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Abstract 

This review reexamines use of accelerometer and oxygen uptake data for assessment of activity 

intensity. Accelerometers capture mechanical work, while oxygen uptake captures the energy 

cost of this work. Frequency filtering needs to be considered when processing acceleration data. 

A too restrictive filter attenuates the acceleration signal for walking and, to a higher degree, for 

running. This measurement error affects shorter (children) more than taller (adults) individuals 

due to their higher movement frequency. Less restrictive filtering includes more movement 

related signals and provide measures that better capture mechanical work, but may include more 

noise. An optimal filter cut-point is determined where most relevant acceleration signals are 

included. Further, accelerometer placement affects what part of mechanical work being captured. 

While the waist placement captures total mechanical work and therefore contributes to measures 

of activity intensity equivalent by age and stature, the thigh and wrist locations capture more 

internal work and do not provide equivalent measures. Value calibration of accelerometer 

measures is usually performed using measured oxygen uptake with the metabolic equivalent of 

task (MET) as reference measure of activity intensity. However, the use of MET is not stringent 

and is not a measure of activity intensity equivalent by age and stature. A candidate measure is 

the mass-specific net oxygen uptake, VO2net (VO2tot  VO2stand). To improve measurement of 

physical activity intensity using accelerometers, research developments are suggested concerning 

processing of accelerometer data, use of energy expenditure as reference for activity intensity, 

and calibration procedure with absolute versus relative intensity. 
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Introduction 

Accelerometer-based assessment of physical activity intensity is widely used in observation and 

intervention studies. It provides the opportunity to study intensity patterns continuously for long 

time-periods with high resolution. A crucial step of the assessment is the extraction of the useful 

part of the acceleration signal and transformation into meaningful measures. However, our 

comprehension of accelerometer-based assessments of physical activity has been negatively 

affected by previous non-optimal processing of accelerometer data on the one hand and how 

energy expenditure measures as reference of physical activity intensity have been calculated on 

the other hand. While the acceleration signal from sensors follows, in a complex way, the 

biomechanical rules determined by body dimensions, attachment position and movement 

efficiency, the corresponding energy cost is affected by physiological maturation and efficiency. 

The biomechanical and physiological measures of physical activity are not directly 

interchangeable, as the former determines the mechanical work performed while the later 

determines the energy cost of this work. Hence, they are not equal, which needs to be considered 

in processing of acceleration data and their calibration. 

 

In 1996, Tryon and Williams introduced the fully proportional actigraphy developed by the 

Computer Science and Application (CSA) company, with detailed descriptions of the processing 

from raw acceleration data to counts.1 The last processing step included the translation from 

gravity g to counts with the analogue-digital converter; the maximum acceleration of 2.13 g/sec 

was divided into 128 digital levels, providing a measure of 0.01664 g/sec/count. The integral by 

time results in g/count. The count is a unitless measure of the movement intensity of each time-

period recorded called epoch (e.g. 10 sec or 60 sec). Since then, successive models of this 

accelerometer, now called the ActiGraph, have been developed. Today, the ActiGraph is the 



dominating accelerometer in research and the ActiGraph count has been established as a standard 

measure of physical activity intensity.2,3 However, a plateau of the ActiGraph counts was 

demonstrated from recordings at the waist at an intensity corresponding to running at 10 km·h-

1,4,5 which indicates a measurement bias. Despite the detailed description provided by Tryon and 

Williams of the processing of raw acceleration data to ActiGraph counts,1 this information and 

the consequence of the processing on the assessment of physical activity intensity have generally 

been overlooked. Partly because the processing information is not easily accessible or properly 

presented, but also because acceleration signal processing requires engineering competence 

which is not possessed by all users of accelerometers. Physical activity research has turned to the 

use of raw acceleration measures as a reaction against the incomplete information provided by 

many manufacturers of accelerometer methods.6,7 A recent study provided detailed insight into 

current processing of raw acceleration into ActiGraph counts and demonstrated the inborn 

processing bias contributing to the plateau-effect, which is explained in details in the coming 

section of this work.8 More importantly, the results emphasize the need for reexamination of 

acceleration data processing with respect to the acceleration measured at various body wear 

locations, whether it is the ActiGraph count or any other metric. 

 

To facilitate interpretation of accelerometer data, value calibration has been performed using 

energy expenditure to obtain reference measures for absolute activity intensity, with the 

metabolic equivalent of task (MET) as the most commonly used. The MET is established by the 

quotient of total activity-specific energy expenditure (TEE) and resting energy expenditure 

(REE); both can be established by direct measurement of oxygen uptake but REE is often 

predicted from age- and sex-specific equations. Because of higher proportion of metabolic active 

tissue, the mass-specific (normalized by a measure of body mass) oxygen uptake during rest is 



higher in children compared to adults.9 Consequently, the MET-values for specific activities 

increase from childhood to adulthood, which is especially apparent at moderate intensity or 

higher.10-14 Still, cut-points for moderate physical activity (MPA; 3 METs) and vigorous physical 

activity (VPA; 6 METs) activity are used interchangeably between age-groups, but at the same 

time distinct values are applied (3 versus 4 METs for MPA).2 Hence, we put higher demands on 

children and adults when determining their MPA and VPA. The use of MET as reference 

measure together with the ActiGraph count has resulted in a vast number of age-separated 

calibration algorithms with unknown comparability.2  

 

This narrative review provides a reexamination of the assessment of physical activity intensity 

with accelerometers, approaching both the processing of acceleration data based on 

biomechanical theory and the use and calculation of energy expenditure to achieve a reference 

metric of activity intensity that is equivalent by age or stature. 

 

Processing of acceleration data 

Freedson et al15 and Trost et al16 provided the first calibration studies of the ActiGraph counts 

generated from waist recordings. Figure 1 displays the counts generated for the walking and 

running speeds in their studies. It demonstrates lower values in children compared to in adults. In 

the same figure, waist data from the more recent study by Hildebrand et al are presented.7 In 

contrast, the activity intensity metric Euclidian norm minus one (ENMO) based on raw 

ActiGraph acceleration data shows higher values in children compared to adults. Below we 

attempt to examine these contrasting results from a biomechanical perspective to provide an 

explanation. 

 



An accelerometer can be considered to provide a measure of the mechanical work of moving a 

body as it registers acceleration. In classic physics, work (W) is simply calculated as the product 

of acceleration (a), body mass (m) and displacement (s), i.e. W = a·m·s. In addition, if 

acceleration is integrated by time, movement speed (v) is achieved and kinetic energy can be 

calculated as Ek = (m·v2)/2. Similarly, as the ActiGraph count is based on the integration of 

acceleration, this metric may represent movement speed. However, calculation of the work for 

moving the human body is more complex, as it involves the movement of different segments 

(trunk, legs, arms) in an interacting pattern typical for the activity performed. A biomechanical 

model of human movement describes total work (WTOT) as divided into the external work for 

displacement of the center of mass relative to surrounding (WEXT) and the internal work of 

moving the limbs to contribute to this displacement (WINT) (Figure 2).17-19 These parameters are 

calculated as mass-specific to be able to compare individuals or groups of different body size. By 

doing that, the work determined is the product of acceleration and displacement (W = a·s). In 

humans, the biomechanical model is primarily applicable to explain physical activity intensity 

measurement from accelerometer recordings at the waist and leg (thigh), as the wrist has a more 

complex movement pattern not always related to the movement intensity of the rest of the body. 

Therefore, for example, discrepancies between the wrist and waist locations can occur for free-

living measurements because their movements are being decoupled.20 Due to the complexity of 

arm movements, machine-learning algorithms may be required to achieve the same level of 

accuracy for activity intensity as with the waist and thigh location.21  

 

During walking, both the vertical (WEXT-VERT) and the horizontal (WEXT-HOR) components of 

WEXT increase with speed.18,19 At the start of running there is a large increase of WEXT-VERT, but it 

reaches a plateau with faster running speed, while WEXT-HOR continues to increase. WINT increases 



across walking and running. Therefore, WEXT (due to WEXT-HOR) and WINT contribute both to the 

continuous increase of WTOT across running speeds. Altogether, WTOT forms a curvilinear 

relationship with movement speed. It has been demonstrated that the mass-specific WTOT is 

similar in children and adults for walking and running at the same absolute speed (at least within 

natural speed ranges), but WEXT is larger in adults due to larger vertical acceleration amplitude 

following larger step length, while WINT is larger in children due to higher step frequency.17,18,22 

WEXT has an inverse relationship with step frequency, while WINT shows a positive relationship 

with step frequency. From the biomechanical model, one would expect larger values from 

accelerometer recordings at the waist in adults compared to children as the mass-specific WEXT 

would be captured in this position, but that the opposite would occur for recordings at the thigh or 

wrist capturing more of WINT. Further, the early observation of the plateau-effect of the 

ActiGraph counts would have been explained by that the ActiGraph accelerometer at that time 

recorded vertical accelerations only (uniaxial).4  

 

However, the major explanation to the plateau-effect and age differences for waist data was 

found in the ActiGraph frequency band-pass filter.4,5,8 The ActiGraph company made the 

ActiGraph raw acceleration data accessible with model GT3X+ that was released in 2010 and 

moved the processing to counts into their software ActiLife. This made it possible to investigate 

the frequency content of the measured acceleration as well as the processing into ActiGraph 

counts. Step frequency is the predominant frequency component due to the large acceleration 

generated with the ground contact of the foot and its propagation upwards through the leg to the 

waist. The ActiGraph filter algorithm allows full signal pass at a frequency of 0.75 Hz with 

successive attenuation of the signal at lower and higher frequencies (Figure 3).8 Fifty percent of 

the signal remains at a signal frequency of 2.5 Hz, while total elimination occurs above 5 Hz. 



Step frequency during walking may reach 2 Hz, while fast running can be performed up to 4 

Hz.5,17,18,22 The step frequency can be up to 1 Hz higher in children compared to in adults for the 

same absolute locomotion speed. Accordingly, the ActiGraph counts may underestimate the 

mechanical work performed at higher movement intensities and more in children than in adults. 

This is also demonstrated in Figure 4 displaying the ActiGraph counts generated during walking 

and running from several studies in children and adults. 

 

When the filter is expanded allowing higher movement frequencies, the difference in activity 

counts generated from the waist between children and adults is diminished as well as the plateau-

effect (Figure 5).22 In addition, the curvilinear relationship between speed and counts appears 

more clearly, as expected from the biomechanical literature17-19 and confirmed from other sources 

of acceleration data collected at the waist.6,23 These results together with the results from 

Hildebrand et al7 and in perspective of the biomechanical model of WTOT, WEXT and WINT
17-19 

raise the principal question of what we actually measure with an accelerometer at the waist, as 

well as at other body placements, and the comparability between age-groups.  

 

The narrow range of the ActiGraph band-pass filter imposes a more linear relationship between 

locomotion speed and acceleration amplitude from walking to running than it really is, by 

attenuating the acceleration amplitude to an increasing extent with higher speed and movement 

frequency (Figure3, Figure 5).8,22 The acceleration captured corresponds to what is generated and 

propagated up to the waist by each ground contact by the foot for displacement of the center of 

mass, i.e. WEXT, but with a reduced amplitude. By opening up the low-pass filter to 4 Hz, the full 

acceleration amplitude generated by the ground contact of the foot is captured across movement 

speeds. Still, the counts generated is mainly explained by WEXT, as only frequencies 



corresponding to the foot ground contact frequency (i.e. step frequency) are included by the filter. 

ActiGraph counts and counts generated with the 4 Hz filter will therefore not be directly 

comparable between individuals of different age and stature. However, expanding the filter to 10 

Hz may capture additional acceleration signals generated by locomotion, including leg 

movements that add to or modify the acceleration signal recorded at the waist, contributing to 

that a larger proportion of WINT explains the variation in counts.22 Consequently, the wider filter 

would better capture the movement pattern due to age (step length and step frequency), getting 

closer to WTOT. It would explain the more similar count values between children and adults 

observed using 10 Hz low-pass filter.22  

 

Finally, total omission of a low-pass filter would contribute to capturing also more noise. An 

important question concerns whether the different results applying 10 Hz low-pass filter (similar 

values in children vs. adults) compared to the omission of a low-pass filter in the ENMO method 

applied in the study by Hildebrand et al7 (higher values in children vs. adults) is explained by 

children truly generating more acceleration and therefore more work for similar activity due to a 

more inefficient movement pattern, or if there is a measurement error issue in processing 

acceleration data. The ENMO algorithms set all negative accelerations to zero after subtracting 1 

g from the vector magnitude. This means that acceleration signals generated with larger 

amplitude but at lower frequency (as in adults) will be excluded to a larger extent compared to 

acceleration signals with lower amplitude but at higher frequency (as in children). In contrast, the 

generation of counts is the aggregation of both positive and rectified negative acceleration 

signals. The consequences of the ENMO processing versus the 10Hz low-pass filter method 

needs further investigation. 

 



The ENMO7 and the Mean Amplitude Deviation (MAD)6 are two alternative measures of activity 

intensity generated from raw acceleration. Their metrics are expressed in mg. None of these 

approaches use a low-pass filter to attenuate irrelevant acceleration signals. The effect of low-

pass frequency filtering on the accuracy of the acceleration data has been investigated for an 

accelerometer attached at the upper back during walking and running on a treadmill using a 

camera motion analysis system as criterion method for acceleration.24 This study demonstrated 

large measurement error with unfiltered raw acceleration data, while the highest accuracy was 

achieved by applying 8-10 Hz low-pass filter. However, these results are not directly applicable 

to waist acceleration data and do not explain differences between children and adults. They do 

indicate that different outcomes are to be expected depending on filtering of acceleration data and 

an important goal is to explore accurate filter cut-points to capture the mechanical work actually 

performed and to minimize inclusion of noise. In the lab environment, the noise component of the 

registered acceleration signal can be controlled to be within a limited range, while in the free-

living situation factors such as accelerometer position and attachment, and vibrations transferred 

from the environment for example during passive transportation may contribute to an important 

part of the acceleration information registered. Unfortunately, free-living investigations of the 

effect of frequency filtering are rare. 

 

Recording acceleration signals at the thigh and wrist would contribute to different outcomes 

compared to at the waist. At the thigh placement, an accelerometer may capture more of the 

acceleration signal generated due to leg swing related to WINT. It may be possible at this 

placement, that a 4 Hz low-pass filter would generate similar acceleration values in children and 

in adults as some of the relevant acceleration signals is still attenuated by the filter, while a 10 Hz 

low-pass filter contributes to higher acceleration values in children when all relevant acceleration 



signals are included. As with the thigh placement, it may well be that the wrist placement 

captures more of WINT and higher values would be observed in children than in adults if the 10Hz 

filter is applied. Altogether, recording location affects data processing and comparability between 

individuals of different age and stature.  

 

Based on the rationale above, our statement is that improved processing of acceleration data may 

contribute to a measure of WTOT equivalent by age and stature for the same absolute movement 

speed with the waist placement, while more WINT may be captured at the thigh and wrist and 

therefore these placements would not be equivalent by age and stature. The recommended low-

pass frequency filter cut-point would be 10 Hz, at least for the waist placement, to include all 

relevant acceleration signals. Further research is required to establish the optimal filter cut-point 

for all three body placements. 

 

Energy expenditure as reference for activity intensity 

While most calibrations of accelerometers in adults have used the MET as criterion measure for 

activity intensity,6,7,15,25-32 there has been a mixture between using the MET and the activity type 

(e.g. brisk walk, run) in children.7,16,33-42 Several studies have demonstrated an increase in the 

MET-value with increasing age across childhood for walking and running at the same speed,10-14 

which can be explained by the decreasing mass-specific resting energy expenditure by age.9 In 

one study, different measures of energy expenditure for walking and running and their 

relationships with age were investigated within an age-range of 5-18 years.12 The MET-value 

showed a moderate positive relationship with age, while VO2NET (ml·kg-1·min-1) and VO2ALLOM 

(ml·kg-0.75·min-1) showed weak to moderate negative relationship with age. Hence, none of these 

measures of activity intensity are equivalent by age and stature. 



The VO2NET measure in the study above was calculated by subtracting VO2REST from VO2TOTAL. 

As accelerometers estimate the mechanical work performed during movement, this way of 

calculating VO2NET may not be optimal as it includes energy expenditure for standing. 

Biomechanical research has instead expressed VO2NET by subtracting VO2STAND from VO2TOTAL. 

This measure of activity intensity (with the unit ml·kg-1·min-1) shows more similar values in 

children and adults for ambulatory movement, although some differences remain explained by 

stature.17,18,43,44 One way to deal with differences in VO2NET due to age and stature may be to 

express it at kinematically equivalent speed determined by the Froude number. The Froude 

number (Fr) is calculated as: Fr = V2/gL (V=speed, g=acceleration due to gravity, L=stature). 

When individuals with different age and stature move at the same absolute speed, younger and 

shorter individuals have higher step frequency.17,18 As the mass-specific energy expenditure per 

step is the same for individuals of different age and stature, younger and shorter individuals will 

have higher mass-specific energy expenditure.17,18,45 However, at the kinematically equivalent 

speed, the mass-specific energy expenditure (and effort) is the same for individuals of different 

age and stature as they move at different absolute speeds.45 Therefore, calibration studies with 

VO2NET may be employed if comparison between age-groups are of interest.  

 

A related question concerns the establishment of cut-points for activity intensity to be able to 

determine time spent in, for example, MPA and VPA. Unfortunately, the literature provides a 

vast number of cut-points for children and adults to choose between, with a large variation in 

values both between age-groups and within age-groups. In calibration studies in children and 

adults, slow-comfortable walk has been selected to represent light activity, brisk-fast walk as 

moderate activity, and running as vigorous activity, but this has not been done consequently 

6,7,15,16,25-42. Central measures of intensity in these calibration studies have been 3 METs as 



reference cut-point for MPA and 6 METs for VPA. 4 METs has also been used as reference cut-

point for MPA in children. This MET-value has been observed for movement speeds defined as 

being at moderate intensity, while 3 METs have been found for light activity (LPA).11,12,14 Figure 

6 displays walking and running speeds with the corresponding ActiGraph counts together with 

the range of cut-points for MPA and VPA in children, adolescents and adults based on the data 

published from the various calibration studies performed in these age-groups. These results 

emphasize an important issue concerning how MPA and VPA is defined. The cut-point for MPA 

generally falls on the walking speed of 4 km·h-1 in these studies, which is commonly defined as 

slow, casual or comfortable walk in children and adults. Therefore, the cut-point for MPA may be 

set too low and too easily classifies individuals as being sufficiently physically active. 

 

There seems to be a conflict in physical activity research in the definition of MPA; either it 

should be distinguished by brisk walking, or also include lower intensities as comfortable 

walking. The early physical activity recommendations in adults exemplified the distinction of 

MPA from LPA as being equivalent to brisk walking at 4.8-6.4 km·h-1.46,47 The Compendium of 

Physical Activities for adults includes walking at a moderate pace at 4.5-5.1 km·h-1 (3.5 METs) 

and at brisk pace at 5.6 km·h-1 (4.3 METs), compared to a slow pace at 3.2 km·h-1 (2.8 METs).48 

In youth, MPA in physical activity recommendations has been described as when their heart beats 

faster and when they breath faster, which would correspond to the brisk pace.49 The Youth 

Compendium of Physical Activities includes self-paced brisk walking corresponding to 5.6 km·h-

1 (6-9 yrs: 4.6 METs  self-paced casual walking at 

approximately 4-4.8 km·h-1 (6- .50 The definition of VPA is 

more congruent in the calibration literature, often including running pace and with a cut-point of 

6 METs in both children and adults. Still, 6 METs is reached at a different running speed in 



children compared to adults, due to different REE as well as that equal MET value does not 

reflect equivalent activity intensity. 

 

We ask for more congruent definitions of MPA and VPA. We suggest the following standard 

activities in calibration studies as belonging to respective intensity category: self-paced casual 

walk as light activity, self-paced brisk walk as moderate activity and jog as vigorous activity. The 

next step would be to investigate the regression line of the Froude number (calculated from 

measured speed and body height) versus the mass-specific VO2NET (VO2TOTAL  VO2STAND) and 

determine the VO2net cut-points for MPA and VPA at the values achieved between the standard 

activities (Figure 7A). The final step would be to investigate the regression line of VO2NET versus 

the accelerometer metric (e.g. counts, mg) and to set the accelerometer cut-points corresponding 

to the defined VO2NET cut-points (Figure 7B). As the absolute speed corresponding to the 

equivalent speed is lower in children than in adults, the accelerometer cut-points will also be 

lower in children. 

 

An additional factor that adds to the complexity of the determination of MPA and VPA is the 

influence of fitness level.51 Two individuals with different fitness levels may perceive MPA and 

VPA at different equivalent speeds and VO2net. Therefore, intensity cut-points relative to 

VO2max (or VO2net-max) may be determined (relative intensity), using data from calibration 

studies. VO2net intensity cut-points (MPA, VPA) would be expressed as fixed proportions of 

various predetermined VO2net-max levels representing very low, low, moderate and high fitness. 

However, the choice between absolute intensity cut-points or relative intensity cut-points needs to 

be carefully considered in relation to the investigation design performed, otherwise erroneous 

results may be achieved. For example, in an intervention study or implementing a training 



program in clinical setting to increase physical activity, two individuals with different VO2max 

who spend the same amount of time at their relative MPA level may experience similar health 

effect. This is because the individual with lower VO2max would require lower dose compared to 

the individual with higher VO2max.52,53 In this case, an association between MPA and health 

effect may be detected if relative intensity cut-points are used. Disregard of the VO2max may 

well explain the inter-individual variations frequently reported in training or intervention studies. 

On the other hand, in cross-sectional investigations when applying relative intensity cut-points, 

the amount of physical activity may be shifted so that the individual with lower VO2max may 

achieve more physical activity than the individual with higher VO2max compared to if absolute 

intensity cut-points had been used. In this case, a relationship between high physical activity and 

health might disappear or even show a reverse relationship because of the strong relationship 

between fitness and health.54  

 

A practical issue with relative intensity is that, in many cases the VO2max is not directly 

measured but rather indirectly assessed using walk-tests, submax-tests or self-report. Therefore, a 

practical compromise would be to use these indirect measures to assign the individual into one of 

the VO2net-max levels (very low, low, moderate, high) and thereafter apply the specific VO2net 

cut-points and corresponding accelerometer cut-points of respective level to determine time in, 

for example, moderate physical activity. Little has been investigated concerning the relative 

intensity cut-points. Therefore, this model of cut-points for accelerometer data needs to be further 

developed, refined and tested. 

  

 



Our statement is that, to be able to directly compare physical activity intensity between 

individuals of different stature and age using accelerometers, and if energy expenditure is used as 

reference for activity intensity, accelerometer metrics could be calibrated against the mass-

specific VO2NET calculated as VO2TOTAL subtracted by VO2STAND. Relative intensity cut-points for 

accelerometer data may be developed and implemented to target differences in the perceived 

intensity level due to different VO2max, but should be considered in relation to the investigation 

design performed. 

 

Summary and proposals 

With this paper, we promote a reexamination of the use and processing of acceleration data in 

children and adults as well as of the energy expenditure reference measure of activity intensity. 

While an accelerometer at the waist could be used to estimate total mechanical work for the 

absolute speed that is equivalent age and stature, mass-specific net oxygen uptake (VO2TOTAL  

VO2STAND, ml kg-1 min-1) may be used as a physiological measure of activity intensity that is 

equivalent by age and stature when expressed at equivalent speed. The thigh and wrist location 

can also be used to measure activity intensity but are not equivalent by age and stature. The wrist 

location may require more advanced data processing for an accurate measure of activity intensity. 

First, we need to decide whether mechanical work or energy expenditure is the measure of 

physical activity intensity as it affects the calibration method. We propose following future 

research needs to summarize the content of this paper: 

 

 Examination of the optimal processing of acceleration data (e.g. frequency filtering) from 

accelerometers attached at the different body segments in different age and statures  



 Assess the proportion of external and internal work recorded with accelerometers at the 

different body segments  

 Further investigation of reference measures for activity intensity of ambulatory activities 

based on mechanical work or oxygen uptake  

 Examination of the relationship between acceleration measure of activity intensity and 

reference measure of activity intensity (work or oxygen uptake) 

 Establish standard activities in children and adults representing light, moderate and vigorous 

physical activity based on clear biomechanical or physiological definitions of target activity 

intensity, not based on MET-values 

 Implement and evaluate relative intensity cut-points for accelerometers preferably in 

investigations with the design of intervention or training program to improve health; 

implementation and evaluation in cross-sectional investigations need to be done cautiously 

 

Perspectives 

 Accelerometer data collected at the waist may represent total mechanical work and provide a 

measure of activity intensity equivalent by age and stature, while data collected at the thigh 

and wrist capture more internal mechanical work and therefore not equivalent  

 Total mass-specific oxygen uptake subtracted by standing oxygen uptake (VO2NET, ml kg-1) 

may be a reference measure of activity intensity equivalent by age and stature 

 VO2NET may be used for accelerometer calibration and thereby allow comparison of time 

being physically active between individuals if different age and stature 

 Improvements in measurement of physical needs to be verified in relation to various health 

outcomes to determine the clinical relevance 
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Figures 

Figure 1. ActiGraph vertical counts and ActiGraph raw acceleration (ENMO) from data recorded 

at the waist in children and in adults during walking and running on a treadmill. Graph adapted 

from Trost et al16 and Freedson et al15, and from Hildebrand et al7.  

 

Figure 2. Mechanical work during walking and running, where total work (WTOT) and its sub-

components external work (WEXT) and internal work (WINT) are displayed. Graph adapted from 

Schepens et al.17,18 

 

Figure 3. Replication of the ActiGraph frequrency band-pass filter, demonstrating the successive 

attenuation of the recorded acceleration signal with lower or higher movement frequencies than 

0.75 Hz. Graph adapted from Brønd et al.8 

 

Figure 4. ActiGraph counts (vertical axis) from walking and running in children and adults. 

Circles are values from walking and triangles from running. Graph adapted from several sources 

of published data.4,5,15,16,23,25-32,34-42,55 

 



Figure 5. Original ActiGraph counts and activity counts generated with the low-pass filter 

expanded to a cut-point of 4 Hz or 10 Hz in children (dotted line), adolescents (dashed line) and 

adults (solid line) walking and running at the same speed on a treadmill. Graphs adapted from 

Fridolfsson et al.22 

 

Figure 6. ActiGraph counts cut-points (vertical axis) for moderate (dashed lines) and vigorous 

(dotted lines) physical activity generated in calibration studies divided into different age 

categories. The two lines for each intensity level indicate the lowest and the highest cut-point 

generated from the included studies in each age category. Circles are values from walking and 

triangles from running. Graph adapted from several sources of published data.4,5,15,16,23,25-32,34-42,55 

 

Figure 7. Conceptual proposal of calibration of accelerometers. A The first step of calibration by 

setting the mass-specific VO2NET cut-point at the equivalent speeds corresponding to the break-

point between casual-comfortable walking and brisk walking (moderate), and between brisk 

walking and start of running (vigorous). B The second step of calibration by setting the 

corresponding accelerometer cut-points using the defined VO2NET for moderate and vigorous 

activity, here exemplified with activity counts generated using a 10Hz low-pass filter.22  

  



 

 



 

 



 

 



 


