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A measurement of the production of prompt �+
c baryons in Pb–Pb collisions at √sNN = 5.02 TeV with 

the ALICE detector at the LHC is reported. The �+
c and �−

c were reconstructed at midrapidity (|y| < 0.5) 
via the hadronic decay channel �+

c → pK0
S (and charge conjugate) in the transverse momentum and 

centrality intervals 6 < pT < 12 GeV/c and 0–80%. The �+
c /D0 ratio, which is sensitive to the charm 

quark hadronisation mechanisms in the medium, is measured and found to be larger than the ratio 
measured in minimum-bias pp collisions at 

√
s = 7 TeV and in p–Pb collisions at √sNN = 5.02 TeV. 

In particular, the values in p–Pb and Pb–Pb collisions differ by about two standard deviations of 
the combined statistical and systematic uncertainties in the common pT interval covered by the 
measurements in the two collision systems. The �+

c /D0 ratio is also compared with model calculations 
including different implementations of charm quark hadronisation. The measured ratio is reproduced by 
models implementing a pure coalescence scenario, while adding a fragmentation contribution leads to 
an underestimation. The �+

c nuclear modification factor, RAA, is also presented. The measured values 
of the RAA of �+

c , D+
s and non-strange D mesons are compatible within the combined statistical and 

systematic uncertainties. They show, however, a hint of a hierarchy (RD0

AA < RD+
s

AA < R�+
c

AA ), conceivable with 
a contribution from coalescence mechanisms to charm hadron formation in the medium.

© 2019 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Measurements of the production of open-heavy flavour hadrons 
in heavy-ion collisions provide important information on the prop-
erties of the Quark–Gluon Plasma (QGP), the state of strongly-
interacting matter formed at the very high temperatures and en-
ergy densities reached in heavy-ion collisions [1,2]. Several mea-
surements of the production and elliptic flow of D mesons and 
leptons from the decay of heavy-flavour hadrons in Pb–Pb colli-
sions at the LHC and in Au–Au collisions at RHIC [3,4] indicate that 
charm quarks interact strongly with the medium constituents. In-
medium energy loss is studied via the nuclear modification factor, 
RAA, defined as the ratio of the yield in Pb–Pb collisions and that 
in pp collisions scaled by the number of binary nucleon–nucleon 
collisions. A model [5,6] including a significant fraction of low 
and intermediate transverse momentum (pT) charm and beauty 
quarks hadronising via coalescence (or recombination) with light 
quarks from the medium better describes the experimental re-
sults. This mechanism is expected to also affect the production 
of D+

s given the strange-quark rich environment of the created 
medium. At higher transverse momentum (pT > 7 GeV/c at LHC 
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energies [7]) hadronisation by vacuum fragmentation is expected 
to be the dominant production mechanism.

In this context, the study of charm baryons is essential to un-
derstand charm hadronisation. Models including coalescence pre-
dict an enhanced baryon-to-meson ratio at low and intermediate 
transverse momentum in comparison to that expected in pp colli-
sions. This effect adds to the hadron-mass dependent transverse-
momentum shift due to the presence of radial flow in heavy-ion 
collisions, that is able to explain the observed increase of the 
baryon-to-meson ratio in the light sector up to about 2 GeV/c [8]. 
The study of non-strange D-mesons, D+

s and �+
c could help to dis-

entangle the role of coalescence and radial flow, because of the 
smaller mass differences than for light-flavour hadrons.

For the particular case of charm baryons, the possible existence 
of light di-quark bound states in the QGP could further enhance 
the �+

c /D0 ratio in the coalescence model [9]. An enhancement of 
the pT-integrated �+

c /D0 ratio in the presence of a QGP is also 
predicted by the statistical hadronisation model [10], where at 
LHC energies the relative abundance of hadrons depends on their 
masses, their flavour content and the freeze-out temperature of the 
medium. In addition, an enhancement of charm-baryon production 
in Pb–Pb collisions would make the charm baryons an important 
fraction of the total charm production cross section.

The study of a potential enhancement effect in charm-baryon 
production in relativistic heavy-ion collisions requires a baseline 

https://doi.org/10.1016/j.physletb.2019.04.046
0370-2693/© 2019 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

https://doi.org/10.1016/j.physletb.2019.04.046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:alice-publications@cern.ch
https://doi.org/10.1016/j.physletb.2019.04.046
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2019.04.046&domain=pdf


ALICE Collaboration / Physics Letters B 793 (2019) 212–223 213

reference in smaller collision systems. The �+
c -baryon produc-

tion was measured by the ALICE Collaboration in pp collisions at√
s = 7 TeV in the transverse momentum and rapidity (y) inter-

vals 1 < pT < 8 GeV/c and |y| < 0.5 [11]. The obtained baryon-to-
meson ratio is larger than previous measurements at lower centre-
of-mass energies and in different collision systems (see Ref. [11]
and references therein), and also higher than the results reported 
by the LHCb Collaboration in pp collisions at 

√
s = 7 TeV in the 

rapidity range 2.0 < y < 4.5 [12]. Expectations from perturba-
tive Quantum Chromodynamics (pQCD) calculations and Monte 
Carlo event generators underpredict the data, indicating that the 
fragmentation of charm quarks is not fully understood [11] and 
partially challenged by data collected so far at the LHC, as dis-
cussed extensively in Ref. [13]. The production of �+

c baryons was 
also measured by the ALICE Collaboration in p–Pb collisions at √

sNN = 5.02 TeV in 2 < pT < 12 GeV/c and −0.96 < y < 0.04 [11], 
and a measurement in the same collision system by the LHCb 
Collaboration [14] is also available. The �+

c nuclear modification 
factor RpPb is compatible with unity within statistical and system-
atic uncertainties. The baryon-to-meson ratios �+

c /D0 measured 
in pp and p–Pb collisions are compatible within uncertainties. A 
model [15,16] including hadronisation via coalescence in these col-
lision systems has been proposed to describe the measurements at 
LHC energies.

This letter reports measurements of the production of the 
prompt charm baryon �+

c and its charge conjugate in Pb–Pb colli-
sions at 

√
sNN = 5.02 TeV with the ALICE detector [17] at the LHC. 

Hereafter, �c refers indistinctly to both particle and anti-particle, 
and all mentioned decay channels refer also to their charge con-
jugates. The �+

c corrected yield is obtained as the average of the 
particle and the anti-particle yield. The notation �+

c is used when 
referring to this average, and thus to indicate physics quantities 
such as the �+

c /D0 ratio. The measurement was performed in 
the 0–80% centrality class in the transverse momentum and ra-
pidity intervals 6 < pT < 12 GeV/c and |y| < 0.5. Only prompt 
�c-baryons were considered: the beauty-hadron feed-down was 
subtracted, as described in the next section. The D0-meson yield 
was obtained in the same transverse momentum and centrality in-
terval as the �c-baryon, following the analysis procedure described 
in Ref. [18].

2. Data sample and analysis strategy

The measurement of the �c-baryon production was per-
formed by reconstructing the decays �+

c → pK0
S with a branch-

ing ratio (BR) equal to (1.58 ± 0.08)% and K0
S → π+π− with

BR = (69.20 ± 0.05)% [19]. The D0 mesons were reconstructed in 
the decay channel D0 → K−π+ with BR = (3.93 ± 0.04)% [19]. The 
�c and D0 candidates were reconstructed in the same transverse 
momentum, rapidity and centrality intervals. The analysis bene-
fits from the tracking and particle identification capabilities of the 
ALICE central barrel detectors located within a large solenoidal 
magnet that provides a magnetic field of 0.5 T parallel to the LHC 
beam axis. A complete description of the ALICE apparatus and its 
performance can be found in Refs. [17,20]. The main detectors used 
in this analysis include the Inner Tracking System (ITS) [21], the 
Time Projection Chamber (TPC) [22], the Time-Of-Flight detector 
(TOF) [23] and the V0 detector [24] located inside the solenoidal 
magnet, as well as the Zero Degree Calorimeters (ZDC) [17] located 
in the LHC tunnel at about ±112.5 m from the nominal interaction 
point and composed of two proton and two neutron calorimeters.

The analysed data sample consists of about 83 × 106 Pb–Pb 
collisions at 

√
sNN = 5.02 TeV, corresponding to an integrated lu-

minosity of Lint ≈ 13.4 μb−1. The interaction trigger was provided 

by the coincident signals from the two arrays of the V0 detec-
tor, covering the pseudorapidity intervals −3.7 < η < −1.7 and 
2.8 < η < 5.1. Background events from beam–gas interactions were 
removed in the offline analysis using the timing information pro-
vided by the V0 and the neutron ZDC. Only events with a primary 
vertex reconstructed within ±10 cm from the centre of the detec-
tor along the beam line were considered for the analysis. Events 
were selected in the centrality class 0–80%, defined in terms of 
percentiles of the hadronic Pb–Pb cross section, using the ampli-
tudes of the signals in the V0 arrays [25].

The �c candidates were constructed by combining a proton 
candidate track with a K0

S candidate identified through its V-
shaped neutral decay topology (V0). The charged tracks and the K0

S
candidates were selected as described in Ref. [11] for pp collisions 
with additional requirements to reduce the larger combinatorial 
background due to the higher charged-track multiplicity in Pb–Pb 
with respect to pp collisions. In particular, candidate proton tracks 
were required to have a hit in the innermost ITS layer and tighter 
selections on the K0

S were applied: a maximum distance of clos-
est approach between the V0 decay tracks of 0.4 cm, a minimum 
cosine of the V0 pointing angle to the primary vertex of 0.9998, 
a minimum pT of the K0

S candidates of 1 GeV/c, and a cut in the 
Armenteros-Podolanski space [26] to remove contributions from �
decays. The identification of protons was based on the specific ion-
isation energy loss dE/dx in the TPC and on the time of flight mea-
sured with the TOF detector, using as a discriminating variable (nσ ) 
the difference between the measured value and the expected value 
for the proton mass hypothesis divided by the detector resolution. 
A |nσ | < 3 selection was applied on the TPC dE/dx and TOF time-
of-flight measurements for tracks with pT < 3 GeV/c. For tracks 
with pT > 3 GeV/c an asymmetric selection was used to limit the 
contamination from pions in the TPC and from kaons in the TOF 
and the requirements were −3 < nTPC

σ < 2 and −2 < nTOF
σ < 3 for 

the TPC and TOF signals. Tracks without TOF information were dis-
carded. The �c candidates were selected requiring a cosine of the 
proton emission angle in the �c centre-of-mass system with re-
spect to the �c momentum direction smaller than 0.5. A selection 
on the signed transverse impact parameter of the proton, i.e. the 
distance of closest approach between the proton track and the pri-
mary vertex, larger than 0.003 cm was also applied (the sign of the 
impact parameter is defined as positive when the angle between 
the �c flight line and the momentum vector is smaller than 90◦).

The D0 candidates were reconstructed by combining pairs of 
tracks with the proper charge sign combination and selected in 
the interval 6 < pT < 12 GeV/c using the same criteria described in 
Ref. [18] for the interval 6 < pT < 7 GeV/c in the 10% most central 
Pb–Pb collisions.

After all selections, the acceptance in rapidity for �c and D0

candidates drops steeply to zero for |y| > 0.8 in the pT interval 
used for the analysis. Therefore, a fiducial acceptance cut |y| < 0.8
was applied as described in Refs. [11] and [18].

The �c and D0 raw yields were extracted by fitting the in-
variant mass distributions of the candidates passing the selection 
criteria. The fit functions consist of a Gaussian to describe the sig-
nal and an exponential to describe the background. In the case of 
the �c, the width of the Gaussian was fixed to the value obtained 
from Monte Carlo simulations. The stability of the �c signal ex-
traction was verified by fitting the invariant mass distribution after 
the subtraction of the background evaluated with an event-mixing 
technique and no discrepancy between the two approaches was 
observed. For the D0-meson yield, the contribution of signal can-
didates with the wrong K–π mass assignment (reflections) to the 
invariant-mass distribution was taken into account by including an 
additional term, parameterised from simulations with a double-
Gaussian shape, in the fit function [27].
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Fig. 1. Invariant-mass distributions for the �c (left) and D0 (right) candidates in the momentum interval 6 < pT < 12 GeV/c and for the 0–80% centrality class. The dashed 
curves represent the fit to the background, while the solid curves represent the total fit function.
The invariant mass distributions of the selected �c and D0 can-
didates are shown in Fig. 1.

The prompt �+
c (D0) production yield was calculated as

dN�+
c (D0)

prompt

dpT

∣∣∣∣∣∣|y|<0.5

= 1

2

1

c�y

1

�pT

fprompt · Nraw||y|<0.8

(Acc × ε)prompt · BR · Nevt
, (1)

where Nraw is the raw yield (sum of particles and anti-particles) 
in the transverse momentum interval of width �pT, fprompt is the 
fraction of prompt �c (D0) in the raw yield, (Acc × ε) is the prod-
uct of acceptance and reconstruction efficiency for prompt �c (D0), 
BR is the branching ratio of the considered decay mode and Nevt

is the number of events considered for the analysis. The correction 
factor for the rapidity coverage c�y was computed as the ratio of 
the generated �c (D0) yield in |y| < 0.8 and that in |y| < 0.5. The 
factor 1/2 takes into account that the raw yield is the sum of par-
ticles and anti-particles, while the production yield is reported as 
their average.

The correction for the detector acceptance and reconstruction 
efficiency was determined by means of Monte Carlo (MC) sim-
ulations. The underlying Pb–Pb events at 

√
sNN = 5.02 TeV were 

simulated using the HIJING v1.383 [28] generator and prompt and 
feed-down �c (D0) were added using the PYTHIA v6.421 [29] gen-
erator with Perugia 11 tune. The generated particles were trans-
ported through the ALICE detector using the GEANT3 [30] package. 
A realistic detector response was introduced in the simulations to 
reproduce the performance of the ALICE detector system during 
data taking.

The pT distributions of the �c and D0 in PYTHIA were cor-
rected in order to obtain more realistic distributions. The same 
pT-dependent weighting factor, calculated as the ratio of the mea-
sured D0 pT distribution in finer pT bins [18] and the one sim-
ulated with PYTHIA, was used for both particles. The �c and D0

reconstruction efficiency in the large centrality class 0–80% was 
obtained as the weighted average of the efficiencies in smaller cen-
trality classes to take into account the variation of the efficiency 
and the scaling of the yields of the �c baryons and D0 mesons 
with centrality. The applied weights were calculated as the product 
of the RAA of the D0 and the average number of nucleon–nucleon 
collisions (< Ncoll >) in the centrality class considered [18]. The 
(Acc×ε) value is about 6% for prompt and about 9% for feed-down 
�c and about 8% for prompt and about 11% for feed-down D0.

The prompt �c (D0) fraction, fprompt, was calculated as

fprompt = 1 −
⎛
⎝ N�c(D0)

feed-down

N�c(D0)
prompt

⎞
⎠ =

= 1 − 〈TAA〉 · d2σ

dydpT

∣∣∣∣
FONLL

feed-down
· Rfeed-down

AA

· (Acc × ε)feed-down · c�y · �pT · BR · Nevt

Nraw/2
. (2)

The contribution of �c (D0) from beauty-hadron decays was es-
timated using the FONLL [31,32] beauty-production cross sections 
as described in detail in Ref. [33]. The fraction of beauty quarks 
that fragment to beauty hadrons and subsequently decay into �c
baryons f (b → �c) = 0.073 was taken from Ref. [34]. The beauty-
hadron decay kinematics were modeled using the EVTGEN [35]
package. The (Acc × ε)feed-down term for both particles was cal-
culated from the Monte Carlo simulations described above. The 
average nuclear overlap function, 〈TAA〉, was estimated via Glauber 
model calculations [36,37]. In this formalism the nuclear modifi-
cation factor RAA is then the ratio of the yield in Pb–Pb collisions 
and the production cross section in pp collisions scaled by 〈TAA〉.

A hypothesis on the Rfeed-down
AA of feed-down �c and D0 is 

used. For the D0, the hypothesis is the same as in other analy-
ses (e.g. in Ref. [18]): the central value is obtained by assuming 
Rfeed-down D0

AA /Rprompt D0

AA = 2, justified by the CMS measurement of 
J/ψ from B-meson decays [38] and by the ALICE and CMS measure-
ments of D mesons [18,39] indicating that prompt charm mesons 
are more suppressed than non-prompt charm mesons. The ra-

tio is varied in the interval 1 < Rfeed-down D0

AA /Rprompt D0

AA < 3 to 
estimate the systematic uncertainty. Since no measurements of 
beauty-baryon production in nucleus–nucleus collisions are avail-
able, for the �c the central hypothesis was taken from model cal-

culations which predict Rfeed-down �+
c

AA /Rprompt �+
c

AA = 2 when con-
sidering c and b quark fragmentation and energy loss in the 
medium [40]. The ratio Rfeed-down �+

c
AA /Rprompt �+

c
AA was decomposed 

into two terms to estimate the uncertainty on the assumption:

Rfeed-down �+
c

AA

Rprompt �+
c

AA

= Rfeed-down D0

AA

Rprompt D0

AA

·
(�+

c /D0)PbPb,feed-down

(�+
c /D0)pp,feed-down

(�+
c /D0)PbPb,prompt

(�+
c /D0)pp,prompt

. (3)

The first term is the same as for the D0 and thus the same hy-
pothesis is adopted. The second term is varied in the range 0.5–1.5 
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Fig. 2. �+
c /D0 ratio as a function of pT in 0–80% most central Pb–Pb collisions compared with the measurements in pp and p–Pb collisions [11] (left), and model calcula-

tions [7] (right). Statistical and systematic uncertainties are presented as vertical bars and boxes, respectively.
Table 1
Systematic uncertainties on the corrected 
yields. When the uncertainty was found to 
be < 1%, it was considered negligible (negl. 
in the table).

Uncertainty �+
c D0

Raw-yield extraction 8% 2%
Tracking efficiency 3.6% 5%
PID 5% negl.
Cut variation 2% 5%
MC pT shape 2% negl.
MC centrality weights 3% negl.
Feed-down subtraction +6

−12% +12
−13%

Branching ratio 5% 1%

to calculate the systematic uncertainty. The upper limit is deter-

mined a-posteriori such that Rfeed-down �+
c

AA < 2 as suggested by the 
fact that no baryon RAA exceeds this value. The uncertainties on 
the two terms are added in quadrature. The resulting values of 
fprompt are about 0.93 and 0.81 for the �c and D0, respectively.

A summary of the systematic uncertainties on the corrected �+
c

and D0 yields is shown in Table 1. The D0 systematic uncertainties 
on the particle identification (PID), tracking and cut variation are 
taken from Ref. [18] and are not discussed in the following.

The systematic uncertainty on the raw-yield extraction for �c
and D0 was estimated by repeating the fits several times varying 
(i) the lower and upper limits of the fit range, (ii) the background 
fit function and (iii) only in the case of the �c, considering the 
Gaussian mean and width as free parameters in the fit. In addition, 
the signal yield was obtained by integrating the invariant-mass 
distribution after subtracting the background estimated from a fit 
to the sidebands.

For the �c, the systematic uncertainty on the tracking efficiency 
was evaluated by comparing the probability of matching tracks re-
constructed in the TPC to ITS hits in data and simulation and by 
varying the quality cuts to select the tracks used in the analysis. 
The contribution due to the variation of the quality cuts was eval-
uated using protons from � decays and an inclusive K0

S sample and 
by calculating the ratio of the corrected yields obtained using dif-
ferent selection criteria. The uncertainty on the ITS-TPC matching 
efficiency is defined as the relative difference of the matching ef-
ficiency in data and simulations after weighting the relative abun-
dances of primary and secondary particles in the simulations to 
match those in data. The latter were estimated via fits to the track 
impact-parameter distributions. The values calculated as a func-
tion of track momentum were propagated to the pT-differential 
uncertainty of the �c using a Monte Carlo simulation. A 3% sys-
tematic uncertainty on the ITS-TPC matching efficiency of proton 

tracks was assigned while for the K0
S the matching is not required. 

The uncertainty resulting from these studies was added in quadra-
ture to the uncertainty on the track selection.

The systematic uncertainty on the �c PID efficiency was eval-
uated using protons from the decay of � baryons. The ratio of 
the � yield measured with PID to that measured without PID was 
calculated in both data and MC and their difference was used to 
estimate the systematic uncertainty.

Systematic uncertainties on the efficiencies can also arise from 
possible differences in the distributions and resolutions of selec-
tion variables between data and simulation. The systematic effect 
induced by these imperfections was estimated by repeating the 
analysis varying the main selection criteria for the candidates. The 
efficiencies determined from the simulations depend also on the 
generated pT distributions of the �c and the D0. The central values 
of the correction factors were obtained by re-weighting the �c and 
D0 distributions generated by PYTHIA as described above. For the 
D0, the efficiencies calculated with and without the pT weights are 
compatible and therefore no uncertainty was assigned. For the �c , 
the systematic uncertainty was defined by considering the vari-
ation of the efficiencies determined with different generated pT
shapes. The new �c pT shape was calculated by multiplying the 
measured D0 pT distribution with the �+

c /D0 ratios predicted by 
the models [6] and [41].

Finally, the efficiencies in the centrality class 0–80% depend 
on the centrality weights used to combine the efficiencies in the 
smaller centrality classes. The stability of the efficiencies against 
the variation of the centrality weights was tested by recalculating 
the efficiencies without weighting for 〈Ncoll〉 and, for the �c, us-
ing as an alternative centrality weight the product �/K0

S · 〈Ncoll〉, 
where the ratio �/K0

S is taken from Ref. [8].
The systematic uncertainty on the subtraction of feed-down 

from beauty-hadron decays was estimated by varying (i) the 
pT-differential cross section of feed-down �c (D0) from FONLL 
calculations within the theoretical uncertainties (see Ref. [11] for 
details on the �c and Ref. [33] for the D0) and (ii) the ratio of 
prompt and feed-down RAA as described above.

The production yields of �c and D0 also have a global system-
atic uncertainty due to the branching ratio.

3. Results

The yield of prompt �+
c baryons measured in Pb–Pb collisions 

at 
√

sNN = 5.02 TeV in the 0–80% centrality class in |y| < 0.5 and 
6 < pT < 12 GeV/c is N�+

c = (2.1 ± 0.4 (stat.)+0.3
−0.4 (syst.)) × 10−2.

The measured �+
c /D0 ratio is shown in Fig. 2. The systematic 

uncertainty of the �+
c -baryon production arising from the track-
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Fig. 3. RAA of prompt �+
c compared with model calculations [7,15,16] (left), and the non-strange D mesons, D+

s , and charged particle RAA in 0–10% most central Pb–Pb 
collisions for pT > 1 GeV/c [18,42] (right). Statistical, systematic and normalisation uncertainties are presented as vertical bars, empty boxes and shaded boxes around unity, 
respectively.
ing efficiency was treated as fully correlated to that of the D0

meson. The contribution to the feed-down uncertainty related to 
heavy-quark energy loss and that originating from the FONLL un-
certainty on the feed-down �+

c and D0 cross sections were treated 
as fully correlated when propagated to the ratio. All the other 
sources of uncertainty were considered as uncorrelated. In the left 
panel of Fig. 2, the �+

c /D0 ratio measured in Pb–Pb collisions 
is compared with the results obtained by the ALICE Collabora-
tion in minimum-bias pp and p–Pb collisions at 

√
s = 7 TeV and √

sNN = 5.02 TeV [11], respectively. The ratio measured in Pb–Pb 
collisions is higher than that measured in pp and p–Pb collisions. 
In particular, the values in p–Pb and Pb–Pb collisions differ by 
about two standard deviations of the combined statistical and sys-
tematic uncertainties in 6 < pT < 12 GeV/c.

The �+
c /D0 ratio in Pb–Pb collisions is compared with theo-

retical model calculations in the right panel of Fig. 2. The Cata-
nia model [7] provides two different treatments of hadronisation. 
In one case, charm quarks hadronise via coalescence only. In the 
other case, a coalescence plus vacuum fragmentation modelling of 
hadronisation is considered: at increasing pT the coalescence prob-
ability decreases and eventually vacuum fragmentation takes over. 
For D0 mesons, the shape of the fragmentation function is tuned 
assuring that the experimental results on D-meson production in 
pp collisions are well described by a fragmentation hadronisation 
mechanism. Data from e+e− collisions are used to fix the shape of 
the fragmentation functions for �+

c . The coalescence mechanism 
is treated as a three-quark process and implemented through the 
Wigner formalism. The momentum spectrum of hadrons formed 
by coalescence is obtained from the quark phase-space distribu-
tions and the hadron wave function. The width parameters of the 
hadron wave functions are calculated from the charge radius of the 
hadrons according to the quark model. The hadron wave function 
normalisation is determined by requiring a total coalescence prob-
ability for charm quarks equal to unity for zero-momentum heavy 
quarks. Moreover, the contributions from the first excited states for 
D and �c hadrons were included in the calculations. The experi-
mental results are described by the model calculation including 
coalescence only. The curve obtained by modelling charm hadroni-
sation via vacuum fragmentation plus coalescence, which describes 
the �+

c /D0 ratio measured in Au–Au collisions at RHIC energy [43], 
significantly underestimates the measurement in Pb–Pb collisions 
at the LHC. In the Shao-Song model [15,16], coalescence involves 
quarks which are close in momentum space, and it takes place 
mainly for the quark with a given fraction of the momentum of 
the hadron. It does not consider the Wigner formalism to describe 
the spatial and momentum distribution of quarks in a hadron. It 
can not directly predict the absolute magnitude of the �+

c /D0 ra-

tio because the relative production of single-charm baryons and 
single-charm mesons RBM is treated as a parameter of the model. 
The curve obtained by considering RBM = 0.425, which is the value 
needed to describe the results in pp and p–Pb collisions, underesti-
mates the �+

c /D0 ratio measured in Pb–Pb collisions. An RBM = 1.2
is needed to achieve a better description of the experimental re-
sults in Pb–Pb collisions. However, the hadronisation mechanism 
via quark coalescence included in the model is responsible of the 
pT dependence of the �+

c /D0 ratio, which needs to be verified 
by comparing to a measurement at lower pT. The RAA of prompt 
�+

c was obtained by considering as reference the �+
c cross sec-

tion measured in p–Pb collisions at 
√

sNN = 5.02 TeV [11] scaled 
by 1/A (A = 208) and corrected for the different rapidity coverage 
of the p–Pb measurement. The cross section measured in p–Pb was 
scaled in each pT interval to |y| < 0.5 using a correction factor ob-
tained with FONLL calculations [31,32]. The correction factor was 
determined from the ratios of the cross sections calculated with 
FONLL in the rapidity intervals |y| < 0.5 and −0.96 < y < 0.04. 
Since FONLL does not provide predictions for �+

c baryons, the 
average of the correction factors obtained for D0, D+ and bare 
charm quarks, which was found to be 1.024 ± 0.008, was used. 
The choice of using the p–Pb cross section to obtain the refer-
ence for the RAA was motivated by the fact that it was measured 
up to pT = 12 GeV/c, while the measurement in pp collisions at √

s = 7 TeV in |y| < 0.5 only reaches pT = 8 GeV/c. In addition, 
the �+

c nuclear modification factor measured in p–Pb collisions 
is consistent with unity for pT > 2 GeV/c [11]. The �+

c reference 
cross section in 6 < pT < 12 GeV/c was obtained by combining the 
results in the transverse momentum intervals 6 < pT < 8 GeV/c
and 8 < pT < 12 GeV/c. The uncertainties were propagated treat-
ing the statistical and the systematic uncertainties on the yield 
extraction as uncorrelated and the other sources of systematic un-
certainty as correlated in pT. The �+

c RAA also has a 3.75% uncer-
tainty due to the normalisation of the �+

c p–Pb cross section at √
sNN = 5.02 TeV [11] and a 2.4% uncertainty on the average nu-

clear overlap function 〈TAA〉, which were added in quadrature. In 
the left panel of Fig. 3, the RAA of prompt �+

c is compared with 
Catania model calculations [7]. The three curves are obtained by 
considering different treatments of the hadronisation mechanisms 
in pp and Pb–Pb collisions. The short-dashed curve represents the 
�+

c RAA as obtained by including both vacuum fragmentation and 
quark coalescence for charm hadronisation in Pb–Pb and only frag-
mentation in pp collisions. The long-dashed curve includes only 
coalescence in Pb–Pb and fragmentation plus coalescence in pp 
collisions. The solid curve is obtained by considering fragmentation 
plus coalescence in both collision systems. The limited precision 
and the large pT interval of this first measurement prevent us to 
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draw a firm conclusion on which combination of the hadronisa-
tion mechanisms in the two collision systems better describes the 
result. Moreover, the comparison between the different scenarios 
obtained from the Catania model demonstrates that it is crucial to 
also understand the �+

c production mechanism in pp collisions to 
interpret the RAA measurement. The right panel of Fig. 3 shows 
the RAA of prompt �+

c baryons measured in the 0–80% central-
ity class (that is dominated by the 0–10% production given the 
scaling of the yields with Ncoll · RAA) compared with the average 
nuclear modification factors of non-strange D mesons, D+

s mesons, 
and charged particles measured in the 0–10% centrality class [18]. 
The RAA of charged particles is smaller than that of D mesons by 
more than 2σ of the combined statistical and systematic uncer-
tainties up to pT = 8 GeV/c, while they are compatible within 1σ
for pT > 10 GeV/c. The RAA values of D+

s mesons are larger than 
those of non-strange D mesons, but the two measurements are 
compatible within one standard deviation of the combined uncer-
tainties [18]. A hint of a larger �+

c RAA with respect to non-strange 
D mesons is observed, although the results are compared for dif-
ferent centrality classes. A D0 RAA = 0.27 ±0.01(stat.) ± 0.04(syst.)
was measured in 6 < pT < 12 GeV/c in the 0–80% centrality class. 
The D0 RAA has also a 3.5% uncertainty arising from the normalisa-
tion of the cross section measured in pp collisions at 

√
s = 7 TeV, 

and a 2.4% uncertainty on the average nuclear overlap function 
〈TAA〉. The pT-differential cross section of prompt D0 mesons with 
|y| < 0.5 in pp collisions at 

√
s = 5.02 TeV, used as reference 

for the nuclear modification factor, was obtained by scaling the 
measurement at 

√
s = 7 TeV [44] to 

√
s = 5.02 TeV using FONLL 

calculations [31,32]. The scaling was applied to the D0 cross sec-
tion obtained in 6 < pT < 12 GeV/c by combining the results in 
the pT intervals of the measurement at 

√
s = 7 TeV. The statisti-

cal and the systematic uncertainties on the yield extraction were 
propagated as uncorrelated. The other contributions to the system-
atic uncertainty were considered as fully correlated among the pT
intervals. A difference of about 1.7σ is obtained when compar-
ing the �+

c RAA with that of the D0 in 6 < pT < 12 GeV/c and 
0–80% centrality interval. This observation is qualitatively in agree-
ment with a scenario where a significant fraction of charm quarks 
hadronise via coalescence with light quarks from the medium 
leading to an enhanced baryon production with respect to that of 
mesons.

4. Summary

The measurement of the production of prompt �+
c baryons 

in the 0–80% most central Pb–Pb collisions at 
√

sNN = 5.02 TeV
was presented. The result was obtained at midrapidity, |y| < 0.5, 
in the 6 < pT < 12 GeV/c transverse momentum interval. The 
�+

c /D0 ratio is larger than the ratio measured in pp and p–Pb 
collisions at 

√
s = 7 TeV and 

√
sNN = 5.02 TeV [11], respectively. 

The �+
c /D0 ratio measured in Pb–Pb collisions is described by a 

model calculation implementing only charm quark hadronisation 
via quark coalescence and it is underestimated when also vac-
uum fragmentation is included. The comparison of the �+

c nuclear 
modification factor with non-strange D and D+

s meson results, 
which were measured in 0–10% most central Pb–Pb collisions, 
suggests a hint of a hierarchy, conceivable in a scenario where 
charm quark hadronisation can occur via coalescence processes, 
thus enhancing the �+

c -baryon and D+
s -meson production with re-

spect to non-strange D mesons. However, the limited precision of 
this first measurement prevents us from drawing a firm conclu-
sion.

A higher precision for a �+
c -baryon production measurement 

with finer granularity in pT and centrality will be achieved with 
future datasets to be collected during LHC Run 2 and, in particular, 

during the LHC Run 3 and 4, following the major upgrade of the 
ALICE apparatus [45,46].
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M. Planinic 97, F. Pliquett 69, J. Pluta 141, S. Pochybova 144, P.L.M. Podesta-Lerma 119, M.G. Poghosyan 94, 
B. Polichtchouk 90, N. Poljak 97, W. Poonsawat 114, A. Pop 47, H. Poppenborg 143, 
S. Porteboeuf-Houssais 133, V. Pozdniakov 75, S.K. Prasad 3, R. Preghenella 53, F. Prino 58, C.A. Pruneau 142, 
I. Pshenichnov 62, M. Puccio 26, V. Punin 106, K. Puranapanda 140, J. Putschke 142, R.E. Quishpe 125, 
S. Raha 3, S. Rajput 99, J. Rak 126, A. Rakotozafindrabe 136, L. Ramello 32, F. Rami 135, R. Raniwala 100, 
S. Raniwala 100, S.S. Räsänen 43, B.T. Rascanu 69, R. Rath 49, V. Ratza 42, I. Ravasenga 31, K.F. Read 94,129, 
K. Redlich 84,v, A. Rehman 22, P. Reichelt 69, F. Reidt 34, X. Ren 6, R. Renfordt 69, A. Reshetin 62, 
J.-P. Revol 10, K. Reygers 102, V. Riabov 96, T. Richert 88,80, M. Richter 21, P. Riedler 34, W. Riegler 34, 
F. Riggi 28, C. Ristea 68, S.P. Rode 49, M. Rodríguez Cahuantzi 44, K. Røed 21, R. Rogalev 90, E. Rogochaya 75, 
D. Rohr 34, D. Röhrich 22, P.S. Rokita 141, F. Ronchetti 51, E.D. Rosas 70, K. Roslon 141, P. Rosnet 133, 
A. Rossi 56,29, A. Rotondi 138, F. Roukoutakis 83, A. Roy 49, P. Roy 107, O.V. Rueda 70, R. Rui 25, 
B. Rumyantsev 75, A. Rustamov 86, E. Ryabinkin 87, Y. Ryabov 96, A. Rybicki 117, S. Saarinen 43, S. Sadhu 140, 
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