Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 160 (2019) 338-345

www.elsevier.com/locate/procedia

The 9th International Conference on Current and Future Trends of Information and

Communication Technologies in Healthcare (ICTH 2019)
November 4-7, 2019, Coimbra, Portugal

A GraphQL approach to Healthcare Information Exchange with
HL7 FHIR

Suresh Kumar Mukhiya®*, Fazle Rabbi®®, Violet Ka I Pun®¢, Adrian Rutle?, Yngve Lamo?

“Western Norway University of Applied Sciences, Bergen, Norway
b University of Bergen, Norway
“University of Oslo, Norway

Abstract

Interoperability is accepted as a fundamental necessity for the successful realization of Healthcare Information Systems. It can be
achieved by utilizing consistent standards defining syntactic and semantic meaning of the information being exchanged. HL7 FHIR
is one of such open standards for Health Information Exchange (HIE). While HL7 FHIR supports Representational State Transfer
(REST) architecture and Service-oriented Architecture (SOA) for seamless information exchange, it inherits the inflexibility and
complexity associated with the RESTful approach. GraphQL is a query language developed by Facebook that provides promising
techniques to overcome these issues. In this paper, we exploit the use of GraphQL and HL7 FHIR for HIE; present an algorithm
to map HL7 FHIR resources to a GraphQL schema, and created a prototype implementation of the approach and compare it with
a RESTful approach. Our experimental results indicate that the combination of GraphQL and HL7 FHIR-based web APIs for HIE
is performant, cost-effective, scalable and flexible to meet web and mobile clients requirements.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: GraphQL; HL7 FHIR; REST API; overfetching; underfetching; Health Information Exchange; Interoperability;
REST vs GraphQL

1. Introduction

Software interoperability in the healthcare domain [10] can be realized by utilizing consistent standards like HL7
FHIR that supports SOA and RESTful approach to seamless information exchange. The RESTful architecture enables
a machine to machine communication using only the ubiquitous HTTP protocol without additional layers. In addition,
REST API [7] is a standard for deploying Application Programming Interfaces (APIs) for both simple and complex

* Corresponding author. Tel.: +47-94430044
E-mail address: skmu@hvl.no

1877-0509 © 2019 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

10.1016/j.procs.2019.11.082

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2019.11.082&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Suresh Kumar Mukhiya et al. / Procedia Computer Science 160 (2019) 338-345 339

web applications. REST provides a comprehensive set of rules and constraints that can deliver fully functioning web
services and structured access to resources [17]. However, these rules and constraints become inflexible and complex
due to various reasons: i) the increase in the complexity of the systems being built, ii) the demand in the higher quality
of services by the system end users, iii) the development of highly efficient real-time systems, and iv) the dynamic
data fetching requirements of the mobile and web clients. To mitigate this inflexibility and complexity associated with
REST, a new standard, known as GraphQL [5], has been developed by Facebook. Specifically, the following issues that
are associated with REST are addressed by GraphQL:

Query Complexity: REST requires multiple and complex HTTP requests to fetch multiple resources.

o Overfetching: Overfetching is characterized by returning more data than required by an application.

e Under-fetching and n+1 request problem: Under-fetching indicates that a particular endpoint does not give
sufficient information. This results in making an additional request by a client application to a server. This is
referred to as n+1 request problem.

o API versioning: An API creates a contract between two systems for information exchange and hence it should

be stable and consistent. However, the business goals of any organizations change, so the APIs must be adaptable

for modifications according to their behavior. This is handled by API versioning. An empirical study [12]

addresses the perennial issue of REST API versioning and how evolution of such API affects the clients.

GraphQL has the potential to overcome these issues as it can be used to create scalable, sustainable, flexible, maintain-
able, interoperable, and secured APIs [11]. GraphQL functions as a service abstraction layer [16] providing a single
APT endpoint for resource fetching, creation or modification. GraphQL APIs holds the following characteristics: 1)
strongly typed schema; ii) introspection that allows clients to query about fields, types and supported queries; iii)
enabling rapid product development; iv) rich open-source ecosystem; v) composable API (schema federation which
allows merging multiple GraphQL APIs) [5]; vi) faster request-response cycles; vii) client-specified queries; and viii)
being hierarchical (a GraphQL query itself is structured hierarchically and is shaped just like the data it returns) [5].
The introspection features provided by GraphQL allows users and developers to comprehend the interface easily and
machine-readable representation enables dynamic and loose coupling between server and clients.

Despite these features, to the best of our knowledge, GraphQL based APIs are not adapted for exchanging health-
care information in general and especially not using HL7 FHIR. In this paper, we present a quantitative constructive
research to evaluate the applicability of GraphQL based APIs for HIE based on HL7 FHIR [4]. We also propose an
algorithm to automatically produce GraphQL schema for HL7 FHIR resources. The schema generation is a model
transformation approach which reduces the number of errors typically occurring at the time of schema development.

The rest of the paper is structured as follows: Section 2 provides a mapping of existing HL7 FHIR resources
to GraphQL schema. Section 3 describes the prototype implementation from healthcare context. Section 4 explains
evaluation criteria and results. Section 5 discusses related works, existing challenges and concluding remarks.

2. Mapping HL7 FHIR Resources to GraphQL Schema

HL7 FHIR is based on Resources which are the common building blocks for all information exchanges. A sin-
gle resource (e.g., Patient) contains several Element Definitions (e.g., name) which has Data Type (e.g. String)
and cardinality associated with it (Figure 1). DataType can be Scalar Type, Enumeration Type or other HL7
FHIR resource types. Moreover, Element Definition can also reference another HL7 FHIR resource. GraphQL sup-
ports Interface Definition Language (IDL) that defines schemaes. A GraphQL document [5] can contain one to many
schemas. As shown in Figure 1, each schema contains at least one RootOperationTypeDefinition (e.g., query)
and several Types definition. Each Type definition can have several Fields which may contain Name (picture),
Arguments(size) and Type(URL) definition. Based on the transformation model illustrated in Figure 1, we
present an algorithm to transform from HL7 FHIR resources to GraphQL schema. In Algorithm 1, the recursive
function recursive hl7fhir graphql mapper takes the HL7 FHIR resource as an input and returns a GraphQL
schema as an output. The function iterates over each field in the HL7 FHIR resource and based on field type and
cardinality, an equivalent schema is generated as follows:

340 Suresh Kumar Mukhiya

Constraint Model

— Resource

*

Element

Definition

Data Types Cardinality
ScalarType EnumType

Information Model

Profile

W

*
onformance
Statement

I

<<mapsTo>>.

ValueSet

Code System

I

Terminology Model

<<mapsTo>>

et al. / Procedia Computer Science 160 (2019) 338-345

<<mapsTo>>

Types

ObjectTypeDefinition

schema

GraphQL Schema query: MyQueryRootType

RootOperationTypeDefinition type MyQueryRootType

someField: String

@
(=3
=
g
<4
fa}
type Person
@ yp
= 5 name: String
° £
i 3 picture(size: Int): Url
<

ScalarTypeDefinition

Name

EnumerationTypeDefinition

Algorithm 1: Mapping HL7 FHIR resources
GraphQL schema

to {

Input: FHIR Resource: Element Definition(field), Data Type(type)

Output: GraphQL Schema
1 function recursive_hl7thir_graphql_mapper (Resource)

2 schema = {};
3 foreach field € HL7 Resource. fields do
4 switch Resource.field do
5 case field. Type is ScalarTypeDefinition do
6 if field.cardinality is 0, 1 then
7 ‘ add_to_schema(field, type)
8 end if
9 if field.cardinality is 0, * then
10 ‘ add_to_schema_as_list(field, type)
11 end if
12 end case
13 case field. Type is EnumTypeDefinition do
14 if EnumTypeDefinition already exists then
15 ‘ - reference to schema
16 else
17 - define_new_type_enum(**args)
18 - reference to schema
19 end if
20 end case
21 case field. Type is Custom OR field. Type is HL7 FHIR
Resource do
22 if Custom OR Resource already exists then
23 ‘ - reference to schema
24 else
25 - define new type Resource
26 - reference to schema
27 - recursive_hl7fhir_graphql_mapper(Resource)
28 end if
29 end case

30 end switch
3
32 return schema

}

Fig. 1: AHL7 FHIR resource contains information model, constraint model and terminology model. Each field (Element Definition) in HL7
resources is mapped to an equivalent Type in GraphQL schema

“given”
‘use”

5

FHIR
“family” "<string >”,
["<string >"],
"<code>", // usual | official | temp |
nickname | anonymous | old | maiden,
"period” : { Period }

Listing 1: Patient Name in HL7 FHIR format

o If the field type is ScalarTypeDefinition

(String, Float, Int, Boolean, ID) and
cardinality is either O or 1, we simply add to
the schema with same field name and type. If
the cardinality of field is O to *, we add to
the schema as ListType. For example Listing 1
shows a patient name in HL7 FHIR format. The
field family has data type string, so the field is
simply added to GraphQL schema with the same
name and data type. The field given is an array of
datatype string. Hence, it is added as ListType in
the GraphQL schema.

If the field type is EnumTypeDefinition, and if
it is already defined, we add field to schema and
reference it to the field. If it is not defined, we
create a new schema of enum type with required ar-
guments and reference it to the field. A generated
schema for the field use in Listing 1 can be found in
Listing 2.

If the field type is HL7 Resource or Custom, and
if it is already defined in the schema, we reference it
to that field. If it is not yet defined, a recursive call
to recursive_hl7fhir_graphql_mapper is made
with this field as the argument.

Suresh Kumar Mukhiya et al. / Procedia Computer Science 160 (2019) 338-345 341

3. Prototype Implementation

This section outlines a typical health information exchange scenario in the context of healthcare. The scenario is
taken from an ongoing project INTROMAT [9], which aims to support mentally ill patients with adaptive technologies.
We discuss the need for GraphQL based API with respect to a self assessment mobile application, and to INTROMAT

core architecture [14] that consumes GraphQL-based API for HIE.

3.1. INTROMAT Core Architecture

As illustrated in Figure 2, INTROMAT core architecture contains the following main
components communicating over SOA standards:

o Authorization Server is an OpenlD connect [15] compliant web server with
an ability to authenticate users and grant authorization access tokens. More-
over, the authorization server manages scopes and permission of the clients,
introspects token and requests for the resource server.

e Resource Server is a FHIR [1] compliant web server with an ability to re-
spond to HTTP requests consuming access tokens granted by the Authoriza-
tion Server.

e Web Client provides an interface for therapist and administrators to login
and view the list of patients, questionnaires and other resources.

e Mobile Client is a self-assessment mobile application (Section 3.2) that con-
sumes Questionnaire HL7 FHIR resources and sends response by using
QuestionnaireResponse resource.

enum enumNameType {
official
usual
temp
nickname
anonymous
old
maiden

}

type Period {
start: Date,
end: Date

}

type HumanName {
family: String
given: [String]
use: enumNameType
period: [Period]
}

Listing 2: Generated GraphQL schema
from Listing 1

A detailed technical documentation of the prototype [13] of the above architecture is available to interested readers.
All the components of the prototype are hosted on Amazon Web Server' (AWS) on t3.micro (EU, Stockholm) Red

Hat Linux instances to perform the evaluation under similar environment.

3.2. Self Assessment Mobile Application

The main aim of developing the self-assessment appli-

Authorization
Server

cation is to provide a possible way for people suffering
from mental health morbidity to self-evaluate and man- g Mobile Cient

GraphQL layer \

age their illness. In addition to, the application showcases

2
,A‘ Resource | |¢ 5| @ Web Client
Server o

the exchange of information based on HL7 FHIR stan-

dard [14] to support interoperability. The application uti- Y

lizes the REST APT standard to exchange information be- =

tween mobile client and resource server. The application

contains several views including: i) a list of available self- Fig. 2: The prototype contains five major components: a) mobile
assessment questionnaires (name, id), and ii) a detailed client for self-assessment, b) resource server based on HL7 FHIR,
view of a questionnaire (id, questions (id, text), ¢) authorization server for authentication and authorization, d) web

and options (id, text)). The listing view (all avail-

. . . i store data.
able questionnaires) shows the name of the questionnaire

client: to provide web interface for therapist and e) mongoDB to

and only requires to have id, name of the questionnaire. However, to support interoperability and maintain the se-
mantics, we require to support all the available attributes” of the questionnaire resource mentioned in the HL7 FHIR

! https://aws.amazon.com
2 http://hl7.org/thir/questionnaire.html#resource

342 Suresh Kumar Mukhiya et al. / Procedia Computer Science 160 (2019) 338-345

110.0 [—]
3 3
g < 100.0
5 3
z 2
4 =
kS E
5 £ 900
e}
(]
s £
Z =
80.0
Ve A R\ 3 © R\
O Q) ® N S
NS Ny 3 N S NS Ny &
R © V(? V‘?) © V(?
[] Kilobytes fetched (REST) I Time to fetch all attributes (REST)
[] Kilobytes used (GraphQL) [] Timetofetch required attributes (GraphQL)

Fig. 3: (Left:) Response size — Questionnaire: types of self-assessment questionnaire for mental health, Kilobytes Fetched: bytes of data fetched
by REST API, Kilobytes Used: data actually used by mobile client, (Right:) Response Time — All attributes: Time taken to fetch all attributes,
Required attributes: Time taken to fetch used attributes

[3] standard. These API endpoints fetch a plethora of additional metadata that are irrelevant for the application. The
RESTful approach to solving this problem is to define a new API endpoint or update an existing endpoint that would
only return id and name of the questionnaire list. However, creating new endpoints or modifying existing endpoints
for solving different requirements of the clients become quickly inflexible and expensive. This is because different
clients require different attributes for different views and these requirements are very dynamic which are liable to
change according to demographics, organizational ethics, and application views. This can be solved by providing an
endpoint with a higher level of abstraction for clients to query the server based on their requirements. The need for
such endpoints is supported by the empirical study [12].

4. Evaluation

We aim to evaluate whether migrating from RESTful approach to GraphQL based API is scalable and performant.
To evaluate, we performed response sizeftime test and performance test. As aforementioned, all the components are
hosted at Amazon Web Server with the same configuration for testing to keep evaluation metrics consistent.

4.1. Response size and time

The aim of this evaluation is to explore how much extra information was fetched from the endpoints when fetch-
ing a single Questionnaire item using REST and how much is actually being used by our self-assessment mobile
application (see Section 3). Figure 3 (left) illustrates the overall difference in the amount of data returned by HTTP
responses while fetching a single questionnaire resource. The figure shows that approximately 50 percent of informa-
tion is not used by our self assessment mobile application. We also evaluated the time taken to fetch all the attributes
in RESTful approach and compare the result with the time taken to fetch only used information using GraphQL API.
Figure 3 (right) shows the time taken in milliseconds to fetch all the attributes versus the time taken to fetch only the

Suresh Kumar Mukhiya et al. / Procedia Computer Science 160 (2019) 338-345 343

required attributes for various types of questionnaire. To keep the measurement uniform, Postman® was used to send
HTTP requests to the server; the evaluation was performed on the same machine and we took an average reading (10
requests were recorded for each questionnaire type).

4.2. Performance Testing

Performance testing inspects responsiveness, sta- | Description All attributes Required Attributes
bility, Scalability, reliability, Speed and resource Average Throughput 100.6 hits/second | 157.7 hits/second

usage o f software and infrastructure. We used A?'erage Response Time | 484 millisecond 308 rpillisecond

4 . . Time Elapsed 20 minutes 20 minutes
BlazeMeter® which is powered by Apache JMe- Concurrent Users 30 50
ter’ for creating performance tests. Each HL7 FHIR
resource requires the endpoints for CRUD (Create, Table 1: Performance test meta-data for fetching GAD-7
Read, Update, Delete). Presenting performance tests Questionnaire resource. Column 1: description of the meta

data, column 2: meta data for fetching all attributes from the endpoints.

for each endpoint is out of the scope of the paper. X X X
column 3: meta data when fetching only required attributes

However, we present performance tests for getting an
Questionnaire resource, where the questionnaire
GAD-7 is for anxiety disorder. Table 1 shows the metadata for the performance evaluation, which include two parts:
one for fetching all the attributes from questionnaire, and one for fetching only required attributes). Both were per-
formed on the same server and have the same configurations. Fifty virtual users requested resources concurrently for
20 minutes. Based on this test, we have made the following observations:

e Figure 4a illustrates concurrent users versus average throughput® (Hits/s) when requesting all the attributes
using RESTful approach from GAD-7 Questionnaire.

e Figure 4b illustrates concurrent users versus average response time’ when requesting all the attributes using
RESTful approach .

e Figure 5a illustrates concurrent users versus average throughput (Hits/s) when requesting only required at-
tributes using GraphQL approach.

e Figure 5b illustrates concurrent users versus average response time when requesting only required attributes
using GraphQL approach.

Figures 5a and 5b clearly show that there is an increase in average throughput and that response time is faster if only
the required attributes are fetched by using the GraphQL based API. The result is interesting to related stakeholders as
the throughput and response time are directly associated with operating costs and performance of the system, which
in turn are associated with the user adherence.

4.3. Expert Evaluation

The code for all the components mentioned in Section 3.1 has been evaluated by three senior front-end developers to
check their compliance with ISO/IEC 25000:2005 software product quality requirements and evaluation [11] criteria
and any presence of anti-patterns [2].

4.4. Discussion

Although GraphQL provides a sophisticated technology to develop client-centric applications with very complex
queries, there are some challenges. For example, unmanaged queries can have security implications. A malicious

3 https://www.getpostman.com/

4 www.blazemeter.com

5 https://jmeter.apache.org/

6 average number of HTTP/s requests per second generated by the test

7 average amount of time from first bit sent to the network card to the last byte received by the client.

344 Suresh Kumar Mukhiya et al. / Procedia Computer Science 160 (2019) 338-345

o Users - Hits/s : o Users - Response Time 4 Latency

(a) Concurrent users and number of hits per second when (b) Concurrent users and response time (milliseconds) when
fetching all the available attributes from the Questionnaire fetching only the required attributes from the Questionnaire

Fig. 4: Performance test results representing concurrent access using RESTFul approach

S/SIH
Users
awi)

" 1058 11:00 11:06 11:08 11:10 1112 1114 10:58 11:00 11:02 11:04 11:10 1112 11:14 11:16
- Users - Hits/s *- Users Response Time & Latency

(a) Concurrent users and number of hits per second when (b) Concurrent users and response time (milliseconds) when
fetching only the required attributes from the Questionnaire fetching only the required attributes from the Questionnaire

Fig. 5: Performance test results representing concurrent access using GraphQL approach

actor could submit an expensive, nested query to overload a GraphQL server, database, and network. The absence of
appropriate protections can open up to a DoS attack [6]. Another challenge is to deal with schema duplication. The
creation of GraphQL based backend, which acts as a database service abstraction layer, involves a plethora of similar
but not-quite-identical code, especially schema definition. It requires i) a schema definition based on the choice of
the database being used (MongoDB is used in this paper, and therefore schemaes are based on Mongoose®); and ii)
a schema definition for a GraphQL endpoint. This creates schema redundancy and requires synchronization between
two independent sources of truth.

5. Related Work

There is a number of emerging solutions in the GraphQL echo-system including PostGraphile’ that generates
GraphQL schema from PostgreSQL database, and Prisma'” that allows generating queries and mutations. In addition
to this, various other transformation libraries are being developed by the community to support various database
systems. There has been research on the syntax and semantic representation of GraphQL. A recent study by Ulrich et.
al [16] introduces QL*M DR, an 1SO 11179-3 compatible GraphQL query language, which promotes interoperability
by defining a uniform interface between different metadata repository (MDR) allowing querying over a distributed
network. However, their study does not explicitly give the answer to how HL7 FHIR can be used for HIE and how HL7
FHIR resources can be transformed into the GraphQL schema. Our work helps bridge this gap and is different from the
work in [16] as we focus on experimental evaluation to demonstrate the applicability of HL7 FHIR and GraphQL based
API in a healthcare setup. Another study was presented in [8] which formalizes the semantics of GraphQL queries

8 https://mongoosejs.com/
9 https://www.graphile.org/postgraphile/
10 https://www.prisma.io/

Suresh Kumar Mukhiya et al. / Procedia Computer Science 160 (2019) 338-345 345

based on the labeled-graph data model and analyzes the language to demonstrate that it admits efficient evaluation
methods. Moreover, the study proves that the complexity of GraphQL evaluation problem is NL-complete and the
enumeration problem can be solved with constant delay.

6. Conclusion

Interoperability in healthcare information system can be achieved by using standards like HL7 FHIR which supports
RESTful and SOA approaches by default. However, the RESTful approach comes with certain shortcomings. We
have summarized a list of challenges with the RESTful approach in HIE and presented a GraphQL based API for
HIE using HL7 FHIR standard as the solution to those challenges. Moreover, we have presented a transformation
algorithm that takes HL7 FHIR resource definition as input and produces GraphQL schema as output. Furthermore,
we present a healthcare application (self-assessment mobile application) based on a reference architecture proposed
in [14]. The evaluation of the healthcare application shows that the use of a GraphQL based API is both performant
and cost-effective. In addition, it solves problems associated with the RESTful approach, including the over-fetching,
under-fetching and, n+1 request. The most prominent future work involves removal of schema duplication by using
transformation tools, and creation of comprehensible dashboard for better visualization for therapists.

Acknowledgement

This publication is a part of the INTROducing Mental health through Adaptive Technology (INTROMAT) project,
funded by Norwegian Research Council (259293/070). INTROMAT is a research and development project in Norway
that employs adaptive technology for confronting these issue. The paper is also partially supported by SIRIUS: Centre
for Scalable Data Access (www.sirius-1labs.no).

References

[1] HI7 FHIR SMART app launch, Retrieved December 28.
[2] AMBLER, S. Process Patterns Building Large-Scale Systems Using Object Technology. 1998.
[3] BENDER, D., anp SarTipi, K. HL7 FHIR: An agile and RESTful approach to healthcare information exchange. In Proceedings of CBMS 2013 -
26th IEEE International Symposium on Computer-Based Medical Systems (2013).
[4] Bryant, M. Graphgl for archival metadata: An overview of the ehri graphql api. In 2017 IEEE International Conference on Big Data (Big
Data) (Dec 2017), pp. 2225-2230.
[5] FaceBook. Graphqgl: A query language for apis, Retrieved April 11, 2019.
[6] Fercuson, P., anp SENIE, D. Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing. Tech.
rep., 2000.
[7] FieLbiNg, R. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis, 2000.
[8] HarTIG, O., AND PEREZ, J. Semantics and Complexity of GraphQL .
[9] INTROMAT. INTROducing Mental health through Adaptive Technology. https://intromat.no/, 2019.
[10] Iroyu, O., Soriyan, A., GaMmBo, 1., AND OLALEKE, J. Interoperability in Healthcare : Benefits , Challenges and Resolutions. International Journal
of Innovation and Applied Studies ISSN (2013).
[11] ISO/IEC 25000. ISO/IEC 25000:2005 Software Engineering - Software product Quality Requirements and Evaluation (SQuaRE) - Guide to
SQuaRE, 2005.
[12] L, J., Xiong, Y., Liu, X., aNp ZHanG, L. How does web service API evolution affect clients? In Proceedings - IEEE 20th International
Conference on Web Services, ICWS 2013 (2013).
[13] MukHiya, S. K., anp Raesi, . A GraphQL approach for Healthcare Information Exchange with HL7 FHIR: Extended Version. https:
//github.com/sureshHARDIYA/phd-resources/tree/master/Papers/GraphQLHIE, 2019.
[14] MukHiva, S. K., Rass, F., Pun, K. L., anp Lamo, Y. An architectural design for self-reporting e-health systems. In Proceedings of the 1st
International Workshop on Software Engineering for Healthcare (Piscataway, NJ, USA, 2019), SEH 19, IEEE Press, pp. 1-8.
[15] Sakimura, N., BRADLEY, J., B. Jones, M., MEDEIROS, B., AND MoRrTIMORE, C. Final: OpenID Connect Core 1.0 incorporating, 2014.
[16] Utrich, H., KERN, J., Tas, D., Kock-ScHOPPENHAUER, A. K., Uckerr, F., INGENERF, J., AND LaBLANS, M. QL 4 MDR: A GraphQL query language
for ISO 11179-based metadata repositories. BMC Medical Informatics and Decision Making (2019).
[17] VocEL, M., WEBER, S., AND ZIRPINS, C. Experiences on Migrating RESTful Web Services to GraphQL. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2018).

