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Abstract
In this paperwe suggest amodel for how a significant part of the drag forces on two-dimensional
objects can be derived using the circulation that is naturallymaintained around the objects.We
assume incompressible and inviscid potential flow and that the circulation is already generated. The
resulting velocity field complements the one that is known to generate Prandtl’s induced drag in three
dimensions.We demonstrate howfluid particles in a velocity field are attracted towards an object, and
that this, due to conservation ofmomentum, results not only in lift, but also in drag forces. The
magnitude of a disturbance velocity can be derived from the circulation of bound and shed vortices
accompanying the object and parameters taken from the vonKármán vortex street description.
Another part of the drag is generated by vortices that emerge behind blunt bodies whenfluid particles
do not follow the surface of the objects.We obtain amathematical description of the resistance of
several types of blunt bodies and rotating cylinders. Themodel involves no parameters that are derived
from empirical data. Still, this inviscid approach corresponds well with experimental data in viscous
flow and is close to amathematical empirical description of rotating cylinders byW.G. Bickley.

1. Introduction

Themodel of perfect or ideal fluids is incapable of explainingmany of the observed facts offluidmotion. The
paradox of d’Alembert stating that a solidmoving through an idealfluidwith constant velocity will not
experience resultant forces is in contradictionwith the observed facts andmakes it difficult to explain the
connection between lift and drag. It was thework by Lanchester [1] and Prandtl [2] that showed that a part of the
drag of afinite wing in idealfluids could be explained using themodel of a circulation generated by the airfoil.
This circulationwill need viscosity to originate, whichwe do notfind in the idealmodel. However, assuming that
the circulation is already produced, the induced drag follows from the theory of ideal fluids.

Themain theoretical approach presently used to study external flows, is boundary-layer theory (see e.g. [3]).
The design of profiles for subsonic speeds, is usually assisted by computer programs (see e.g. [4, 5]), where the
method of conformalmapping or panelmethods are applied. Friction is determined by the construction of an
integral boundary layer that is based on empirical data. Thesemethods are also taking into account displacement
effects and the influence of local bubbles. These approaches take bothmicroscopic andmacroscopic effects into
account, including viscous effects.Wewill follow an alternative approach, by looking deeper into the
macroscopic effect of the vortices (see e.g. [6]) that are generated by the unsteadyflowpast an object. Although
viscosity is needed to start such a circulation, we assume ideal fluid in the subsequent process.

It is known, that a bodymoving through afluid generates a ‘train’ of eddies. Bickley [7] examined the case of
two-dimensional flowpast rotating circular cylinders in idealfluids. He investigated the resulting force on the
cylinder by using the full pressure equation and deriving the velocity potential from the stream function. By
placing a vortex behind the cylinder that had the opposite circulation as the cylinder, and estimating the position
of the outside vortex, he derived formulas for the drag- and lift coefficients. They are determined by the
circulation, the velocity of the flow against the cylinder, and a relation between cylinder diameter and distance to
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the vortex core. The lift and drag curves Bickley obtained from the equations are all parabolas, and he used
experimental data fromFlettner rotors to estimate the unknown parameters in his equations.

Amodel for unsteady potential flow in idealfluids, called the ‘RandomWalk SourceModel’ is presented in
[8] (see appendix for a brief description). As seen infigure 1, thismodel generates the shape of a particle front
emerging from a line source, creeping towards and past awing section. The lift coefficient can be predicted by the
difference of creeping distance d between the two front segments that have been separated by thewing section
and an extended separation line whichmaintains theKutta condition. Atfirst sight, the distance seems
surprisingly large.However, the result aligns verywell with the corresponding lift coefficients that are observed
in experiments (see [8]).

The front is a result of amodel of unsteady potential flow, and further developments in [9] showed that the
trajectory of themass centre of the particle cloud is deflected as the result of thewing section acting as an obstacle
to the particle front. The deflection in the path can be seen as the result of a vertical velocity that is added to the
particles while passing the profile.We assume that this vertical velocity is also present in steadyflow.

Conservation ofmomentum implies that the velocity of the air thenwill have to decrease in the horizontal
direction, which in turnmust be due to drag forces. In this paper, we apply this property, in addition to
parameters satisfying the stability criterion in vonKármán vortex streets, to establish a relation between the drag
and lift coefficients.Moreover, when the particles cannot follow the surface of an object, the pressure loss behind
the object is derived from the circulationwhich is naturally generated behind such objects (in viscousfluids).
Both approaches intend to improve the understanding of drag of profiles and blunt bodies as a result of the
circulation in ideal fluids.

In section 2we derive a relation between the lift and drag coefficients by considering conservation of
momentumof aflow around awing section in the surrounding fluid in two dimensions. The analogy to a von
Kármán vortex street is used to resolve the undetermined parameters. Themodel is naturally extended to three
dimensions by the inclusion of Prandtl’s induced drag.We also extend themodel by taking into account the
pressure conditions behind objects when the fluid particles cannot longer follow the surface of the body. In
section 3, themodel is validated against published experimental data onwing sections andwings.We also
demonstrate the ability of themodel to estimate the drag of several types of blunt bodies. Finally, themodel is
applied to a rotating cylinder, which can be considered as being an example of both awing section and a blunt
body, and the results are very close to the results by Bickley. The results are shown to alignwell with
experimental data.

Figure 1.The trajectory of themass centre of a ‘particle cloud’, generated using the ‘RandomWalk SourceModel’ in [8, 9] as an
average over 400 different runs. Particles are coming out of a vertical line source on the left side, generating a front. The front is passing
thewing sectionwith 30° angle of attack. Thewing section is an obstacle separating the front into two segments, and a separation line
keeps the two front segments separated to follow theKutta condition. The lower front segment at time step +tn 1 is ahead of the upper
segment by a distance d. This distance defines the circulation around the profile (see section 3.2.1). Some positions on the trajectory of
themass centre of the particle cloud are shown as circles. The dashed line indicates the deflection of themass centre trajectory.
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2. A kinematicmodel to calculate the drag coefficient

In this sectionwe perform a control volume analysis that leads to equations connecting the ability to generate lift
of objects (which is shown in the ability to generate a circulation in a start-stopflow) to the drag offinite and
infinite wings and blunt bodies in idealfluids in a steadyflow.

We consider a ‘particle cloud’ passing awing section as infigure 2.T defines the length of thewing section, b
is the depth (into the plane) andA=b·T is the profile area in the horizontal plane. A control volume is
representing the particles that are influenced by the geometry of the profile. The height of the control volume is t,
and the velocity of the particles is ¥u . The deflection angleβ of the path of the centre of gravity of the particle
cloud is seen as the result of a downward pointing velocity component ¥w . The downward pointing velocity is
the result of the separation of the fronts during the unsteady flowwhen the particles pass thewing section. This
results in a lack of particles over the profile thus attracting particles from the surroundings. Assuming a density ρ
of the fluid, the force F acting on thewing sectionwill have a lift component FL in the vertical direction and a
drag component FD in the horizontal direction.

2.1. Control volume analysis
The speed ¥u of the particle cloud infigure 2 does not changewhen passing thewing section. Themagnitude of
the total force F is given by

r
b

= ¥∣ ∣ · ·bt uF 2 sin
2

.2

The component of the force in vertical direction is

r
b b

r b= =¥ ¥· · · · · ( )F bt u bt u2 sin
2

cos
2

sin . 1L
2 2

The lift force can also be expressed by the lift coefficient,CL, and substitution of = r
¥F C u AL L 2
2 into (1), gives

b= · · ( )C
t

T
a2 sin 2L

= ¥

¥
· · ( )t

T

w

u
b2 . 2

Herewe apply thatA=b·T in thefirst line. That b=¥ ¥w u sin in the second line, is seen from figure 2.
Equation (2a) relates the lift coefficient of thewing section to the average height, t, of the air volumewhich is
influenced by thewing section, and the direction of the total force of thewing, parameterized byβ.We do not
know the values of t orβ (or equivalently ¥w ). In the followingwe propose an analogy to the vonKármán vortex
street to resolve these values.

Figure 2.Control volume analysis of a ‘particle cloud’ passing awing section.T defines the length of thewing section, b is the depth
(into the plane) andA=b·T is the profile area in the horizontal plane. The control volume is representing the particles that are
influenced by the geometry of the profile. The height of the control volume is t, and the velocity of the particles is ¥u . The deflection
angle of themass centre trajectory isβ.

3

J. Phys. Commun. 3 (2019) 115005 RWMeyer and S Erland



2.2. VonKármán vortex street—the continuous unfolding of an ideal pair of growing vortices
When awing section ismoved forward and then stopped (for example in awater tankwith a free surface), wewill
see a shedding of a pair of vortices called start-stop vortices.When a plate (which is awing sectionwith 90° angle
of attack) ismoved forward in a direction perpendicular to the plate, and then stopped andmoved out of the
fluid, start-stop vortices will be generated too. Thewing section and the plate both have organized fluid in a pair
of vortices during the start-stop action. If the plate ismovedwith constant velocity through thewater tank, we
will not see a pair of vortices continuously growing duringmovement, insteadwewillmore likely see a von
Kármán vortex street following the plate (depending on the Reynolds number). Now let usmake an important
assumption, namely that the vonKármán vortex street is one formof the continuous unfolding of the expected
growing pair of vortices, carrying the same information about the platemovement that we expect tofind in the
start-stop vortices aftermoving the plate out of thefluid.Wewill show thatwe can relate ¥w to the velocity of the
vortex centres in a vonKármán vortex street.We assume that start-stop vortices usually unfold as the result of
disturbances in the velocity distribution close to the vortices. Depending on the Reynolds number, the unfolding
can appear both chaotic, ormore regular as in a vonKármán vortex street.We treat both cases as the same
macroscopic phenomena.

Awing sectionmoving through afluid is part of a pair of growing vortices, where thewing section itself is
part of the core of one vortex. Nowwe assume, the pair of growing vortices is unfolding, to a vonKármán vortex
street. This leads to assumptions concerning t (the environment of particles which are influenced by the profile)
and ¥w .

2.3. Assumptions concerning t and ¥w
The vonKármán vortex street [10, 11], as shown infigure 3, consists of two rows of vortices, each vortex
representing a circulationΓ. The ratio between the perpendicular distance h between the two rows of vortices
and the distance l between two vortex cores in the same row is given by [11]

p
=

+
»

( ) ( )h

l

ln 1 2
0.280 5. 3

The vortex centres have a velocityw in the same direction as themoving object. The circulationΓ is related to the
velocityw and is given by [11]

p
G = =

+
·

( )
( )w l

wh
8

8

ln 1 2
, 4

where l in (3) is substituted in the last equality.
We canmake an instantaneous replica of a vonKármán vortex street by constructing a stack of vertically

alignedwing sections as shown infigure 3. They are staged according to vonKármán’s description in (3) and (4)
and aremoved for a short period to generate a circulation, and then removed.Ourmain assumption is that the
vortex centresmovewith a velocity = ¥w w downwards, where ¥w is the average downward velocity of the

Figure 3.A stack of vertically alignedwing sections in a start-stop sequence generates a vonKármán vortex street. Thewing sections
are staged according to vonKármán’s description and aremoved for a short period to generate a circulation, and then removed. Our
main assumption is that the vortex centresmovewith a velocity = ¥w w downwards, where ¥w is the downward velocity of the
particle cloud infigure 2.We also assume thatT=h since the start-stop vortices are centred at the leading and trailing edges of the
wing section.
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particle cloud infigure 2.We also assume thatT=h since the start-stop vortices are centred at the leading and
trailing edges of thewing section.

When theKutta-condition is applied, the circulation of awing section is related to the lift coefficient by

G = ¥ ( )C u T
1

2
. 5L

Assuming that the circulation of awing section in (5) equals the circulation of the vortices in a corresponding
vonKármán vortex street in (4), with h=T and = ¥w w , we get the following expression for the lift coefficient

p
=

+
¥

¥( )
· ( )C

w

u
a

2 8

ln 1 2
6L

p
b=

+( )
· ( )b

2 8

ln 1 2
sin . 6

Comparing (2a) and (6b), the height t of the area that represents the fluid particles that are influenced of the
profile geometry, is given by

p
=

+
»

( )
t

T

8

ln 1 2
10.1.

Thismeans that the average height of the particle volume influenced by thewing section is approximately 10
times larger than the length of thewing section.

The frequency of vortex shedding is not considered to be of importance here, as the vonKármán vortex
street is only one representation of a disassembled vortex pair where, in the beginning, one vortex belongs to the
wing section and the other belongs to the start vortex. The vortex pair is the result of thewing section attracting
particles from the surroundings.Another representation of one vortex of the vortex pair is for example the
vortices behind a rotating cylinder which usually are seen as turbulent flow.Weutilize the assumption that these
vortices have not lost the information about the vertical velocity generated by the circulationwhich is connected
to them.

The above results can nowbe applied to establish a relation between the drag coefficient and the lift
coefficient.

2.4.Model—fluid particles following the surface of an object
Wecannow relate the drag and the lift coefficients for objects where the fluid particles follow the surface of an
object, based on the vonKármán vortex street analogy. Fromfigure 2, the horizontal drag force component of
the force is given by

b b b
= = »bF F F Ftan

2

sin

2 cos

sin

2
,D L L L

2
2

where the approximation is valid for smallβ. The same relation is valid for the drag and lift coefficients:

b
p

p
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⎝

⎞
⎠
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Csin

2 2

ln 1 2

8
, 7D L

L
2

where the expression for bsin in (6b) is used in the last line.
Equation (7) connects the lift coefficient of a wing section to the drag coefficient in a friction-less fluid in a

2-dimensionalmodel, and defines induced drag in twodimensions. For finite wings in three dimensions with
aspect ratioΛ=b/T, we include the contribution fromPrandtlʼs induced drag and get

p
p

p
=

+
+

L
L

L L⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )C
C C

2

ln 1 2

8
. 8D

L L
,

,
2

,
2

Here LCD, andCL, Λ are the respective drag and lift coefficients of a 3-dimensional wing in ideal fluid. ForΛ=1,
Prandtl’s induced drag represents 93%of the total drag in (8). However, for larger aspects ratios, thefirst term
becomesmore dominant, and forΛ=13 the two terms are of equal size.

2.5. Extendedmodel—whenfluid particles do not follow the surface of an object
Following the idea that the drag in ideal fluids is the result of the ability to produce lift (or a circulation), we have
a look at thewing section infigure 4(b). Herewe show a profile where a part of the trailing edge is cut off. The
result is a vertical step in the contour of the profile. Howwill this step influence the drag? Let us imagine thatwe
make this cut closer and closer to the profile nose. At the endwewill get a kind offlat plate at 90° angle of attack.

Aswe know, a plate does not produce lift when perpendicular to the flow. Equation (7) does not answer the
question about the value of the drag coefficient in this case, there is somethingmissing.We know, a plate at a
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small angle of attack is like awing section, one vortex is caught by thewing, the other, the start vortex, is shed. At
higher angle of attack, the caught vortex transfers velocity to the back of the plate. This phenomenon shall be
seen here to be similar to theCarnot pressure loss, as infigure 4(a)where aflow in a small pipe experiences a
sudden expansion into a larger pipe. The pressure loss is rD = -· ( )P u u2 1 2

2, where u1 is the velocity in the
small diameter, and u2 the velocity in thewider diameter after the sudden expansion.Moreover, the velocity of
thefluid in the small diameter pipe is transferred to the vertical wall between the two pipes.

Let uΓ be the velocity at the trailing edge of awing profile whenwe replace the profile with a vortex to
maintain theKutta condition. In the sameway as u1 in the expanding pipe infigure 4(a) is transferred to the
vertical walls, the velocity uΓ infigure 4(b) is transferred in a vortexmovement to the backside of the profile.

In a similar way, while the submitted pressure infigure 4(a) is derived from the velocity difference -u u1 2,
we suggest that the submitted pressure infigure 4(b) is given by uΓ, such that the reduced pressure behind the
profile is

r
D = G ( )P u

2
. 92

More generally, we suggest that the trailing edge velocity uΓ of a blunt body results from its ability to produce a
circulation.

Let us call the force on the profile as the result of the reduced pressure behind the blunt body aCarnot force.
UsingΔP in (9), the Carnot force is given by

r
= D =^ G ^· · ( )F P A u T b

2
. 10D Carnot,

2

=^ ^A T b is here the projection area of the profile perpendicular to the direction of ¥u ,T⊥is the height of the
profile perpendicular to the flowdirection, and b is thewidth of the profile into the plane. The corresponding
contribution to the drag coefficient of a 2-dimensional profile from the force FD Carnot, in (10) is then given by

r
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¥

G

¥
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u
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2
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D Carnot
,

,
2

2

2

whereT is defined to be the length along the longest dimension of the object.
The dragCD in (7), which accompanies the liftCL of a profile, has to be extended to include this blunt body

drag, whenwe assume that the flowparticles cannot follow the contour of an object (some seconds) after the
object has been accelerated to a constant velocity ¥u . Extending the expression for the drag coefficientCD in (7),
we include CD Carnot, in (11) andwrite

p
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+
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2 2

wherewe use that the lift coefficient of awing section can be expressed in terms of the velocity of circulation uΓ at
the trailing edgewhen theKutta-condition is applied: p= G ¥C u u2L .

Equation (12a) connects the ability of a blunt body tomaintain a circulation (or generate circulation in a
viscousfluid) to the drag in ideal fluids. In a start phase, the fluid particles will follow the contour of awing
section or a blunt body, but after a short time, the particles do not longer follow the contour, but they transfer the
velocity uΓ in a vortexmovement to the backside of the body.

A circulation is not necessarily resulting in lift. SinceCL, as it is usedwhen substituting G ¥u u in (12a),
represents the ability of a body tomaintain a circulation (characterized by uΓ), thismeans that for bodies without

Figure 4.Analogy between (a) a sudden expansion in a pipe and (b) a profile with step (blunt body). The velocity of thefluid in the
small diameter pipe is transferred to the vertical wall between the two pipe sections and the pressure loss is rD = -· ( )P u u2 1 2

2. u1
is the velocity in the small diameter pipe, and u2 the velocity in thewider pipe after the sudden expansion.
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lift, we can define a theoretical lift coefficient, defined by pº G ¥C u u2L . The direction of the circulation
generated by a symmetrical blunt body cannot be determined.However, we can assume that it is not constant
but alternating in different directions with a frequency depending on the Reynolds number. Each circulation can
generate a lift, but the alternating directions compensate each other and result in zero lift. Thismeans that
behind a blunt body the separation line is not in a constant position, but is jumping ormoving up and down
close to the rear edge. IfCL is known, (12b) can be used to calculate the drag. In section 3.2wewill demonstrate
how the theoreticalCL and G ¥u u can be estimatedwhen there is no lift.

Notice that for blunt bodies in three dimensions withfinite aspect ratioΛ=b/T, (12b) can also be extended
to include the contribution fromPrandtlʼs induced drag. However, such settings are not explored further in this
paper.

3. Validation ofmodel against experimental results

The novel and simple theoretical connection between drag and lift coefficients presented in section 2 differs
fundamentally from thosemethods commonly in use.We have not performed experiments to validate the
model, but in this sectionwe demonstrate how themodel performs on already published experimental data.
This is done both for profiles where thefluid particles are assumed to follow the contour of the body (section 3.1)
and for blunt bodies where a detachment is expected (section 3.2). Notice that there are no free parameters that
must be estimated to establish the relation. However, when there is no lift, the theoretical lift coefficient needs to
be determined in order to obtain a value for the drag coefficient. Finally, in section 3.3, we compare published
experimental data of rotating cylinders to the predictions fromourmodel and to the results of Bickley.

3.1. Validation ofmodel—fluid particles following the surface of an object
To test the assumptions in section 2.4, we have compared experimental data with the calculated drag using (7)
and (8). These are shown infigures 5 and 6, respectively.

3.1.1. Infinite wings
Infigure 5(a), we see an examplewhere the predicted drag coefficients correspondwell with experimental data
for experiments with highReynolds number (Re=1 020 000). The deviations of the dragCD for small values of
CL is expected as the contribution from surface effects becomes dominant. The lift coefficient exceeds the
predicted values in connectionwith higher Reynolds numbers, which can be the effect offluid particles not
following the expected pattern on the surface of the profile.

Figure 5(b), shows experimental data for two similar wing sections with a geometry where a separation
bubble can be expected. Onewing section is without debris, the other wing section is with debris. The profile
without debris is expected to have a separation bubble close to the nose adding lift and reducing drag.With

Figure 5.Comparison of the predicted drag coefficient (for idealfluid)with experimental data corresponding to an infinite wing.
(a)Data reproduced from [12]withRe=1 020 000. (b)Data reproduced from [13]with Re=1 500 000. The nose geometry of the
wing profile is such that a separation bubble is expected. This effect is reducedwhen debris is applied. (a), (b)Model prediction (solid

curves), calculatedwith (7): =
p

p +( ) ( )CD
C

2

2 ln 1 2

8
L .
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debris on the nose the turbulent boundary layer is reducing the bubble effect. The debris brings the data closer to
ourmodel. Notice that ourmodel is not yet extended to take the effect of separation bubbles into account.

3.1.2. Finite wings
Infigure 6(a), themodel in (8) exhibits good correspondence with experimental data from finite wings. For
Λ=1 andΛ=7, the drag due to thefirst term in ourmodel explains 7%and 35%of the total drag,
respectively. The remaining part of the drag is due to Prandtl’s induced drag. As expected, for high values ofCL,
the data deviates from themodel due to stalling.

Infigure 6(b)we see that experimental data suggest that the drag is higher forwing geometries where a
separation bubble is considered less likely to appear as a result of the nose geometry (discs I and III). Ourmodel
predicts 8%more drag than Prandtl’s induced drag (with aspect ratioΛ=1) and is closer to the observed results
for discs I and III.

3.2. Validation of extendedmodel—whenfluid particles do not follow the surface of an object
To test the assumptions in section 2.5, we have compared experimental data with the calculated drag using (12b).
These are shown infigures 7 and 8.

3.2.1. Drag of a plate of infinite span at 90° angle of attack
Following [8], the lift coefficient of awing section can be expressed in terms of the distance d between the
separated particle fronts at the separation line behind thewing section in an unsteady potentialflow as shown in
figure 1,

p= ( )C
d

T
2 . 13L

For a plate perpendicular to the flowdirection, it can be argued that the distance d equals the distance from the
top edge of the plate to the separation line at the bottom edge of the plate, such that d=T⊥. According to (13),
we then obtain a theoretical lift coefficient ofCL=2π for a plate (i.e. its ability to generate a circulation). For
such plates (including the extended plates presented below), (12b)now takes the form

p
p

p p
p
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=
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+ =

+
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ln 1 2
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For a thin plate,T⊥=T, andwewrite

p
=

+
+ =

( )
C

ln 1 2

8
1 1.98.D plate,90

This is close to the published result in [12] for >Re 10000, where =C 2.1D plate,90 .

Figure 6.Comparisonof the predicted drag coefficient (for idealfluid)with experimental data forfinitewings.Measured lift and drag
coefficients forfinite aspect ratios reproduced from [14]. (a)Threewingswith aspect ratiosΛ ranging from1 to7 (aspect ratios given in
thefigure). (b)Circularwingswith aspect ratioΛ=1 anddifferent nose geometries (indicated infigure). The drag force component FD

forCL=0 is subtracted from these data sets. (a), (b)Model prediction calculatedwith (8): = +
p

p
pL

+
L

L L( ) ( )CD
C C
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2
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Extended plates differ in a ratioT⊥/T. Equation (14) takes this into account and is compared to
experimental values infigure 7. For all objects,T is defined to be the length along the longest dimension of the
object.

3.2.2. Drag of a cylinder of infinite spanwith added objects
Wenow turn to the estimation of the drag coefficient of an infinite cylinder with added objects. Sincewe cannot
determine the point of detachment of the boundary layer, the theoretical lift coefficient,CL, must be inferred by
experimental data.

The experimentally determined drag coefficient of an infinite cylinder (i.e. cylinder with discs) is given by
=C 1.2D cylinder, (valid for = -Re 16000 180000, [12, 15]). By rearranging (12b) and using the experimental

value of CD cylinder, , we can infer the value of the theoretical lift coefficient (heremeaning the theoretical ability to
produce lift) of an infinite cylinder:

p p=
+

=
+

=
p p+ +^

( )
( ) ( )

C
C

2 2
1.2

4.89, 15L Cylinder
D Cylinder

T

T

,
,

ln 1 2

8

ln 1 2

8

1

1

wherewe use thatT=T⊥for a cylinder in the last equality.
Infigure 8, this value, = =C C 4.89L L Cylinder, , is used as input value in (12b) to calculate the drag coefficients

for the combinations of an infinite cylinder with added objects where the ratioT⊥/T varies. Again, themodel
gives estimates reasonably close to experimental values.

Figure 7.Comparison of the predicted drag,CD, of an extended plate of infinite span (friction-lessfluid), to experimental data taken

from [12].Model prediction usingCL=2π in (14): = +p + ^
( )CD plate

T

T,90
ln 1 2

8
.

Figure 8.Comparison of the predicted drag coefficient (in idealfluid)with experimental data for infinite cylinders with added objects.
Measured lift and drag coefficients reproduced from [12].Model prediction is calculatedwith (12b), whereT⊥=D , andCL=4.89

(estimated based on experimental data for an infinite cylinder): = +
p

p
p

+ ^( ) ( )( )CD
C C T

T2

2 ln 1 2

8 2

2L L .
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3.3.Drag of a rotating cylinderwith infinite span
If it is possible to calculate the drag of a static cylinder by defining an ability to produce lift, which leads to drag, it
should be possible to calculate the drag coefficient of a rotating cylinder of infinite span using the published
values of the lift coefficient, which is heavily influenced by the rotation. This is done infigure 9(a). Calculated
values show good agreement withmeasured data of a rotating cylinder between limiting discs. Bickley [7]
examined the case of a two-dimensional flowpast a rotating circular cylinder, investigating the resulting force on
the cylinder by using the full pressure equation, and then taking the velocity potential out of the stream function.
Behind the cylinder, he placed a vortexwith the same circulation as the cylinder. As a result, he got two formulas
defining the drag and lift coefficients containing the circulationΓ, the velocity of theflow against the cylinder ¥u
and a relation between cylinder diameter a and the distance c between the centre of the cylinder and the outside
vortex core [7]:

p
=

G

¥

⎛
⎝⎜

⎞
⎠⎟· · ( )C

a

c au

1

4
, 16D

2

= -
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¥

⎛
⎝⎜

⎞
⎠⎟ · ( )C
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1

2
1 . 17L

4

4

Combining (16) and (17) gives
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=

-
=
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1 4
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L
2

2
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4

4

where c/a=6 is used in the last equality, as this gave bestmodel fit to Bickleyʼs experimental data. Bickley also
experimentedwith different vertical positions of the outside vortex behind the cylinder, but found that the
outside vortex centre should be placed in the same vertical position as the centre of the cylinder in order to
obtain best fit to the experimental data. Equation (18) agrees verywell with our suggested solution in (12b)where
we setT=T⊥, such that

p p p
=

+
+ =

⎛
⎝⎜

⎞
⎠⎟

( ) ·C
C C

4

ln 1 2

8

1

4
0, 6299 ...D

L L
2 2

Infigure 9(b), the results fromBickley and the experimental data for the Flettner rotors (which he published
without references, but which are very similar to the data infigure 9(a) from [12]) are compared to our results.

Figure 9.Comparison of the predicted drag coefficient (in idealfluid)with experimental data for rotating cylinders in 2-dimensional
flow. (a)Data from rotating cylinders with end discs reproduced from [12]. (b) Flettner rotor data reproduced from [7]. In Bickley’s
model an outside vortexwith same circulation as the rotating cylinder with radius a, is placed at various positions c behind the

cylinder. The resulting drag is given by (18): = -
p ( )· ·C 4 1D

C a

c

a

c4

2
L
2 4

4 . Bickley found that c/a=6 gave the bestmodelfit to the

experimental data. (a), (b)The solid curves show the predicted drag suggested in this paper, calculatedwith (12b):

= +
p p

+( )( )CD
C

4

ln 1 2

8

1L
2

, whereT⊥/T=1.
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4.Discussion

Basedona randomwalk sourcemodelwhereparticles havenoviscosity,weobserve that aparticle frontmoving
towards aprofile in a simulatedunsteadyflow (particles are comingoutof a line source, pushing eachother towards
theprofile),will be separated at theprofile into two fronts.One frontpassing theupperpart of theprofile, onepassing
the lowerpart of theprofile.Keeping these two fronts separated at the rear edgeof theprofilewith a separation line
parallel to theflowvelocity (tomaintain theKutta condition),we see a geometrical representationof apotential
differencewhich leads, togetherwith theflowvelocity, to the circulationof theprofile. This circulation is defining the
theoretical lift coefficient theprofile geometry cangenerate.Wehave in thismodel theunusual viewof a geometrical
representationof apotential difference, generatedby thewing geometrymaking a ‘gap in the area’ close to thewing
section.This gap is in reality attractingparticles fromthe surroundings, and results in a circulation.

The same effect is known in connectionwith start-stop vortices generated bywing sections that have been
accelerated and stopped. They generate in 2D a pair of vorticesmoving downwards (seefigure 3). The vortices
are a result of attracted particles that have to continue themovement as a result of inertia.We demonstrate that
the physical properties of the vortex pair can be used to define the relation between the drag and lift coefficients
of awing section in two dimensions.

Observations from the RandomWalk SourceModel showed a deflection of the path of themass centre of the
particle cloud (see figure 1) passing thewing section (or other objects). Awing section is constantly attracting
particles from the surroundings and thus generating a downwash velocity ¥w .

In this paper the assumption ismade, that information concerning the influenced volume and downstream
or lateral velocity generated from awing section or other objects can be found in the ability of an object to
generate a vortex pair in a start sequence. This vortex pair can unfold into a vonKármán vortex street under
known conditions. Using the parameters of a vonKármán vortex street leads to the induced drag in two
dimensions of infinite wing sections in ideal fluids, assuming the lift is known (see (7)):

p
p

=
+⎜ ⎟⎛
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⎞
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2

ln 1 2

8
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2

Forfinite wingswith aspect ratioΛ, we include Prandtl’s induced drag in three dimensions such that (see (8))
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For 2-dimensional blunt bodies, wherewe expect that the fluid particles cannot follow the contour, we take the
pressure reduction behind the object into account andwrite (see (12b))

p
p
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8 2
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2 2

This equation for blunt bodies contains an additional part, which takes into account the effect of the vortex
transferring the velocity uΓ to the back of the body. In this case, thismeans an increase of drag. Of course, for
finite blunt bodies in 3D, the equation could also be extended to include Prandtl’s induced drag.

Themodel assumptionswas tested by comparing published polar curves of wing sections and drag
coefficients of blunt bodies with the respective calculated data. The agreement of the drag of wing sections shows
a close resemblance for higher values of lift. For smaller values of lift coefficients ourmodel differ from
experimental data, which is expected, as the friction effects in the real fluids is the dominating cause of the drag.

We also show that it is possible to calculate the drag coefficient of a rotating cylinder of infinite span.
Calculated values show good agreement withmeasured data of a rotating cylinder between limiting disks. The
presented equations suggest a physical parameter, which replace a parameter that was empirically estimated by
W.G. Bickley from experimental data of rotating cylinders.

Further experimental validations of ourmodels would be valuable. In airfoil design the trailing edge of real
wings cannot bemade as pointed as desired to fulfil the Kutta condition. Accordingly, an airfoil is to some degree
a blunt body,much in the sameway as a rotating cylinder. It would therefore be of particular interest to
experimentally determine how the drag increases when the trailing edge of awing section is cut off vertically
closer and closer to the leading edge (see figure 4(b)).

Dependingon the geometryofwing sectionswe canobserve that lift anddrag candiffer fromthe expectedvalues,
perhapsdue to a generatedpressuredistribution close to thenosewhereparticles arenot able to follow the geometry.
This distribution seems tobe able to generate less ormore lift and less ormoredragdue to theorientationof the
geometrypartwhere theparticles leave the surface. It has beenobserved, that profile datawhere lift is underestimated
inourmodel anddrag is overestimated, comes closer toour estimated twodimensional induceddragwhendebris on
thenose influences theflowclose to thenose. Sucheffectswill bepart of further research.
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Appendix. Randomwalk sourcemodel

This appendix contains a brief summary of the RandomWalk SourceModel [8]. Fluid flow in the formof a
particle cloudmoving towards and past obstacles ismodelled on a 2-dimensional orthogonal lattice with
coordinates (i, j) as shown infigure A1. Each cell in the lattice can take three different values:

• ai,j=0, cell is not yet occupied,

• ai,j=1, cell is already occupied by a particle,

• ai,j=2, cell cannot become occupied (boundary cell).

From the start certain cells along one of the boundaries are defined as source cells and are assigned the value
ai, j=1, but none of the other cells are occupied by a particle. At the first time step, one particle is released from a
random source cell (singularity of the source). Thismeans that one particle has left the centre of the source. Of
the four neighbouring cells the particlemoves to a randomly selected cell (i, j) and proceeds according to the
value of this cell:

• Cell is empty ( =a 0i j, ): The particle can settle down at this cell (i, j), and the cell changes value to ai,j=1.

• Cell is occupied (ai,j=1): The particle proceeds to another randomly selected neighbouring cell in orthogonal
direction from (i, j).

• Cell is at the boundary (ai, j=2): The particle returns to the previous cell and choose randomly one of the
other three neighbouring cells.

This randomwalk process continues until the particle settles down at an empty cell. Then the algorithm starts
over again by releasing a newparticle from a random source cell.

The simulation can be viewed as the behaviour of a fluid particle, coming out of a source, andmaking a
randomwalk to the front of the region occupied by particles. This region is built from all particles that have
previously left the source. The particles bounce off the obstacles in the flow region, and eventually settle down in
thefirst free space at the particle front.

We have generated a particle displacementmodel. A physical particle coming out of a sourcewill displace
particles that have already left the source.However, in thismodel a particle coming out of the source ‘steps on
the heads’ of other particles and settles down as one particle that has been displaced by the particle coming out of

Figure A1. Fluid flow in the formof a particle cloudmoving towards awing section.
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the source. In this way the identities of the particles are exchanged. The boundary is thus viewed as an
equipotential line of unsteady potential fluid flow.

To simulate a parallel flow approaching awing profile, we situate the source cells as described above on a line
which stands perpendicular to theflowdirection in front of thewing section. Ideally, one should choose a start
distancewherewe assume the average particle path is not influenced by the profile. The greater the distance the
better.However, since calculation time increases rapidlywith increasing distance, we have typically used a
distance that was onewing section length from the nose of the profile in simulations.

The boundary cells with the value ai,j=2 define the contour of the examinedwing sections. The separation
line at the trailing edge also consists of cells that are set to the value ai,j=2, in order to keep the fronts separated
(according to the Joukowsky rule).

ORCID iDs

RWMeyer https://orcid.org/0000-0003-1249-7264
S Erland https://orcid.org/0000-0003-0175-8801

References

[1] Lanchester FW1908Aerodonetics: constituting the second volume of a complete work on aerialflightAerial Flight 2 (London:
Constable&Co. Ltd.)

[2] Prandtl L 1918Tragflügeltheorie: I.MitteilungGöttingerNachr. 1918 451–77
[3] SchlichtingH andGerstenK 2017Boundary-Layer Theory (Berlin, Heidelberg: Springer) (https://doi.org/10.1007/978-3-662-

52919-5)
[4] Eppler R 1990Airfoil Design andData (Berlin, Heidelberg: Springer) (https://doi.org/10.1007/978-3-662-02646-5)
[5] DrelaM1989Xfoil: an analysis and design system for low reynolds number airfoils LowReynoldsNumber Aerodynamics (LectureNotes

in Engineering vol 54) ed ) edT JMueller (Berlin, Heidelberg: Springer)pp 1–12
[6] Saffman PG1993VortexDynamicsCambridgeMonographs onMechanics (Cambridge: CambridgeUniversity Press) (https://doi.org/

10.1017/CBO9780511624063)
[7] BickleyWG1928The influence of vortices upon the resistance experienced by solidsmoving through a liquidProc. R. Soc. Lond. A

Math. Phys. Sci. 119 146–56
[8] Meyer R 1997Randomwalks and hydrodynamical lift fromwing sections PhysicaA 242 230–8
[9] Meyer R 2001Randomwalk sourcemodel and lift coefficentTechnical Soaring 25 167–72
[10] vonKármánT1911Ueber denmechanismus deswiderstandes, den ein bewegter körper in einer flüssigkeit erfährtGöttinger Nachr.

1911 509–17
[11] vonKármánT2013On themechanism of the drag amoving body experiences in a fluidProg. Aerosp. Sci. 59 16–9 Special issue:

Theodore vonKármán
[12] EckB 1966 StrömungstechnischeMessungenTechnische Strömungslehre (Berlin,Heidelberg: Springer) pp 418–458
[13] WurzW1997 Polarenmessungen an den profilenww97-155 undww97-142 Institutsbericht des IAG (Universität Stuttgart)
[14] SchlichtingH andTruckenbrodt E 2001Tragflügel endlicher Spannweite bei inkompressibler StrömungAerodynamik des Flugzeuges

(Berlin, Heidelberg: Springer) pp 1–132
[15] TietjensOG andPrandtl L 1957AppliedHydro- andAeromechanics: BasedOn Lectures of L. Prandtl (Engineering SocietiesMonographs)

(NewYork: Dover Publications, inc.)

13

J. Phys. Commun. 3 (2019) 115005 RWMeyer and S Erland

https://orcid.org/0000-0003-1249-7264
https://orcid.org/0000-0003-1249-7264
https://orcid.org/0000-0003-1249-7264
https://orcid.org/0000-0003-1249-7264
https://orcid.org/0000-0003-0175-8801
https://orcid.org/0000-0003-0175-8801
https://orcid.org/0000-0003-0175-8801
https://orcid.org/0000-0003-0175-8801
https://doi.org/10.1007/978-3-662-52919-5
https://doi.org/10.1007/978-3-662-52919-5
https://doi.org/10.1007/978-3-662-02646-5
https://doi.org/10.1007/978-3-642-84010-4_1
https://doi.org/10.1007/978-3-642-84010-4_1
https://doi.org/10.1007/978-3-642-84010-4_1
https://doi.org/10.1017/CBO9780511624063
https://doi.org/10.1017/CBO9780511624063
https://doi.org/10.1098/rspa.1928.0089
https://doi.org/10.1098/rspa.1928.0089
https://doi.org/10.1098/rspa.1928.0089
https://doi.org/10.1016/S0378-4371(97)00206-9
https://doi.org/10.1016/S0378-4371(97)00206-9
https://doi.org/10.1016/S0378-4371(97)00206-9
https://doi.org/10.1016/j.paerosci.2013.04.001
https://doi.org/10.1016/j.paerosci.2013.04.001
https://doi.org/10.1016/j.paerosci.2013.04.001
https://doi.org/10.1007/978-3-662-13104-6_9
https://doi.org/10.1007/978-3-662-13104-6_9
https://doi.org/10.1007/978-3-662-13104-6_9
https://doi.org/10.1007/978-3-642-56910-4_1
https://doi.org/10.1007/978-3-642-56910-4_1
https://doi.org/10.1007/978-3-642-56910-4_1

	1. Introduction
	2. A kinematic model to calculate the drag coefficient
	2.1. Control volume analysis
	2.2. Von Kármán vortex street—the continuous unfolding of an ideal pair of growing vortices
	2.3. Assumptions concerning t and w∞
	2.4. Model—fluid particles following the surface of an object
	2.5. Extended model—when fluid particles do not follow the surface of an object

	3. Validation of model against experimental results
	3.1. Validation of model—fluid particles following the surface of an object
	3.1.1. Infinite wings
	3.1.2. Finite wings

	3.2. Validation of extended model—when fluid particles do not follow the surface of an object
	3.2.1. Drag of a plate of infinite span at 90° angle of attack
	3.2.2. Drag of a cylinder of infinite span with added objects

	3.3. Drag of a rotating cylinder with infinite span

	4. Discussion
	Appendix. Random walk source model
	References



