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We study airplane boarding in the limit of a large number of passengers using geometric optics in a Lorentzian
metric. The airplane boarding problem is naturally embedded in a (1 + 1)-dimensional space-time with a flat
Lorentzian metric. The duration of the boarding process can be calculated based on a representation of the
one-dimensional queue of passengers attempting to reach their seats in a two-dimensional space-time diagram.
The ability of a passenger to delay other passengers depends on their queue positions and row designations.
This is equivalent to the causal relationship between two events in space-time, whereas two passengers are
timelike separated if one is blocking the other and spacelike if both can be seated simultaneously. Geodesics
in this geometry can be utilized to compute the asymptotic boarding time, since space-time geometry is the
many-particle (passengers) limit of airplane boarding. Our approach naturally leads to the introduction of an
effective refractive index that enables an analytical calculation of the average boarding time for groups of
passengers with different aisle-clearing time distribution. In the past, airline companies attempted to shorten
the boarding times by trying boarding policies that allow either slow or fast passengers to board first. Our
analytical calculations, backed by discrete-event simulations, support the counterintuitive result that the total
boarding time is shorter with the slow passengers boarding before the fast passengers. This is a universal result,
valid for any combination of the parameters that characterize the problem: the percentage of slow passengers,
the ratio between aisle-clearing times of the fast and the slow group, and the density of passengers along the
aisle. We find an improvement of up to 28% compared with the fast-first boarding policy. Our approach opens
up the possibility to unify numerous simulation-based case studies under one framework.
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I. INTRODUCTION

A main theme in statistical physics is the connection be-
tween the microscopic dynamics of an ensemble of interacting
particles or units and the macroscopic observables. In this
paper we consider the problem of airplane boarding, where
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the microscopic level is the structure of the passenger queue
and the main macroscopic observable is the required time for
all N passengers to get settled in their assigned seats. The con-
nection between the microscopic level and the macroscopic
observable is presented by a simple two-dimensional diagram,
with a geometric interpretation that is directly linked to special
relativity.

The average boarding time can be calculated analytically in
the large-N limit. This average boarding time has been found
to be a square-root law in the number of passengers [1–8].
Our analytical result further enables a direct approach for
optimization over the three main parameters of the boarding
process, to be elucidated in what follows. Interestingly, our
approach presents a very simple and straightforward interpre-
tation to the causal set program of quantum gravity [9–12]. In
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terms of the causal set program, the main contribution of this
work is that we consider a scenario in which there is more than
one type of space-time event, with different types of events
having different proper time contributions.

During airplane boarding, the passengers have reserved
seats, but arrive at the gate in arbitrary order, and a queue of
passengers is formed in the jet bridge. Recently, it has been
shown that any delay in the boarding process immediately
adds to the overall airplane turnaround time, especially for
intracontinental flights, i.e., delays in the boarding process
will delay the flight departure time [13,14]. Nevertheless,
attempts to optimize the boarding process have not been
so successful, as many travelers still experience slow queue
advancement, with a few busy passengers arranging carry-on
luggage and taking their seat at any given moment during
boarding.

In fact, it can be easy to arrange a boarding queue optimally
(an example is given in Appendix C). Still, optimal queue
arrangements can hardly be used, for two reasons. First, even
though a specific queue position for each passenger may be
implemented, such instructions tend to reduce passenger sat-
isfaction, for example, through splitting groups of passengers
traveling together. Second, the optimal queue arrangements
are usually not robust to deviations in terms of passengers who
do not take their designated position in the queue. So, unlike
many other problems, even though optimal solutions could be
easily found, the optimal solutions for airplane boarding are
of little interest for the airlines due to their impracticality.

Weaker constraints, for example, with passengers assigned
to groups according to seat or row number, are employed more
often. We will refer to an imposed arrangement of the queue
prior to boarding as a boarding policy. The most common
policy is the unorganized random boarding policy, where the
passengers enter the queue in random order. Surprisingly, ran-
dom boarding is relatively efficient. Another familiar policy
is the back-to-front policy, where the passengers are divided
into two or more groups and those who have designated seats
in the back of the airplane are instructed to enter first. This
is a widely used policy, but both simulations and analytical
computations show that it is usually detrimental compared to
random boarding [4].

In this paper we investigate two simple group-based poli-
cies that can bring us closer to a near-optimal solution, which
is nevertheless practical, namely, passengers who tend to
use more time to complete the seating are separated from
the others and can be requested to enter the airplane either
before or after the remaining passengers. One such type of
passengers are those with overhead bin luggage.

Moreover, the size of carry-on luggage is also an easy and
practical criterion for separating the passengers into groups of
who we denote slow and fast passengers, respectively. Fast-
first boarding policies, where passengers without overhead bin
luggage are allowed to board before other passengers enter the
plane, have been implemented in the past [15]. The opposite
slow-first policy has been implemented in the way that certain
small groups of slow passengers usually are allowed to board
before other passengers. Such groups typically consist of, e.g.,
small children and those who need special assistance.

That the slow-first policy is superior to the fast-first pol-
icy is surprising at first. We apply the analytical tools of

Lorentzian geometry to prove that this is indeed the case.
While Lorentzian geometry has been used previously to
analyze the boarding process [1,7], the two-group scenario
introduces an additional aspect. The different group speeds
can be analyzed in terms of the concept of a refraction index,
i.e., they scale the metric by different amounts in different
regions of space, introducing an optics perspective into the
picture.

Other techniques in the airplane boarding literature are not
able to analyze such boarding policies in a general setting (see,
e.g., [13]). Simulation algorithms may indicate which policy
is superior to others, but fail to provide generality or proof.

To be more specific, the simulation-based result in [16] is
here verified for far more general model settings. Policies that
organize the fast and slow passengers in more optimal ways
according to their designated row positions have been con-
structed [17–20]. However, as mentioned before, policies that
require detailed control on each of the passengers cause great
discomfort and noncompliance. Thus, while these boarding
policies are of theoretical interest, they are not expected to be
implemented.

The structure of the paper is as follows. The boarding
process is described in Sec. II and the main results are
summarized in Sec. III. Relevant parameters of the boarding
process, its representation in diagrams, and the connection to
space-time geometry are presented in Sec. IV. The asymptotic
boarding time is presented in Sec. V for general group-based
policies in the many-passenger limit (N → ∞). In Sec. VI
we compute analytically the asymptotic boarding time for the
slow-first (SF) and the fast-first (FF) policies. We also show
by simulations that the large-N limit results hold for a realistic
number of passengers.

II. BOARDING PROCESS

We consider the boarding process from the time when
the passengers have queued up in the jet bridge outside the
airplane entrance until the last passenger is seated. Most
passengers wait most of the time during boarding since they
are blocked by the other passengers from reaching their des-
ignated seat. We assume that the queue order is maintained
throughout the process, i.e., passengers cannot pass other
passengers that are in front of them in the aisle.

The boarding is modeled as an iterative two-step process.
First, all passengers move until they either reach their desig-
nated row or until they are blocked on the way to their seat
by other passengers. This is assumed to take an insignificant
amount of time compared to the next step, where those pas-
sengers who stand next to their designated row use a certain
aisle-clearing time in order to organize luggage and take a
seat.

A simple example with only N = 8 passengers, all with the
same aisle-clearing time, is presented in Fig. 1. At each time
step, a group of passengers is able to sit down simultaneously.
A passenger can be delayed by the passenger in front in two
ways. First, the passenger could have a higher row number
than the passenger in front (in time step t = 1, the third
passenger who is heading for row 4 must wait for the pas-
senger taking a seat at row 2). Second, the passenger could be
displaced by passengers who are waiting for other passengers
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FIG. 1. (a) Illustration of the stepwise advance of the queue during the boarding process, with N = 8 passengers, four rows and two seats
per row. There is space for two passengers per row along the aisle. Each passenger is marked as a circle with designated row number. At each
time step, the queue moves forward, and passengers that have reached their designated rows sit down simultaneously. Red arrows indicate
passengers that take their seat at that time step, and each group of passengers that sit down simultaneously is color coded. (b) Each passenger
is marked as a point in a qr diagram: The initial queue position of the passenger is on the horizontal axis and the designated row number is on
the vertical axis. The points of passengers that sit down simultaneously are joined by line segments.

to take a seat (in time step t = 1, the fifth passenger is heading
for row 1, but must wait until passengers in front have been
let through). This displacement effect is less significant if
passengers stand closer to each other and thus occupy less
space in the aisle. We call the time until the last passenger
is seated the boarding time T . In Fig. 1, T = 3 time steps.

By reorganizing the queue in Fig. 1, it is possible to obtain
a minimal boarding time, as shown in Appendix C. For such
optimal solutions, it is necessary to impose a specific position
in the queue for each passenger. Optimization at the level of
individual passengers will not be pursued in this article.

For the sake of visualizing and analyzing the boarding
process, we present the qr diagram in Fig. 1(b). In the qr
diagram a point (q, r) represents a particular passenger’s
initial queue position q and designated row number r in the
airplane. Passengers that take seats simultaneously are linked
by lines. We call each such group of passengers a wave front
in analogy to wave fronts in physics, as they represent all the
events that share the same phase, i.e., all the passengers that
are seated simultaneously. The boarding time can be found by
counting the number of equidistant wave fronts, multiplying
by the time difference.

We use qr diagrams as a tool to analyze the boarding pro-
cess. Such diagrams convey the entire hierarchy of blocking
between passengers for a given queue configuration.

III. MAIN RESULTS

The main results of this paper are shown in Fig. 2 for
a particular realization of the three governing parameters to
be defined below. In the subsequent sections we will prove
rigorously that the main features in Fig. 2 are universal and
apply for any set of parameters.

The airplane boarding problem we consider here is char-
acterized by three key parameters. The first parameter is the
congestion k, which is the ratio between the queue length

FIG. 2. Comparison of four different boarding policies. We used
a realistic congestion parameter k = 4, 20% slow passengers (p =
0.2), and assumed that the slow passengers clear the aisle on average
five times slower than the fast passengers (C = 0.2). We assumed
there is a single aisle and 6 seats per row, and a total of N =
240 passengers. The percentage of seated passengers is plotted as
a function of time. Remarkably, on average, the fast-first policy
(leftmost, red solid line) is leading all the way to around ∼98%.
However, the slow-first policy eventually seats all passengers in a
shorter time, relative to all the other policies. The fast-first policy is
second (FF, +7%), random boarding comes third (R, +23%) and
the back-to-front policy turns out to be the worst (BTF, +40%).
That the slow-first policy is superior can be intuitively explained
by that it is the most parallel among all the policies, i.e., it better
exploits the possibility to seat passengers simultaneously, while the
other policies are more serial in structure. The graph is an average of
10 000 discrete-event runs.
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before boarding to the aisle length. For common passenger
airplanes, values of k are typically in the range of 3–5. The
second parameter is the fraction p of passengers who are
considered slow, i.e., passengers with long aisle-clearing time.
The remaining fraction 1 − p are considered fast passengers.
The third parameter C is the ratio of the aisle-clearing time
of the fast passengers to the aisle-clearing time of the slow
passengers.

In Fig. 2, the congestion parameter is k = 4, the fraction of
slow passengers p = 20%, and the ratio of the aisle-clearing
time of the fast passengers to that of the slow passengers C =
0.2, i.e., the aisle-clearing time of the slow passengers is five
times longer than that of the fast passengers.

The graphs in Fig. 2 show the percentage of seated pas-
sengers as a function of time for the four different boarding
policies described in Sec. I, namely, slow passengers first, fast
passengers first, back-to-front boarding, and random board-
ing. The boarding is completed when the fraction of seated
passengers reaches 100%. The boarding time T is equal to
the time when all the passengers are seated. In the figure,
the following ranking of the policies can be observed. The
best boarding policy is slow first, with a boarding time of
97 time steps; the second fastest boarding policy is fast first,
with a boarding time of 103; the third best policy is random
boarding with a boarding time of 119; and the worst policy
is back to front with a boarding time of 135. In Ref. [4] it
is shown that random boarding is typically superior to back
to front. Random boarding and back to front are included in
this figure for reference only, since they have been studied in
the literature and are often implemented by airlines. Our focus
remains the comparison between slow first and fast first.

The graphs for SF and FF in Fig. 2 both consist of two
curve segments with different slopes. For fast first, the steep
segment comes first, followed by the less steep, with oppo-
site order for slow first. The steep segments correspond to
boarding dominated by fast passengers, while the less steep
segments are dominated by slow passengers. As boarding
starts, the queue of passengers is four times as long as the aisle
(k = 4). Thus, in the fast-first case, the first slow passenger
arrives in the aisle late during the boarding process. Similarly,
for slow first, only after a significant portion of the slow pas-
sengers are seated, the first fast passengers enter the airplane.

Comparing the graphs of fast first and slow first in Fig. 2
more closely, it is clear that while the curves are quite similar
during the fast and the slow regimes, the transitions between
the regimes are different. The trajectory of the fast-first
policy has a distinct change in slope around time step 40.
The corresponding transition in the slow-first policy is much
smoother. This indicates that a significant proportion of the
fast passengers are able to take their seat simultaneously with
the last slow passengers. This is not the case with the fast-first
policy, since only a few slow passengers are able to take their
seat during the relatively short time period that it takes the last
few fast passengers to sit. This asymmetry explains why the
slow-first policy is superior.

For all four policies in Fig. 2, the boarding time is deter-
mined by the longest chain of passengers, similar to the ones
shown in the qr diagrams in Fig. 3. The preceding passenger
in a chain must take one’s seat before the next in the chain
can sit down. The boarding time is the sum of the aisle-

clearing times for passengers that belong to the longest chain.
The longest chain follows the asymptotic longest curve (the
geodesic), up to statistical fluctuations that are diminishing
as the number of passengers increases (N → ∞). For slow
first and fast first in Figs. 3(c) and 3(d), respectively, the
aisle-clearing time is twice as long for passengers in the slow
group than for those in the fast group (C = 0.5). Note that
the aisle-clearing time acts as a refraction index as the longest
curve is refracted at the border between the two groups.

Figure 2 reports boarding times for one specific choice
of the parameters k, p, and C. Under variations in these
parameters, the comparison can conveniently be made using
the relative difference

D(k, p,C, N ) = 〈TFF〉 − 〈TSF〉
〈TSF〉

between the average boarding times of the fast-first and slow-
first policies. The contour plot in Fig. 4(a) shows D in the
(p,C) unit square for k = 4 in the asymptotic case when
N → ∞. It is obtained by the space-time geometry approach.
The average boarding time is larger for fast first than for slow
first for all values of p and C. For (k, p,C) = (4, 0.2, 0.2),
the relative difference is D = 11% for N → ∞, compared to
D = 7% for N = 240 in Fig. 2. The maximum of D = 20%
(for k = 4) is obtained for (p,C) very small.

Our main result can be stated as follows: The expected
boarding time 〈T 〉 is shorter for the slow-first policy than for
the fast-first policy for all values of k > 0 and p,C ∈ (0, 1), in
the asymptotic regime when N → ∞. The maximum relative
difference between the policies when N → ∞ is at least D =
28.4%. This result is proved analytically in Appendix B. The
maximum relative difference is D = 28.4% for k = 1.594,
C = 0.513

√
p, and p small. Even when the fraction of slow

passengers is fixed to the more realistic value p = 0.1, the
maximum relative difference is D = 24.4% (for k = 1.54 and
C = 0.16).

In Fig. 4(b) the relative difference in boarding times for
k = 4 and finite N are compared with the asymptotic results
when N → ∞. All simulation results show D � 0. The rel-
ative difference is larger in the N → ∞ limit compared with
finite-N cases, but still the relative ranking between the results
for different parameter settings is to a large degree preserved
for smaller values of N .

IV. BOARDING PROCESS AND SPACE-TIME GEOMETRY

In this section we explain further the analogy between
airplane boarding and space-time geometry. The reader
is referred to Ref. [7] for a more rigorous mathematical
description.

During boarding, a given passenger may be blocked from
reaching one’s designated row by another passenger, which in
turn may be blocked by others. This blocking hierarchy can
be visualized in the qr diagrams through so-called blocking
chains. Importantly, the longest blocking chain determines the
boarding time.

A condition for blocking to occur is formulated in Eq. (1)
(Sec. IV C). The condition is extended to the continuous
case when N → ∞ and then the passengers correspond to
events in space-time geometry. In this setting, the blocking
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FIG. 3. The qr diagrams for four different boarding policies, with each of the N = 240 passengers marked as a point, h = 6 seats per
row, and congestion k = 1. (a) Random boarding policy: The passengers are uniformly distributed over the diagram. (b) Back-to-front policy
with two equal-sized groups: The first part of the queue is heading for the rows in the back of the airplane. (c) Slow-first policy with two
equal-sized groups: The slow passengers are in the first part of the queue (blue bullets). (d) Fast-first policy with two equal-sized groups: The
fast passengers are in the first part of the queue (red diamonds). For all policies the boarding time is the sum of the aisle-clearing times for
passengers that belong to the longest chain (dashed lines). The preceding passenger in a chain must take his seat before the next in the chain
can sit down. In all four diagrams, the longest chain that determines the boarding time follows the asymptotic limit (solid line, the geodesic),
up to statistical fluctuations that are diminishing as the number of passengers increases (see Sec. VI for further details).

condition also determines, up to a proportionality constant, the
appropriate Lorentzian metric that should be used to calculate
the distance (proper time) along a trajectory between two
events (Sec. IV D). Finally, the boarding time can be found
by computing the longest blocking chain (Sec. IV E) which,
in the limit N → ∞, tends to the length of the geodesic line.

A. Main parameters

The boarding process is governed by the following
parameters.

(i) The total number of passengers N . For simplicity, we
assume that there are no empty seats in the airplane, i.e., the

airplane is full. Hence, the total number of passengers equals
the number of seats in the airplane. In Fig. 1, N = 8.

(ii) Congestion k, the length of the queue before boarding
(t = 0) relative to the length of the aisle. Let h be the number
of seats per row, w the distance between passengers needed
for each to stand comfortably, one after the other along the
aisle, and d the distance between consecutive rows. Then k =
hw/d . The parameter k reflects the interior design of the air-
plane and the maximum density of passengers queuing along
the aisle.1 In Fig. 1, the value k = 1 is used for simplicity.

1The parameter k can also be modified to include the number of
aisles and the relative occupancy of the airplane [21].
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FIG. 4. Relative difference in average boarding time D = (〈TFF〉 − 〈TSF〉)/〈TSF〉 between the fast-first and the slow-first policies when
k = 4. (a) Number of passengers N → ∞. The slow-first policy is superior for all (p,C) combinations, and the maximum relative difference is
20% for small p and C. For the parameter choice in Fig. 2, the relative difference is 11% (black circle). (b) Simulation results for finite numbers
of passenger N confirm that slow-first is superior to fast-first, i.e., D = (〈TFF〉 − 〈TSF〉)/〈TSF〉 > 0 for increasing N for all combinations of
parameter values p ∈ {0.1, 0.5, 0.9} and C ∈ {0.2, 0.5, 0.8}. The rightmost points are asymptotic values taken from the indicated positions in
the inset contour plot from (a). There are six seats per row, k = 4, and the accuracy is ±0.0002 (as a result of 106 runs for each finite-N data
point).

(iii) Fraction of slow passengers p. In Fig. 1, all passengers
have equal aisle-clearing time, so p = 0.

(iv) Aisle-clearing time τ , the time needed for a passenger
to organize bin luggage and take a seat. In Fig. 1 all passengers
have an aisle-clearing time of τ = 1 time steps.

(v) Queue position of a passenger q normalized by the total
number of passengers N . In Fig. 1, the fourth passenger in the
queue at t = 1 (aiming for row 3) has q = 4

8 = 0.5.
(vi) Designated row number for a passenger r normalized

by the total number of rows. The fourth passenger in the queue
in Fig. 1 has r = 3

4 = 0.75.
In Fig. 1 the actual queue and row numbers are given on

the axes, while in the rest of the paper the normalized (q, r)
values will be used.

B. Boarding policies visualized

A boarding policy is the way the queue of passengers
is organized. The most common policy is the unorganized
random boarding policy, where the passengers enter the queue
in random order. A typical scenario with the random boarding
policy is illustrated in the qr diagram in Fig. 3(a). The points
representing each of the N = 240 passengers are uniformly
distributed over the unit square.2

A scenario with the back-to-front policy is shown in
Fig. 3(b). The passengers are divided into two groups, where
those who have designated seats in the back of the airplane
constitute the first part of the queue. Within each group,

2This uniformity applies in general for a coarse-grained description
when N is sufficiently large. On the microscopic level, however,
the point cloud has a structure since the q and r directions are not
equivalent: For a given q value one has only one point in the diagram,
while for a given r value there are as many points as there are seats
in a row.

the passengers are randomly distributed in the queue. In
Fig. 3(c) a scenario with the slow-first policy is shown. The
diagram resembles the one of the random boarding policy,
but passengers assumed to use a long time to take a seat are
placed in a separate group in the first part of the queue. The
designated row numbers are randomly distributed within both
groups as in random boarding. The fast-first policy in Fig. 3(d)
has a diagram similar to that of the slow-first policy, except
that the fast passengers here appear in the left part of the
diagram.

C. Blocking chains and blocking relation

As shown in Fig. 1, the boarding process can be thought of
as wave fronts of passengers that take their seats simultane-
ously. When all passengers that stand next to their designated
row have taken their seat, the remaining passengers in the aisle
move rapidly forward and a new wave front of passengers sits
down. Hence, the boarding time is the product of the aisle-
clearing time times the number of wave fronts needed to seat
all passengers. Wave fronts are shown in Fig. 1, with N = 8
passengers and congestion parameter k = 1. When k = 4, as
in the random boarding case in Fig. 5(a), the wave fronts are
steeper and a single wave front spans less of the q axis since
there is no room for more than a quarter of the initial queue in
the aisle.

The direct approach of finding all the wave fronts and
counting them to determine the boarding time is impractical
when the number of passengers N is large. Furthermore,
the average boarding time, obtained when averaging over all
possible queue configurations, is even harder and closed-form
analytical results for finite N are not known. In the following
we will describe an indirect way to calculate the number
of wave fronts (the boarding time) by the introduction of
blocking chains, which later will be shown to correspond to
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FIG. 5. With N = 4000 passengers, there is closer correspondence between the longest chain and the longest curve than in Fig. 3
(where N = 240). Passengers (points) seat simultaneously in consecutive wave fronts (black thin lines). For clarity, only every 20th wave
front is shown. (a) Random boarding policy: k = 4, with the same aisle-clearing time for all passengers. (b) Slow-first policy: (k, p,C) =
(1.5, 0.3, 0.33). The longest curve is refracted when the aisle-clearing time changes value on the border between the slow (blue bullets) and
the fast (red diamonds) passengers. The aisle-clearing time plays the role of a refractive index.

causal chains in space-time geometry. These will be essential
in order to establish the asymptotic boarding time as N → ∞.

We say that passenger A blocks passenger B if A must be
seated before B can sit down. Two passengers in the same
wave front cannot block each other and A cannot block B if
B is in front of A in the queue. A blocking chain consists of
passengers that consecutively block each other. The length of
the chain is the sum of aisle-clearing times for passengers that
belong to the chain, and the length of the longest chain among
all blocking chains equals the boarding time. Given a queue,
we can construct the longest chain by starting with one of the
passengers in the last wave front. Several passengers in the
preceding wave front may be blocking this passenger. The one
that is closest in the queue is chosen as the next passenger in
the chain. The longest chain is obtained by proceeding like
this, until reaching a passenger in the first wave. Examples of
the longest chains are shown in Figs. 3 and 5. Notice that the
longest chains are approaching the asymptotic longest curve
when N increases (see details in the following sections).

The blocking chain can be defined in terms of a blocking
relation. Let passenger A be in front of passengers B1 and B2

in the queue, as shown in Fig. 6. Passenger B1 is heading for
a row farther back in the airplane, so A is obviously blocking
B1. Passenger B2 is heading for row 1, which is in front of
A’s row. However, due to the displacement caused by the two
passengers in between A and B2, A blocks B2 from reaching
B2’s seat.3

More generally, let g(A, B) be the number of passengers
(including passenger A) standing in between passengers A and
B, just before A sits down. Passenger A is in front of B and they
are heading for rows RA and RB, respectively. We say passen-
ger A blocks passenger B if the distance between the desig-
nated rows of A and B is less than the space (displacement) in

3For k = 0, blocking through displacement never occurs.

the aisle occupied by the passengers between A and B:

(RA − RB)d < g(A, B)w. (1)

Here d is the distance between each row and w is the space
(length) occupied by each passenger along the aisle.

In Fig. 6, where d = 2w, both B1 and B2 are blocked by A
according to this definition. For B1 the row distance is (RA −
RB1 )d = −2d = −4w and the displacement is g(A, B1)w =
w. For B2 the respective values are (RA − RB2 )d = d = 2w

and g(A, B2)w = 3w. This means that A blocks both B1 and
B2, since the inequality in Eq. (1) is satisfied in both cases.
In fact, most of the other passengers are blocked by A in
this example. We call the inequality in Eq. (1) a blocking
relation, and it turns out that the relation also determines how
the number of passengers in a blocking chain can be computed
when N → ∞.

D. Blocking relation and curve length in
space-time geometry (N → ∞)

In relativity theory, events are given by space and time
coordinates and the mathematical description is continuous.
Events can be classified through the past-future (or causality)
relation. Event A is in the past of an event B if it is possible
to move from A to B under or at the speed of light. In other
words, a future event B can only be affected by an event A if
B is within the future light cone of A.

Proper time is the time passing on a clock attached to
a particle passing through a (continuous) set of events. In
the causal set approach to gravity, space-time is discrete and
composed of a finite number of events, each contributing
one time unit to proper time. In this approach, continuous
space-time emerges as the limit of discrete space-time as the
number of events increases.

For airplane boarding, the passengers play the role of the
events. Passengers have a natural causal (past-future) structure
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FIG. 6. Example of blocking relations for the same case as in Fig. 1. The distance d between consecutive rows is twice the distance w

occupied by each passenger in the aisle. Passenger A blocks both passengers B1 and B2. (a) Passenger B1 is blocked by A since B1 is heading
for row 4, which is beyond row 2 where A is taking a seat. Passenger B2 is blocked by A by displacement as in Eq. (1): The space 3w occupied
in the aisle by passenger A and the two passengers between A and B2 is larger than the distance d = 2w between the designated rows of A and
B2. (b) The blocking relations are indicated by arrows. There are several other blocking relations that are not shown in the figure.

defined by the blocking relation in Eq. (1). We consider a
passenger A as being in the past of passenger B if passenger B
is blocked by A. In this setting, we may call the blocking chain
a causal chain, where each passenger in the chain contributes
its aisle-clearing time to the proper time of the chain. Thus,
the proper time of the longest chain equals the boarding time.

The continuous analog of the notion of a causal chain is a
causal curve, i.e., the possible trajectory of an object traveling
below the speed of light. In space-time geometry the proper
time of a particle’s path (causal curve) is given by its length
as found by integration using the space-time interval ds. In
its simplest form with one spatial dimension, it is given by
ds2 = dt2 − dx2. The past-future relation, which ensures that
future events stay within the future light cone of past events,
is given by ds2 � 0.

Using the coordinate transformations q = t + x and r =
t − x, the queue-row diagram emerges from the future light
cone of a space-time diagram as shown in Fig. 7(a). The
space-time interval now reads

ds2 = dt2 − dx2 = (dt + dx)(dt − dx) = dqdr.

If passengers had no width (w = 0), the congestion pa-
rameter would be k = hw/d = 0, and the blocking relation in
Eq. (1) reduces to RA < RB when passenger A is in front of B
in the queue. This means that passenger A in Fig. 7(a) can only
block passengers in the shaded, upper right-hand rectangle
of point A. Notice the past-future relation ds2 = dqdr � 0,
i.e., dr/dq � 0, is equivalent to the blocking relation; line
segments between events (passengers) must be nondecreasing
in q.

Real passengers are not infinitely thin and the congestion
parameter k = hw/d > 0. Assume that N is large. Let pas-
sengers A and B be close in the queue, A in front of B, sep-
arated by dq > 0 [see Fig. 7(b)]. The normalized difference
in assigned row position is dr = (RB − RA)/(N/h), where h
is the number of seats per row. Just before passenger A sits
down, the number of passengers between A and B in the
queue is essentially those who are heading for the rows behind

RA. Since the passengers are uniformly distributed on the
qr diagram, this number is given by g(A, B) ≈ dq(1 − r)N ,
shown as the shaded area in Fig. 7(b). The blocking relation
in Eq. (1) can now be written

h

Nd
[(RB − RA)d + g(A, B)w] ≈ dr + k(1 − r)dq > 0. (2)

Thus, a causal curve must satisfy r′(q) > −k(1 − r). It fol-
lows that the sectors of passengers blocked by A1 and A2 in
Fig. 7(c) increase for smaller r; the potential for blocking
other passengers is larger when the designated row is in the
front of the airplane.

The proper time of a causal chain when each event in the
chain contributes one time unit to the proper time and N → ∞
corresponds to the proper time of a causal curve. There exists
a Lorentzian metric ds that can be used to compute the length
of a causal curve (its proper time) and this metric is defined
uniquely, up to a constant scaling factor, by the blocking
relation. For airplane boarding and the blocking relation in
Eq. (2), the metric4 is [7]

ds2 = dq[dr + k(1 − r)dq]. (3)

The length of a curve r(q) between two points q0 and q1 is
then given by

L(r) =
∫ q1

q0

√
r′(q) + k[1 − r(q)]dq. (4)

This definition of length, together with an appropriate scaling
factor, will in the following sections be used to calculate the
number of passengers in the longest chain in airplane boarding
in the large-N limit.

4This is a simplified metric. The more general metric in [7], which
includes the density distribution of passengers, has been used to
analyze, e.g., the back-to-front boarding policy.
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FIG. 7. (a) Coordinate transformation from space-time to queue row when k = 0. The qr diagram is in the future light cone of the origin.
Passenger B can only be blocked by A if B is within the light cone of A. (b) Blocking by displacement for k > 0 according to Eq. (1). Since
passenger B’s designated row is in front of A’s designated row, A can only block B by displacement. The value of k and the number of
passengers in between A and B in the queue determine the extent of the displacement. Most of the passengers in between are heading for the
rows behind A’s designated row (shaded area). (c) Passengers nearby A1 and A2 must be within their respective future light cones in order to
be blocked. The cones of each blocking passenger have a wider angle when the designated row is near the front of the airplane, reflecting a
larger potential for blocking fellow passengers (here k = 4). Passengers can never block passengers who are in front of them in the queue, and
therefore the line emanating upward is always part of the light-cone boundary.

E. Longest curves under the Lorentzian metric

According to general relativity theory, among all possible
paths between two events, a free-falling particle (a particle
only under the influence of gravity) will follow a trajec-
tory that maximizes proper time (locally, between any two
nearby points on the trajectory). Such free-fall trajectories
are known as geodesics. The longest chains, which determine
the boarding time, correspond to the longest curves in the
continuous version. The longest curves are geodesics when
not constrained by boundary conditions.

We first look at the Euclidean metric, where the length of a
curve is

∫ √
r′(q)2 + 1dq. The equidistant points relative to a

starting point in (0, 0) are circles, as shown in Fig. 8(a). The
shortest curves from the starting point to any other point are

FIG. 8. The optimal path (green thick curves) depends on the
metric and is orthogonal to the contour lines (black thin curves)
which defines the equidistant points from the starting point (origin).
(a) Under the Euclidean metric, the contour lines are circle shaped.
The shortest paths from the starting point to any other point (red
squares) are straight lines. (b) An appropriate Lorentzian metric is
used in airplane boarding, and the starting point is (0, 0) in the qr
diagram (here k = 0.6). The contour lines coincide with passenger
wave fronts when N → ∞. The longest curves (geodesics) from the
starting point to any other point are everywhere orthogonal to the
contour lines (wave fronts).

straight lines that are orthogonal to the circles. This can be
compared to a ball rolling down a hill where the contour lines
indicate the height. The shortest path is always in the steepest
direction, orthogonal to the contour lines, and the ball will
take the same time to reach any point on a chosen contour
line.

Under the Lorentzian metric in Eq. (4), the contour lines in
Fig. 8(b) where all points are equidistant to the starting point
in (0, 0), are not circular. The contour lines are asymptotically
equal to the wave fronts in airplane boarding when N → ∞.
The path which is orthogonal to the contour lines is the longest
curve (geodesic) under the Lorentzian metric, and it will take
the same amount of time to reach any point on a contour line,
i.e., all passengers on this line (wave) sit down simultaneously.

The starting point of the longest chain corresponds to the
first passenger to sit during the boarding process. Likewise,
the end point of the longest chain corresponds to the last
passenger seated. If the first passenger in the queue is seated
at the first row (q = 0, r = 0), that passenger can block all
other passengers and will be in the first wave front. If the last
passenger in the queue is seated at the last row (q = 1, r = 1),
that passenger is blocked by all the other passengers and must
be in the last wave front. For large N and uniform distribution
there will be passengers with (q, r) coordinates arbitrarily
close to those points. Hence, the curve that approximates
the longest chain when N is large should be the longest
continuous path under the Lorentzian metric between (0, 0)
and (1, 1) within the (q, r) unit square. Examples of such
longest paths in airplane boarding are shown in Figs. 3 and
5 and their expressions are given in Appendix A.

V. ASYMPTOTIC BOARDING TIME

A. Asymptotic boarding time with one group

A cornerstone result in the causal set approach is a limiting
result by Myrheim [10] which links the number of elements in
the longest chain with the length of the longest curve, up to a
scaling factor depending only on the dimension of the domain.
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The scaling factor was found independently by Vershik and
Kerov [22] and Logan and Shepp [23] for dimension 2, the
same dimension as in airplane boarding. The

√
N law follows

from simple subadditivity arguments.
Let τ be the common aisle-clearing time for each of the

passengers, N the number of passengers, and maxr L(r) the
length in Eq. (4) of the longest causal curve r(q) between
(0, 0) and (1, 1) within the (q, r) unit square. For large N ,
the longest chain follows closely the trajectory of the longest
causal curve (see Fig. 5) and both satisfy the blocking relation
in Eq. (2). A generalization of a result of Deuschel and
Zeitouni [24] states that the boarding time converges to a
multiple of the length of the longest causal curve [7]

T√
N

a.s.→ 2τ max
r

L(r).

From this, the asymptotic average boarding time is given by

〈T 〉 ∼ 2τ
√

N max
r

L(r) ≡ T̂ . (5)

The asymptotic boarding time T̂ is a leading term and has
been shown to overestimate the finite-N average boarding
time 〈T 〉 by a relative error of o(N−1/4) [4]. Still, the relative
ranking of boarding policies has shown to be maintained for
small N , as demonstrated by discrete-event simulations in
Fig. 4(b) and Ref. [1].

The procedure for computing the length of the longest
curves is presented in Sec. VI. For the random boarding
examples in Figs. 1 and 5(a), we set τ = 1. In Fig. 5(a)
k = 4, N = 4000, and r(q) ≡ 0 for q < 0.83 and r(q) =
4(e−2k(1−q) − e−k(1−q) ) + 1 for q � 0.83. The length of this
curve is 2.153, and from Eq. (5), T̂ = 272. In Fig. 1, k = 1
and N = 8 and a corresponding curve gives T̂ = 7.4. The
actual boarding times are 232 and 3 for the two examples,
respectively. This illustrates that the asymptotic estimate T̂
in Eq. (5) can be inaccurate for small N , but improves as N
increases.

B. Asymptotic boarding time for two groups with different
aisle-clearing times

In this paper we consider policies where all the slow (or
fast) passengers are placed in the first part of the queue.
Hence, the aisle-clearing time is different for the two groups
of passengers. Let p be the fraction of slow passengers. In
addition, τS and τF are the aisle-clearing times for slow and
fast groups, respectively.

The asymptotic average boarding time in Eq. (5) must be
modified to reflect the fact that the queue now consists of
two separate groups with different aisle-clearing times. The
aisle-clearing time can be parametrized according to the queue
position τ = τ (q). For the slow-first policy, τ (q) = τS for
q � p and τ (q) = τF for q > p, and correspondingly for the
fast-first policy.

The aisle-clearing time can be thought of as the proper time
(Lorentzian metric length) between two successive passengers
(events) in a chain. The boarding time is no longer given by
the maximal length of a causal chain, but rather by the causal
chain with maximal weight. The definition of length in Eq. (4)
must be scaled to reflect that the aisle-clearing time of each

passenger depends on the queue position. Following [7], the
curve weight (proper time) of a causal curve is defined by

W (r) =
∫ q1

q0

τ (q)
√

r′(q) + k[1 − r(q)]dq, (6)

where τ (q) also can be considered a weight function applied
to the integrand in Eq. (4). When there are two groups, as
in, e.g., the slow-first policy, the curve weight on the interval
q ∈ (0, 1) is given by

WSF(r) =
∫ p

0
τS

√
r′(q) + k[1 − r(q)]dq

+
∫ 1

p
τF

√
r′(q) + k[1 − r(q)]dq

= τSLS (r) + τF LF (r), (7)

where LS and LF are curve lengths as defined in Eq. (4).
The boarding time is (for N � 1) proportional to the

longest (i.e., heaviest) curve r(q) from (0, 0) to (1, 1) within
the unit square:

〈T 〉 ∼ 2
√

N max
r

W (r) ≡ T̃ . (8)

An additional constraint on the curve is that r′(q) must be
continuous whenever τ (q) is continuous. The result in Eq. (8)
is used in Sec. VI to derive analytical expressions for the
expected boarding time for both the slow-first and the fast-first
boarding policies (again, for N � 1).

When the aisle-clearing times vary within the groups, τS

and τF in Eq. (7) can be replaced by corresponding param-
eters that take the variations into account. Although explicit
expressions for the parameters are seldomly available, they
can be estimated by the square root of the second moment
of τS and τF , respectively [20]. A detailed treatment of this
aspect is left for future work.

C. Airplane boarding and geometric optics

The result above for airplane boarding states that the board-
ing time can be derived from the curve (geodesic) that maxi-
mizes the proper time (curve weight) in space-time under an
appropriate Lorentzian metric. In geometric optics Fermat’s
principle states that light will travel between two points along
a path that minimizes the travel time, which is a function of
the local index of refraction.

In Eqs. (6) and (7) the aisle-clearing time τ plays the
same role in the Lorentzian space for airplane boarding as
the refractive index in the Euclidean space for light. This
can be seen in the qr diagrams in Figs. 3(c), 3(d) and 5(b),
where the longest curve is refracted at the boundary between
different groups of passengers with different aisle-clearing
time. While light moves in straight lines in homogeneous
media, the longest curve under the Lorentzian metric has a
curved shape in the space-time domains filled with passengers
with equal aisle-clearing time. Interestingly, when k = 0, the
curves become straight also under the Lorentzian metric and
refraction occurs at the border between passenger groups
according to a principle similar to Snell’s law.
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FIG. 9. The shape of the longest curve for random boarding can
be either ordinary or piecewise. (a) Ordinary-type curve (OR) when
0 < k � ln(2). (b) Piecewise curve (PR) consisting of a constant
function (CR) and an upward-going ordinary-type curve (UR) when
k > ln(2).

VI. BOARDING TIMES FOR SLOW-FIRST AND
FAST-FIRST POLICIES

We now turn to computing the asymptotic average board-
ing time in Eq. (8) for k > 0, with p and C ≡ τF /τS both
in the range (0, 1). We show that the slow-first policy is
more efficient than the fast-first policy in the entire (k, p,C)
parameter space in the large-N limit (N → ∞). Comparisons
to simulation results for smaller N are also made.

A. Analysis of the random boarding policy

To better explain our analytical approach, we first illustrate
the computations of the average boarding time of the random
boarding policy. With one group, τ (q) ≡ τ when all passen-
gers have the same aisle-clearing time. The curve weight in
Eq. (6) becomes W (r) = τL(r). The curve length L(r) in
Eq. (4) can be maximized using the variational method. This
leads to general solutions of the form r∗(q) = ae2kq + bekq +
1 when k > 0.

The constants a and b are determined using the values at
the start and end points: r∗(0) = 0 and r∗(1) = 1. A typical
shape is shown in Fig. 9(a) for k � ln(2). The resulting
maximal length of what we call an ordinary-type curve is, by
Eq. (4),

L(r∗) =
√

(ek − 1)/k ≡ OR. (9)

However, when k > ln(2), an ordinary-type curve r∗ will
extend below the (q, r) unit square. Since the curve should
be within the unit square,5 the first part of the curve should
be horizontal at value zero along the q axis [CR in Fig. 9(b)].
The remaining part is an upward-going ordinary-type curve
(UR). Continuity of r and r′ in the transition point q = qR

between the CR and UR curves and that in the end point
r(1) = 1 determine the values of a and b in the UR curve
(see Appendix A for details). This gives qR = 1 − ln(2)/k,
and the total length of the resulting piecewise curve r∗

P is [for

5All passengers in the longest chain are within the unit square.

k > ln(2)]

L(r∗
P ) = 1√

k
[k − ln(2) + 1] ≡ PR. (10)

Hence, the expected boarding time with random boarding
and equal aisle-clearing time τ is by leading order given by
Eq. (5), which gives

T̂R =

⎧⎪⎨
⎪⎩

2τ

√
N
k

√
ek − 1, 0 < k � ln(2)

2τ

√
N
k [k − ln(2) + 1], ln(2) < k.

(11)

B. Analysis of the slow-first policy

The curve weight for the slow-first policy is given by
Eq. (7). The longest curve must be continuous, but does not
have to be smooth at the crossing point (p, r(p)) between the
regions of slow and fast passengers in the qr diagram. If we fix
the crossing height r(p) = δ, the longest curves in each part
of the qr diagram must be either ordinary type or piecewise,
as for the single group policy in Sec. VI A.

The length LS of the longest curve in the first part of the dia-
grams in Fig. 10 is the length of a piecewise curve (LS = PS) if
δ < δS ≡ (ekp − 1)2 and of an ordinary-type curve (LS = OS)
if δ � δS . A similar parameter δF = max{0, 1 − 2e−k(1−p)}2

determines the type of longest curve in the second part of the
qr diagrams. Explicit expressions for the curves (OS , PS , etc.)
are given in Appendix A.6

Depending on the value of the fixed crossing height δ

[relative to the values of δS (k, p) and δF (k, p)], the resulting
total curves can be one of four different combinations of
each of these curves. Let WSF(δ) be the weight of the longest
piecewise curve for a fixed crossing height δ (the dependence
on k, p, τS , and τF is suppressed in the following):

WSF(δ; k, p, τS, τF )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

WSF1(δ) = τSPS (δ) + τF PF (δ), δ < min{δS, δF }
WSF2(δ) = τSPS (δ) + τF OF (δ), δF � δ < δS

WSF3(δ) = τSOS (δ) + τF PF (δ), δS � δ < δF

WSF4(δ) = τSOS (δ) + τF OF (δ), max{δS, δF } � δ.

(12)

To find the longest curve, we must compute the δ = δ∗ that
maximizes WSF(δ). The function WSF(δ) is differentiable and
has negative curvature when δ ∈ (0, 1). This means that there
is never more than one local maximum in the domain.

Moreover, each of the four subfunctions in Eq. (12) has
a maximum point δ∗

i ∈ [0, 1], i ∈ {1, 2, 3, 4}, with maximum
value W ∗

SFi. Each of these are global maximum points for
WSF(δ) if and only if δ∗

i lies within the respective subdomain
in Eq. (12). Hence, the weight of the longest curve for the
slow-first policy is, e.g., given by W ∗

SF = W ∗
SF1 when δ∗

1 <

min{δS, δF }.

6The same curves are used for the fast-first policy, only by exchang-
ing p ↔ 1 − p and τS ↔ τF .
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FIG. 10. For fixed crossing height δ, the shape of the longest curve for slow-first can be either piecewise (PS, PF ) or ordinary (OS, OF ) in
both the slow and the fast regions, respectively. Hence, the total curve can take four different shape types. The subfunction that defines the
weight WSF(δ) in Eq. (12) depends on the values of δS (k, p) and δF (k, p) (expressions are given in the text): (a) WSF1, δ < min{δS, δF }; (b) WSF2,
δF � δ < δS; (c) WSF3, δS � δ < δF ; and (d) WSF4, max{δS, δF } � δ. The δ that maximizes WSF(δ) also depends on the relative aisle-clearing
time C = τF /τS .

The maximum points δ = δ∗
i for each of the subfunctions

in Eq. (12) yield the following global maxima W ∗
SF of WSF:

W ∗
SF1 = τS√

k

[
kp(1 − C) + kC + 1 + C ln

(
C

1 + C

)

− ln

(
2

1 + C

)]
, max{C2,C1} � C

W ∗
SF2 = τS√

k

[
kp + 1 − ln

(
2

1 + C2(ek(1−p) − 1)

)]
,

C2
3 � C2 � C2

1

W ∗
SF3 = τS√

k
(
√

(1 − e−kp)(ekp − 1 + δ∗
3 )

+ C{k(1 − p) + 1 +√
δ∗

3 + ln[(1 −√
δ∗

3 )/2]}),

C2
4 � C2 � C2

2

W ∗
SF4 = τS√

k

√
(ekp − 1) + C2(ek − ekp),

C2 � min
{
C2

3 ,C2
4

}
. (13)

Here C ≡ τF /τS ∈ (0, 1). Since δ∗
i (k, p,C), δS (k, p), and

δF (k, p) are functions of (k, p,C), the conditions on δ = δ∗
i in

Eq. (12) have been rewritten as conditions on C, where C1 ≡
(ek(1−p) − 1)−1, C2 ≡ 2e−kp − 1, C2

3 ≡ (2 − ekp)/(ek − ekp),
and C2

4 ≡ 4(ekp − 1)/[e2k − 4(ek − ekp)].7

The subdomains where the conditions in Eq. (13) are
satisfied are shown in the top row of Fig. 11 for k ∈ {0.5, 1, 4}.
For example, for kp > ln(2), the conditions are simplified
such that W ∗

SF1 is the maximum when C � C1 and W ∗
SF2 when

C � C1.
The maximal weight W ∗

SF in Eq. (13) is used to calculate
the corresponding asymptotic boarding time T̃SF in Eq. (8).
In Fig. 12(a) comparisons of the asymptotic boarding time
for the slow-first policy with simulation results for N � 240
show that the asymptotic result in Eq. (8) tends to overestimate

7The expression for the maximum point δ∗
3 for WSF3(δ) is given in

Appendix A.

the boarding time, but the relative ranking between different
parameter settings is maintained.

C. Analysis of the fast-first policy

The same procedure as in the preceding section can be
repeated for the fast-first policy by exchanging p ↔ 1 − p,
τS ↔ τF , and C → 1/C. For WFF1(δ) (which corresponds to
WSF1), W ′

FF1(δ) < 0 ∀ δ ∈ (0, 1). Consequently, the weight of
the longest curve is given for δ = 0 and

W ∗
FF1 = WFF1(0) = τS√

k
[kp(1 − C) + kC + 1 − ln(2)]. (14)

The weight WFF(δ) has negative curvature and δ = 0 is there-
fore the global maximum point for WFF as long as δ = 0
satisfies the conditions corresponding to the subdomains for
FF1 in Eq. (12). For fast first, δS (k, 1 − p) = (1 − ek(1−p) )2 >

0. Moreover, δF (k, 1 − p) = max{0, 1 − 2e−kp}2 is also pos-
itive when kp > ln(2). This means that when kp > ln(2),
the condition δ = 0 < min{δS (k, 1 − p), δF (k, 1 − p)} is sat-
isfied, and hence W ∗

FF = W ∗
FF1. The corresponding subdomain

is indicated in the bottom row of Fig. 11.
For kp � ln(2), results for the fast-first policy correspond-

ing to those in Eq. (13) are given in Appendix A. In Fig. 12(b)
comparisons of the asymptotic boarding time for the fast-first
policy with simulation results for N � 240 are similar to those
for the slow-first policy.

D. Comparing slow-first and fast-first policies

The slow-first policy outperforms the fast-first policy for
all values of k > 0 and p,C ∈ (0, 1). Here explicit results
are only shown for kp > ln(2). The derivation of the other
results are left for Appendices A and B, and the results are
summarized in Sec. III with comparisons to finite-N discrete-
event simulations.

Based on the results in Eqs. (13) and (14), W ∗
FF − W ∗

SF is,
for kp > ln(2), given by

W ∗
FF1 − W ∗

SF1 = τS√
k

[
ln

(
1

1 + C

)
− C ln

(
C

1 + C

)]
,

C1 � C (15)
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FIG. 11. The top row shows the subdomains of the (p,C) unit square where the slow-first boarding time is represented by the different
subfunctions in Eq. (13). The bottom row shows the corresponding subdomains for the fast-first policy in Eq. (A3).

W ∗
FF1 − W ∗

SF2 = τS√
k
{Ck(1 − p) − ln[1 + C2(ek(1−p) − 1)]},

C � C1, (16)

where C1 ≡ (ek(1−p) − 1)−1. In Appendix B, both of these
are shown to be positive, meaning that the fast-first policy
yields a longer average boarding time than the slow-first
policy.

The difference approaches zero for both C → 0 and C →
1. That C → 0 means that the fast passengers are much faster
than the slow ones. Then it does not matter who enters first
since the fast fraction of the queue will sit down immediately
anyway. When C → 1, both groups have the same speed and
the two policies should not differ.

The difference also vanishes when k → ∞. This means
that each passenger takes up so much room that the first

FIG. 12. Average boarding time estimates for the (a) slow-first and (b) fast-first policies for different (k, p,C) parameter settings.
Simulation results for an increasing number of passengers are compared to the asymptotic results for all combinations of parameter values
p ∈ {0.1, 0.5, 0.9} and C ∈ {0.2, 0.5, 0.8}. Here k = 4 and the accuracy is ±0.002 (as a result of 106 runs for each finite-N data point). The
rightmost points are asymptotic values.
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group will be seated before the next group enters the air-
plane. Consequently, the sequencing of the groups does not
matter.

When 1 − p → 0 the difference also approaches zero.
This means that when the fraction 1 − p of fast passengers
vanishes, there is no difference between slow first and fast
first. This is expected since the queue then reduces to slow
passengers only.

VII. DISCUSSION AND OUTLOOK

In this paper, airplane boarding has been analyzed using
Lorentzian geometry, which is exact in the limit of infinitely
many passengers. We have shown that the boarding time
with the slow-first policy on average is lower than for the
fast-first policy in the large-N limit. The reason for slow-first
superiority is that this policy better utilizes parallelism, ex-
tending the time window during which the first fast passengers
can sit down simultaneously with the last slow passengers.
With the fast-first policy, on the other hand, the last fast
passengers rapidly take their seats, with less time remaining
for simultaneous seating of the slow passengers.

Simulations we performed confirm that our asymptotic
result still applies for a lower number of passengers N of
the order of hundreds, as in medium-sized airplanes. There
are also some basic similarities with back-to-front boarding,
which is a beneficial policy when the congestion factor k is
small, since then the two groups can sit down in parallel. In
general, the slow-first policy has better parallelism compared
to fast first, but of a different kind which is much less
congestion dependent than the back-to-front policy.

A future extension of this work can include increasing
the variability to more than just two groups of passengers’
aisle-clearing time. For an inhomogeneous group of passen-
gers with different aisle-clearing times, one can attach an
effective aisle-clearing time which measures by which factor
the group as a total slows the boarding process [20]. This
parameter plays the role of an effective refractive index, where
each group could consist of both slow and fast passengers.
Preliminary results indicate that the slow-first policy is always
better than the random boarding policy, in which the fast
and slow passengers are randomly distributed in one group.
Assuming this is the case, one can argue that both the slow
and the fast group should be divided over again according to
speed. Eventually, the slowest passenger would be in front of
the queue and the fastest passenger in the back of the queue.
Whether this would reduce the boarding time is still an open
question.

For airlines it is not only the average boarding time that
matters. The frequency of departure delays due to an un-
expectedly long boarding time could also be of relevance.
Then the percentage of boardings exceeding a certain duration
would be an appropriate measure. The same types of results
as we presented here must then be obtained in terms of per-
centiles. Such percentiles can be estimated using the Tracy-
Widom distribution [7], but requires extensive calculations.

The boarding process at airports is certainly more compli-
cated than depicted in our models. However, recent empirical
research shows that such models explain real data rather well
[25]. The methods used to compute the asymptotic boarding

time can also be used when assumptions and policies deviate
from those used in this paper. The modifications needed
to estimate boarding time when there is, e.g., a half-empty
airplane or varying passenger widths w are described in the
Supplemental Material of Ref. [21]. Moreover, in this paper
we do not take into account that a window seat passenger takes
a longer time to settle down if the middle-seat or aisle-seat
passenger in the same row is already seated. How this affects
the boarding time can also be taken into account within our
framework, but the computational details are more complex.
However, this would let us compare the random boarding
policy with the group-based window-middle-aisle boarding
policy which is applied by some airlines.

Will the fast passengers accept the slow-first policy? Some
passengers prefer to spend as little time as possible in confined
spaces and are very happy to be the last passenger to enter the
airplane. However, other might dislike waiting or the idea that
the “troublesome” passengers with much carry-on luggage are
occupying the overhead lockers, leaving little room for the
coats and smaller items of the light-traveling passengers. This
could potentially lead to an unintended consequence where
passenger would have an incentive to bring more carry-on
luggage on board, leading to a kind of tragedy of the commons
scenario where everybody will wait longer.
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APPENDIX A: CALCULATION DETAILS

1. One group: Random boarding

In this section we show more details of the computations
behind the maximized curve lengths of the random boarding
policy in Eqs. (9) and (10). The problem is broken down
by first noting that the general solution of maximized curve
length (4) between any two points is of the form r∗(q) =
ae2kq + bekq + 1. There is one such function (which we refer
to by its length OR) that goes between (0, 0) and (1, 1). When
k > ln(2) this curve would dip below the q axis and only
the last part UR of a piecewise smooth function would be of
the mentioned form. The parameters a and b for these curves
(shown in Fig. 9) are given by

a = (ek − 1)−1, b = −aek, q ∈ (0, 1),

k � ln(2) for the OR curve,

a = 4e−2k, b = −4e−k, q ∈ (1 − ln(2)/k, 1),

k > ln(2) for the UR curve.

In order to compute the length of each of the curves in Fig. 9,
we use that the length L(r) in Eq. (4) of a function r(q)
between two points q1 and q2 is given by

L(r) =
√

a

k
(ekq2 − ekq1 ) when r(q) = ae2kq + bekq + 1,

(A1)
L(r) =

√
k(q2 − q1) when r(q) ≡ 0.
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This gives the length of both r∗ (OR) and r∗
P (PR = CR + UR)

in Eqs. (9) and (10), respectively.

2. Two groups: Slow-first policy

In this section we show more details of the computations
behind the maximized curve weight of the slow-first policy in
Eq. (7) (and the corresponding one for the fast-first policy).
The problem is broken down by first noting that the general
solution of maximized curve length (4) between any two
points is of the form r∗(q) = ae2kq + bekq + 1. There is one
such function in each of the two regions shown in Fig. 10(d)
when the crossing height r∗(p) = δ is fixed. The OS curve
goes between the points (0, 0) and (p, δ), while the OF curve
continues to (1, 1). The parameters a and b are given by

a = ekp − 1 + δ

e2kp − ekp
, b = −(a + 1), q ∈ (0, p),

δ � δS for the OS curve,

a = 1 − δ

ekp(ek − ekp)
, b = −aek, q ∈ (p, 1),

δ � δF for the OF curve.

The restriction on δ is in order to avoid that the curve dips
below the q axis. For example, when δ < δS , the OS curve in
the first region in Figs. 10(c) and 10(d) would have dipped
below the q axis. To maintain a positive continuous smooth
curve as in Figs. 10(a) and 10(b), a part of the curve must
be constant along the q axis. The remaining parts of these
piecewise curves are ordinary-type curves that are connected
smoothly to the constant part of the curve. They have the
parameters

a = e−2kp(1 +
√

δ)2, b = −2e−kqS ,

q ∈ (qS, p) (last part of the PS curve),

a = e−2kp(1 −
√

δ)2, b = −2e−kqF ,

q ∈ (p, qF ) (first part of the PF curve),

a = 4e−2k, b = −4e−k,

q ∈ (1 − ln(2)/k, 1) (last part of the PF curve),

where qS = p − ln(1 + √
δ)/k and qF = p − ln(1 − √

δ)/k.
The length of each of the curves in Fig. 10 is found by

Eq. (A1). This gives

OS (δ) = 1√
k

√
(e−kp − 1)(ekp − 1 + δ),

OF (δ) = 1√
k

√
(1 − δ)(ek(1−p) − 1),

PS (δ) = 1√
k

[kp +
√

δ − ln(1 +
√

δ)],

PF (δ) = 1√
k

[k(1 − p) + (1 +
√

δ) + ln(1 −
√

δ) − ln(2)].

For slow first, these are combined to WSF(δ) according to
Eq. (12). Since WSF(δ) is differentiable and has negative

curvature when δ ∈ (0, 1) there is never more than one local
maximum on the domain.

To show the differentiability, we need continuity of W ′
SF(δ)

in the transition points when δ = δS, δF . For δS < δF we need
that W ′

SF1(δS ) = W ′
SF3(δS ) and W ′

SF3(δF ) = W ′
SF4(δF ). For δF <

δS , we must require that W ′
SF1(δF ) = W ′

SF2(δF ) and W ′
SF2(δS ) =

W ′
SF4(δS ). This reduces to showing that P′

S (δS ) = O′
S (δS ) and

P′
F (δF ) = O′

F (δF ), which is straightforward. The negative
curvature of WSF follows from W ′′

SFi(δ) < 0 ∀ δ ∈ (0, 1) for
i = 1, 2, 3, 4.

The δ’s that are maximizing each of the subfunctions in
Eq. (12) are given by

√
δ∗

1 = 1 − C

1 + C
,

√
δ∗

2 = 1 − C2(ek(1−p) − 1)

1 + C2(ek(1−p) − 1)
,

(A2)

√
δ∗

3 =
√

(ekp − 1)(1 − C2) − C(ekp − 1)√
(ekp − 1)(1 − C2) + C

,

δ∗
4 = 1 − C2(ek − ekp)

1 + C2(ek − ekp)/(ekp − 1)
.

If δ∗
i = arg maxδ∈(0,1) WSFi(δ) lies in the subdomain where

WSF = WSFi, then δ∗
i is the global maximum of WSF due to

the negative curvature of WSF(δ). Inserting these into Eq. (12)
gives W ∗

SF in Eq. (13).
When k > ln 2, the boundaries shown in the top row of

Fig. 11 meet at the vortex point (p∗,C∗), where C∗ = 2e−k

and p∗ = 1
k ln( 2

1+C∗ ). The boundaries are given by

C1 = 1

ek(1−p) − 1
, p ∈ [p∗, 1 − (ln 2/k)] (SF1-SF2),

C2 = 2e−kp − 1, p ∈ [0, p∗] (SF1-SF3),

C3 =
√

2 − ekp

ek − ekp
, p ∈ [p∗, ln 2/k] (SF2-SF4),

C4 = 2

√
ekp − 1

e2k − 4(ek − ekp)
, p ∈ [0, p∗] (SF3-SF4).

3. Two groups: Fast-first policy

The same procedure as in the preceding section can be
repeated for the fast-first policy by exchanging p ↔ 1 − p,
τS ↔ τF , and C → 1/C. The δ’s maximizing each of the
subfunctions of WFF(δ) ≡ WSF(δ; k, 1 − p, τF , τS ) in Eq. (12)
are given by√

δ̃∗
1 = 0,

√
δ̃∗

2 =
{

0, C � C̃1

C2−(ekp−1)
C2+(ekp−1) , C > C̃1,

δ̃∗
4 = C2 − (ek − ek(1−p) )

C2 + (ek − ek(1−p) )/(ek(1−p) − 1)
,
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where C̃1 = √
ekp − 1. Here δ̃∗

3 is not computed since this
will never be a global maximum for WFF(δ). Inserting δ̃∗

1 into
WFF(δ) gives W ∗

FF = W ∗
FF1 in Eq. (14) when kp > ln(2). When

kp � ln(2), δ̃∗
2 and δ̃∗

4 can be inserted into WFF(δ), which gives
the expression for W ∗

FF,

W ∗
FF20

= τS√
k

[Ck(1 − p) +
√

ekp − 1], C2 � C̃2
1 ,

W ∗
FF2 = τS√

k
{Ck(1 − p) + C[1 − ln(2)]

+ C ln[1 + (ekp − 1)/C2]}, C̃2
1 < C2 < C̃2

2 ,

W ∗
FF4 = τS√

k

√
C2(ek(1−p) − 1) + (ek − ek(1−p) ), C̃2

2 � C2,

(A3)

where C̃2
1 ≡ ekp − 1 and C̃2

2 ≡ (ekp − 1)/(2e−k(1−p) − 1).

APPENDIX B: PROOFS

There are 13 different combinations of FF and SF sub-
functions which we treat in the following sections in or-
der to show that W ∗

FF − W ∗
SF > 0 [for k � ln(2) there are

three combinations, for k > ln(2) ∩ kp > ln(2) there are two
combinations, and for k > ln(2) ∩ kp � ln(2) there are eight
combinations].

1. Proof that W ∗
FF − W ∗

SF > 0 when k � ln(2)

Assume 0 < k � ln(2) and p,C ∈ (0, 1). The (p,C) sub-
domains for the subfunctions of W ∗

SF and W ∗
FF are illus-

trated in the diagrams in the left column in Fig. 11. From
Eq. (13) W ∗

SF = W ∗
SF4 = τS√

k

√
(ekp − 1) + C2(ek − ekp), and

W ∗
FF is given by Eq. (A3) since W ∗

FF1 cannot be a solution
when k � ln(2). We now show that W ∗

FF − W ∗
SF > 0 for all

three cases.
Case of FF20 vs SF4. Set x ≡ k(1 − p) ∈ (0, ln(2)). From

Eq. (A3), C2 � ekp − 1. Then

k

τ 2
S

(
W ∗2

FF20
− W ∗2

SF4

) = C2k2(1 − p)2 + 2kC(1 − p)
√

ekp − 1

− C2(ek − ekp)

� C2[k2(1 − p)2 + 2k(1 − p)

− ek (1 − e−k(1−p) )]

= C2[x2 + 2x − ek (1 − e−x )]

� C2[x2 + 2x − 2(1 − e−x )] ≡ C2g(x),

where we use that C2 � ekp − 1 and k � ln(2) in the first and
the second inequality, respectively. In addition, g(0) = 0, and
since x ∈ (0, ln(2)), g′(x) = 2x + 2 − 2e−x > 2x > 0. Hence
g(x) > 0 for x > 0. Q.E.D.

Case of FF2 vs SF4. Set x ≡ (ekp − 1)/C2 and z ≡
2e−k(1−p) − 1. Since k � ln(2), z ∈ (0, 1). In Eq. (A3) the
lower bound C2 > ekp − 1 gives x ∈ (0, 1). The upper bound
C2 < (ekp − 1)/(2e−k(1−p) − 1) gives x > z. Then, since

k � ln(2),
√

k

CτS
(W ∗

FF2 − W ∗
SF4) = k(1 − p) + 1 − ln(2)

+ ln[1 + (ekp − 1)/C2]

−
√

(ekp − 1)/C2 + ek (1 − e−k(1−p) )

= ln(2) − ln(z + 1) + 1 − ln(2)

+ ln(1 + x) −
√

x + ek (1 − z)/2

� 1 + ln(1 + x) − ln(1 + z)

− √
1 + x − z ≡ g(x, z).

For x = z, g(x, z) = 0. For any z ∈ (0, 1), g(x, z) is increasing
in x since

∂g

∂x
= 1

1 + x
− 1

2
√

1 + x − z
>

1

1 + x
− 1

2
> 0.

The first inequality is from x > z and the second from x < 1.
This means that g(x, z) > 0 on the triangle domain z ∈ (0, 1)
and x ∈ (z, 1). Q.E.D.

Case of FF4 vs SF4. It follows straightforwardly that

k

τ 2
S

(
W ∗2

FF4 − W ∗2
SF4

) = (1 − C2)(ekp − 1)(ek(1−p) − 1) > 0.

2. Proof that W ∗
FF − W ∗

SF > 0 when k > ln(2) ∩ kp > ln(2)

Assume kp > ln(2) and p,C ∈ (0, 1). Then W ∗
SF − W ∗

FF is
given by the two combinations in Eqs. (15) and (16).

Case of FF1 vs SF1. Set z ≡ τS
τS+τF

∈ ( 1
2 , 1). We can rewrite

Eq. (15) as
√

k

τS + τF
(W ∗

FF1 − W ∗
SF1)

= τS

τS + τF
ln

(
τS

τS + τF

)
− τF

τS + τF
ln

(
τF

τS + τF

)

= z ln z − (1 − z) ln(1 − z) ≡ f (z). (B1)

The function f (z) vanishes at the ends of the interval, i.e.,
f ( 1

2 ) = limz→1− f (z) = 0. The extremum points are calcu-
lated from f ′(z) = 0 or

z(1 − z) = e−2. (B2)

Hence, there is a single extremum point on the interval,

located at z = z∗ = 1
2 +

√
1
4 − e−2. Moreover, from Eqs. (B1)

and (B2) we obtain f ′′(z∗) = e2(1 − 2z∗) < 0, so this ex-
tremum is a maximum. According to these properties, f (z) >

0 holds within 1
2 < z < 1.

Case of FF1 vs SF2. Set x ≡ k(1 − p) ∈ (0,∞). The
condition C � C1 ≡ (ek(1−p) − 1)−1 gives that x � ln(1 +
C−1) ≡ xu. This means that x ∈ (0, xu]. Then Eq. (16) can be
written as

√
k

τS
(W ∗

FF1 − W ∗
SF2) = Cx − ln[1 + C2(ex − 1)] ≡ g(x,C).

It follows that g(x,C) is positive on the interval x ∈ (0, xu],
since for any fixed C ∈ (0, 1), g(0,C) = 0, and g(x,C) is
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monotonically increasing in x. The latter is due to

∂g

∂x
= C − C2ex

C2(ex − 1) + 1
= C2(1 − C)

(1 + C−1) − ex

C2(ex − 1) + 1

being positive for x ∈ (0, xu], except in the upper end when
∂g
∂x (xu,C) = 0.

3. Proof that W ∗
FF − W ∗

SF > 0 when k > ln(2) ∩ kp � ln(2)

This is when FF2 and FF20 in Fig. 11 overlap with the
corresponding parts of the SF diagrams in the middle and right
columns of Fig. 11. This gives eight different combinations.

We will now show that the difference W ∗
FF − W ∗

SF > 0
within each of these regions, mainly by considering the partial
derivatives with respect to p. We use that the difference is
smooth on the boundaries between the subdomains. This can
be demonstrated quite straightforwardly by differentiation.
Moreover, the difference W ∗

FF − W ∗
SF = 0 on the boundaries of

the parameter region p × C ∈ [0, 1] × [0, 1].

The outline of the proof is as follows. First, the differ-
ence is positive in the SF3 region, including on the SF3-
SF1 and SF3-SF4 boundaries as seen in Fig. 11. Then we
show that the difference increases in p on the whole SF1
domain, starting out positively on the SF1-SF3 boundary.
Now the difference is positive at the SF3-SF4 border and
SF1-SF2 border and it is also positive when p is at its max-
imum at p = ln(2)/k (at the FF1 border; see Appendix B 2).
We show that the difference has negative curvature in p in
both the SF2 and SF4 regions. This gives that the differ-
ence must be positive for all values of p on p intervals
starting at the SF3-SF4 or SF1-SF2 border and ending at
p = ln(2)/k (using that the difference is smooth between
regions).

We first show that the difference is increasing in p in the
SF1 region. Then the negative curvature in the SF2 and SF4
regions is shown. To show that the difference is positive in
the SF3 domain requires a number of subtleties and is left for
Appendix B 3 d.

a. The SF1 subdomain

We show that the differences are increasing when p increases for all values of k, p, and C on the SF1 domain.
Case of FF20 vs SF1. From Eqs. (A3) and (13) we have that for all values of k, p, and C,

√
k

τS

(
W ∗

FF20
− W ∗

SF1

) =
√

ekp − 1 − kp − 1 − C ln

(
C

1 + C

)
+ ln

(
2

1 + C

)
,

√
k

τS

∂
(
W ∗

FF20
− W ∗

SF1

)
∂ p

= k(
√

ekp − 1 − 1)2

2
√

ekp − 1
> 0.

Case of FF2 vs SF1. For all values of k, p, and C satisfying the FF2 condition in Eq. (A3), C2 > ekp − 1,
√

k

τS
(W ∗

FF2 − W ∗
SF1) = C[1 − ln(2)] + C ln[1 + (ekp − 1)/C2] − kp − 1 − C ln

(
C

1 + C

)
+ ln

(
2

1 + C

)
,

√
k

τS

∂ (W ∗
FF2 − W ∗

SF1)

∂ p
= Ckekp

C2 + ekp − 1
− k = k(1 − C)

C − (ekp − 1)

C2 + (ekp − 1)
� k(1 − C)

C2 − (ekp − 1)

C2 + (ekp − 1)
> 0.

In the last line C � C2 and the FF2 condition is used in the first and the last inequality, respectively.

b. The SF2 subdomain

As for SF4 below, we show that the curvature of W ∗
FF − W ∗

SF is negative in p for all values of k, p, and C on the SF2 domain.
Case of FF20 vs SF2. For all values of k, p, and C satisfying the FF20 condition kp � ln(2),

√
k

τS
(W ∗

FF20 − W ∗
SF2) = Ck(1 − p) +

√
ekp − 1 − kp − [1 − ln(2)] − ln[1 + C2(ek(1−p) − 1)],

√
k

τS

∂2(W ∗
FF20 − W ∗

SF2)

∂ p2
= −k2ekp(2 − ekp)

4(ekp − 1)3/2
− k2C2(1 − C2)e−k(1−p)

[C2 + e−k(1−p)(1 − C2)]2
< 0,

where the kp � ln(2) condition is used in the last inequality.
Case of FF2 vs SF2. For all values of k, p, and C,

√
k

τS
(W ∗

FF2 − W ∗
SF2) = Ck − (1 + C)kp − (1 − C)[1 − ln(2)] + C ln[(C2 + ekp − 1)/C2] − ln[1 + C2(ek(1−p) − 1)],

√
k

τS

∂2(W ∗
FF2 − W ∗

SF2)

∂ p2
= −k2C(1 − C2)

[
e−kp

[1 − e−kp(1 − C2)]2
+ Ce−k(1−p)

[C2 + e−k(1−p)(1 − C2)]2

]
< 0.
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c. The SF4 subdomain

As for SF2 above, we show that the curvature of the difference is negative for increasing p on the SF4 domain.
Case of FF20 vs SF4. For all values of k, p, and C satisfying the FF20 condition kp � ln(2),

√
k

τS
(W ∗

FF20 − W ∗
SF4) = Ck(1 − p) +

√
ekp − 1 −

√
(ekp − 1) + C2(ek − ekp),

√
k

τS

∂2(W ∗
FF20 − W ∗

SF4)

∂ p2
= −k2ekp(2 − ekp)

4(ekp − 1)3/2
+ k2ekp(1 − C2)

4

(2 − ekp) − C2(2ek − ekp)

[ekp − 1 + C2(ek − ekp)]3/2

< −k2ekp(1 − C2)

4

C2(2ek − ekp)

[ekp − 1 + C2(ek − ekp)]3/2
< 0,

where the kp � ln(2) condition is used in the first inequality in the last line.
Case of FF2 vs SF4. For all values of k, p, and C satisfying the FF2 condition kp � ln(2),

√
k

τS
(W ∗

FF2 − W ∗
SF4) = Ck(1 − p) + C[1 − ln(2)] + C ln[1 + (ekp − 1)/C2] −

√
(ekp − 1) + C2(ek − ekp),

√
k

τS

∂2(W ∗
FF2 − W ∗

SF4)

∂ p2
= −k2ekp(1 − C2)

C3

[
1(

ekp−1
C2 + 1

)2 − (1 − C2)(2 − ekp) − 2C2(ek − 1)

4[(1 − C2) ekp−1
C2 + (ek − 1)]3/2

]

� −k2ekp(1 − C2)

C3

[
1

4
− (1 − C2)(2 − ekp)

4(ek − 1)

]

= −k2ekp(1 − C2)

4C3

[
(ek − 1) − (1 − C2)[1 − (ekp − 1)]

ek − 1

]
< 0.

In the first inequality we use the FF2 condition C2 > ekp − 1 in the first fraction. In the second fraction, we first remove the
negative term in the numerator, then the exponent in the denominator is set to 1 [the denominator is larger than 1 since k > ln(2)],
and finally the first positive term in the denominator is removed. In the last inequality, we use that k > ln(2) and (1 − C2)[1 −
(ekp − 1)] < 1.

d. The SF3 subdomain

Set y ≡ ekp − 1 ∈ (0, 1), since kp � ln(2). Set r ≡ C/
√

(ekp − 1)(1 − C2) = C/
√

y(1 − C2) > 0. Set d ≡ √
δ∗

3 in Eq. (A2)
such that

d =
√

(ekp − 1)(1 − C2) − C(ekp − 1)√
(ekp − 1)(1 − C2) + C

= 1 − ry

1 + r
<

1

1 + r
, (B3)

where d ∈ (0, 1) since δ∗
3 ∈ (0, 1). The inequality is due to ry > 0 and will be used later in the proof.

Case of FF20 vs SF3. The SF3 condition (vs SF1) C < 2e−kp − 1 converts into y < 1/(2r + 1), while the FF20 condition C �√
ekp − 1 in Eq. (A3) becomes y � (r2 − 1)/r2. This gives that r ∈ (0, r∗), where r∗ ≈ 1.19 is the solution of 2r3 − 2r − 1 = 0.

From Eqs. (A3) and (13),

√
k

τS
(W ∗

FF20 − W ∗
SF3) =

√
ekp − 1 −

√
(ekp − 1)(ekp − 1 + d2)

ekp − 1 + 1
− C[1 − ln(2) + ln(1 − d ) + d]

>
√

y

(
1 −

√
y + d2

y + 1

)
− C[1 − ln(2)] >

√
y

⎛
⎝1 −

√
y + 1

(1+r)2

y + 1

⎞
⎠− √

y
√

1 − C2
C√

y(1 − C2)
[1 − ln(2)]

>
√

y

⎡
⎣
⎛
⎝1 −

√
y + 1

(1+r)2

y + 1

⎞
⎠− r[1 − ln(2)]

⎤
⎦ ≡ √

yH (r, y).

In the first inequality we use that ln(1 − d ) + d < 0 for d ∈ (0, 1) (easily shown by differentiation). In the second inequality,
we use that d < 1/(1 + r) in Eq. (B3). In the third inequality, we use that

√
1 − C2 < 1 in the last term.

We now show that for fixed r, H (r, y) is decreasing when y increases from y = 0 towards the SF3-SF1 border where y =
1/(2r + 1). We then show that H (r, y) > 0 on the SF3-SF1 border, which means that H (r, y) > 0 on the whole SF3 ∩ FF20
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domain

∂H

∂y
= −1

2

√
y + 1

y + a2

(1 − a2)

(y + 1)2
< 0,

where a ≡ 1/(1 + r) < 1. At the SF3-SF1 border,

H (r, y = 1/(2r + 1)) = 1 −
√

2 + 4r + r2

2(1 + r)3
− r[1 − ln(2)] ≡ h(r)

and

h′(r) = 1

2

√
1 + r

1 + 2r + 0.5r2

1 + 3r + 0.5r2

1 + 3r + 3r2 + r3
− [1 − ln(2)].

Both denominators are increasing faster in r than their respective numerators, which gives that h′′(r) < 0. Moreover, h(0) = 0
and h(1.20) = 0.0097 > 0. This means that h(r) > 0 on the whole range of r ∈ (0, r∗).

Case of FF2 vs SF3. Set R ≡ √
y/C = √

ekp − 1/C > 0 such that r = 1/
√

R2 − y. The FF2 condition C >
√

ekp − 1 in
Eq. (A3) converts into R < 1, while the SF3 condition C < 2e−kp − 1 becomes R >

√
y(1 + y)/(1 − y). This gives that y ∈

(0, y∗), where y∗ ≈ 0.30 is the solution of y3 + y2 + 3y − 1 = 0.
From Eqs. (A3) and (13),

√
k

τS
(W ∗

FF2 − W ∗
SF3) = C ln

(
1 + ekp − 1

C2

)
−
√

(ekp − 1)(ekp − 1 + d2)

ekp − 1 + 1
− C[d + ln(1 − d )]

> C ln
(

1 + y

C2

)
− √

y

√
y + d2

y + 1
> C ln(1 + R2) − C

√
y

C

√
y + 1

(1+r)2

y + 1

= C

⎛
⎝ln(1 + R2) − R

√
y + 1

[1+(R2−y)−0.5]2

y + 1

⎞
⎠ ≡ CG(R, y).

In the first inequality we use that ln(1 − d ) + d < 0 for d ∈ (0, 1). In the second inequality, we use that d < 1/(1 + r) in
Eq. (B3).

We now show that for fixed R, G(R, y) is decreasing when y increases from y = 0 towards the SF3-SF1 border where R =√
y(1 + y)/(1 − y). We then show that G(R, y) > 0 on the SF3-SF1 border, which means that G(R, y) > 0 on the whole SF3 ∩

FF2 domain.
Set K (R, y) ≡

√
R2 − y. Then the expression inside the square root in G(R, y) can be written

F (y, K ) ≡ y + (1 + 1
K )−2

y + 1
,

dF

dy
= ∂F

∂y
+ ∂F

∂K

∂K

∂y
= (K + 1)(2K + 1) − √

y(y + 1)

(y + 1)2(K + 1)3
> 0.

The inequality is due to K + 1 > 1 >
√

y and 2K + 1 > y + 1 in the nominator. The latter stems from the SF3 condition:

K2 = R2 − y >
y(1 + y)2

(1 − y)2
− y > y(1 + y) − y = y2.

Since dF
dy > 0,

∂G

∂y
= −R

dF
dy

2
√

F (R, y)
< 0.

It remains to show that G(R, y) > 0 on the SF3-SF1 border

G

(
R =

√
y(1 + y)

(1 − y)
, y

)
= ln(1 + R2) − y

1 − y

√
1 + y + 4y

y + 1
≡ g(y),

where y ∈ [0, y∗] and y∗ ≈ 0.3. The condition g(y) � 0 is equivalent to f (y) ≡ exp[g(y)] − 1 � 0. We use e−x � 1 − x + x2

2 −
x3

6 , which yields

f (y) � R2 + (1 + R2)

(
−y

√
Q(y)

1 − y
+ 1

2

y2Q(y)

(1 − y)2
− 1

6

y3Q(y)3/2

(1 − y)3

)
� R2 + (1 + R2)

(
−y

√
Q(y)

1 − y
+ 1

2

y2Q(y)

(1 − y)2
(1 − Ay)

)
,

(B4)
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where Q(y) ≡ 1 + y + 4y
1+y and A ≡

√
Q(y∗ )

3(1−y∗ ) = max(
√

Q(y)
3(1−y) ) ≈ 0.71. Inserting R2 = y( 1+y

1−y )2 into Eq. (B4) and multiplying by

(1 − y)4(1 + y)/y, we obtain the condition

(1 + y)3(1 − y)2 + (1 − y + 3y2 + y3)

[
(y − 1)

√
(1 + y)3 + 4y(1 + y) + y

2
(1 + 6y + y2)(1 − Ay)

]
� 0

for f (y) � 0. We move the term with the square root to the right-hand side and then take the square of the expressions on both
sides of the inequality. Since 1 − Ay > 0 and 1 − y + 3y2 + y3 = (1 + R2)(1 − y)2 > 0, the resulting inequality is the sufficient
condition for f (y) � 0. It can be written as φ(y) � 0, where

φ(y) ≡
[

(1 + y)3(1 − y)2 + y

2
(1 − y + 3y2 + y3)(1 + 6y + y2)(1 − Ay)

]2

− (1 − y)2(1 − y + 3y2 + y3)2(1 + 7y + 7y2 + y3)

=
[

1 + 3y

2
+ 1 − A

2
y2 −

(
3 + 5A

2

)
y3 + (10 + A)y4 +

(
11

2
− 9A

)
y5 + 1 − 9A

2
y6 − Ay7

2

]2

− (1 − 4y + 12y2 − 20y3 + 22y4 − 12y5 − 4y6 + 4y7 + y8)(1 + 7y + 7y2 + y3) (B5)

�
[

1 + 3y

2
+ ay2 − by3 + cy4

]2

− (1 − 4y + 12y2 − 20y3 + 22y4)(1 + 7y + 7y2 + y3), (B6)

where a ≡ 1
2 (1 − A), b ≡ 3 + 5A

2 , and c ≡ 10 + A + ( 11
2 −

9A)y∗ + 1
2 (1 − 9A)y∗2 − 1

2Ay∗3. The inequality in Eq. (B6)
is obtained replacing y4+n by y∗ny4 for n = 1, 2, 3 in square
brackets of Eq. (B5) (the corresponding coefficients of these
terms are negative and the resulting expression in the brackets
becomes smaller but still positive since a > 0, b > 0, c > 0,
and by3 < 1), as well as omitting the terms −12y5 + 4y7 =
4y5(−3 + y2) < 0 and −4y6 + y8 = y6(−4 + y2) < 0 in the
following brackets.

Further exact calculation of Eq. (B6) yields

φ(y) � y2[A0 − A1z + A2z2 + A3z3 − A4z4 − A5z5 + c2y6]

� y2[A0 − A1z + Bz2] = y2ϕ(z), (B7)

where z = y/y∗, A0 ≡ 45
4 + 2a, A1 ≡ (37 + 2b − 3a)y∗,

A2 ≡ (a2 − 3b + 2c + 38)y∗2, A3 ≡ (3c − 2ab − 26)y∗3,
A4 ≡ (134 − b2 − 2ac)y∗4, A5 = (22 + 2bc)y∗5, and
B ≡ A2 − A4 − A5. The inequality (B7) holds for y∗ = 0.3
because the coefficients An are positive in this case and
z � 1. The values of coefficients at y∗ = 0.3 are a ≈ 0.145,
b ≈ 4.775, c ≈ 10.1909, A0 ≈ 11.54, A1 ≈ 13.8345,
A2 ≈ 3.967, A3 ≈ 0.0861, A4 ≈ 0.8768, A5 ≈ 0.29, and
B ≈ 2.8003.

The function ϕ(z) has a single extremum (minimum) at
z = A1

2B ≈ 2.47 �∈ [0, 1], so it changes monotonically from
ϕ(0) = A0 ≈ 11.54 to ϕ(1) = A0 − A1 + B ≈ 0.5058 within
z ∈ [0, 1], implying that ϕ(z) > 0 holds within this interval.
Hence, g(y) � 0 holds for y ∈ [0, y∗].

4. Proof of maximum relative distance between fast-first and
slow-first policies

We propose that the maximum relative distance (W ∗
FF −

W ∗
SF)/W ∗

SF = W ∗
FF/W ∗

SF − 1 is in the intersection of the SF4 and

the FF20 region. We therefore seek the maximum of

W ∗
FF20

W ∗
SF4

=
√

ekp − 1 + Ck(1 − p)√
(ekp − 1) + C2(ek − ekp)

=
√

ekp − 1 +
√

C2(ek − ekp) k(1−p)√
(ek−ekp)√

(ekp − 1) + C2(ek − ekp)

= x + yd√
x2 + y2

≡ g(x, y, d ),

where

x ≡
√

ekp − 1, y ≡
√

C2(ek − ekp), d ≡ k(1 − p)√
ek − ekp

.

(B8)

For fixed d , g(x, y, d ) is maximized when y = dx (giving
∂g
∂x = 0 = ∂g

∂y ). This gives g(x, y = dx, d ) = √
1 + d2, which

is maximized by maximizing d . For fixed k, d = d (k, p) is
decreasing in p since, when kp < ln(2),

∂d

∂ p
= − k

2(ek − ekp)3/2
[2(ek − ekp) − ekpk(1 − p)]

< − k

2(ek − ekp)3/2
[2(ek − k) − 2(ekp − kp)] < 0.

However, p = 0 implies that x = 0 = y, which is not in the
domain of g. This means that p should be small, but positive.
For fixed p, d is maximized by solving

∂d

∂k
= (1 − p)

2(ek − ekp)3/2
[(2 − k)ek − (2 − kp)ekp] = 0. (B9)

This equation has only one solution k = k(p), when we are
restricted to k > 0. For p = 0, k(0) = k∗ ≈ 1.5936. More-
over, k(p) is decreasing in p towards k = 1 when p → 1. For
small p, the solution of Eq. (B9) can be approximated by
k(p) ≈ k∗ − pk∗/(ek∗ − 2) ≈ k∗ − 0.55p. In the limit when
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FIG. 13. (a) Initial position of the optimal queue ordering, with N = 8 passengers, 4 rows, and 2 seats per row. (b) The symmetry of the
optimal queue ordering enables four passengers to sit down in each wave, which gives a minimal boarding time of T = 2. The time step t = 1
is not explicitly shown.

p → 0, the maximum value of g is given by

W ∗
FF20

W ∗
SF4

=
√

1 + d2(k∗, p) =
√

1 + k∗2(1 − p)2

ek∗ − ek∗ p

p→0−→
√

1 + k∗2

ek∗ − 1
≈ 1.283 59.

The value of C giving this maximum is found by setting
y = dx and using the expressions in Eq. (B8), which gives

C = k(1 − p)

ek − ekp

√
ekp − 1 ≈ k3/2

ek − 1
√

p ≈ 0.513
√

p.

The approximation holds for small p, and k = k∗ in
the preceding expression. The solution (k, p,C) =
(k∗, p, 0.513

√
p), where p ≈ 0, is within the domains of FF20

and SF4. Theoretically, there could be other local maxima in
other subdomains. However, numerical inspections indicate
that the given solution is the global maximum.

APPENDIX C: REORGANIZED QUEUE WITH MINIMAL
BOARDING TIME

In Fig. 13 the queue in Fig. 1 is reorganized to obtain a
minimal boarding time.
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