERT
ON network FOR EACH ROW
BEGIN

SET @newID = CONCAT("ComNet",CONVERT(LPAD(NEW.id,4,0), CHAR));
INSERT INTO Element (ID, TYPE, NAME, DOCUMENTATION, createdDate, source)
VALUES(@newID, 'CommunicationNetwork', NEW.name, NEW.documentation, LOCALTIME, NEW.source);
INSERT INTO Property (ID_P, KEY_P, VALUE_P, createdDate, isDeleted, source)
VALUES (@newID, 'Kilde', 'Manuelt nettverk', LOCALTIME, NEW.isDeleted, NEW.source);
INSERT INTO Property (ID_P, KEY_P, VALUE_P, createdDate, isDeleted, source)
VALUES (@newID, 'Opprettet', LOCALTIME, LOCALTIME, NEW.isDeleted, NEW.source);
INSERT INTO Property (ID_P, KEY_P, VALUE_P, createdDate, isDeleted, source)
VALUES (@newID, 'Sistoppdatert', LOCALTIME, LOCALTIME, NEW.isDeleted, NEW.source);
 END;//
DELIMITER ;

Code snippet 4.3.2: Trigger used to update Element and Property tables.

To explain the whole process, a demonstration of the raw data from the source files
transformation will be described in the following figures.

Figure 4.3.3: Columns of raw format source file.

24

The format of figure 4.3.3 is the standard format the source files are presented as when
nothing has been done to them yet. We will look closer at the “Fagsystem” with the name
“Adra Match” and System ID “1”.

Figure 4.3.4: “Fagsystem Adra Match” in the rawData table. First part of transformation.

After having updated the rawData table, the normalized model will be updated with the
implemented trigger. The “Adra Match” is a system, and will be inserted in the “System”
table by the the trigger previously shown (Ref figure 4.3.1 for the whole model).

Figure 4.3.5: “Fagsystem Adra Match” in the system table, as part of the normalized model and second part of the transformation.

When the normalized model is updated, this again activates the triggers for the Archi
model to be created. In this table “Adra Match'' will be stored as an Element, with the
additional information such as “beskrivelse”(description) and “sysType”(system type) will
be created as properties for “Adra Match”.

Figure 4.3.6: “Fagsystem Adra Match” in the Elements table, the Archi model database. Third part of the transformation”

The “Fagsystem Adra Match” also has different properties described in additional
columns, and all can be found in the Property table.

Figure 4.3.7: Additional properties for “Fagsystem Ardra Match”

25

RawData_Update

Another requirement from Bergen Municipality needed for the system was that no data
should be deleted. This ment on the updated source files, the team would need a way to
compare the previous, rawData, and new, rawData_Update, to check if the previous source
files had any data that the new source files did not. This was implemented using a script to
compare each row of the sources, and if any of the data was taken out from the new source
files it would set the value of a column called isDeleted to “1” .This way the architects
know the system or piece of information they are looking at in the finished model, might
not be supported or are out of the system. In addition, if there is any new data in the new
source file, this one will be inserted into the rawData table and will display the process
explained previously.

26

4.4 Design Science
The methodology for our project has been design science. Denning 1997; Tsichritzis 1998
have described Design Science (1997, 1998, Cited in Hevner 2004 p. 76) as ‘a
problem-solving paradigm. It seeks to create innovations that define the ideas, practices,
technical capabilities, and products through which the analysis, design, implementation,
management, and use of information systems can be effectively and efficiently
accomplished.’ This falls in line with our project methodology as our developed artifacts
serve a specific purpose in regards to solve important organizational or enterprise level
business problems, and it is a research that tries so solve a concrete problem with
innovation through creative implementation of information systems.

Figure 4.4 Hevners 7 guidelines for design science in information systems research (2004 Hevner, p 83)

Throughout the project the team have kept the key points and the 7 guidelines of Design
Science (2004 Hevner p. 83) as seen in figure 4.4 in mind for developing our product.
This has made our team more aware of the fundamentally important stages of developing
artefacts and also helped us better analyze and process the information needed to develop
our solution.

27

5. Evaluations

5.1 Evaluation methods

To ensure quality of the product extensive testing has been very important. As
previously stated the team started early implementing testing for developed artefacts.
This consists of test-databases for our team to be able to test the various scripts and
database implementations, and check the full cycle of getting the data from source
files into the database, transformed correctly and pushed to the GitHub repository.

Because of the way our project is built up it is relatively easy to test if the
implemented artefacts are working correctly when finished. With the given source
files, the team is able to create another Archi model based on the previously used
method for modelling from Bergen Municipality. By using this model, it is easy to
check if the new implemented product fulfills the requirements and that the model
created from the new solution is correct by comparing the two different models to
each other. Additionally, our team has made their own test source files for testing the
system with all the possible cases, being able to perform deeper and more extensive
testing to be sure that there are no possible bugs or errors when running the system.

Some of our smaller artefacts such as scripts are created so solve one specific
problem. Due to this, it is also very easy to test whether the script is working as
intended or not. One example is a specific script for checking if a file is in the
correct format (.CSV file). Testing this script would ultimately just take files with
different formats as input and check if the script provided the correct answer by
checking the format of the files by ourselves.

Another important part of our evaluation have been the regular meetings with
Bergen Municipality. The team has had meetings every two weeks. During these
times the team has had the opportunity to show our current state of the project and
our plans ahead, and the enterprise architectures from Bergen Municipality have had
the opportunity to come with specific feedback or comments regarding anything
they wanted to change or correct if they found anything lacking or not clear. This
process has greatly helped specifically in areas concerning the transformation
process, where understanding how to correctly implement the formatting proved
difficult.

28

5.2 Evaluation results
The constant evaluation has been very important to us, as the system the team has
developed is a big part of the information about the organizational structure in
Bergen Municipality.

The benefits of working on a project like this where it is possible to have the correct
answer of the final product (EA-model) are very noticeable. This has immensely helped
the evaluation process by reducing uncertainties whether the team has implemented our
solution correctly or not. As a result, this has made us be able to focus on other aspects of
the project that might require more attention.

The meetings with Bergen Municipality have also proved to be very efficient in regards to
the evaluation. This has made the process of our implementation more effective in the
sense that the team is getting direct feedback on both our current and planned solution, so
that the team knows what works and what needs to be changed.

Another area of evaluation the team has applied to the project during the course of
this work, is regular self evaluations using the scrum methodology. Scrum has
multiple phases, and on various stages it has 4 major scrum meetings: Initial
planning meeting, a daily sprint meeting, a sprint review meeting and a retrospect
meeting after the project is finalized. During specifically the sprint review meetings
the team have had opportunities to address our perspective of the finished sprint in
regards to how it went, what went well and what could have been better for our next
sprint. During one of the first sprint reviews the team revealed certain weaknesses
with our initial internal meeting frequency and the in-effectiveness of only having
daily sprint meetings in such an intertwined project like this. This way an adaptation
was made early on in the planning phase of the project, and it was decided to have
daily meeting-sessions for regular scheduled hours where everybody in the team
would be available either for discussion regarding implementation, technical
questions of the software, methodology or other difficulties members of the team
might run into during the work. Both the sprint review and the daily scrum meetings
have also played a part in the evaluation process as a way for every member of the
team to coherently progress with the project in such a way that no time is wasted due
to misunderstanding within the team, or in regards to our external resources.

29

6. DISCUSSION

Approach

The teams approach for managing and delivering a solution have been driven by a solution
oriented point of view. At the start the team sought out to gain a comprehensive
understanding for the appropriate areas needed in order to solve the project in the best
manner possible, and have been steadily researching topics for either improving the
already implemented artefacts or in order to further develop the project in the best manner
possible.

Another important approach for our team has been to develop with a deliberate focus on
accuracy and usability. Together with extensive testing, this allows for our team to be sure
of the implemented features are working as intended, and there is no need to redo tasks
that might take up a large portion of time.

Consequences of approach

Due to the approach the team have had, regarding the research and “implementing right the
first time”, this has slightly come as an expense of our planned schedule. In order to make
up for this and still continue on track with the Gantt chart the team have had to extend the
daily schedule for some parts of the project. This has been well worth it for the sake of the
project, and because of this the team have had sufficient time if any complications of any
sort should arise.

Improvement

One of the things the team were struggling most with during the course of the project has
been the transformation and logic behind this. When the team realized the time spent on
this was going out over the initial plan, meetings with Bergen Municipality was set up and
additional external resources brought in to help solving the problem regarding the
transformation logic in the most efficient way possible. Together with the project manager
and other external resources the team managed to solve our difficulties quickly and were
able to resume to our planned schedule. This problem could be prevented if the team
identified the magnitude of the logic needed and were able to schedule meetings early
when the problem was initially recognized.

30

7. CONCLUSIONS AND FURTHER WORK

Goals

The bachelor projects goals of creating an automatic way for Bergen Municipality to
update their enterprise architecture model have been achieved. Bergen Municipality also
had an additional wish that they addressed at a later stage of development, regarding
another test case for the system, so the structure the team has made could have additional
uses. The team would have liked to complete this task too, and discussed the possibility to
complete this, but it would ultimately require a complete change of the current model,
again requiring a lot of time. Due to this, our only possibilities was either extend the due
date and implement this additional feature, or leave the due date and solution as it is.

Usability for other conditions

Our results can also be used for other conditions. In every municipality there's
certainly a need for modeling the enterprise architecture, in order to be able to
deliver their services to their inhabitants in the best possible manner. To do this, they
need to know their capabilities, something that comes automatically with a good
enterprise architecture model. This does not only apply to Municipalities in Norway
either, but all organizations of a larger scale. What the team has provided for Bergen
Municipality is an efficient way of getting the tools every organization needs in
order to improve themselves.

Additional further work:

Other than the additional test case discussed earlier, there is still some work left,
namely the deployment of our project into their systems. Due to COVID-19 the team
has not been able to come into their offices, and most of the employees the team has
interacted with are working from home. When the situation is over and Bergen
Municipalities offices open up, the team will come into their office with our finished
project to deploy it, and give them a thorough run down of how to use the system.

31

8. LITERATURE AND REFERENCES

Archi (n.d.) About Archi [online] Available at https://www.archimatetool.com/about/

[Accessed at 5. February 2020]

ArchiMate (n.d) Welcome to ArchiMate® 3.1 Specification, a Standard of The Open
Group [online] Available at https://pubs.opengroup.org/architecture/archimate3-doc/
[Accessed at 14. April 2020]

Bergen kommune (n.d.) Fakta om Bergen [online] Available at
https://www.bergen.kommune.no/omkommunen/fakta-om-bergen [accessed at 23. April
2020]

Code Blocks (n.d.) Syntax highlighting for google docs [online] Available at:
https://gsuite.google.com/marketplace/app/code_blocks/100740430168 [accessed 1. June
2020]

Crontab (n.d) Tables for driving cron [online] Available at:

"crontab(5): tables for driving cron - Linux man page" [Accessed at 3. April 2020]

Diagrams.net (n.d) Diagram with anyone, anywhere [online] Available at:

https://www.diagrams.net/ [Accessed at 12. May 2020]

GitHub.com (n.d) the worlds leading software development platform [online] Available
at: https://github.com/ [Accessed at 19. March 2020]

Google drive (n.d.) Using drive [online] Available at:
https://www.google.com/intl/no_ALL/drive/using-drive/ [accessed at 19. May 2020]

Holm, H. (2012). Automatic Data Collection for Enterprise Architecture Models [online]

available at:

https://www.researchgate.net/publication/220198712_Enterprise_architecture_Managemen
t_tool_and_blueprint_for_the_organisation [Accessed 23. April 2020]

32

https://www.archimatetool.com/about/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://www.bergen.kommune.no/omkommunen/fakta-om-bergen
https://gsuite.google.com/marketplace/app/code_blocks/100740430168
http://linux.die.net/man/5/crontab
https://www.diagrams.net/
https://github.com/
https://www.google.com/intl/no_ALL/drive/using-drive/
https://www.researchgate.net/publication/220198712_Enterprise_architecture_Management_tool_and_blueprint_for_the_organisation
https://www.researchgate.net/publication/220198712_Enterprise_architecture_Management_tool_and_blueprint_for_the_organisation

Jonker, H. (2006). Enterprise Architecture: Management tool and blueprint for the
organisation [online] available at:

https://www.researchgate.net/publication/220198712_Enterprise_architecture_Managemen
t_tool_and_blueprint_for_the_organisation [Accessed 14. April 2020]

Hevner, A. R. (2004). Design Science in Information Systems [online] available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&type=pdf

[Accessed 12. April 2020]

MySQL (n.d.) The worlds most popular open source database [online] Available at:

https://dev.mysql.com/doc/ [accessed at 22. March 2020]

MySQL Triggers (n.d.) Triggers [online] Available at:

 https://dev.mysql.com/doc/refman/8.0/en/triggers.html [Accessed at 13 April 2020]

Python (n.d.) About Python [online] Available at https://www.python.org/about/

[Accessed 12. March 2020]

Scrum.org (n.d.) What is scrum? [online] Available at:

https://www.scrum.org/resources/what-is-scrum [Accessed at 16. April 2020]

SQLAlchemy (n.d.) Database toolkit for python [online] Available at:

https://www.sqlalchemy.org/ [Accessed at 28. March 2020]

Trello.com (n.d.) About trello [online] Available at: https://trello.com/about
[Accessed at 25. March 2020]

Microsoft Azure (n.d.) Cloud computing [online] Available at:

https://azure.microsoft.com/en-us/ [Accessed at 28. March 2020]

33

https://www.researchgate.net/publication/220198712_Enterprise_architecture_Management_tool_and_blueprint_for_the_organisation
https://www.researchgate.net/publication/220198712_Enterprise_architecture_Management_tool_and_blueprint_for_the_organisation
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&type=pdf
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/refman/8.0/en/triggers.html
https://www.python.org/about/
https://www.scrum.org/resources/what-is-scrum
https://www.sqlalchemy.org/
https://trello.com/about
https://azure.microsoft.com/en-us/

9 APPENDIX

9.1 Risk list
Explanation of risk list:
P = Probability of risk happening.
C = Consequence of the risk.
RF= Risk factor, the probability times the consequence of a risk.
Values P and C ranges from 1-5 where 1 is the lowest probability and consequence and 5
is the highest.

Risks P C RF Measures taken to reduce risk factor

Illness in bachelor group 1 5 9 Good communication within the
bachelor group to ensure everybody is
updated, in case someone’s workload
must be relieved.

Misunderstanding of
tasks/requirements in the
bachelor project

2 5 10 Keep a good dialogue with the project
owner and supervisor and have
frequent meetings to keep every part
updated on their view of the project.
Good feedback

Low competence within
areas that leads to a product
of low quality

3 3 9 Learn new technologies needed.
Feedback from the project owner and
good testing, to be sure of implemented
artifacts are of required standards. Also
help from supervisor and external
resources can ensure the team can keep
a satisfactory standard of the product

Poor time
management/unable to
finish project

2 3 6 Start with the project quickly and work
consistently. Develop a plan to follow
from start to end of the project. This
way it is easy to get an overview of
where the project is relative to where it
needs to be in the timeframe to be able
to finish it.

Poor
communication/difficulties
within bachelor group

3 2 6 Have good communication and
frequent meetings with feedback and
comments on both work done, and

34

work to be done.

Technical
difficulties/hardware or
software not working
properly

2 2 4 Keep backup copies of developed
artifacts in case of crashes. Keep
software and drivers updated. Learn
new software needed to efficiently
troubleshoot if needed.

9.2 GANTT diagram

35

